Русский
Русский
English
Статистика
Реклама

Иллюзии

Топ-32 оптических иллюзий движения от японского художника jagarikin

30.04.2021 18:12:21 | Автор: admin
image

(1)

Есть такой японский цифровой художник (jagarikin), который экспериментриет с иллюзией движения (обратный фи-феномен), когда пиксели не двигаются, а просто меняют цвет. Его работы репостнули Илон Маск и Стивен Пинкер. За полгода я хорошенько поизучал его работы (отмотал Твиттер на 5 лет) и выбрал 32 самых крутых и залипательных. Отметьте для себя, какая иллюзия приковала ваше внимание больше всего, и поделитесь в комментариях.

Канал в Telegram Cognitive Illisions, где я буду делиться самыми вырвиглазными находками, как хакнуть мозг через восприятие.

Осторожно: гифки тяжелые!

image


(2)

Теория


Фи-феномен ощущение движения, возникающее при последовательном включении стационарных источников света, а также сама форма этого движения. Характерной особенностью фи-феномена является то, что ощущение движения не зависит ни от цвета, ни от размера, ни от пространственной локализации источников света.

image


Если интервал включения огоньков менее 60 мс, источники света воспринимаются как горящие одновременно.

Если интервал от 60 до 200 мс, то зажигание лампочек выглядит как непрерывное движение.

Если интервал больше 200 мс, то зритель ощущает, что лампочки загораются одна за другой.

Обратный фи-феномен это ситуация, когда иллюзия движения достигается благодаря быстрому изменению цвета и контрастности элементов изображения. Все примеры в этом посте про это.

Reverse phi illusion (wikipedia)
As apparent phi movement is perceived by humans visual system with two stationary and similar optical stimuli presented next to each other exposing successively with high frequency, there is also a reversed version of this motion, which is reversed phi illusion. Reverse phi illusion is the kind of phi phenomenon that fades or dissolves from its positive direction to the displaced negative, so that the apparent motion human perceive is opposite to the actual physical displacement. Reverse phi illusion is often followed by black and white patterns.

It is believed that reverse phi illusion is indeed brightness effects, that it occurs when brightness-reversing picture moving across our retina. It can be explained by mechanisms of visual receptive field model, where visual stimuli are summated spatially (a process that is reverse to spatial differentiation). This spacial summation blurs the contour to a small extent, and thus changes the brightness perceived. Four predictions are confirmed from this receptive field model. First, foveal reverse-phi should be broken down when the displacement is greater than the width of foveal receptive fields. Second, reverse phi illusion exists in the peripheral retina for greater displacements than in the fovea, for receptive fields are greater in the peripheral retina. Third, the spacial summation by the receptive fields could be increased by the visual blurring of the reversed phi illusion projected on a screen with defocus lens. Fourth, the amount of reversed phi illusion should be increasing with the decrease of displacement between positive and negative pictures.

Indeed, our visual system processes forward and reversed phi phenomenon in the same way. Our visual system perceives phi phenomenon between individual points of corresponding brightness in successive frames, and phi movement is determined on a local, point-for-point basis mediated by brightness instead of on a global basis.

Neural mechanism underlying sensitivity to reversed phi phenomenon
  • T4 and T5 motion detectors cells are necessary and sufficient for reversed phi behavior, and there is no other pathways to produce turning responses for reversed phi motion
  • Tangential cells show partial voltage response with the stimulation of reversed phi motion
  • Hassenstein-Reichardt detector model
  • There is substantial responses for reversed-phi in T4 dendrites, and marginal responses in T5 dendrites



image

(3)

Иллюзия достигается за счет колец 1-пиксельной толщины по периметру основных колец.
При рассинхронизации вращения тонких колец относительно основных и достигается такой эффект.

image


Предыдущую итерацию обсудили на Хабре в прошлом году. Там есть наглядные описания механизма иллюзии.

Стивен Пинкер восхитился работой художника:

image

(4)

И объяснил ему, как работает эта иллюзия:

image

image


image

(5)

image

(6)

image

(7)

image

(8)

image

(9)

image

(10)

image

(11)

image

(12)

image

(13)

image

(14)

image

(15)

image

(16)

image

(17)

image

(18)

image

(19)

image

(20)

image

(21)

image

(22)

image

(23)

image

(24)

image

(25)

image

(26)

Рекламный потенциал


image

(27)

image

(28)

image

(29)

image

(30)

image

(31)

image

(32)



Канал в Telegram Cognitive Illisions, где я буду делиться самыми вырвиглазными находками, как хакнуть мозг через восприятие.

Читать еще


Подробнее..

Перевод Математические расчёты, стоящие за феноменом роллинг-шаттера

03.07.2020 18:07:41 | Автор: admin
image


Помню, как однажды увидел фотографию выше на Flickr и сломал мозг, пытаясь понять, что с ней не так. Дело было в том, что пропеллер вращался в то время, когда датчик движения в камере считывал показания, то есть во время экспозиции камеры происходило какое-то движение. Об этом действительно стоит подумать, давайте-ка подумаем вместе.

Многие современные цифровые камеры используют КМОП-матрицу в качестве своего чувствительного устройства, также известную как активный датчик пикселей, который работает путем накопления электронного заряда при падении на него света. По истечении определенного времени времени экспозиции заряд построчно перемещается обратно в камеру для дальнейшей обработки. После этого камера сканирует изображение, построчно сохраняя ряды пикселей. Изображение будет искажено, если во время съемки присутствовало хоть какое-то движение. Для иллюстрации представьте съемку вращающегося пропеллера. В анимациях ниже красная линия соответствует текущему положению считывания, и пропеллер продолжает вращаться по мере считывания. Часть под красной линией это полученное изображение.

Первый пропеллер совершает 1/10 часть вращения во время экспозиции:

image


Подписывайтесь на каналы:
@Ontol самые интересные тексты/видео всех времен и народов, влияющие на картину мира
@META LEARNING где я делюсь своими самыми полезными находками про образование и роль ИТ/игр в образовании (а так же мыслями на эту тему Антона Макаренко, Сеймура Пейперта, Пола Грэма, Джозефа Ликлайдера, Алана Кея)


Изображение немного исказилось, но ничего критичного. Теперь пропеллер будет двигаться в 10 раз быстрее, совершая полное вращение за время экспозиции:

image


Это уже похоже на ту картинку, что мы видели в начале. Пять раз за экспозицию:

image


Это уже немного чересчур, так можно и с катушек съехать. Давайте повеселимся и проверим как будут выглядеть различные объекты при различных скоростях вращения за экспозицию.
Точно такой же пропеллер:

image


Пропеллер с большими лопастями:

image


Колесо автомобиля:

image


Мы можем воспринимать эффект роллинг-шаттера как некое преобразование координат реального объекта из объектного пространства в пространство изображения искаженного объекта. Анимация ниже показывает, что происходит с Декартовой системой координат при увеличении числа оборотов. При малых оборотах деформация незначительна число увеличивается до единицы, и каждая сторона системы координат последовательно перемещается в правую сторону изображения. Это довольно сложная трансформация для восприятия, но легкая в понимании.

image


Пусть изображение будет I(r,), реальный (вращающийся) объект будет f(r,), где (r,) это 2D полярные координаты. Мы выбрали полярные координаты для этой задачи из-за вращательного движения объектов.

Объект вращается с угловой частотой , а шаттер перемещается по изображению со скоростью v по вертикали. В положении (r,) на картинке, дистанция, которую прошел шаттер с начала экспозиции, равна y=rsin, где прошедшее с этого момента время равно (rsin)/v. За это время объект повернулся на (/v)rsin) радианов. Итак, мы получаем

I(r,)=f(r,+(/v)rsin),

что и является требуемой трансформацией. Коэффициент /v пропорционален числу вращений за экспозицию и параметризует трансформацию.

Чтобы получить более глубокое представление об очевидных формах пропеллеров, мы можем рассмотреть объект, состоящий из P пропеллеров, где f является ненулевым только для

=2/P,4/P2=2p/P для 1<p<P.

Изображение I является ненулевым для +(/v)rsin=2p/P или

image

В Декартовой системе координат оно становится

image

и помогает нам в объяснении причины, по которой пропеллеры принимают S-образную форму это просто функция арктангенса в пространстве изображения. Круто. Ниже я построил эту функцию с набором пяти лопастей пропеллера с несколько различными начальными сдвигами, вы можете увидеть это на воспроизведении. Они очень похожи на фигуры из анимаций выше.

image


Раз мы узнали немного больше о процессе, можем ли мы исправить испорченные фотографии? Используя одно из изображений выше, я могу провести через него линию, повернуть назад и вставить эти пиксели в новое изображение. В анимации ниже я сканирую изображение слева, помеченное красной линией, а затем вращаю пиксели вдоль этой линии, получая новое изображение. Так мы можем воссоздать изображение реального объекта, даже если вдруг назойливый роллинг-шаттер испортил вам фотографию.

image


Эх, если бы я лучше владел фотошопом, я бы извлек пропеллеры из первоначальной фотографии на Flickr, отредактировал бы и вернул на фотографию. Кажется, я знаю, чем займусь в будущем.

Если вы хотите узнать реальное количество лопастей на фотографии в начале поста и скорость вращения, можете прочитать этот отличный пост на Tumblr Дэниела Уолша, в котором он дает математическое объяснение.

Он считает, что мы можем подсчитать количество лопастей, вычитая нижние лопасти из верхних, так мы получаем три лопасти на той картинке. Также мы знаем, что пропеллер прокручивается примерно дважды за время экспозиции, поэтому, если мы попытаемся отменить вращение с несколькими различными скоростями, то получим примерно это:

image


Я должен был понять, где находится центр пропеллера, поэтому нарисовал круг. Судя по всему, центр должен быть где-то рядом. К сожалению, одна лопасть отсутствует, но для изображения информации хватает.

Я нашел местечко, где все пересекается больше всего, поэтому, при этой скорости вращения (2.39 оборота за экспозицию), вот как выглядит исходное изображение и лопасти:

image


image


К сожалению, картинка не идеальна, но по крайней мере очень приближена к реальности.

Об авторе: Джейсон Коул аспирант из Лондона, который горит математикой, физикой и визуализацией данных. Здесь его вебсайт. А статья была опубликована здесь.

Обсуждение на Hacker News

доп. видео









Подписывайтесь на каналы:
@Ontol самые интересные тексты/видео всех времен и народов, влияющие на картину мира
@META ОБУЧЕНИЕ, где я делюсь своими самыми полезными находками про образование и роль ИТ/игр в образовании (а так же мыслями на эту тему Антона Макаренко, Сеймура Пейперта, Пола Грэма, Джозефа Ликлайдера, Алана Кея)


image

Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:



Читать еще


Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru