Русский
Русский
English
Статистика
Реклама

Дисплеи

Что такое ШИМ и почему мерцает OLED? РАЗБОР

08.10.2020 16:23:54 | Автор: admin
ШИМ, все вокруг говорят про ШИМ. Ну фиг знает я его не вижу. Что хотите сказать, если понижу яркость дисплея, это как-то будет меня утомлять? Кажется тут есть в чём разобраться!

Сегодня мы объясним как на самом деле работает ШИМ. Узнаем сколько FPS видит человек, а сколько муха. Проведём тесты ШИМ на осциллографе.И, конечно, расскажем как избавиться от ШИМа на Samsung и на iPhone.



OLED дисплеи фактически во всём превзошли IPS. Но некоторые люди просто физически не могут пользоваться OLED, ведь они чувствуют усталость глаз, сухость и даже головные боли.

Почему так? Дело в том, что в отличие от большинства IPS-экранов большинство OLED-матриц мерцают. Примерно как дешевые люминесцентные лампы. И это не очень хорошо сказывается на зрении.

Но стоп! Лично у меня нет никаких проблем с OLED-дисплеями, да и мои друзья ходят с OLED и не жалуются.

Действительно, по статистике большинство (примерно 90%) людей не ощущают мерцания OLED-дисплеев. Мы даже провели опрос:Устают ли у Вас глаза от OLED дисплеев? Устают ли у вас глаза от IPS дисплеев? Иполучили вот такие результаты: примерно четверть 27% сообщила, что у них глаза устают. Меньшинство, но всё же четверть!

Тем не менее есть люди, которые не просто чувствуют ШИМ, но даже отчетливо его видят. Как так получается?

ШИМ в кинопроекторах




Чтобы ответить на этот вопрос давайте поговорим про кино. В старых кинопроекторах, в которых еще были бобины с плёнкой, крутили кино со скоростью 24 кадра в секунду.

Так вот, для того чтобы при смене кадров изображение не смазывалось и вы не видели момент перемотки пленки, в этот момент поток света перекрывался. Это приводило к адскому мерцанию, так как изображение постоянно обрывал черный кадр.

Так как ускорить процесс смены кадров не было технической возможности киноделы придумали другой хак. Они стали перекрывать изображение дважды: не только во время смены кадра, но и когда на экране отображался статический кадр.Ммм. И какой в этом смысл?

Такое чередование изображения и дополнительных черных кадров позволяло искусственно увеличить частоту мерцания до 58 раз в секунду. Чего было достаточно, чтобы обмануть мозг. Видя постоянно мелькающую картинку, мозг просто отключает восприятия мерцания и мы видим плавную картинку.Кстати в немом кино, где использовалась частота 16 К/с, вообще перекрывали 3 раза и получилось мерцание 48 раз в секунду.

Сколько мы видим кадров?




Этот невероятный эффект человеческого зрения называется порогом слияния мерцаний и этот порог равен 60 Гц. Это значит, всё что мерцает чаще чем 60 раз в секунду человек будет воспринимать как непрерывное изображение.

Кстати, у собак и кошек этот порог выше в районе 70-80 Гц, а у мух так вообще 250-300 Гц.



Что же это получается, игровые мониторы 144 Гц и выше это всё маркетинг? Нет, 60 кадров в секунду это минимальный порог, при котором человек перестает видеть мерцание.
А люди с натренированным зрением, например, пилоты истребителей на тестированиях различают кадры, появившиеся на 4 мс. Что соответствует 250 кадрам в секунду. К хардкорным геймерам это тоже относится.

На самом деле есть исследования, где люди смогли различить и 480 к/с и даже больше в некоторых условиях.

Но в целом если верить ГОСТАм:Пульсация освещенности свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность.ГОСТ Р 54945-2012

Зачем нужен ШИМ?


Итак, со зрением разобрались. Но зачем вообще мерцают OLED-дисплеи и на какой частоте?

Сначала ответим на вопрос Зачем?

Существует два способа регулировки яркости дисплея:

Первый и самый очевидный способ, при помощи понижения напряжения. Чем меньше мы подаем энергии на дисплей, тем меньше он светится.

Именно так регулируется яркость в большинстве IPS-дисплеев в наших смартфонах, ноутбуках и мониторах.



Но почему бы на OLED-дисплеях не делать также? На самом деле можно, и так даже делали раньше. Например в смартфоне LG G Flex 2 использовался именно такой подход. Но есть проблема! На OLED-дисплеях при уменьшении напряжения сильно страдает картинка. Возникает так называемый мура-эффект, более известный как эффект наждачной бумаги. Мы подробно рассказывали об этом в материале про OLED.



Поэтому чтобы избежать такой деградации изображения используется второй подход: регулировка яркости при помощи мерцания или ШИМ. ШИМ это широтно-импульсная модуляция, или PWM по-английски.Это буквально значит регулировка ширины, ну или длительности, импульса.

Так, стоп, что еще за импульс? Дело в том, что напряжение в дисплеях, использующих ШИМ, не постоянное, а прерывистое. Оно подаётся при помощи вот таких всплесков или импульсов.



Количество импульсов в секунду называется частотой и измеряется в Гц. А время, которое занимает каждый цикл пульсации, называется периодом.

К примеру, возьмем частоту 250 Гц, в этом случае период будет 4 мс. Частота и период это фиксированные значения, и с изменением яркости дисплея они не меняются. А вот ширина каждого импульса это как раз то, что мы можем регулировать. Это значение называется рабочим циклом, и он выражается в процентах.



Если рабочий цикл 100%, импульс будет длиться 100% своего периода, то есть 4 мс. Это соответствует 100% яркости дисплея. Если мы сократим ширину импульса до 50% или 2 мс, воспринимаемая яркость дисплея также упадет до 50%.А на яркости 1% фактически 99% будет отображаться просто черный экран, но наше зрение это интерпретирует как просто очень тусклую картинку. Получается, чем меньше яркость дисплея, тем более выражен эффект мерцания. И тем это вреднее для глаз.

Частота ШИМ в разных дисплеях


На самом деле ШИМ используется не только в OLED-дисплеях, но и в IPS. Но в отличие от OLED в IPS-экранах используют очень высокую частоту мерцания, свыше 2000 Гц. Естественно, столь быстрое мерцание не сможет заметить ни человек, ни муха. А значит и глазки уставать не будут.

Например, у Xiaomi Redmi Note 7 2336 Гц, а уrealme 6 Pro 2336 Гц.

А какая частота ШИМ в OLED?


Тут всё зависит от конкретной модели, но есть определенные закономерности. Во-первых, желательно чтобы частота ШИМ была кратной частоте обновления дисплея. Потому на 60 Гц или 120 Гц дисплеях, как правило частота ШИМ 240 Гц, а на 90 Гц дисплеях 360 Гц.

Мы решили убедиться в этом самостоятельно и отправились в Санкт-Петербург. Там ребята из компании ЛЛС подготовили для нас осциллограф с высокоскоростным фотодетектором.

Так мы проверили на ШИМ на iPhone 11 Pro и Pixel 4.

Тесты показали, что iPhone 11 Pro, вопреки общему мнению, немного мерцает даже на максимальной яркости, с частотой 240 Гц. При снижении яркости до 50%, мерцание становится менее выраженным, а значит до этого момента на iPhoneиспользуется уменьшение напряжения.Ну а дальше в бой вступает ШИМ. На осциллографе очень хорошо видно, как при снижении яркости уменьшается ширина импульса, а значит увеличивается мерцание.

В Pixel 4 вплоть до 70% яркости мы не обнаружили ШИМа совсем, видно только обновление экрана 90 Гц. А дальше начинается ШИМ с частотой 360 Гц. Но так как частота обновления экрана в Pixel 4 после 40% падает до 60 Гц, видно как каждыйчетвёртый импульс немного скачет. Это потому что частота обновления не совпадает с частотой модуляции.

Посмотреть частоту ШИМ в других моделях можно на портале notebookcheck.net.Впрочем, некоторые измерения там выглядят сомнительно. Либо на нашем родном IXBT.com, там всё ок с тестами.
  • Galaxy S20 242.7 Гц
  • Galaxy S20 Ultra 240.4 Гц
  • Google Pixel 2 245.1 Гц
  • Google Pixel 2 XL 242.7 Гц
  • Google Pixel 3a 271.1 Гц
  • Google Pixel 3a XL 242.7 Гц
  • Google Pixel 4 367.6 Гц
  • Google Pixel 4 XL 367.6 Гц
  • Huawei P30 240.4 Гц
  • Huawei P30 Pro 231.5 Гц
  • Huawei P40 245 Гц
  • Huawei P40 Pro 365 Гц
  • iPhone 11 Pro 290.7 Гц
  • iPhone 11 Pro Max 245.1 Гц
  • iPhone XS 240.4 Гц
  • iPhone XS Max 240.4 Гц
  • OnePlus 5T 242.7 Гц
  • OnePlus 6T 240 Гц
  • OnePlus 7 200 Гц
  • OnePlus 7 Pro 122 Гц
  • OnePlus 7T Pro 294 Гц
  • OnePlus 8 Pro 258 Гц
  • Samsung Galaxy A50 119 Гц
  • Samsung Galaxy A51 242.7 Гц
  • Samsung Galaxy A71 247.5 Гц
  • Samsung Galaxy S10e 232 Гц
  • Xiaomi Mi 10 362.3 Гц
  • Xiaomi Mi 8 238 Гц
  • Xiaomi Mi 8 Explorer Edition 100 Гц

OnePlus 7 Pro:



Samsung Galaxy A50:



На самом деле, частоту мерцания OLED-дисплеев можно увеличить, пусть не до 2000 Гц, но хотя бы до 500 Гц. Кстати, именно такая частота ШИМ была в древнем Windows Phone Lumia 950. Но это удорожает производство, а так как страдающих людей мало, производители воровать у себя из кармана не готовы.



Кстати, практически все современные LCD-телевизоры тоже ШИМят на частоте 240 Гц. И в теликах этот эффект даже более заметен, чем в телефонах.

Разве что SONY не поскупились установить в свои LCD модели контроллеры управления яркостью либо совсем без мерцания, либо с мерцанием на частоте 720 Гц.

Как проверить ШИМ самому?


Но как проверить ШИМ на вашем телефоне, ноутбуке или телевизоре самостоятельно? Если у вас нет под рукой осциллографа с высокоскоростным кремниевым фотодетектором.

На самом деле очень просто! Вам нужно снять экран экран на видео в замедленной съемке 240 к/с или больше. Сейчас почти любой телефон так может. Если на всех значениях яркости вы не увидите мерцания в виде перемещающихся полос. Значит ШИМа нет.

Что такое DC Dimming?


Тем не менее проблема есть и первой её осознал Xiaomi, представив функцию DC Dimming в Black Shark 2 Pro. Эта тема настолько хорошо зашла, что очень быстро подсуетились OnePlus, OPPO и Huawei. И начиная с прошлого года во всех флагманах точно есть DC Dimming.

Само название расшифровывается как Direct Current Dimming, что переводится как затемнение постоянным током. Иными словами в этом случае яркость регулируется как и положено снижением напряжения.

СТОП! Но также нельзя! Картинка же убьется!На самое деле, так нельзя было делать раньше, потому как качество OLED-дисплеев оставляло желать лучшего. Но теперь всё иначе.

Уже давно многие производители стали использовать гибридный способ регулировки яркости. Например на iPhone до 50% яркости используется снижение напряжения, и только потом включается ШИМ.А телефоны с функцией DC Dimming пошли дальше и стали регулировать яркость исключительно снижением напряжения.

Да, включив DC Dimming на низких яркостях могут немного поплыть цвета и появиться шум. Но это совсем не критично.

И тесты показывают, что функция реально работает. Хотя колебания яркости и не сглаживаются полностью, всё равно такой подход позволяет многократно снизить нагрузку на наши с вами глаза.

По нашим замерам на Xiaomi Mi 10 ШИМ с включенным DC Dimming исчезает полностью! А значит ваши глазки смогут отдохнуть.




Убираем ШИМ для всех


Но что делать, если вам DC Dimming не завезли? Например у вас Samsung, который ШИМит даже на 100% яркости, или iPhone который начинает ШИМить на 50%?

На самом деле решение есть и оно программное.Имя ему экранные фильтры!

Android.Например, на любой Android можно поставить программу OLED Saver. Она умеет накладывать полупрозрачный серый фильтр поверх всего изображения. Регулируя прозрачность фильтра, регулируется яркость. Это программа умеет имитировать функциюавтояркости. Можно довольно быстро из шторки регулировать прозрачность фильтра и настроить автозапуск после перезагрузки.

Не могу сказать что это очень удобно. Но может быть очень полезно, если любите позалипать в телефон перед сном в темноте.

iPhone.А на iPhone вообще есть специальный режим встроенный в систему. Он называется понижение точки белого и прячется в разделе Универсальный Доступ. Путь такой: Настройки > Универсальный доступ > Дисплей и размер текста > Понижение точки белого

А чтобы постоянно не лезть в настройки можно назначить включение режима на тройное нажатие кнопки питания с помощью такого пути:Настройки > Универсальный доступ > Быстрая команда.

В iOS 14 можно даже назначить тоже самое на постукивание по задней крышке. Но я бы не рекомендовал так делать, будут ложные срабатывания.

Ну и напоследок можно вынести ярлык с этой функцией в пункт управления. Для этого идём в Настройки > Пункт управления и перетаскиваем иконку Команды для универсального доступа.

Итоги




Что в итоге? ШИМ, конечно, зло. Хоть я его и не вижу, и мои глаза не устают, эта шутка всё равно напрягает мозг. А с возрастом может появиться и усталость глаз.

С другой стороны, благодаря ШИМ вообще стал возможен прогресс в развитии технологии OLED. Если б его не было сидели бы мы IPS и о всех прелестях классных OLED-дисплеев даже бы и не знали.

Очень надеемся, что DC Dimming станет стандартом и мы забудем о ШИМ в смартфонах и телевизорах точно также, как забыли о нём в настольных мониторах с появлением Flicker Free мониторов от BenQ. Это, кстати, та же самая технология что и DC Dimming.

В основу ролика легла статья с портала deep-review.com и материал Олега Афонина для журнала Хакер. Ребята проделали отличную работу, а мы продолжаем их дело.

Спасибо компании ЛЛС за оборудование и теплый приём в Питере! Очень приятно вместе с вами делать крутой науч-поп контент.На этом сегодня всё!
Подробнее..

OLED из парикмахерской гибкие дисплеи из человеческих волос и их перспективы

23.08.2020 18:21:00 | Автор: admin
Вторичное использование органических отходов это часть решения экологических проблем, связанных с глобальным загрязнением. Одно из решений проблемы применение человеческих волос для производства гибких дисплеев. О разработке соответствующей технологии в этом году заявила группа австралийских ученых: Доцент Прашант Сонар, профессор Кен (Константин) Остриков, аспирант Амандип Сингх Панну, профессор Цинь Ли. Основная группа разработчиков трудятся в Квинслендском технологическом университете (QUT). Технология представляет собой превращение небольших прядей волос в углеродные наноточки.



Ученые утверждают, что, в связи с насыщенностью волос такими химическими элементами как углерод и водород, они хорошо подходят в качестве сырья для создания дисплеев по технологии OLED. Под катом немного подробностей о том, каким образом можно превратить человеческие волосы в высокотехнологичный компонент.


Почему волосы?


По словам исследователей, они использовали волосы для создания углеродных наноиточек в силу того, что именно они являются естественным источником углерода и азота, ключевых элементов для создания светоизлучающих элементов. Волосы состоят из белков (полимеров аминокислот), в числе которых кератин. Последний разрушается при контролируемом нагреве. Оставшийся после термического разрушения материал включает углерод и азот, встроенные в его молекулярную структуру, что обуславливает полезные электронные свойства.



В настоящий момент исследователи тестируют шерсть животных, чтобы понять, может ли она использоваться таким же образом, как человеческие волосы и пригодна ли для создания гибких OLED-дисплеев. В тестах используют шерсть овец и собачью шерсть, как наиболее распространенные в Австралии.

Технология и свойства продукта


Технологическая цепочка начинается в парикмахерской, где можно найти избыточное количество сырья. В случае с разработчиками, источником сырья стал ближайший к исследовательскому центру салон Бенджамина Мира.



Собранные волосы обрабатываются, а затем разрушаются при температуре 240 Градусов Цельсия. В процессе сгорания образуются углерод, водород и азот, которые путём специальной реакции превращают элементы в углеродные наноточки с размером менее 10 нм. Наноточки, равномерно диспергированные в полимере, образуют наноостровки, которые при подаче небольшого напряжения (3 4 В) светятся синим. Таким образом, новый материал представляет собой активный слой дисплея на органических светодиодах (OLED).

Профессора Сонар и Остриков, которые руководят исследованиями в Центре материаловедения QUT, утверждают, что их исследование и технология, опубликованные в журнале Advanced Materials это первый в мире опыт использования человеческих волос в качестве высоколюминесцентного углеродного наноматериала. Одним из свойств нового материала является эластичность.

Что разработчики думают о перспективах материала


Согласно сведениям отчета IDTechEx гибкие печатные OLED-дисплеями 2020-2030: прогнозы, рынки, технологии, применимая в промышленности технология использования волос, может быть разработана австралийцами ещё до завершения текущего года. Это открывает большие перспективы для устройств на их основе.

По мнению одного из руководителей исследовательской группы профессора Сонар, органические отходы являются большой проблемой и светоизлучающие устройства на их основе при массовом применении могут стать одним из решений. По его мнению, технология будет применима в таких сегментах как носимая электроника, вывески, умные браслеты.Также, по словам Сонора, технология очень недорогая, учитывая практически дармовое сырье, в связи с этим гибкие и дешевые OLED-дисплеи имеют большое будущее для умной упаковки, в качестве примера умная бутылка молока, на дисплее которой в реальном времени отображается время с момента производства. Исследователи убеждены, что такие дисплеи будут востребованы в медицинской технике, в силу нетоксичности получившегося материала.

На текущий момент углеродные наноточки, полученные из человеческих волос, не смогут использоваться в телевизорах, смартфонах, так как светятся недостаточно ярко.

Итог


Вполне вероятно, что мы скоро увидим новые устройства, оснащенные новыми дисплеями. Не исключено, что технологию можно будет адаптировать для телевизионной техники, если будет найден способ увеличить яркость. Напишите в комментах, где по вашему можно эффективно использовать новый продукт.

Джинса:
У нас в каталоге можно приобрести множество разнообразной электроники, акустические системы, наушники, саундбары, телевизоры и другое.
Подробнее..

Mini-LED ЖК-дисплей на максималках. Разбор

05.04.2021 14:09:20 | Автор: admin
Технологию mini-LED незаслуженно обделили вниманием, ведь этом году она станет особенно актуальной. Вы наверное уже слышали, что такие дисплеи ждут в новых iPad Pro и MacBook! А телевизоры с mini-LED-матрицами уже появляются в продаже. Лучше ли они чем всеми любимый OLED?

Но что же такое mini-LED по своей сути? Главное не путайте ее с microLED и чуть позже поймете почему!


Название дословно говорит нам мини-светодиоды, но о чём конкретно идёт речь и какие именно светодиоды уменьшили, а также почему это важно надо разобраться...

Вот вам первый сюрприз! mini-LED уходит корнями в традиционную технологию жидкокристаллических дисплеев Liquid Crystal Display с подсветкой. Эти самые мини-светодиоды работают так же, как и обычные светодиоды подсветки на LED-экранах.

Они состоят из кристалла на подложке, излучающей свет, корпуса с линзой, анодом и катодом с двух разных сторон для проведения электрического тока. И тут все как в учебниках светодиоды преобразуют электрический ток непосредственно в световое излучение.Подаешь больше тока и получаешь больше света, но конечно это работает не до бесконечности.



Первое, что провернули технологи с mini-LED они в разы уменьшили сами элементы. Так, при диаметре всего около 200 микрон или 0,008 дюйма мини-светодиоды составляют пятую часть размера стандартных светодиодов, используемых в обычных ЖК-дисплеях.То есть мы поняли что уменьшение произошло в пять раз, закрепили!

Поскольку сами диоды меньше, на экране их можно разместить больше. Они также как и в LED-матрицах разделены на зоны подсветки, как раз за счет меньших размеров сами зоны тоже можно уменьшить и их количество возросло, что как раз очень важно для HDR контента.

Мы рассказывали об HDR и не раз, но я немного напомню, что самое важное скрывается в названии High Dynamic Range, то есть расширенный динамический диапазон.

Если совсем по-простому, отбросив битность цветов, скажу о свете. Тот самый диапазон оттенков от абсолютного черного до яркого чистого белого, именно яркого настолько, чтобы можно было передать на экран например свет фар или даже солнца приблизив картинку к реальной жизни.


Но, к сожалению, на ЖК-панелях достичь этого самого расширенного диапазона сложно из-за свойств самой технологии.Так как жидкокристаллические дисплеи идут с подсвечивающейся подложкой, по-настоящему, чёрного как на OLED там нет. Вам ли не знать, у кого смартфон с IPS-дисплеем. Поэтому производители идут на ухищрения, разбивая подсветку на зоны: чем больше зон подсветки, тем меньше ореолов на черном.

В чем же принципиальная разница mini-LED?В нём, этих зон существенно больше чем на LED-экранах как раз за счет мини-светодиодов. Каждая зона включается отдельно только там, где требуется. Получается прямо как волна на стадионе, когда нужно встать и включиться в неё, вы встаёте, а затем ждёте когда вновь до вас дойдёт очередь.

Полотно со светодиодами mini-LED может иметь более тысячи зон полного локального затемнения. К примеру, у LED таких зон может быть всего несколько десятков. А их отключение, в зависимости от качества дисплея, приводит к эффекту гало вокруг ярко освещённых объектов на тёмном фоне.

Такая система подсветки называется Local Dimming: те области, что не нужны для воспроизведения картинки просто отключаются и там как раз и возникает идеальный черный. И, вместе с запасом яркости, мы получаем тот самый диапазон по свету в итоге технология mini-LED готова к воспроизведению HDR-контента гораздо лучше обычного LCD.

Главные достоинства mini-LED




Подытожим главные достоинства по пунктам и немного сравним с OLED:

  1. В последних разработках mini-LED используется неорганический нитрид галлия (GaN), который не выцветает со временем, как OLED, и не становится жёлтым в местах, с часто используемыми светодиодами отличие от органических,
  2. Максимальная яркость составляет 4000 нит, что опять же выше чем у OLED.

Mini-LED умеет отображать HDR-контент, благодаря прокачанной системе Local Dimming по сравнению с обычными LED экранами, где зон подсветки существенно меньше, но тут он скорее проигрывает OLED-матрицам.

Производство mini-LED дешевле, чем производство OLED-матриц; то есть и цена готового продукта должна быть ниже.

Светодиоды сами по себе маленького размера, а значит позволяют сделать экран и само устройство тоньше.

Получается, все звезды сошлись: mini-LED это дешево, надежно, а еще мы получаем больший запас яркости и глубокий чёрный цвет (и это всё ещё технология на основе ЖК).

Но все ли так хорошо и стоит ли переставать копить на OLED и бежать в магазин за mini-LED телевизорами?

Главные проблемы mini-LED




Не торопитесь, ведь главная проблема, заключается в том, что даже за счет большого количества зон подсветки вокруг объектов на экране все равно могут образовываться серые участки вместо чисто чёрного цвета, то есть все равно идеально черный как у OLED-телевизоров вы не получите.

Поэтому все сводится к тому, что mini-LED это некий компромисс он уже гораздо лучше LED и LCD, но ещё не OLED.

В конечном итоге всё сводится к тому что mini-LED дает превосходное качество изображения без больших затрат и рисков выгорания. Таким образом, все получили правильный баланс цена/качество/надёжность.

Так было бы в идеальном мире, но с ценой все тоже не так гладко, мы еще к этому перейдем!

Важный момент сравнения с OLED: последний далеко не всегда является предпочтительным вариантом для дисплеев ноутбуков и планшетов с высокой плотностью пикселей, особенно если необходимо добиться максимально возможной яркости.

Сравнение mini-LED и microLED




Существует утверждение, что mini-LED это некая переходная технология между LCD и microLED, однако если вы смотрели наш разбор microLED, то понимаете, что это не совсем так!

Mini-LED и MicroLED разные по своей природе. Первый основан на ЖК-технологии с использованием диодов меньшего размера для подсветки. Второй является эволюционным развитием OLED, в котором используются неорганические ещё более мелкие и яркие отдельные светодиоды красного, зеленого и синего цветов для прямого излучения света.

Другими словами, каждый пиксель излучает свой собственный свет в microLED, в то время как Mini-LED по-прежнему использует ЖК-матрицу для фильтрации подсветки, но подсветка предлагает больше контроля, чем традиционный ЖК-дисплей.То есть, если заглянуть в ближайшее будущее, то LED-дисплеи эволюционируют в mini-LED, а OLED в MicroLED. Немного обидно, что названия такие похожие но, по сути, мы опять получим две основные технологии, как и сейчас.

Будущие продукты на mini-LED




Как начнётся переход на mini-LED и в каких именно продуктах?

По сообщениям издания DigiTimes тайваньская компания Ennostar начала производство mini-LED дисплеев для будущего 12,9-дюймового iPad Pro, который выйдет уже совсем скоро, в конце первого или второго квартала этого года.

Джон Проссер также делал анонсы в Твиттере, которые напрямую связаны с mini-LED. Он подтвердил, что iPad Pro (2021) станет первым планшетом Apple с mini-LED дисплеем.Он даже назвал месяц: новый iPad выйдет уже в апреле!Но я бы не стал верить этому на 100%.

Помимо нового iPad Минг-Чи Куо предрекает выход новых моделей MacBook, которые будут представлены во второй половине этого года, также с новым типом дисплеев. Аналитик ожидает, что экраны новых 14-дюймовых и 16-дюймовых MacBook будут также выполнены по технологии mini-LED.

Из того, что уже представили на mini-LED, можно сделать список:

  • TCL представила на CES 2021 новую серию телевизоров с mini-LED;
  • Philips также показала два новый телевизора MiniLED 9636 и 9506;
  • LG показала линейку светодиодных телевизоров QNED Mini LED;
  • Samsung представила телевизоры линейки 2021 4K и 8K Neo QLED. В них Samsung будет использовать Quantum Mini LED собственная форма технологии, которая в сочетании с технологией квантовой матрицы и процессором Neo Quantum делает черные области экрана полностью чёрными (в них почти не будет серых зон от подсветки работающих областей), а яркость теоретически может быть выше, чем у конкурирующих самосветящихся OLED панелей.

И тут стоит вернуться к вопросу цен



Модели от Samsung с 8K-дисплеями Mini-LED будут стоить от $3500 до $9000 (от ~260 000 рублей до ~670 000 рублей) в зависимости от диагонали (65, 75 и 85 дюймов). Модели с 4K соответственно $1599,99, $2199,99, $2999,99 и $4499,99 за диагонали 55", 65", 75" и 85". LG и Philips пока ещё не объявили официальных цен на свои mini-LED телевизоры, но что-то подсказывает, что цена будет в том же диапазоне.

А теперь ради интереса давайте сравним народный 4K mini-LED телевизор от Samsung с диагональю 55" с аналогичной моделью от LG, но только с технологией OLED. За пример возьмём модель OLED55BXRLB 2020-го года выпуска, которая максимально схожа по характеристикам.



Вес, размер и разрешение безрамочного экрана (3840 2160), поддержка HDR то, что идентично в обоих моделях. Вплоть до того размеры телевизоров отличаются всего на пару миллиметров в ширину и на десять в глубину. Да, у модели Samsung целых четыре разъёма HDMI, тогда как у LG их всего два. Но зато у LG на борту Bluetooth 5.0, а у Samsung старый протокол версии 4.2. Но это всё мелочи, стоит лишь перейти к цене.

OLED-модель LG продаётся в России за 119 990 рублей, в то время как Samsung только-только начала продавать mini-LED модели за границей, где ту самую народную модель с диагональю 55" можно приобрести за те же 119 000 рублей в пересчёте на наши деньги. И это цена по курсу, наверняка, в России она будет дороже за счет дополнительных затрат на доставку, налоги и так далее.

Итоги




Вот тебе и более дешевая технология, понятно что она еще новая и Samsung будет держать планку.Хотя уже сейчас понятно, что производство mini-LED панелей должно быть дешевле, чем производство OLED, даже сейчас.

Другое дело, что пройдёт несколько лет, и Samsung уже нужно будет следить за предложениями своих конкурентов, да и технологию mini-LED точно обкатают и наладят массовое производство. Остаётся лишь ждать
Подробнее..

Что такое microLED и почему это круто? Разбор

16.12.2020 14:07:22 | Автор: admin
Уже не первый год утечки кричат, что Apple инвестирует много миллионов долларов в компании по разработке дисплеев на основе microLED.

Многие аналитики, в том числе анонимный китайский инсайдер @L0vetodream, заявляли в Твиттере, что в Apple Watch Series 6 будет совершенно новый дисплей, но этого не произошло.

Возможно виноват COVID-19, который затормозил процессы в технологической сфере и уже по новым данным нам известно, что новый тип дисплеев, microLED, мир увидит в гаджетах от яблочной компании не раньше 2023 года и, возможно, в совершенно новом гаджете!


Прошу не путать с miniLED, хоть названия и похожи разница колоссальная. Сегодня мы заглянем в настоящее будущее дисплеев и разберемся во всём, как вы любите.

Почему не развивать дальше OLED?




Прежде чем отправиться в будущее давайте разберемся с проблемами настоящего. Сейчас идет эпоха OLED, но мы по-прежнему миримся с некоторыми болячками данных экранов: выгорание, время отклика, яркость, да и энергопотребление неплохо было бы понизить! И часть из этих проблем ушла бы в прошлое с уменьшением числа светодиодов!

Вы спросите, а почему нельзя было дальше развивать OLED просто уменьшая светодиоды?Дело в том, что если уменьшить размер элемента снизится количество производимого света. А если повысить мощность, чтобы компенсировать уменьшение света увеличится энергопотребление и нагрев, что в разы снизит срок службы органических соединений, который на фоне неорганических и так слишком мал.

Получается, что OLED в тупике но почему же microLED видится как единственная правильная альтернатива и какие же продукты с этими экранами стоит ждать в первую очередь?



Что такое microLED?


Хоть о технологии мы услышали недавно microLED начали создавать ещё в далёком 2000-ом году, два профессора в Канзасском государственном университете Хунсин Цзян и Цзинюй Линь. Всеэти 20 лет технология совершенствовалась. Если всё начиналось с простых несенсорных панелей с буквально несколькими субпикселями, крошечными огоньками красного, зелёного и синих цветов, то теперь это уже настоящее поле из миллионов таких огоньков.



К слову, только в 2011 году группа учёных наконец преодолела планку разрешения 640 на 480 пикселей в формате Video Graphics Array или VGA, где были хромовые синие и зеленые микродисплеи, способные передавать видео.Основная сложность в процессе создания таких дисплеев заключается в том, что. microLED использует очень маленькие светодиоды субпикселей, тех самых: RGB.Их размеры составляют порядка 5 микрон, у OLED размеры выше в разы красный 64 на 46 мкм, зелёный 95 на 15 мкм, синий 95 на 49 мкм. (порядка 5 микрон в сравнении с миллиметровыми пикселями LED).

Кроме того время их отклика вместе с тем в разы меньше. И это один из первых бонусов, о котором мы еще поговорим подробнее.

Копнем глубже, и разберемся из чего же делаются и те, и другие светодиоды ведь именно материалы стали ключом к уменьшению размера.

MicroLED в отличие от OLED в качестве пикселей использует не органические светодиоды, а диоды на основе нитрида галлия, который широко используется для создания светодиодов полупроводниковых лазеров и сверхвысокочастотных транзисторов, в общем, для всего того, где нужна высокая точность и резкость.Такие диоды очень малы около одной десятой толщины человеческого волоса!

В чём главный плюс в microLED от того, что используется неорганический светодиод?




Да в том, что он просто не выцветает в процессе использования, как его органический конкурент OLED.

Чтобы было проще понять, представьте: на солнце лежат две футболки одна из 100% хлопка, а вторая синтетическая. Так вот та, что выполнена из натурального хлопка, выцветет или выгорит, а синтетическая продолжит лежать как ни в чём не бывало.Примерно то же происходит и с дисплеями у OLED при длительном использовании будет постепенно проявляться те самые выцветшие пиксели, вы их заметите по жёлтому оттенку на дисплее.

microLED придёт на смену OLED?


А теперь посмотрим что же мы получим при переходе от OLED к MicroLED. Внимание на табличку.



В итоге мы получаем: более высокую яркость, эффективность, скорость, высокую термостабильность и контрастность.

Так, например, компания LuxVue, купленная Apple, в какой-то момент сообщила, что разработанная ею технология в девять раз ярче, чем OLED и LCD!

Да-да, вы не ослышались, Apple уже купила компанию по производству microLED! То есть уже с 2023 года в гаджетах изКупертино могут стоять собственные microLED-матрицы.

Продукты на microLED




Но если не заглядывать в будущее, что мы имеем сегодня на microLED?

Первым, кто попытался (именно попытался) представить технологию microLED свету, была компания Sony и их телевизор Crystal LED Display в 2012 году. В нём компания использовала всего 6,22 миллиона микросветодиодов, но исходя из тех показателей, что были заложены в модели, контрастность изображения по сравнению с ЖК-дисплеями стала в 3,5 раза выше, цветовой диапазон в 1,4 раза выше, углы обзора составляли более 180 градусов, а также вышло более низкое энергопотребление (менее 70 Вт) по сравнению с моделями на LCD.

Лёд тронулся благодаря Sony, но у телевизора безусловно присутствовали детские болезни, а главное, дисплей был целиком воспроизведён из одного куска microLED-панели, а не был модульным, какэто предусматривается изначально.



Но прошло 5 лет, и Samsung ответила Sony, выпустив 146-дюймовый дисплей под названием Стена. И здесь корейская компания уже продемонстрировала возможность собирать экран под свои нужды и по необходимым размерам.



Хочешь небольшой телевизор с microLED на кухню? Да запросто! А, хочешь из тех же частей дособрать огромный телевизор в гостиную? Легко! Похоже, что использование модульного подхода становится промышленным стандартом для производства больших экранов.

Но увы, даже такой подход слишком дорого обходится потенциальному массовому покупателю чего уж говорить, Стена выставлялась на продажу исключительно под заказ и ценник на них составлял от 490 000 долларов, а заканчивался на отметке в 1,68 млн долларов! И это без учёта налогов.

Почему же так дорого и где другие гаджеты с microLED-ом?

Трудности microLED


Технология хоть и новая, но трудности с выходом на массовый рынок всё те же, что и когда-то были и с OLED-ом. Всё дело в том, что производить в огромных количествах на первых порах и под каждого конкретного производителя (той же Apple) и его гаджеты, очень трудно!

Заводов ещё слишком мало, производство не такое масштабное, отсюда и цена! Сейчас, когда OLED-дисплеи стали массовыми цена постепенно опускается всё ниже и ниже, а сами дисплеи проверены временем, производителям проще сделать выбор в пользу имеющихся технологий.

Но уже сейчас сами создатели технологии microLED заявляют: В связи с быстрым прогрессом, достигнутым в последнее время в этой области, вопрос уже не в том, сможет ли microLED, а в том, когда данные дисплеи проникнут на массовые рынки для различных применений. Получается, это уже вопрос времени!

Будущее с microLEDКакие же устройства будут первыми массовыми юзерамиmicroLED-а?




Еще раз упоминая доклад по этой технологии, процитирую: Внастоящее время microLED находится под пристальным вниманием почти всех крупных компаний в области технологий для умных часов, смартфонов,умных очков, приборных панелей и пико-проекторов и 3D/AR/VR дисплеев.

Почему именно эти области?Говоря о часах или Apple Watch, которые часто всплывали в слухах там важнейшими параметрами являются энергопотребление и яркость microLED даст прирост по обоим пунктам.

iPhone само собой перейдет на microLED, но тут нужно будет обеспечить огромные объемы производства.Что действительно интересно загадочные Apple Glass могут также стать носителем microLED, на это даже намекает схематичное изображение в том самом докладе, оно перед вами.



Другое подтверждение далее по тексту: microLED был исследован в качестве источника света для применения в оптогенетике и для связи с видимым светом.

Если оптогенетика это перспективное направление в медицине, то вот последняя фраза про связь с видимым светом намекает нам, что эти дисплеи, из-за своих конструктивных особенностей, будут использоваться не только в наших смартфонах, но и в умных очках, будь-то VR или AR.

Говоря другими словами, глаз находится в непосредственной близости от экрана и он способен разглядеть рисунок, в то время как расположение диодов OLED бы мешало погружению. У ЖК-дисплеев такой проблемы нет, но там по-прежнему нет и идеального черного.У microLED маленькие диоды, рисунок будет замечен меньше и черный также идеальный еще и время отклика выше одни бонусы.

Выводы




Подведём итог. microLED исправляет проблемы OLED, такие как выгорание, у него более высокая яркость и контрастность, а также возможность уменьшать или увеличивать дисплей под свои задачи модульность.Осталось удешевить производство, чем сейчас и занимаются Apple и Samsung, инвестировав в данную технологию уже несколько заводов переквалифицировались в производство microLED-дисплеев.

Но это не единственный тип дисплея неизученный нами: еще же есть какой-то miniLED.
Подробнее..

Перевод Пора обновить ваш монитор

29.06.2020 22:07:32 | Автор: admin

Иллюстрация: Юлия Прокопова

Я программист. Я не занимаюсь цифровой живописью, обработкой фотографий, видеомонтажом. Меня действительно не волнует широкая гамма или даже правильная цветопередача. Я провожу большую часть своих дней в текстовом браузере, текстовом редакторе и текстовом терминале, глядя на едва движущиеся буквы.

Поэтому я оптимизирую настройки, чтобы показывать действительно, действительно хорошие буквы. Для этого необходим хороший монитор. Не просто нужен, а ОБЯЗАТЕЛЕН. А под хорошим я имею в виду настолько хороший, насколько это возможно. Это мои мысли, основанные на моём собственном опыте того, какие мониторы лучше подходят для программирования.

Дисплеи низкой плотности


Согласно моему опросу программистов, 43% всё ещё используют мониторы с плотностью пикселей на дюйм менее 150:


Какое разрешение dpi у вашего _основного_ монитора? Для вычисления используйте этот инструмент

Почему это проблема? Потому что единственный способ получить хорошие буквы это потратить больше пикселей на букву. Так просто. В прошлом количество пикселей на дисплеях было небольшим, поэтому мы научились жить с этим и даже изобрели несколько очень умных трюков, чтобы сделать нашу жизнь лучше. Две важные вещи, которые нужно понять::

  • Времена дисплеев с низким разрешением прошли. Теперь в ходу дисплеи с высоким разрешением.
  • Хитрости, разработанные для дисплеев с низким разрешением, не могли волшебным образом заставить текст выглядеть хорошо. Это всегда было и остаётся невозможным. Они просто сделали текст немного менее ужасным, но он всё ещё ужасен.

Если вы думаете, что каким-то образом можете сделать так, чтобы ваш дисплей 1080p отображал хороший текст, что ему просто нужно ещё несколько настроек, нет. Этого не случится. Чем скорее вы примете это, тем скорее сможете начать искать реальные решения.

Чтобы сделать мое утверждение более обоснованным, давайте подробно рассмотрим, как на самом деле выглядит текст на дисплее с низким разрешением и что с этим можно сделать (спойлер: не так уж много!).

Не хватает пикселей


Во-первых, для отрисовки символов просто не хватает пикселей. Возьмём шрифт Consolas, разработанный специально для программистов. Microsoft очень много работала, чтобы настроить его для рендеринга на дисплеях с низким разрешением. Мы установили его на 14px, что является значением по умолчанию в VS Code (и люди часто уменьшают его!):


Consolas на 14px, macOS

На таком размере заглавная буква В занимает на экране всего лишь 69 пикселей. У строчных букв только 7 (семь!) вертикальных пикселей. Это не так уж много. У меня больше пальцев на руках, чем здесь пикселей. Независимо от того, насколько хорошо разработан шрифт, трудно что-либо показать, когда всё, что у вас есть, это семь пикселей. Всё, что немного сложнее, чем Т или Н, становится неразборчивым пиксельным беспорядком.

Посмотрите на букву 'g' на картинке выше. Трудно сказать, где начинаются или заканчиваются штрихи, или даже сколько их там. Это просто случайный серый шум или шахматная доска, но не буква. Вот буква:


Consolas на 168px

Действительно, очень обидно наблюдать, как эти прекрасные мелкие детали сжимаются всего лишь в 710 пикселей.

Ужасный хинтинг


Чтобы бороться с проблемой серой мешанины, Windows использует довольно агрессивный хинтинг. По сути, она просто сгибает и перемещает черты букв до ближайшего пикселя, обеспечивая более чёткие границы.

И это работает! Шрифты действительно выглядят лучше с хинтингом, чем без него:


Нет хинтинга (macOS) есть хинтинг (Windows)

Но не надейтесь на него: всё равно ничего не выйдет. Он не заставит текст выглядеть хорошо. Он будет выглядеть лучше, но всё равно плохо.

Однако главная проблема с хинтингом заключается в том, что он разрушает очертания букв. Пиксели визуализируются не там, где они должны быть, а скорее там, где происходит пиксельная сетка. Для примера:


Verdana (k) и Times New Roman Italic (z) перед растеризацией в 13px. Источник

Идея заключается в том, что он будет выглядеть лучше, когда визуализируется в реальных пикселях.

Но даже если мы просто посмотрим на вертикальный хинтинг горизонтальных линий, это всё равно слишком сильно меняет шрифт:



Смотрите, как горизонтальные линии смещаются от их фактического положения в файле векторного шрифта? Ошибка здесь составляет целых пикселя!

Но эй! Если вы никогда не видели Consolas в высоком разрешении, кого волнует, имеет ли 'g' такую же форму или нет? Кого волнует, что линии находятся не в том месте, если вы не знаете, где они должны были быть изначально? Ну, иногда проблемы более очевидны: круги не являются кругами, равные расстояния становятся не равными, пропорции все неправильные, то, что должно быть маленьким, становится огромным и наоборот, и т. д. Здесь:



После перемещения горизонтальных линий в соответствии с пиксельной сеткой (путём смещения их до пикселя!), Windows с трудом разбивает 7 других пикселей на три равных промежутка. К сожалению, альтернатива не лучше:



Из моего личного опыта разработки Fira Code я видел слишком много способов, которыми простая идея просто приклейте края к ближайшему пикселю может пойти не так:





Это игра, в которой просто невозможно победить.

Дробление пикселя


Можете ли вы нарисовать идеальную линию, которая тоньше одного пикселя?

Да. Идея действительно проста. Пиксель вашего дисплея состоит из трёх вертикальных субпикселей, каждый из которых отвечает за свой цвет. Мы можем осветить их по отдельности, эффективно утроив горизонтальное разрешение!



Однако, на практике вы не можете реализовать его буквально, потому что вы просто закончите с рождественским цветным беспорядком:



Так что вам снова придётся идти на компромисс (внутри другого компромисса!), устанавливая предел, как далеко может отклоняться цвет от чёрного:



Это означает, что формы букв не втрое чётче, они, возможно, в полтора раза чётче, но в целом всё ещё довольно размыты.



В конце концов, улучшается читаемость, но в то же время чёрно-белый текст приобретает легкий бирюзово-оранжевый ореол. Это не очень плохо, но вы можете его заметить.

Я пытаюсь сказать, что все эти уловки работают. Иметь их явно лучше, чем не иметь. Для дисплеев с низким DPI всё это просто необходимо. Но в то же время они представляют собой жёсткий компромисс, достигнутый во времена, когда у нас не было лучших дисплеев. Теперь, когда они у нас есть, время для этих трюков ушло.


Consolas 14px с ClearType и хинтингом Consolas 14px @2x

Макбуки с Retina


Макбук с Retina может заставить текст выглядеть хорошо. Однако есть две вещи, которые вы абсолютно должны сделать.

Отключить сглаживание шрифтов


Во-первых, отключите Сглаживание шрифтов в Системных настройках Общие настройки:



Я не уверен, какое сегодня там значение по умолчанию, но убедитесь, что оно выключено в любом случае.

UPD: судя по отзывам, похоже, что значение по умолчанию включено. Обязательно выключите его!

Это название настройки вводит в заблуждение. Раньше она называлась Сглаживание шрифтов на ЖК-экранах (LCD font smoothing), что предполагало субпиксельное сглаживание. Но Apple удалила субпиксельное сглаживание из macOS в 2018 году, в том же месяце, когда выпустила свой последний ноутбук без Retina.

Другое дело, что название предполагает, что ваши шрифты могут вообще не сглаживаться. Это тоже не так.

На самом деле она просто делает шрифт немного жирнее:



Так зачем его отключать? Потому что нет автоматизированного способа сделать шрифт жирнее. Обычно каждый вес шрифта тщательно разработан профессиональным дизайнером шрифтов. Это сложный процесс, который включает в себя миллионы ограничений. Если вы попытаетесь смоделировать его, например, добавив контур к букве, это будет выглядеть ужасно:


Настоящий жирный шрифт и поддельный, который имитируется с контуром

Но это именно то, что делает сглаживание шрифтов в macOS! Вот ещё один пример. MacOS размывает пиксельные границы с помощью сглаживания шрифтов:



Представьте себе дизайнера шрифтов, который тщательно сбалансировал каждую букву, поместил каждую точку с точностью до 1/100 пикселя, только чтобы его проигнорировало тупое программное обеспечение, которое думает, что оно знает лучше.

Что это значит для нас, программистов? Если вы возьмёте шрифт, оптимизированный вручную для определённого размера пикселя (каковыми являются многие программные шрифты, например Input на 11px или Monoid на 12px), он будет отображаться размытым, несмотря на все усилия.



И все остальные шрифты, включая системные, будут немного более размытыми, чем это необходимо.

UPD: Крис Морган упомянул в комментарии, что эта настройка может объяснить, почему так много дизайнеров используют font-weight: 300 в качестве шрифта веб-страницы по умолчанию. Они чрезмерно компенсируют шрифтовое утолщение macOS!

Целочисленное масштабирование


Когда я купил свой первый (и первый в мире) Retina Macbook Pro в 2012 году, это было именно то, что рекламировалось: масштабирование 2, каждый логический пиксель визуализируется на экране 22. Экран 28801800 визуализируется из логического источника 1440900.

К сожалению, с тех пор разум покинул Apple, и в какой-то момент MacBook начал получать странное нецелочисленное масштабирование по умолчанию. Например, экран 28801800 будет иметь логическое разрешение 16801050. Это коэффициент масштабирования 1,7142857143..., или 12/7.

Почему? Я думаю, кто-то в Apple решил, что больше экранной площади лучше продаётся. Проблема в том, что это не такой уж большой рост: всего лишь на 15%. Я имею в виду, что 15% это хорошо, но не принципиально. Самое ужасное, что это происходит ценой потери любого шанса отрисовать любое пиксельно-чёткое изображение вообще!

Давай посмотрим. Коэффициент масштабирования 12/7 означает, что на каждые 7 логических пикселей приходится 12 соответствующих пикселей экрана. Это означает, что каждые 7 пикселей у вас есть шанс нарисовать прямоугольник высотой 7 пикселей, и это ваш единственный шанс выровняться с сеткой пикселей.



Переместитесь на 1 пиксель вверх или вниз и вы проиграете. Сделайте его на 1px выше или короче вы проиграете.



Пиксельно-идеальная линия? Жаль, но нельзя указать 7/12 пикселя в качестве ширины линии. Ещё хуже, что каждая линия 1px выглядит по-разному в зависимости от её вертикального положения:



Неудивительно, что современные иконки в основном состоят из штрихов шириной в один пиксель:


Сверху: масштаб 2, снизу: то же самое после 12/7 даунсэмплинга

Трудно представить себе кого-то, кто специально хочет увидеть такое.

(понятия не имею, почему нижний правый пиксель отсутствует на всех иконках)

Что происходит с текстом? Ничего хорошего. Сначала он визуализируется чётко попиксельно с разрешением 2, затем масштабируется до 85,7142857143...%, чтобы вписаться в физические пиксели:


Monoid на 12px. Верхняя часть: масштаб 2, нижняя часть: то же самое после 12/7 нисходящего масштабирования

Правильно, пользовательский интерфейс даже не отображается в этом странном целевом разрешении. Каждое приложение Mac думает, что оно рендерит в 2, и только после этого ОС масштабирует его до целевого разрешения. Из-за этого двухэтапного процесса изменения размера теряется много точности и нюансов.

На мой взгляд, ничто не может нанести больше вреда внешнему виду пользовательского интерфейса, чем это. Даже старые UI с низким разрешением dpi лучше, так как их линии, по крайней мере, совпадают с пикселями!

И не забывайте: это по умолчанию. Каждый Macbook поставляется с этими настройками. Миллионы людей работают, не зная, что их лишили радости экрана ретина.

К счастью для нас, это легко исправить (по крайней мере, сейчас). Перейдите в раздел Системные настройки Дисплеи, снимите флажок по умолчанию и выберите вместо этого разрешение 2:



Это сделает все на экране немного больше, оставив на экране (немного!) меньше места. Это ожидаемо. Моё мнение таково: ноутбук это ограниченная среда по определению. Дополнительные 15% не превратят его волшебным образом в огромный удобный рабочий стол. Но, по крайней мере, вы можете наслаждаться этим великолепным экраном и чёткими пиксельными шрифтами. В противном случае, зачем вам вообще покупать экран ретина?

ClearType в Windows


Учитывая все эти разговоры о недостатках ClearType и о том, что он просто необходим на дисплеях с низкой плотностью пикселей, следует ли отключить его на дисплее 4k? Теоретически да. На практике нет.

Во-первых, у Windows даже нет пользовательского интерфейса, чтобы отключить его. Я имею в виду, там есть этот флажок:



Но даже если вы его выключите, вам все равно придётся пройти через настройку ClearType. Там просто нет кнопки OK \_()_/.

Если вы выключите его таким образом, он исчезнет в некоторых местах, но будет появляться в других. Я предполагаю, что эти места используют разные API, и одно учитывает эту настройку, а другое нет.



И самое главное, текст без ClearType выглядит как дерьмо. Это не обязательно должно быть так (он выглядит идеально на macOS, например), но особенно на Windows это невыносимо. Я думаю, что они даже не проверяют данную опцию:



Просто для удовольствия я перепечатал все текстовые метки, используя тот же шрифт, размер и цвет, но на macOS:



Но текст ClearType в Windows по-прежнему выглядит хорошо, даже на дисплее 4k. Жаль только, что мы пока не можем отключить ClearType.

Возьмите хороший монитор


Позвольте мне высказать своё мнение. В конце концов, это мой блог. Я думаю, что ноутбуки не очень хороши для разработки. Они великолепны в мобильности и удобстве, и этот аргумент может перевесить всё остальное для некоторых людей. Я принимаю это. Но все же настольный монитор + внешняя клавиатура всегда лучше ноутбука. Возможно, есть и другие причины не покупать монитор, но имея его, я надеюсь, никто не будет спорить, что это превосходная среда разработки.

После этого возникает вопрос, какой монитор вам нужен? Из того, что мы уже обсуждали, должны быть ясны две вещи:

  • Это должен быть, по крайней мере, монитор 4k. И 5k, и 6k также великолепны, конечно (кроме LG 5к).
  • Вам нужно использовать целочисленный коэффициент масштабирования.

Это означает, что если у вас есть монитор 4k (38402160) и вы используете масштабирование 2, вы получите эквивалент 19201080 логических пикселей. Таким образом, это базовый монитор 1080p с точки зрения того, сколько вы можете вместить, но с гораздо более чётким пользовательским интерфейсом и текстом везде.

Теперь может возникнуть соблазн использовать, например, масштабирование 1,5. Это даст вам эквивалент 25601440 логических пикселей, что, как вы можете подумать, намного лучше. Это неправильное использование! Идея монитора 4k заключается не в том, чтобы получить больше пикселей, а в том, чтобы получить идеальный пиксельный рендеринг с высокой плотностью пользовательского интерфейса. В противном случае обычный дисплей 1440p будет работать лучше. Простое правило, которое нужно запомнить: выравнивание пикселей перевешивает всё остальное. Дисплей 1440p лучше отображает контент 1440p, чем дисплей 2160p.

Кроме того, можно запустить дисплей 4k с собственным разрешением 38402160 пикселей. Конечно, это зависит от размера дисплея, но, по моему опыту, даже 27-дюймовые дисплеи 4k слишком малы, чтобы работать при 1. Пользовательский интерфейс будет слишком крошечным.

Миф о значении PPI, запатентованном Apple


Некоторые статьи предполагают, что компьютеры Apple должны использоваться только с дисплеями 220 PPI (пикселей на дюйм), потому что это число Apple сама использует на всех MacBook и iMac. Иногда люди заходят так далеко, что говорят, что дисплеи с другими PPI непригодны для использования в macOS.

Вот что я думаю. PPI определяет физический размер пикселя (220 PPI означает, что на дюйм приходится 220 пикселей, или 1 пиксель имеет ширину 1/220 дюйма). Таким образом, Apple гарантирует, что пиксели на всех её устройствах имеют одинаковый размер. Означает ли это, что элементы управления macOS имеют одинаковый физический размер? Больше нет, после того как Apple начала применять нецелочисленное масштабирование по умолчанию на MacBook.

Тогда почти невозможно гарантировать, что воспринимаемый размер или то, насколько большой пользователь видит элемент управления, является одним и тем же, потому что расстояние до дисплея отличается. Например, в среднем расстояние между моими глазами и экраном составляет 33 см с ноутбуком, но 68 см с монитором. Это двукратная разница!



Это означает, что угловой размер пикселя 1/220 Macbook эквивалентен пикселю монитора 1/110. На самом деле у меня меньше воспринимаемых пикселей на 27-дюймовом мониторе 4k, чем на 15-дюймовом Macbook Pro!

Даже сама Apple это понимает! Их айфоны имеют более высокий PPI, чем макбуки, потому что на них обычно смотрят с более близкого расстояния.

Подводя итог, я не вижу проблемы с 24-дюймовыми дисплеями 4k или даже 27-дюймовыми дисплеями. Я использую оба с macOS и люблю оба, никогда не было никаких проблем. Конечно, 5k или 6k были бы лучше, но они идут в категорию приятно иметь. 4K это обязательный, абсолютный минимум для всех, кто работает с текстом.

Переходите на 120 Гц


Раньше мир делился на два лагеря: дисплеи с высоким разрешением и дисплеи с высокой частотой кадров. Первое было хорошо для текста, второе для игр, и между ними не было середины. Если вы любите играть в экшн-игры, купите оба (и большой стол). Геймерам не нужны были 4K-дисплеи, поскольку ни одна разумная игра не работала бы при 4k @ 120 Гц, а творческие профессионалы не использовали 120 Гц для редактирования фотографий/текста. Конечно, я был в лагере высокого разрешения с 2014 года и никогда не променял бы рендеринг текста ретины на едва заметное обновление частоты обновления.


HP Z27 (4k) и LG 34GL750-B (120 Гц)

Что ж, раскола больше не существует. Поскольку с недавнего времени (да, я слишком ленив, чтобы проверить) вы можете получить и то, и другое! Вы можете найти монитор 4k, работающий на частоте 120 Гц. Собственно, это открытие и послужило главной мотивацией для данной статьи.

Почему 120 Гц?


Если вы, как и я, работаете с текстом, вы можете подумать, что вам не нужны 120 Гц. И были бы правы. Это относится к категории приятно иметь, но если вы ищете способы улучшить свой опыт, это отличный способ.

120 Гц даёт вам несколько существенных улучшений:

  • Анимация становится более плавной, вплоть до того момента, когда она начинает казаться непрерывным движением вместо очень быстрого слайд-шоу.
  • В частности, очень плавная прокрутка. Браузер, редактирование кода, среди прочего.
  • Вся система чувствует себя гораздо более отзывчивой.
  • Вы можете играть в игры и работать на одном дисплее.

Конечно, я не могу показать вам, что такое 120 Гц. Но вот что вы можете сделать, чтобы понять идею: переключитесь на 30 Гц и попробуйте работать так некоторое время.

Вы заметите, что всё плохо анимировано и менее отзывчиво. Это связано с тем, что время между обновлениями монитора теперь составляет 32мс вместо 16мс при частоте 60Гц. Это означает, что независимо от того, что вы делаете (нажимаете кнопку, перемещаете мышь), ближайший момент времени, когда компьютер может начать отображать результат, может быть на расстоянии 32мс.

32 мс это очень долго и хорошо заметно. На 60 Гц это время сокращается вдвое: самое долгое, что вам нужно ждать, всего 16мс. на 120Гц это время снова сокращается вдвое: с 16мс до 8мс. в абсолютных числах вы устраняете дополнительные 8мс, что означает, что переход 60 Гц 120 Гц примерно вдвое менее эффективен, чем переход 30 Гц 60 Гц. Но всё-таки стоит того, на мой взгляд.

Что купить?


На самом деле у нас нет особого выбора. Из того, что я могу найти, прямо сейчас на рынке есть только четыре (да, четыре!) дисплея 4k 120+Гц! Думаю, это потому, что спрос не так уж высок, но я рад, что у нас есть хотя бы такой выбор!

Первый Asus ROG SWIFT PG27UQ:



Второй Acer Predator X27:



Третий Acer ConceptD CP7:



Все они очень хорошие мониторы, я уверен. Но цена немного завышена (~2000 долларов), особенно для тех, для кого 120Гц не является вопросом жизни и смерти.

Есть ещё несколько мониторов с диагональю 55 дюймов и более, которые было бы трудно использовать на обычном рабочем столе.

Наконец, по какой-то невероятной удаче у нас действительно есть один недорогой, разумного размера монитор 4k 120 Гц. Это Acer Nitro XV273K:



И это единственное, что у меня есть.

Вещи, на которые стоит обратить внимание (Windows)


В Windows несложно запустить разрешение 4k на частоте 120 Гц. Убедитесь, что ваша видеокарта имеет DisplayPort 1.4, используйте его, вот и всё. Серьёзно, это просто работает.



Вещи, на которые стоит обратить внимание (macOS)


Поддержка MacOS отстой. Официально ни один из компьютеров Apple не поддерживает ничего выше 60 Гц, даже при нормальном разрешении:



Так что покупка этого дисплея была основана на чистой вере. Вот что я понял:

  • 4k @ 120 Гц требует 3840 2160 3 bpp 120 Гц 8 = 24 Гбит/с. Чуть ниже 25,92 Гбит / с DisplayPort 1.3 / 1.4.
  • HDMI 2.0 обеспечивает только 18,0 Гбит/с, поэтому нужно использовать DisplayPort.
  • Thunderbolt 3 поддерживает DisplayPort 1.4, так что если найти адаптер, всё должно пойти.

Как определить, какой порт у моего Macbook? Легко! Используйте эту диаграмму, предоставленную Apple:



Итак, значок молнии означает Thunderbolt (не путать с портом Lighting!), а железнодорожная стрелка означает USB-C. Теперь просто посмотрите на свой Macbook:



Думаю, разобраться не так просто \_()_/. В качестве альтернативы можно посмотреть на страницу Apple с интуитивно понятным названием SP794:





Итак, прежде всего, что означает Thunderbolt 3 (USB-C)? Это Thunderbolt 3 или USB-C? Это может быть разница между работает безупречно и не работает вообще:



Затем упоминается DisplayPort over USB-C (но у нас есть Thunderbolt 3, а не USB-C!). Страница не указывает версию DisplayPort, и без неё она бесполезна. Она также говорит, что USB 3.1 Gen 2 ограничен 10 Гбит/с, но я думаю, что ограничения USB 3 не распространяются на USB-C? Кроме того, что это за название USB 3.1 Gen 2? Уже приняли USB 3.2?

Ну что ж, Википедия в помощь!

В октябре 2016 года Apple анонсировала обновлённый Macbook Pro с двумя или четырьмя портами Thunderbolt 3, в зависимости от модели. В июне 2017 года Apple анонсировала новые модели iMac с двумя портами Thunderbolt 3, а также iMac Pro с четырьмя портами был выпущен в декабре 2017 года.

8 января 2018 года Intel анонсировала обновление продукта (под кодовым названием Titan Ridge) с усиленной надёжностью и поддержкой DisplayPort 1.4. Новый контроллер периферии теперь может работать как USB sink (совместим с обычными портами USB-C).

Оказывается, Thunderbolt 3 может иметь или не иметь DisplayPort 1.4. Некоторые из них доходят только до DP 1.2. Статья Википедии предполагает, что всё, выпущенное до 2018 года, определённо не будет работать, но после 2018 года это может или не может работать, в зависимости от версии Thunderbolt. Чувствуешь себя потерянным? Используй мою схему:



Думаю, что мы все можем согласиться с тем, что вся эта ситуация Thunderbolt/USB-C является очень сильным претендентом на самый запутанный стандарт порта, когда-либо созданный человечеством.

Короче говоря, мне повезло. Мой Macbook Pro 2019 имел правильный порт, и с адаптером Thunderbolt 3 (USB-C) для DisplayPort всё заработало. Насколько я понимаю, версии портов на устройствах имеют значение, но кабели и адаптеры нет, пока они физически помещаются в отверстие. В моем случае это был конвертер Xiaomi USB-C miniDP и кабель miniDP DP кабель.



Будет ли это работать на вас? Понятия не имею! Надеюсь, что будет. Всё, что я знаю, это то, что вы должны убедиться, что ваш Thunderbolt 3 может нести DisplayPort 1.4. Это волшебное сочетание.

Вещи, на которые стоит обратить внимание (macOS) продолжение


Если до сих пор не было достаточно запутанно, есть ещё кое-что!

Думаю, ваш Macbook должен иметь дискретную видеокарту (На это могут влиять и другие причины, например, пересмотр Thunderbolt. У меня ограниченная тестовая база, но: Macbook Pro 15 2019 работает, Macbook Air 2018 нет, Mac mini 2018 работает только с eGPU). Различные графические карты Intel UHD/Iris не работают. eGPU работает.



Но даже если у вас есть совместимый Mac, с совместимыми портами, совместимыми кабелями, этого недостаточно. Каждый раз, когда я загружаю свой Mac, есть ритуал, который я должен выполнить, чтобы заставить мой дисплей переключиться в режим 120 Гц. Я называю это танец 120 Гц:

  1. Полностью загрузить macOS. В этот момент дисплей обычно находится на частоте 60 Гц.
  2. Перейдите в раздел Системные настройки Дисплеи.
  3. Удерживая нажатой клавишу Alt/Option (которая с ), нажать на флажок Scaled в Разрешении.


  4. Чтобы получить доступ к выбору частоты обновления, установите флажок Показывать режим низкого разрешения. Л логика.


  5. Посмотрите селектор Частота обновления. Большую часть времени самый высокий вариант там 60 Гц.


  6. Выключите дисплей.
  7. Подождите пару секунд.
  8. Включите дисплей.
  9. Посмотрите ещё раз в разделе Частота обновления. Надеюсь, теперь есть вариант 119,88 герц.


  10. Выберите 119,88 герц в разделе Частота обновления.
  11. Вы великолепны.

Почему это 119,88 герц, а не 120 Гц? Без понятия. Похоже, это работает одинаково. Почему macOS не может вспомнить его? Я не знаю. Почему macOS не видит 120 Гц в качестве опции, пока я не выключу/не включу монитор? Кто знает! Главный вывод заключается в том, что опция 120 Гц может появиться не всегда, но после некоторого танца вокруг неё может появиться, и если это произойдёт, то она действительно работает, несмотря ни на что.

Вся эта ситуация напоминает мне покупку дисплея 4k в 2014 году: есть только пара моделей, порты сбивают с толку, поддержка Apple отстой. Надеюсь, через пять лет 120 Гц станет стандартом. До тех пор мы должны быть благодарны, что, при больших неудобствах, мы, по крайней мере, можем использовать современные дисплеи с macOS. Спасибо, Apple!

Что дальше?


Каждому человеку нужна мечта. В какой-то момент 4k @ 120 Гц станет обыденностью, и мы даже можем увидеть 5k @ 120 Гц и больше. Мы также можем видеть экраны ретина с соотношением 21:9 и даже 32:9 (больше горизонтального пространства), что всегда является желанным дополнением (на самом деле, есть впечатляющий 34WK95U-W, но вы также можете найти его как более короткую версию более традиционного 27MD5KL-B).

Но даже сегодня вы можете заглянуть в будущее, если у вас есть лишние 4000 долларов. Это Dell UP3218K, первый и единственный в мире монитор 8k:


Даже на промо-странице для дисплея 8k Dell публикует только его фотографии размером 1

Плотность пикселей на нём настолько высока (280 PPI), что его, вероятно, лучше всего использовать при масштабировании 300% (чего, конечно, нет в macOS, но есть в Windows). Он также требует двух одновременных кабелей DisplayPort для работы, что опять же не подходит для Mac.

Но даже при 300% он всё равно даст вам эффективное логическое разрешение 25601440, что существенно больше, чем 19201080 современных дисплеев 4k. Больше плотности пикселей и больше разрешения! Что ж, можно помечтать.

Заключение


Подводя итог, вот лучшая установка для программистов:

  • Текст не может выглядеть хорошо на дисплеях с низким разрешением.
  • Дисплеи с высоким PPI перестали быть экзотикой, пришло время переключиться.
  • Ноутбуки это нормально, но автономный монитор всегда лучше.
  • Монитор 4k имеет смысл только при масштабировании 2/ 200%.
  • Если вы хотите пойти дальше, то теперь есть доступные варианты 4k @ 120 Гц.

Удачного кодирования!
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru