Русский
Русский
English
Статистика
Реклама

Блог компании амперка

Ракета от Амперки, часть 1 Теория ракетных двигателей. Карамельное топливо

04.07.2020 12:05:52 | Автор: admin

Вступление


Всем привет! Мы команда ютуб-канала Амперки, в студии и пилим видео по проектам и железкам. Однако, в какой-то момент все изменилось.

Под катом история постройки нашей ракеты.


Шла весна 2020 года и карантин самоизоляция не щадила никого. В том числе и нас, отлученных от студии, дабы не подвергались опасности заражения заморской бациллой. Вот в этот-то период и начали активизироваться в голове старые идеи сделать то, что давно хотелось, но что было отложено в долгий ящик когда время будет. Наконец, то_самое_время пришло, и из того самого ящика была извлечена мысль о постройке собственной ракеты, еще и подстёгнутая недавним успешным пуском в эксплуатацию батута от SpaceX.

Так как сделать такой серьезный проект за один заход не получится, разделим его для удобства на составные части (список будет пополняться по мере работы):
  1. Часть 1. Теория ракетных двигателей. Карамельное топливо

Ракетостроение, в целом, наука комплексная, сложная и многогранная. Релевантного опыта у нас не было, не кончали мы институтов по этому направлению, но есть руки, голова, желание а это уже многое, так что, как говаривал Юрий Алексеевич, поехали.

Теория ТТРД


Что такое реактивное движение, (для тех, кто, вдруг, не в курсе) много говорить не будем: если в двух словах, то это движение за счет отброса массы в противоположную сторону от направления движения. Про всякие экзотические конструкции двигателей типа ядерных, ионных и иже с ними говорить не будем одна не предназначены для работы в атмосфере, другие слишком сложны и не воспроизводимы в любительских условиях и т.д., поэтому остановимся на простых, но доступных простому обывателю конструкциях, которые при желании можно повторить практически в домашних условиях, а именно химических. В таких двигателях реактивная струя получается за счет химической реакции топлива и окислителя (в некоторых случаях роль окислителя может играть атмосферный кислород).

Итак, химические двигатели (ХРД), по агрегатному состоянию топлива классифицируются на жидкостные (ЖРД) и твердотопливные (ТТРД), так что выбирать будем из них. ЖРД весьма удобны, так как позволяют управлять тягой, однако требуют применения в своей конструкции сложных систем форсунок в камере сгорания и не менее сложных систем подачи топлива. Одно только проектирование ЖРД, даже самого примитивного, займет у нас месяцы, а, следовательно, это не наш вариант. Альтернативой могут стать ТТРД за счет простоты своей конструкции и значительно меньшими требованиями к топливу. Да, у нас не выйдет точно дозировать тягу. Точнее, мы ее совсем не сможем дозировать. Однако, есть некоторые аспекты, на которых мы можем сыграть, об этом и пойдет речь дальше.

Виды смесевого топлива


Самым первым, и, соответственно, примитивным топливом для ракет был порох: сначала дымный, а затем и бездымный. Китайцы, придумав эту горючую смесь, быстро догадались, что она не только может делать бух и много света, а еще и толкать снаряд, постепенно сгорая внутри него. Толку от него, конечно, мало, годится только для фейерверков, да и удельный импульс оставляет желать лучшего. Эволюцией бездымного пороха стали гомогенные (однокомпонентные) составы на основе нитроцеллюлозы. Они достаточно неприхотливы в хранении и эксплуатации, а также достаточно экологичны, однако имеют все тот же недостаток в виде слабого удельного импульса.

Намного лучший результат показывают смесевые составы из горючего и окислителя. Чаще всего в качестве такой пары применяют окислители из перхлоратов с горючим из порошка металлов и полимеров или широко известное в кругах моделистов-любителей карамельное топливо, где в качестве окислителя используются нитраты (селитры) и сложные углеводы (сахар, сорбит) в роли горючего. Вот как раз последние два варианта (перхлоратное и карамельное) топливо мы и выбрали в качестве подопытных для нашей ракеты.

Расчет двигателя


Важнейшая характеристика твердого топлива это скорость его горения, зачастую это значение константа для определенного состава топлива. Горение распространяется по поверхности. Если просто поджечь конец цилиндрической топливной шашки, то мы получим торцевое горение, которое даст длительное равномерное прогорание, однако, получить при этом достаточную тягу для подъема ракеты в воздух не выйдет. Для повышения эффективности нужно сделать в топливе канал, по которому будет распространяться горение, повысив тем самым его площадь. Также нужно учитывать, что по мере выгорания профиль канала будет меняться, следовательно, будет меняться эффективная площадь. Можно, конечно, долго экспериментировать с различными профилями, однако, это все уже сделано до нас и упаковано в удобный программный инструментарий.

В программу можно внести все необходимые параметры и получить графики тяги, которую будет развивать ракета. В графе Grain configuration под знаком вопроса есть описательный мануал по различным профилям канала.



Опытным путем, применяя различные конфигурации канала мы нашли оптимальные параметры для нашей ракеты. Для получения таких же показателей нужно ввести такие значения:

Форму канала мы выбрали Moon burner. Умный Meteor c учетом введенных данных построил нам вот такой график:

Из этой диаграммы понимаем, что двигатель со старта получит хороший пинок и будет развивать весьма неплохую тягу на протяжении всего времени работы. По расчетам программы пиковое значение тяги получилось без малого 312 Н при пиковом давлении в 24.5 бар. Средние значения оказались около 265 Н и 19.5 бар соответственно.
Еще одним неоспоримым плюсом программы является возможность прямого экспорта рассчитанных значений в другую не менее полезную для нас программу OpenRocket, при помощи которой мы будем рассчитывать стабильность ракеты, оперение, балансировку и другие важные показатели, но это будет уже в следующей серии.
Однако, не топливом единым жив начинающий ракетостроитель. Не менее важное значение имеет сопло. По этому принципу РД делятся на сопловые и бессопловые. Последние, технически, имеют дозвуковое сопло, являющееся, по сути, просто отверстием или конусом в нижней части двигателя. Дозвуковым оно называется по той причине, что истекающие через него газы не могут достигать, а уж тем более, превосходить скорость звука, сколько бы не наращивалось давление в камере сгорания, об этом нам говорит гидродинамика. А против физики, как известно, не попрёшь. Тем не менее, такие сопла за счет своей простоты применяются в малых любительских ракетах, а также в фейерверках. Но мы же делаем ракету, значит, дозвуковые сопла не наш путь.
Альтернативным решением является сверхзвуковое сопло или, как его еще называют по имени изобретателя, сопло Лаваля. В упрощенном варианте представляет собой два усеченных конуса, сопряженных узкими концами. Место сопряжения называется критической точкой.

Принцип его действия напоминает принцип, на котором работает холодильник: газы, проходя узкое горлышко и попадая в бОльший объем резко охлаждаются, за счет чего уменьшается их объем, что приводит увеличению скорости их истечения. В результате, за счет перепада диаметра выпускного отверстия мы получаем на выходе струю газа, движущегося со сверхзвуковой скоростью. Таким образом, применив сопло Лаваля мы значительно повышаем КПД ракеты.
К слову, Meteor проводит расчеты, подразумевая, что на двигателе установлено как раз сверхзвуковое сопло, расчет и изготовление которого также оставим на следующий выпуск.
Итак, характеристики, параметры и габариты двигателя у нас есть, можно приступать к варке топлива.

Изготовление топливных шашек


Первым топливом у нас будет карамельное, готовить будем из сорбита и калиевой селитры. Сорбит можно купить в аптеке, он используется как сахарозаменитель. Калиевую селитру можно найти в садово-огородном отделе, но там она довольно грязная, поэтому купили ч/чда в Русхиме.
Простейший способ измельчить компоненты до состояния мелкодисперсного порошка и смешать, но тогда топливо остается сыпучим и не будет держать форму. Решено сплавить компоненты вместе. Придется делать нагреватель с контролем температуры и песчаная баня, для которого нам понадобятся:

Из плиты выбрасываем ее родной регулятор и ставим в разрез твердотельное реле, управлять которым будем через Ардуино, к которой подключим дисплей и потенциометр, чтобы видеть текущую температуру и иметь возможность ее настройки. В форме для выпекания проделываем отверстие и вставляем термопару. Заполняем форму примерно наполовину песком солью (песка под рукой не оказалось, зато рядом был продуктовый магазин, на качество это не повлияет). Это нужно для создания среды с большой тепловой инерцией. Кстати, соль лучше брать экстра, так как более крупная при нагреве начинает раскалываться и стрелять в разные стороны, устраивая Сталинград. В центре солевой бани устанавливаем выпарительную чашу, предварительно положив под ее дно щуп термопары. Контролировать процесс будем через первый попавшийся релейный регулятор для Ардуино. Проверяем пирометром разность температур между показаниями термопары температуры чаши, вносим соответствующие коррективы.
Meteor заботливо подсчитал массу топлива, которая составила 838г, возьмем с запасом, еще пригодится. Решено было сделать топливный заряд из нескольких шашек для простоты их изготовления. Потом можно будет их просто склеить между собой и вставить в корпус двигателя.
Возьмем по массе 65% калиевой селитры и 35% сорбита, аккуратно засыпаем в чашу и добавляем немного воды. Это и нервы успокоит, и избавит от необходимости измельчать компоненты в пыль, так как в воде они и без того хорошо растворятся и смешаются. Ставим на огонь, выставляем температуру и ждем, постоянно помешивая. Постепенно полученная каша расплавится и станет похожа на овсянку. Надо дождаться выпаривания всей лишней воды (это можно будет понять по прекратившемуся выходу кипящих пузырьков).
Дальше надо действовать решительно: в заранее подготовленную водопроводную ПВХ-трубу, зафиксированную в держателе с внутренним креплением под круглую ось будем запрессовывать топливо. После извлечения оси у нас как раз останется канал запала по всей длине шашки. Запрессовывать удобно при помощи держателя для дрели, такой очень удачно нашелся в студии. Важно запрессовать топливо таким образом, чтобы внутри шашки не оказалось пузырей и полостей, иначе это потом негативно скажется на горении.
Трубу с топливом откладываем и оставляем до остывания. Затем ее можно будет распилить и достать шашку. Мы сделали несколько штук, одну из них сожжем в целях эксперимента.

В следующем выпуске займемся корпусом двигателя, соплом и испытательным стендом.
А пока мы его готовим, рекомендую почитать следующую книжку про проектирование ЗУРов. Из нее была почерпнута бОльшая часть информации.
Всю серия целиком:
Подробнее..

Ракета от Амперки, часть 2 корпус двигателя, расчет сопла

11.07.2020 18:08:48 | Автор: admin
Мы продолжаем строить нашу ракету. Прошла неделя, выкладываем отчет по тому, что было за это время сделано.





Для тех, кто зашел в тред впервые, прошу ознакомиться с предыдущим выпуском.

Корпус двигателя


Исходя из полученных данных по давлению газов в камере сгорания, нужно было подобрать соответствующий этим требованиям материал для корпуса. Пиковое значение давления у нас достигает почти 25 бар. Не мудрствуя лукаво и стараясь уйти от применения сложных материалов, где это возможно, решили принять на вооружение стальную трубу ДУ-40 с толщиной стенки в 3 мм. Соответствующая труба была успешно закуплена в первом попавшемся металлопрокате на рынке. К сожалению, склад продукции железячников находился под открытым небом, поэтому труба была несколько ржавая.

Чистка при помощи наждачки и лепестковой палки авторства Лёши (передаем привет Доктору Дью) не дала нормального эффекта, да и лень было убивать на это время. Почему бы для этого не попробовать химический метод. Из химикатов, находившихся в пешей доступности, была только уксусная эссенция, лимонная кислота и соль, все закуплено в ближайшем продуктовом. Как назло, не нашлось подходящего тазика, в который можно было бы налить ядрёную смесь и замочить трубу, пришлось соорудить его дендрофекальным методом из других ящиков, используя их в качестве опоры, а между ними сделать ванночку из пленки, оставшейся после дирижабля, которую щакрепили канцелярскими зажимами. Положили в этот хрустящий саркофаг трубу и залили ускусной кислотой, а для большего эффекта добавили растворенной в воде лимонки с солью.Реакция началась мгновенно.Довольные собой, мы оставили трубу травиться и с чистой совесью ушли на выходные.

Запах, встретивший нас в понедельник, выедал глаза и нос. Да, зря не накрыли ничем ванну. Запах уксуса, казалось, въелся в стены. Даже открытые настежь окна не спасли, потом еще дня два пришлось проветривать студию, так что не повторяйте наших ошибок: такие вещи лучше делать либо на открытом воздухе, либо в плотно закрытой таре. Тем не менее, результат очистки трубы оказался вполне удовлетворительным: трубаочистилась как снаружи, так и изнутри. Имейте в виду, после применения химической очистки нужно хорошо промыть водой и вытереть насухо очищаемый предмет, иначе он на воздухе быстро покроется мутной пленкой. Еще лучше защитить поверхность от контакта с воздухом при помощи краски, лака или аэрозольного полиуретана. Но это исключительно наши эстетические соображения.

Расчет сопла


Сопло является главным элементом ракетного двигателя (ваш К.О.), так как в зависимости от правильности его расчета можно на одном и том же топливе с тем же каналом получить до +30% тяги.

К расчету сопла мы подошли основательно, подробно о математике его расчета, принципе работы, протекающих процессах, да и вообще, много интересного, можно почитать тут и elib.osu.ru/bitstream/123456789/8572/1/1805_20110824.pdf. А еще на сайте нашелся очень удобный инструмент Rocki-nozzle (на странице листаем вниз и ищем соответствующую ссылку).



Скачиваем программу, подставляем в соответствующие поля расчетные значения ракеты, полученные в Meteor (см. статью) и получаем на выходе профиль сопла. Обрабатываем данные и в SolidWorks рисуем красивое сопло с соблюдением всех размеров.

Дальше должна была быть токарочка, но в этот выпуск она не попадет, так как у моего знакомого токаря ЧПУ-шка отказалась работать и мы не могли к нему попасть. Но к следующей серии все обязательно будет.

Скачать полученную модель можно по ссылке в конце статьи.

Испытательный стенд, механическая часть


Перед запуском ракеты мы хотели провести замеры тяги на стенде, дабы сравнить реальные диаграммы с теми, что нам посчитал Meteor и проверить, насколько можно верить его расчетам. В принципе, вопрос о стенде поднимался уже давно и его решение было неизбежным, и, какобычно, методом проб и ошибок.

Первой версией было использование в качестве чувствительного элемента кухонных весов на 10 кг с приклепленным к оси стрелки потенциометром. Весы были успешно куплены в интернет-магазине и разобраны для удобства использования. Но к этому моменту появились расчеты тяги и понимание, что диапазона измерений в 10 кг будет мало, а вносить погрешность в виде рычагов не хотелось.

Затем пришел вариант 2: использовать аналоговые (с вращающимся диском) напольные весы для людей. При разборке внутри оказалась дохленькая пружина и система рычагов, крайне неподходящая для использования на стенде.

Вариант 3. Долго не хотелось его применять из-за низкой скорости измерений, однако, пришлось. Тензодатчики. Поскребав по сусекам, нашел дома несколько тензодатчиков на 50 кг и модуль на микросхеме HX711.





Основная проблема в том, что тензодатчики оказались не мостовые, а полумостовые. Ну что ж, придется ставить 2 шт. С другой стороны, это даже плюс: получим стенд, способный измерять тягу до 100 кг, а разрешение АЦП в HX711 24бит позволит производить замеры с достаточно высокой точностью. По крайней мере, согласно нашим расчетам. Как будет на самом деле, проверим самым точным методом эмпирическим.

Тем временем, Лёша собрал каркас стенда из профильной трубы 20х20, стальных направляющих и линейных подшипников. Сначала подумали, что можно поставить испытуемыйдвигатель таким образом, чтобы вектор его тяги был направлен вниз, то есть, в землю, однако отказались от этой идеи в пользу точности измерений, так как на старте у нас на датчик будет давить вес самого двигателя, который будет уменьшаться по мере прогорания топлива. Вместо этого решено было направить вектор тяги параллельно земле, а от сдвигания вперед стенд защитим фиксацией при помощи вбитой в землю арматуры или анкеров. Ну, или к валуну прижмем будем посмотреть по месту проведения испытаний.

В следующей серии планируем полностью собрать стенд, прикрутитьк нему электронику, собрать двигатель, снарядить топливом, поставить на стенд и выехать в безлюдные места для проведения огневых испытаний. Оставайтесь с нами будет много интересного.

Видео во статье можно посмотреть вот тут:

Видео с ютуба

Ссылки:
Принцип работы сопла Лаваля
Расчет и построение профиля сопла Лаваля
Программа Rocki-nozzle
Модель нашего сопла
Подробнее..

Перевод Шарманка на Ардуино

16.07.2020 18:14:38 | Автор: admin

Эта публикация является переводом моей инструкции размещенной на сайте instructables.com. Проект занял первое место в DIY Arduino contest 2020 от Instructables



Привет! Это статья о том, как я делал шарманку на Arduino.


Демо



Немного истории


Идея автоматических музыкальных инструментов не нова. Люди всегда пробовали автоматизировать различные музыкальные инструменты, в том числе и пианино.



С середины XVIII века и до изобретения граммофона существовали различные автоматические инструменты. В основном это были пианолы и ручные уличные шарманки. Эти инструменты были автоматизированы механикой и пневматикой.



В механической схеме использовался приводной валик с кулачками. Вращаясь, кулачки задевали молоточки, которые соответствовали клавишам фортепиано.


В конце XIX-начале XX веков появились более совершенные инструменты, управляемые с помощью перфорированных бумажных лент. В таких инструментах использовалась пневматическая схема с мехами и трубками, а отверстия в ленте играли роль миниатюрных пневматических клапанов.



Считывание нот


Сперва нужно определить нажата клавиша пианино или нет.


Старинные музыкальные инструменты используют довольно сложные механизмы. Я же могу использовать Arduino и электронные датчики, чтобы определить нажата клавиша или нет. Например, используя ИК-сенсор или датчик линии. Эти датчики широко используются в мире Arduino для гонок по линии. Они позволяют определить белый или черный цвет поверхности под ними.



Идея следующая. Пусть один ИК-датчик представляет собой одну ноту и клавишу пианино. Имеется несколько датчиков. Под датчик помещается лист бумаги, разделенный на параллельные дорожки. Дорожки состоят из черных и белых областей. Лист начинает движение относительно датчиков. Если на дорожке под датчиком находится черная область, то клавиша нажата. Если белая область клавиша отжата. В момент, когда клавиша переходит из освобожденного состояния в нажатое нота начинает звучать. Звук удерживается, пока область под датчиком остается черной.


Используя несколько датчиков линии одновременно, можно создать своего рода электронную клавиатуру пианино, где каждый сенсор соответствует своей клавише и ноте. Располагая черные и белые области на листе определенным образом и перемещая лист с нужной скоростью, можно получить последовательность нот музыкального произведения.


Я сделал клавиатуру, состоящую из 40 клавиш. Для этого я использовал пять модулей Octoliner. Модуль Octoliner это восьмиканальный датчик линии. Каждый модуль имеет восемь оптопар TCRT5000 и может быть использован для 8 различных клавиш пианино. Модуль управляется по шине I2C, и его легко связать с Arduino.


Я разместил пять модулей последовательно, чтобы создать единую обширную линейную матрицу из 40 (5x8) датчиков. Вы можете сделать клавиатуру из меньшего количества клавиш, или сделать полноразмерную клавиатуру пианино с 88 клавишами. Я выбрал 40, потому что это примерно половина всех клавиш на реальном инструменте.


Ардуино как миди устройство


Для считывания сигналов со всех линейных датчиков я использую Arduino. Однако датчики способны только информировать Arduino, нажата ли клавиша или отпущена. Чтобы в конце получить звук, нужно превратить Arudino в MIDI-устройство.



MIDI это универсальный цифровой стандарт записи для обмена данными между различными музыкальными инструментами. MIDI-устройства обмениваются сообщениями. Эти сообщения содержат информацию о нажатых клавишах, их громкости и тональности.


Arduino способна переводить данные о нажатых клавишах в MIDI-сообщения. Я выбрал плату Arduino, которая способна эмулировать USB HID-устройство. Передавая MIDI-сообщения через USB-порт, Arduino превращается в настоящую электронную клавиатуру пианино. С USB MIDI устройством, я смогу извлечь звук используя синтезатор просто подключив Arduino к USB-порту компьютера.


Выбор пал на плату Arduino MKR ZERO. Она способна эмулировать USB HID из коробки. Плата очень производительная, а ее большой объем флэша идеально подойдет для хранения пресетов кучи музыкальных композиций. Также я использовал обычную тактовую кнопку для переключения пресетов и знакогенерирующий I2C LCD дисплей 16x2 для отображения текущего пресета.


Конструкция шарманки


Я не буду описывать всю конструкцию подробно. Шарманка делалась с первого раза и наугад. Только ради эксперимента. Здесь довольно много деталей, проще взглянуть на 3D-модель и спецификацию. Для изготовления деталей я использовал оргстекло, лазерную резку, 3D-печать, а также материалы и механику, которые у меня были дома.




Условно я разделил конструкцию на две основные части и назвал их "выпрямитель" и "съемник". Обе части крепятся к опорной плите. Выпрямитель крепится к основанию с помощью стоек M3 длиной 65мм, а съемник с помощью напечатанных на принтере уголков. Крепеж не показан на сборках, но есть в спецификации.


Сборка выпрямителя



Выпрямитель выравнивает бумажный музыкальный лист с нотами перед чтением, и на нем установлены датчики линии. Лист для сорока датчиков вышел широким. Такой лист может гнуться и рваться во время движения. Каждая нотная дорожка на листе должна находиться прямо под соответствующим оптроном. Поэтому нотный лист должен быть выровнен перед считыванием.


Выпрямитель собран из нескольких пластин. Бумажный лист зажат между основанием и крышкой. Между крышкой и листом сделан небольшой зазор в 1-2 мм, чтобы лист не закусывало при движении. По бокам установлены две направляющие пластины. Пять модулей датчиков линии установлены на пластине на определенной высоте над листом и крепятся к основанию четырьмя стойками 6мм.


Сборка съемника



Эта часть предназначена для подачи листа. Она тянет лист из выпрямителя.


На валах установлены четыре колеса с резиновыми кольцами. Они плотно зажимают нотный лист. Вращаясь, эти колеса вытягивают считанный лист из выпрямителя. Съемник фиксируется на опорной плите уголками. Съемник состоит из трех пластин оргстекла и трех 6мм валов между ними. Валы закреплены в пластинах фланцевыми подшипниками F626ZZ. Подшипники зафиксированы с помощью напечатанных крышек.


Валы вращаются маховиком через ременную передачу. Я использовал 2GT ремень без натяжения. Замкнутый ремень шириной 6мм с 250 зубьями. Такие ремни и шкивы для них распространены в хобби-станках с ЧПУ и 3D-принтерах, поэтому их легко найти и купить. Малый шкив купленный GT2 20 6 B6.



Больший шкив самодельный, изготовлен лазерной резкой из оргстекла. Он состоит из 4 пластин толщиной 2 и 4 мм и алюминиевого фланца на вал 6мм.



Маховик состоит из пластины оргстекла, подшипника F625ZZ, фланца на вал 6мм и напечатанной рукоятки. Подшипник запрессован на рукоятке и зафиксирован в пластине напечатанной крышкой.



Колеса, тянущие лист, тоже сборные. Каждое колесо состоит из 4 пластин, толщиной 3 и 2мм, и фланца на вал 6мм. На пластины натянуто резиновое уплотнительное кольцо. Я использовал обычное уплотнительное кольцо ГОСТ 9833 050-060-58.


Экранирование оптопар



В шарманке много оптопар, и они расположены очень близко друг к другу. При одновременной работе множества сенсоров их сигналы могут многократно отражаться и пересекаться друг с другом, что приведет к значительным погрешностям в полученных данных.



Я решил максимально избавиться от помех, и экранировал каждую оптопару колпачком. Колпачки которые подходят к оптопарам TCRT5000 очень маленькие, напечатал их на фотополимернике.


Перевод нотного листа


Подготовка нотного листа это, пожалуй, самое утомительное занятие, особенно если не знаком с музыкальной нотацией.


Итак, один датчик линии имеет 8 каналов, отвечающих за считывание 8 нот. Длина датчика составляет 80мм. Поместив 5 модулей рядом, я получаю общую длину в 400мм. Добавлю еще 5мм свободного места по краям. Таким образом, общая ширина нотного листа равна 410 мм.


Ширина одной нотной дорожки равна ширине одной оптопары и составляет 5,8мм. Расстояние между оптронами на датчике 4,2 мм. Такое же расстояние между нотными дорожками на листе.



Ноты делятся по длительности, где длительность это доля такта. Нота может быть целой, половиной, четвертой, восьмой, шестнадцатой итд. За основу я беру длительность шестнадцатой ноты, и назначаю ей высоту 10мм на листе. Теперь весь лист может быть разлинован горизонтальными линиями с интервалом 10мм, так как это минимальный шаг. Черный прямоугольник размером 10х5,8мм на дорожке даст звук длительностью шестнадцатой ноты. Прямоугольник высотой 20мм это восьмая, 40мм четвертая, 80мм половина, 160мм целая.


В формате MIDI каждая нота фортепианной клавиатуры имеет свой уникальный номер. Эти номера будет присвоены каналам датчиков линии. При транскрипции для себя я сформировал несколько шагов, чтобы не запутаться. Покажу на примере простой мелодии "дождь дождь уходи" (с) www.teaching-children-music.com.



  1. Смотрим на все ноты, которые используются в музыкальном произведении, и записываем их MIDI номера в порядке возрастания. Эта мелодия использует только три ноты первой октавы: E, G и A. Нота E первой октавы имеет MIDI-номер 64, G имеет номер 67, а A имеет номер 69.
  2. Присваиваем MIDI-номера каналам датчика линии. Например, я назначаю на первый канал номер 64, второй канал номер 67 и на третий номер 69.
  3. Смотрим на размер произведения. Эта мелодия имеет размер 2/4. Это означает, что длина от одного такта до другого равна двум нотам с четвертой длительностью. Таким образом, высота одного такта на листе равна 40мм (2*80 мм). Полная мелодия имеет 4 такта, и я могу разместить все тактовые линии.
  4. Переводим произведение. Закрашиваем прямоугольные черные области на листе в соответствии с длительностью нот.
  5. Правим нотный лист и удаляем помарки. Например, эта мелодия имеет две одинаковые восьмые ноты, которые звучат последовательно во втором, третьем и четвертом тактах. На переведенном фрагменте эти две восьмые ноты слились в единую четвертую ноту. Их необходимо разделить, слегка укоротив длительность первой ноты. Для этого уменьшаем высоту первого прямоугольника, обеспечив пустой белый зазор.

Переведенная музыка


Вся нотная запись получилась слишком длинной, чтобы физически поместиться на одном бумажном листе. Чтобы уместить все ноты, я распечатал их частями на нескольких листах А1. Затем обрезал края листов до нужной ширины и последовательно склеивал их в один большой рулон. Всего я попробовал перевести три музыкальных отрывка.


  1. "Hedwig's Theme" из Гарри Поттера а аранжировке Patrick Piesman.
    Используемые MIDI ноты:
    41, 42, 43, 45, 48, 49, 50, 52
    54, 55, 56, 58, 59, 60, 61, 62
    63, 64, 65, 66, 67, 68, 69, 70
    71, 72, 73, 74, 75, 76, 77, 78
    79, 80, 81, 82, 83, 84, 85, 86
  2. "The Black Pearl" из Пиратов карибского моря в аранжировке Klaus Badelt.
    Используемые MIDI ноты:
    31, 33, 34, 36, 38, 40, 41, 43
    45, 46, 48, 50, 52, 53, 55, 57
    58, 59, 60, 61, 62, 63, 64, 65
    66, 67, 68, 69, 70, 71, 72, 73
    74, 76, 77, 79, 81, 82, 85, 86
  3. Оригинальная первая часть "The Entertainer" Джоплина.
    Используемые MIDI ноты:
    43, 44, 45, 47, 48, 50, 51, 52
    53, 54, 55, 56, 57, 58, 59, 60
    62, 63, 64, 65, 67, 69, 71, 72
    74, 76, 77, 78, 79, 81, 83, 84
    86, 87, 88

Прикладываю ссылки на оригинальные фортепианные ноты, на мои переведенные ноты для шарманки и пустой линованный CAD-лист формата А1, который может пригодиться для ваших переводов.



XOD и библиотеки


Для прошивки Arduino я использую визуальную среду программирования XOD. Я часто использую XOD в своих проектах, и этот не исключение. Тем более, что все необходимые для проекта библиотеки уже созданы пользователями.


amperka/octoliner библиотека от производителя для работы с восьмиканальным датчиком линии. Она содержит все необходимые ноды для быстрого начала работы с датчиком, а также некоторые ноды расширенного функционала, такие как настройка яркости/чувствительности оптронов или изменение адреса I2C.



Это крутые пользовательские библиотеки XOD позволяющие работать с MIDI-форматом. Библиотека e/midi используется для создания MIDI-сообщений. С помощью библиотек e/serial-midi/ и e/usb-midi/ можно обмениваться MIDI-сообщениями через последовательный интерфейс или USB-порт Arduino.


Главный патч проекта находится в библиотеке gabbapeople/barrel-organ/


Патч проекта



Патч шарманки начинается с инициализации датчиков. Для инициализации устройств датчиков используются quickstart ноды octoliner из библиотеки amperka/octoliner. Каждое устройство имеет свой адрес I2C. Адрес датчика линии можно изменить, используя пример в библиотеке amperka/octoliner. Для каждого датчика нода set-brightness устанавливает значение яркости ИК-излучателей равное 1. Затем нодой set-sensitivity устанавливается чувствительность ИК-приемников равная 0,9. Для пяти устройств выведены отдельные шины DEV1, DEV2, DEV3, DEV4, DEV5. Нода usb-midi-device создает и хранит экземпляр пользовательского типа MIDI, используемого для генерации и отправки MIDI-сообщений. При подаче питания происходит задержка в 1 секунду. После инициализации параметров всех сенсоров нода gateначинает пропускать через себя непрерывные импульсы.


В программе есть счетчик пресетов. Каждый пресет соответствует определенному набору MIDI нот назначенных на каналы датчиков линий. Пресеты переключаются с кнопкой и нодой track-charger. На дисплее text-lcd-i2c-16x2 отображается, какой пресет активен в данный момент.


Далее идет нода keyboard. Эта нода принимает в себя шины всех датчиков, шину `midi, а также текущее значение счетчика пресетов.


Нода клавиатуры



Нода keyboard составная и очень большая, это сердце устройства. Структура ноды начинается с шин сенсоров и значения текущего пресета.


Затем следуют пять нод octoliner-read-channels. Одна такая нода считывает восемь аналоговых сигналов от восьми оптронов на датчике. Сигналы считываются последовательно и оцифровываются по простой формуле. Если сигнал >= 0,7, то клавиша нажата; если нет, то она отпущена. Суммарно нодыoctoliner-read-channels имеют 40 выходных пинов пронумерованных от CH0 до CH7 и выводят в них 40 булевых значений.


Далее следует выбор MIDI номера ноты исходя из пресета. Один канал может соответствовать разным нотам. Выбор ноты для конкретного канала зависит от текущего пресета. Нода note-switcher выбирает нужный MIDI-номер в зависимости от номера пресета. За каждой нотой закреплена шина с уникальным именем, например 48_1, где первое значение это номер MIDI, а второе значение номер пресета. Логические ноды xor отсекают неиспользуемые шины.


Отсортированные шины MIDI номеров поступают в ноды octave. Всего я сделал шесть "октавных" нод от 1 до 6. Эти ноды соответствуют шести октавам настоящего фортепиано. Каждая нода octave состоит из двенадцати входных булевых пинов для двенадцати MIDI номеров нот. Например, для четвертой октавы входными пинами будут MIDI номера 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71. При изменении значения на любом из входных пинов, нода octave генерирует и отправляет MIDI-сообщение через USB-порт.


Вывод звука



Шарманку можно подключить к любому синтезатору с USB. Например, можно подключить её к компьютеру c ОС Windows и использовать Synthesia. Или подключите её к малине и использовать QjackCtl & Qsynth.

Подробнее..

Ракета от Амперки, часть 3 Токарка, допилы стенда, электроника

18.07.2020 14:05:59 | Автор: admin
И снова всем доброго времени суток.
В этом посте расскажу, что у нас получилось за очередную неделю работы над проектом ракеты.



Напоминаю, что данный цикл статей является блогом, посвященным тому, как мы строим ракету с нуля, без знаний и навыков. Статьи выходят еженедельно по субботам.
Тех, кто с нами впервые, прошу ознакомиться со всей историей проекта. Завсегдатаев прошу под кат.



Токарка-токарочка


В предыдущей серии мы просчитали профиль сопла, исходя из данных, полученных из программ Meteor и Rocki-nozzle, нарисовали чертеж и начали думать над его реализацией в металле. Так как сопло у нас было построено на кривых, а не просто два совмещенных конуса, хотелось этот потенциал реализовать по полной. При точении руками такой точности добиться не удалось бы даже токарю с многолетним стажем, поэтому начали смотреть в сторону токарок с ЧПУ.
Прошерстили интернет в поисках изготовления под заказ либо минимальная партия от тысячи штук, либо штучное изготовление по стоимости крыла от Боинга. Да и врядли бы нам дали поснимать процесс для видеоотчета. Поэтому, не мудрствуя лукаво, набрал я моего товарища, у него есть хороший токарник, а перфекционизм просто зашкаливает, поэтому за точность можно было не переживать. Скинули модель, Кирилл (токарь) согласился, и только мы собирались выдвигаться к нему нашей дружной компанией, как у него встает станок. Больно и печально, пришлось переносить.
Но мы дождались, приехали. Кирилл объяснил нам, что для нормальной работы в условиях такой температуры и трения газов купленая нами заготовка из стали Ст30 может потечь, посоветовал ее выбросить и вместо нее достал пруток из пищевой нержавейки. Несколько часов в токарке, куча лекций на тему работы с материалами и их пригодность для использования в разных условиях невероятно занимательно и интересно. Жаль только, что из-за масочного режима и общего шума в мастерской не удалось это нормально записать. Но зрелище, когда сверло диаметром 20 мм со сквозным каналом для СОЖ решет нержавейку как масло, мы запомним надолго.











К сожалению, не прокатила наша идея с тем, чтобы посадить сопло на трубу по резьбе у Кирилла в патрон не пролезала труба такого диаметра. Что ж, вернемся к идее посадить сопло на трубу на горячую, уплотнить термостойким герметиком, засверлиться и скрутить болтами, нарезав резьбу в теле трубы.
Хочется еще раз поблагодарить дядьку Кирилла: спасибо тебе большое, очень выручил и очень многое рассказал!

Электроника для стенда


Так как от механических весов отказались в пользу тензодатчиков, стали плясать от них. Встал вопрос на тему представления данных в удобном для восприятия и анализа виде, да и хотелось бы отказаться от проводов, а также иметь возможность инициации зажигания из укрытия, на расстоянии, ибо безопасность превыше всего. В конце концов, мы собрали трубу и собираемся начинить ее метательным зарядом.
Итак, в качестве мозга для стенда была выбрана плата Wemos D1 R2 Mini под управлением ESP-12F. Если кто-то не в курсе, это 32-битный контроллер с памятью на 4МБ (флешка распаяна прямо на отладочной плате) и WIFI на борту то, что надо.



Датчиков на стенде будет два, они полумостовые, но мы решили их соединить по мостовой схеме, что даст более высокую точность и позволит увеличить предел измерений до 100кг (два датчика по 50кг). Получилось вот такое крепление. Равномерное давление будет достигаться за счет коромысла.



Датчики опрашиваются модулем на микросхеме HX711. По умолчанию модуль распаян так, что дает частоту выборки в 10Гц, но простым перепаиванием резистора-перемычки частота повышается до 80Гц. Хронометрах показал, что на получение одного значения требуется 11-12мс, поставим период в 15мс на всякий случай, выходит около 66Гц, что вполне приемлемо.
Логирование осуществляется на внутреннюю SPIFFS-память, что позволит упаковать файлы в удобный формат (в нашем случае txt), скопировать их на другой носитель и обрабатывать при желании во внешних программах.



Но хотелось наглядности. Поэтому был написан веб-интерфейс, в котором можно построить графики, посмотреть тягу в каждый момент времени, а также наложить графики друг на друга и сравнить. При необходимости также можно отключить ненужные графики. Сделано под сравнение 6 двигателей по 20 секунд работы каждый, можно поменять при желании. Ссылки на код будут в конце статьи. Напомню, что для получения корректных данных перед использованием тензодатчики надо обязательно откалибровать. Скетч для калибровки в комплекте. В скетче оставлено много служебных функций, которые могут быть полезны.
Также хочу напомнить, что в скетче используется работа с файловой системой SPIFFS, рекомендую предварительно ознакомиться с ее работой.





При программировании использованы заготовки Сергея Третьякова, скрипт построения графика взят с сайта Highcharts.
При нажатии на кнопку запуска, через мосфет будет подаваться питание на электрозапал, который инициирует зажигание топлива.
Таким образом, у нас все готово к огневым испытаниям, которые мы проведем в начале следующей недели, а в субботу поделимся полученными данными и опытом.

Видео по статье:


Оставайтесь с нами, будет еще много интересного.

Ссылки:
Прошивка калибровки
Прошивка построения графиков
Подробнее..

Ракета от Амперки, часть 4 Сборка двигателя и огневые испытания

25.07.2020 16:11:23 | Автор: admin
Однако, снова здравствуйте.
Прошла еще одна неделя делимся результатами работы над нашей ракетой.



Кто с нами впервые, для понимания происходящего, советую ознакомиться с историей продыдущих выпусков. Постояльцев прошу под кат.

Склеивание шашек


В предыдущих выпусках мы сварили топливо и придали им форму шашек с каналом внутри. Такая методика была выбрана из соображений удобства изготовления, так как лить шашку целиком и прессовать топливо довольно проблематично с учетом имеющегося у нас оборудования, и не факт, что получится хорошо. Поэтому было принято решение отлить небольшие шашки, а потом склеить их между собой.
В качестве клея будет использоваться все то же топливо, дабы была достигнута однородность. Для этого сварили небольшую свежую порцию, обработали торцы шашек, обмазали их топливом и совместили, соблюдая соосность. При обработке шашек следует помнить, что топливо весьма хрупкое и может раскрошиться при обработке, например, ножом, поэтому лучше всего делать это при помощи наждачной бумаги. В очередной раз напоминаю о мерах безопасности при работе с топливом: следует избегать источников открытого огня и мощных нагревателей вблизи топлива, а также соблюдать общую осторожность.
В результате получиласьбольшая длинная шашка, состоящая из пяти меньших как раз то, что надо для установки в корпус двигателя.





Сборка двигателя


Так как идея с заглушкой на резьбе провалилась ввиду невозможности нарезки оной на трубе, решили не заморачиваться и просто заварить нерабочий конец.



На противоположный конец трубы-корпуса сопло надевается с трудом, поэтому будем садить на горячую. Фиксация будет осуществляться за счет трех винтов М5, установленых под 120 градусов.
Но для начала надо просверлить сопло под посадку винтов. Обычные сверла, имевшиеся в запасе, наотрез отказались сверлить нержавейку, рейд в ближайший магазин инструментов пополнил арсенал кобальтовыми сверлами, но неумелая рука сразу сломала два из них под диаметр 3мм. Звоним дядьке Кириллу и интересуемся, чем же сверлить эту сталь. Советы были примерно такие:
  • кобальтовые сверла выполнено
  • низкие обороты
  • большое усилие подачи
  • СОЖ

В качестве СОЖа предлагалось использовать олеиновую кислоту в любом виде. У нас из доступного под рукой оказалось только подсолнечное. Важно при сверлении не уменьшать давление на материал и не повышать скорость вращения сверла, так как нержавейка при этом в точке контакта наклёпывается и резко повышает свою твердость, вследствие чего потом ее просверлить практически невозможно этим же сверлом. Учитывая все эти советы, отверстия были просверлены без особых проблем при помощи ручного шуруповерта в два прохода: сначала сверлом 3мм, затем 5.2мм.





В трубе же, она, уже просто стальная (Ст30, вроде), просверлилась без особых проблем, в отверстиях нарезали резьбу.

Абляция


Перед установкой топливного заряда в двигатель, необходимо подумать об абляторе. Если коротко, это слой материала, который защищает корпус от воздействия нагрева путем собственного плавления и возгонки, на что и тратится тепловая энергия. Своеобразный вид жертвенного слоя. В нашем случае абляцию следует наносить внутри корпуса двигателя, в пространстве между стенкой и топливом. При изготовлении шашек как раз был дан допуск на этот слой.
Мы в качестве аблятора решили использовать эпоксидную смолу, которой у нас было в достатке. Задачу равномерного распределения эпоксидки по внутренней поверхности трубы решили вращением при помощи двигателя от шуруповерта и нехитрого стенда.



После растекания эпоксидки вставляем в корпус готовый топливный заряд и устанавливаем электрозапал, провода от которого пропускаем через сопло, которое, в свою очередь, греем, и садим на трубу, предварительно уплотнив место посадки термостойким герметиком. Закручиваем фиксирующие винты и наш тестовый двигатель готов!



Огневые испытания


Тесты ракетных двигателей крайне опасное мероприятие, поэтому к месту их проведений и подготовке нужно отнестись максимально серьезно. Для наших испытаний мы выбрали заброшенный город-призрак Адуляр бывший военный городок 310 ВЧ 51850 километрах в 80 от Москвы. Одним из факторов, повлиявших на такой выбор стало то, что военная часть обслуживала ЗРК С-51 Беркут, чтобыло знаковым для нас ракетостроителей-дилетантов.
За день до испытаний я съездил в Адуляр на разведку. Город действительно оказался давно заброшенным и необитаемым, однако территорию облюбовали различного вида киношники (к слову, на момент разведки на месте находилась съемочная группа какого-то музыкального клипа), а также страйкболисты (о чем свидетельствовало большое количество шариков для приводов) и любители огнестрела (повсюду лежаль гильзы от винтовок, пистолетов и охотничьих ружей). Основная достопримечательность две пятиэтажки, стоящие друг напротив друга.







На следующий день мы в полном составе выдвинулись на испытания. По прибатию на место выбрали площадку для проведения испытаний, где была возможность установить камеры и при этом спрятаться за укрытия. Безопасность прежде всего в таких делах. Установили стенд и зафиксировали его, вбив штырями в грунт, провели проверку, в ходе которой убедились, что всё работает в штатном режиме и не повредилось при транспортировке.
Затем зафиксировали двигатель на каретке стенда, еще раз убедились в отсутствии людей в опасной зоне, заняли места в укрытии и произвели зажигание.
Все произошло настолько быстро, что мы даже не успели удивиться или испугаться. Через несколько миллисекунд после старта запала был слышен свист, который резко прервался сильным хлопком.



Выйдя из укрытия обнаружили, что на двигателе отсутствует сопло, а из корпуса выходят остатки дыма. Посмотрев запись увидели, что двигатель штатно выплюнул стартер, после чего вышел на режим, однако, после этого основание сопла, надетое на трубу-корпус стало расширяться, сорвало винты и отправилось в полет по направлению движения газов.



Измерительный стенд показал крайне быстрый рост усилия тяги до 135 кг, при условии, что датчики были расчитаны на 100кг (2 по 50кг). Нельзя точно отверждать, что это значение было максимальным, однако, однозначно, не менее указанного. Кроме того, из-за возникшей ударной нагрузки каретка сломала одну из калёных направляющих диаметром 10мм, а также деформировалось коромысло, распределявшее нагрузку между двумя тензодатчиками. Последние тоже пострадали, так как оказались значительно выгнутыми и больше не реагировали на давление.







Итог: стенд покалечен, датчики сломаны, сопло мы так и не нашли в высокой траве. Будем возвращаться в студию, уставшие, подмоченые дождем и расстроенные, а в следующем выпуске найдем причины такого поведения двигателя и способы борьбы с ними.

Видео по статье можно посмотреть здесь:
Подробнее..

Ракета от Амперки, часть 5 Разбор полетов, ремонт

02.08.2020 10:04:16 | Автор: admin
Рад всех приветствовать!
Очередная неделя работы над ракетой.



В этом выпуске займемся выяснением причин срыва сопла, поиском вариантов решений и ремонтом.

Ремонт


В предыдущем выпуске в ходе испытаний у нас реактивной струёй сорвало сопло с двигателя и пострадал стенд. Подробнее можно ознакомиться здесь. Нам осталось только ехать домой, отсматривать материал и пытаться понять, что же пошло не так.
Но в первую очередь решили восстановить работоспособность нашего главного измерителя. Заказали новые круглые направляющие и вставили вместо сломаной. Также заменили вышедшие из строя тензодатчики и восстановили геометрию коромысла, произвели повторную калибровку.

Разбор полётов


Стенд снова готов к работе, теперь нужно понять, где мы просчитались. В предыдущем посте и в личку многие просили посмотреть на график тяги поближе. А пожалуйста! Специально сделал скриншоты со значениями:


























На 10 фото виден момент развития усилия в 135 кг. Мы не можем утверждать, что тяга в этот момент была именно такой, так как после этого, скорее всего, тензодатчики вышли из строя. Можно только гарантировано сказать, что не меньше этого показателя. По логике вещей, на такой показатель также повлял эффект отдачи двигатель отбросил от себя часть своей массы в виде сопла, из-за чего наш стенд превратился в лафет артиллерийского орудия, вот направляющая и не выдержала.
Еще в замедленной съемке удалось рассмотреть, что сразу после запуска двигатель неплохо выходит на режим, в котором стабильно работает короткий промежуток времени, после чего давление струи на выходе сопла начинает расти (а должно быть примерно равно атмосферному, по нашим расчетам), что является следствием увеличения давления в камере сгорания. Причин увеличения количества сгораемых газов может быть несколько (как и возможна их комбинация):
  • Кратерное горение топлива
  • Детонация топлива
  • Раскалывание топливного заряда
  • Закупорка критического сечения
  • Горение по нерасчетной поверхности
  • Неправильный расчет сопла
  • Неправильный расчет профиля топлива и шашки

Будем следовать от противного. Вариант с закупоркой сопла стартером отбросили сразу, так как на видео отчетливо видно, как его выбрасывает из сопла еще до выхода двигателя на режим. Раскалывание шашек тоже маловероятно они были не только склеены между собой топливом, но еще и приклеены к стенкам трубы на эпоксидку. Кратерное горение крайне маловероятно, так как на испытаниях топлива в первой серии мы сожгли самую дефектную шашку с явными признаками кратеров, и неравномерного горения не наблюдалось. Версия с детонацией тоже неработоспособна: давление выросло бы настолько резко, что трубу бы разорвало, даже не успев сорвать сопло, а по видео видно, как после срыва топливо продолжает догорать. Да и не склонно карамельное топливо к детонации это же не аммонал.
Теперь о более вероятных причинах. Товарищи из МКА посоветовали смотреть в сторону перехода горения с внутренней поверхности шашки на внешнюю, что и привело к резкому увеличению количества сгораемых газов. А причиной этому послужило отсутствие бронировки на топливном заряде. Топливо прогорело от канала до самого края, а потом горение перешло на внешний слой, здорово увеличив при этом площадь. В следующий раз будем умнее и обязательно сделаем бронировку.
Неправильный расчет сопла вероятен, однако, он зависит от того, насколько правильно было посчитано топливо. Точнее, его закон горения. В наших расчетах мы пользовались значениями, взятыми из программы Meteor, но это абсолютно не значит, что характеристики сваренного нами топлива полностью соответствуют табличным.

Расчет закона горения


Скорость горения топлива прямопропорционально зависит от давления внутри камеры сгорания и измеряется в мм/с. Для проведения таких испытаний применяется метод бомбы Кроуфорда, который заключается в создании установки примерно такого вида:


(источник)

Суть испытаний состоит в сжигании топливной шашки малого объема в камере, внутри которой нагнетается давление и замерах скорости горения при различных значениях давления. Результатом измерений будет примерно такой график, по которому можно будет высчитать закон горения именно для каждого отдельно взятого топлива, с учетом его особенностей: чистоты реагентов, влажности, качества запрессовки/литья и т.п.


(источник)

Мы решили провести такие испытания и сравнить, насколько характеристики нашего топлива соответствует табличным. Для этого будем строить новый стенд. За его основу мы взяли углекислотный огнетушитель ОУ-7 и стравили с него заряд. В него мы и будем помещать небольшие шашки, нагнетать азот (кстати, баллон с азотом тоже уже прикупили) и тестировать, насколько быстро будет сгорать топливо при различном давлении. На данный момент подбираем подходящую фурнитуру и контрольно-измерительную аппаратуру, попутно пишется программа для проведения измерений. Когда закончим отладку предоставим код.

Видео по серии:


Спасибо, что остаетесь с нами!
Подробнее..

Ракета от Амперки, часть 6 тестовые шашки, перхлоратное топливо, стенд для тестов скорости горения

08.08.2020 22:12:45 | Автор: admin
Рад всех приветствовать.
Пока точатся детали для бомбы Кроуфорда, займемся подготовкой к испытаниям: заготовим мини-шашки, сварим новый вид топлива и сделаем электронику.




Карамельное топливо v.2


В предыдущем выпуске мы решили провести тесты скорости горения топлива под давлением, в качестве подопытных будут мелкие (около 3-4 см в длину) шашки топлива. Задумка такая: отливаем мини-заряды и вставляем в них перпендикулярно оси тонкие (0.1мм) медные провода, затем поджигаем шашку с торца. При горении топлива расплавится первая проволочка, что будет сигналом для начала отсчета времени. Затем, когда перегорит вторая проволочка, получим вторую временную отметку. Зная расстояние между проводами и тот факт, что топливо горит по поверхности, произведя нехитрые математические вычисления, получим скорость горения в мм/с, а засекать время и считать будет ардуино.
С логикой процесса понятно, перейдем к отливке шашек. Их корпуса изготавливаем из бумаги, пропитанной силикатным клеем, которая наматывается на гладкий стальной пруток (взяли как раз тот, что используется для направляющих стенда по замеру тяги двигателя). Как нам подсказывали ранее, такая конструкция вполне подходит для предотвращения горения по той поверхности, где это горение не требуется, то есть, выходит бронировка. В нее и будем заливать топливо.
Первые закупленые реактивы подошли к концу, закупили новых. В Русхиме почему-то не оказалось калиевой селитры ХЧ, пришлось взять ЧДА. Она оказалась почему-то с желтоватым оттенком. Попытка сварить топливо с ней не увенчалась особым успехом продукт получился какой-то слишком коричневый и не хотел полностью затвердевать, поверхность оставалась блестящей и липкой, как будто мокрая. Начали грешить на чистоту селитры и невозможность полностью выпарить воду. Отваруумировали результат тот же. Причем при вакуумировании материал выделял значительное количество пузырей.
Следующая итерация состояла в попытке не добавлять воду, а плавить сорбит напрямую, добавляя к нему сухую селитру. После варки топливо получилось примерно того же качества, только на этот раз в топливе были заметны вкрапления селитры. Оба топлива горели слабо и нехотя, при этом часть материала плавилась и вытекала. Нашли немного первоначальных реактивов еще с первой закупки, попробовали сварить, как делали раньше тот же эффект.
В голову начали лезть мысли по поводу влажности атмосферы в помещении и/или влажности изначальных реагентов. Нашли и купили селитру с чистотой 99.5%, просушили ее и сорбит (по отдельности, естественно) в течение 6 часов при температуре около 60 градусов для удаления влаги, отвакуумировали и поместили в герметичные контейнеры. Наличие кристаллов селитры в варианте топлива, сваренного без добавления воды подтолкнуло к идее измельчения оной перед добавлением в расплав сорбита. В этом деле очень хорошо помогла электрическая кофемолка селитра превратилась в пыль. Также нам подсказали, что изменение цвета на коричневый и низкое качество топлива может быть обусловлено перегревом сорбита.
Итак, опытным путем мы вывели технологию производства лучшего топлива в наших условиях:
  • максимально чистые реактивы
  • сушка реактивов перед варкой + вакуумирование
  • хранение реактивов в герметичной емкости
  • измельчение калиевой селитры перед использованием
  • температура при плавлении не должна превышать 120 градусов
  • варка без добавления воды

Результат нас весьма приятно удивил. Во-первых, процесс собственно варки значительно ускорился, так как не надо выпаривать из расплава воду (время, затрачиваемое на сушку не учитываем это процесс практически автоматический, вакуумирование тоже не занимает долго времени). Во-вторых, качество топлива (вид, цвет, время затвердевания) тоже заметно улучшились. По виду вообще получилось как на фотографии в википедии. В-третьих, топливо стало гореть намного лучше, ровно, без остатка и без расплавленых капель. Эту технологию и будем использовать в будущем.
В наших гильзах для мини-шашек швейной иглой проделываем сквозные отверстия перпендикулярно оси по диаметру, продеваем в отверстия проволоку, заливаем топливо и аккуратно трамбуем, стараясь не повредить провода. Контроль заполнения ведется путем взвешивания пустых шашек и полных. Зная объем топлива внутри шашки и его плотность, легко посчитать, полностью ли заполнена гильза или еще остались пустоты.

Перхлоратное топливо


Раз уж задались идеей провести испытания скорости горения, решено было протестировать сразу и топливо на основе перхлората аммония, изготовлением которого и занялись. Этот вид топлива, с одной стороны, более прост в изготовлении, т.к. не требует нагревания и плавления, но с другой более опасен ввиду своей неустойчивости и более сложен в плане компонентов.
А компоненты понадобятся такие:
  • перхлорат аммония окислитель
  • алюминиевый порошок топливо
  • Эластэкс полиуретановое связующее
  • Касторовое масло отвердитель для связующего

ПХА был закуплен в Русхиме, остальные компоненты в Пирохобби. Да, мы не стали использовать купленый ранее алюминиевый порошок, взяв вместо него сферический дисперсный алюминий марки АСД-6 с размером зерна < 10мкм с целью повышения площади поверхности реактивов. Перхлорат аммония был измельчен в той же электрической кофемолке, но делалось это уже по-другому: зафиксировали кнопку во включенном состоянии, а включали кофемолку вилкой в розетку с расстояния все-таки, ПХА опасная штука. Настотельно рекомендуем всем соблюдать технику безопасности.



Итак, для приготовления топлива нужно взять по массе такое соотношение компонентов:
  • окислитель 70%
  • топливо 15%
  • связующее 15%

Следует учитывать, что в последнем случае под связующим понимается смесь Эластэкса и касторового масла в пропорции 1:1, с чего и начинается приготовление: компоненты связующего необходимо тщательно смешать в емкости (желательно пластиковой или стеклянной) и вымешать до отнородного состояния. Затем в него последовательно добавить топливо и окислитель. Из соображений безопасности добавлять необходимо мелкими порциями, тщательно вымешивая предыдущую. Надеюсь, не стоит напоминать, что при готовке рядом не должно находиться нагревательных приборов, источников огня и искр это может привести к возгоранию топлива. Окончательное перемешивание удобно производить руками (обязательно в перчатках, т.к. ПХА сильный окислитель и кожу совершенно не жалеет), разминая полученную пластилиноподобную массу темно-серого цвета. Также аналогия внешнему виду и консистенции мелкодисперсный кинетический песок.



В спешке нет необходимости такой состав сохраняет пластичность до 6 часов, а окончательно затвердевает через 24 часа, превращаясь в довольно твердый материал. С затвердевшим топливом также стоит соблюдать осторожность: его нежелательно подвергать механической обработке (резать, сверлить и т.п.) это может привести к возгоранию. Сразу же провели тест получившегося топлива. Горение напоминает бенгальский огонь.



Для ПХА-топлива в качестве гильз мы использовали обычные медицинские шприцы на 5 кубов, а проволоку в них вставляли при помощи игл от тех же шприцев: набиваем топливо до уровня проволоки, протыкаем корпус шприца насквозь поперек иглой, продеваем сквозь иглу проволоку, вынимаем иглу, оставляя проволоку внутри шприца и продолжаем набивать топливо дальше.



Лично для нас работа с перхлоратным топливом показалась более простой и удобной, чем с карамельным. Главное соблюдать все меры предосторожности.

Электроника для стенда.


Принцип работы измерителя скорости горения уже был описан выше не буду к этому возвращаться, а вот программную и аппаратную часть рассмотрим подробнее. Для стенда нам понадобятся:
  1. WiFi-Slot
  2. Slot Expander
  3. OLED-дисплей
  4. Силовой ключ N-Channel 2 шт.
  5. Аккумулятор ET ICR16340C
  6. Power Cell
  7. провода, припой, флюс, разъемы
  8. аккумулятор 12В от шуруповерта

Почти все компоненты соединяются между собой без пайки благодаря Troyka-форм-фактору. Связь осуществляется через WiFi, данные выводятся на веб-интерфейс. Скетч представляет из себя несколько видоизмененный вариант прошивки, которая использовалась для стенда, замеряющего тягу двигателя, в частности, оттуда же взят скрипт от Highcharts, выводящий данные в виде графика. Ссылка на прошивку будет в конце статьи.
На данный момент показания давления вводятся вручную, однако мы планируем поставить цифровой датчик давления и подхватывать результаты прямо с него. Если все выйдет, как задумано обновим информацию по скетчу, но это будет уже в следующем выпуске.
Итак, электроника собрана, предварительно протестирована, значит, можно провести испытания при атмосферном давлении. Подсоединяем контактные провода шашек к стенду, подключаем запалы и идем тестировать. Результаты вышли примерно такие:







Как и ожидалось, при атмосферном давлении ПХА-топливо проигрывает карамели в скорости горения (1.25мм/с против 2.85мм/с), однако это топливо показывает свою наибольшую эффективность при повышенном давлении. Что ж, нам остается ждать изготовления фитингов и переходников для нашего баллона, провести с ним работу по внедрению всей нужной арматуры и провести испытания под давлением. Этим и займемся в следующей части.
Всем спасибо за внимание.

Видео по статье:


Скетч для стенда по измерению скорости горения топлива.
Подробнее..

Ракета от Амперки, часть 7-8 парашютная система, бомба Кроуфорда и испытания под давлением

22.08.2020 22:20:11 | Автор: admin
Всем здравствуйте.
В этот раз одна статья по двум сериям.
Попробуем разобраться с парашютной системой и провести испытания горения топлива под давлением.





Парашют


Пока нас обламывали токари, мы решили заняться остальными системами ракеты, например, парашютной.
Здесь решили прислушаться к советам зрителей и читателей и взять проверенное многими решение, а именно систему, описанную на сайте. В качестве материала для парашюта взяли ткань, использовавшуюся ранее для орнитоптера. Он легкий, прочный и не пропускает воздух довольно подходящий.





Сделали все по инструкции, протестировали путем выбрасывания из окна.



Обнаружилась проблема перекручивания строп, которая легко решилась путем установки шайбы с отверстиями, сквозь которые пропустили стропы.



Приняли конструкцию парашюта и перешли к следующему пункту.

Вышибной заряд


Чтобы парашют вышел из корпуса ракеты, необходимо отбросить носовой обтекатель и выбросить зонтик из ракеты. Решением этой задачи занимается вышибная система. Для начала решили поэкспериментировать с пиротехническими зарядами, т.к. такая система наиболее проста и компактна: аккуратно разобрали петарду и отсыпали немного пороха (2г.) в специальную полость детали, которая по задумке должна отделять двигатель от центральной части ракеты. Зажигание заряда оставили такое же, как применяли для поджига шашек при помощи подачи питания на нихромовую нить.



Заряд прикрыли огнепреградителем из металлической мочалки и сверхо поставили поршень.



Идея такая (позаимствована с того же сайта): при воспламенении заряда пороховые газы пройдут через огнепреградитель, на котором осядут и потухнут горящие частицы пороха, затем они будут толкать поршень, который и выбросит носовой обтекатель вместе с парашютом. Обтекатель присоединили к поршню при помощи троса, а движение поршня ограничили вкрученными винтами. Корпус тестового макета собрали из глянцевой бумаги, проклееной силикатным клеем.

Испытания парашютной системы


Порох заряжен, парашют уложен, в обтекатель вставлена камера и он установлен на свое место в макете. В целях безопасности макет установили на длинной полипропиленовой водопроводной трубе, которую использовали в качестве оправки, когда делали корпус.
Для испытаний выбрали, как обычно безлюдное место, установили стенд на вышке для увеличения свободного полета и произвели пуск.
Оказалось, что 2г. пороха слишком много для такой задачи поршень, уперевшись в болты, сломал корпус макета. Со своей задачей не справился огнепреградитель носовой обтекатель и парашют здорово обдуло пороховыми газами и несколько оплавило последний, что, скорее всего, и привело к его нераскрытию парашюта.



Также не исключаем факт, что дело было не в горящих порошинках, а в температуре газов. В любом случае, с вышибной системой будем еще экспериментировать.

Изготовление бомбы постоянного давления


Теперь, когда у нас есть все переходники, можно вернуться к изготовлению бомбы Кроуфорда.



Родной клапан огнетушителя было решено оставить и использовать его для сброса давления. Значит, в баллон нужно вварить еще три переходника:
  1. для входного шланга, через который будем нагнетать газ
  2. для установки датчика давления
  3. для загрузки шашек

Оказалось, что огнетушитель на удивление легко сверлится обычными сверлами. Ввариваем в него первые два переходника с конической резьбой, для третьего используем автомобильную гайку М20*1,5. Предварительно произвели расчеты сварного шва с запасом, так, что он оказался прочнее самого баллона.
Для загрузки топлива будем использовать соответствующий гайке болт. Сверлим его вдоль, делаем отвод в сторону и пропускаем сквозь него 8 медных проводов (+12 вольт, земля, по два сигнальных провода на каждую шашку и по одному проводу на запал). Оставшиеся полости заливаем эпоксидной смолой и оставляем до полного затвердевания.



Для безопасного сброса давления привяжем к сбросному клапану веревку и пропустим ее через два блока, зафиксированных на дополнительно приваренном профиле.
Также усовершенствовали скетч для электроники: добавили функцию вывода давления и состояния входа в веб-интерфейсе. Ссылка на обновленный скетч будет в конце статьи.

Испытания


Для проведения испытаний мы отправились в безлюдное место и при помощи ледобура вырыли отверстие в земле, в которое наш переделанный огнетушитель погружался более, чем полностью ТБ превыше всего.





Для ограничения давления на баллоне с азотом установили газовый редуктор.
В первый день по какой-то причине отказались работать силовые ключи, отвечавшие за поджиг пришлось стартовать вручную. Успели сжечь только одну шашку из второй высыпался запал. Пришлось сворачиваться, так как стемнело мы поздно приехали и долго возились с подготовкой.
Второй день также не увенчался успехом. Проблему с ключами исправили, прожгли одну шашку. Однако при прожиге второй мы снова столкнулись с проблемой, постигшей нас при атмосферных испытаниях струя разогретых газов сожгла изоляцию на проводах, что привело к подаче на логическую часть напряжения, несовместимого с жизнью контроллера.

Резюме


Изготовленная нами бомба Кроуфорда нормально держит давление, но место соединения переходника с редуктора на РВД нужно уплотнить.
Прожиг одной шашки повышает давление в камере на 10 бар. Это решается путем стравливания лишнего давления через клапан сброса.
Систему контроля показаний и крепления шашек необходимо переработать. Скорее всего, применим опторазвязку и другие провода, плюс сделаем шток из изолирующих материалов. Также стоит подумать насчет сокращения времени перезарядки.

Видео по статье:



Прошивка для электроники
Подробнее..

Категории

Последние комментарии

  • Имя: Murshin
    13.06.2024 | 14:01
    Нейросеть-это мозг вселенной.Если к ней подключиться,то можно получить все знания,накопленные Вселенной,но этому препятствуют аннуннаки.Аннуннаки нас от неё отгородили,установив в головах барьер. Подр Подробнее..
  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru