Русский
Русский
English
Статистика
Реклама

Выживание

История человека, голову которого пробил луч ускорителя частиц

06.05.2021 18:22:32 | Автор: admin

Если вы спросите физиков, что произойдёт, если засунуть какую-либо часть своего тела в ускоритель частиц, вы снова и снова будете получать один и тот же ответ: они не знают. У них может быть смутное представление о том, как это повлияет на ваше тело, но не будет ни одного чёткого ответа. Как и в случае с любым другим источником излучения, вам, в конечном счёте, не рекомендуется это выяснять.


За исключением того, кто всё-таки выяснил это. За всю историю человечества лишь один человек был поражён пучком из ускорителя частиц. Он стал предметом интенсивного изучения медицинскими исследователями своей страны из-за своей странной реакции на радиацию. Если бы это были научно-фантастическая сказка или мир комиксов, то, возможно, история этого человека была бы фантастической, полной сверхспособностей и повышенных умственных способностей или улучшенной способности видеть различные части электромагнитного спектра.

В комикс-вселенной Хранители есть персонаж, физик Джонатан Остерман, тело которого в результате эксперимента со связующими полями, распалось на мельчайшие частицы, но он продолжил существовать вне времени и смог собрать своё тело заново обретя почти божественные суперсилы и получив имя Доктор Манхэттен.

Однако эта история не о супергероях и захватывающих мутациях. Но и она протекала не так, как можно было бы ожидать. В тематическом исследовании Анатолия Бугорского есть как ожидаемые элементы, так и неожиданные.

На схеме и изображении показана внутренняя часть российского синхротрона У-70На схеме и изображении показана внутренняя часть российского синхротрона У-70

Анатолий был учёным в конце 1970-х годов в Советском Союзе. Инцидент произошёл в середине июля на синхротроне У-70 (это сложная серебристая установка, опутанная змееподобным клубком синих и красных проводов). В то время это был самый большой ускоритель частиц в Советском Союзе.

Назначение этих установок заключается в том, чтобы ускорять пучки частиц до экстремально высоких скоростей. Чтобы направлять и фокусировать эти пучки на нужной траектории, используются мощные магнитные поля.

Внутри металлических труб, по которым перемещаются частицы, поддерживается почти идеальный вакуум без воздуха и пыли. Такие пучки частиц можно направить на столкновение с другим пучком частиц или в выбранную мишень, такую как лист металла.

Когда происходят подобные столкновения, приборы регистрируют частицы и возникающее во время столкновения излучение. Эти приборы, несомненно, представляют собой одно из самых сложных чудес человеческой инженерии. С таким количеством элементов не удивительно, что иногда части установки выходят из строя.

Когда произошла авария, Анатолий проверял какое-то неисправное оборудование ускорителя. Операторы в диспетчерской не убрали пучок, несмотря на то, что знали Анатолий собирается войти в камеру, чтобы провести осмотр.

Дверь в камеру не была заперта, предупреждающий об активном пучке знак не горел. Поэтому он вошёл в комнату, наклонился в том месте, где пучок проходил от одной секции ускорительной трубки к другой, и сразу же был поражён пучком протонов, движущихся почти со скоростью света. В момент удара возникла вспышка света. Позднее Анатолий описывал, что она была ярче тысячи солнц.

На схеме показан путь прохождения пучка через голову Анатолия.На схеме показан путь прохождения пучка через голову Анатолия.

Радиационная доза пучка частиц на входе в голову Анатолия составила 200000 рентген. Из-за столкновений частиц с телом Анатолия измерение пучка на выходе из черепа показало 300000 рад.

Радиация на уровне 400 рад способна убить половину людей, которых она коснётся. Радиация уровня 1000 рад и выше убьёт почти любого. Анатолий получил дозу радиации, в 300 раз превышающую смертельную. Несмотря на это, боли не было.

Как специалист по физике элементарных частиц, Анатолий понял, что произошло, хотя и не был уверен в оценке серьёзности ситуации. Он взял себя в руки, закончил свою работу в камере и отправился домой, никому не рассказав о случившемся.

Только на следующий день, когда начали проявляться тревожные симптомы, его отвезли в больницу. Левая сторона его лица распухла и стала неузнаваема, кожа начала покрываться волдырями, а в том месте, куда ударил пучок, начали выпадать волосы.

Эти последствия были временными и несущественными по сравнению с тем, что последовало за ними. Все участники ожидали, что Анатолий умрёт. Врачи и медсёстры тщательно следили за его лечением, хотя, скорее всего, никто не ожидал, что он выживет ему давали не больше трёх недель. И это как раз самая странная часть всего инцидента: Анатолий не умер.

Левая сторона его лица была навсегда парализована и старела медленнее, чем правая. Кроме того, Анатолий оглох на левое ухо. За всю свою жизнь он перенёс несколько сильных и повторяющихся мелких припадков, во время которых нарушалось его внимание. Он также был предрасположен к развитию рака в результате длительного воздействия радиации. Но всё же факт остается фактом: Анатолий не умер.

Его умственные способности остались нетронутыми: он защитил докторскую диссертацию, а затем работал на объекте, где произошёл этот несчастный случай. Как он смог пережить воздействие радиации, которая в 300 раз превысила смертельный уровень? Это одна из самых больших загадок, связанных с этим делом.

Возможное объяснение появилось совсем недавно. Мы не владеем всей информацией о случае Анатолия, поскольку, как только его госпитализировали и он рассказал персоналу о том, что произошло, все основные подробности, связанные с инцидентом и лечением, были немедленно засекречены. Тем не менее у нас есть некоторое представление о том, что могло произойти.

На одной стороне лица Анатолия видны естественные морщины и признаки старения, а на другой нет.На одной стороне лица Анатолия видны естественные морщины и признаки старения, а на другой нет.

Излучение оставалось сконцентрированным в его голове и не распространялось на остальные части тела, потому что протонный пучок был достаточно узким. Этот пучок прошёл через голову Анатолия по пути, который позволил избежать ухудшения его умственных способностей или ослепления.

Кульминация пути протонного пучка известна как пик Брэгга. Пик Брэгга это точка, в которой протоны передают большую часть своей энергии. Она обычно непосредственно предшествует концу пути протонов. Эта характеристика ценна для таких процедур, как протонная терапия, где пучки высокой энергии используются для лечения опухолей и раковых заболеваний. Однако это тщательно просчитанные процедуры.

Во время терапии протонные пучки направляются по очень специфическому пути, чтобы их пик Брэгга использовался для уничтожения вредных клеток в организме человека. Вполне вероятно, что протонный пучок ускорителя не достиг своего пика Брэгга в голове Анатолия и поэтому, к счастью, не передал большую часть своей энергии в черепе Анатолия. Полученная Анатолием доза радиации была намного меньше, чем могла бы быть, если бы его голова обладала останавливающей способностью для формирования пика Брэгга.

Конечно, это только предположения. К сожалению, исследования на эту тему единичные случаи, и на основе такого ограниченного объёма данных трудно сделать сколько-нибудь надёжные выводы.

Со времён Анатолия Бугорского не было ни одного человека, которому бы ударил в голову протонный пучок ускорителя. Верно то, что он входит в группу выживших после воздействия радиации; но также верно и то, что ни один другой человек на Земле никогда не испытывал того же, что и он. Всё это необходимо пережить на собственной шкуре.

Во время ядерных катастроф или после войны люди могут искать утешения в том, что они не единственные. Но что происходит, когда катастрофа затрагивает только вас? А что происходит, когда война в твоей голове, и ты единственный, кто выжил? Анатолий сказал по этому поводу: Меня тестируют. Тестируют способность человека к выживанию.

Чтобы максимально обезопасить людей от подобных происшествий, конечно же, необходимо очень тщательно продумывать как полностью ручные рабочие процессы, так и лежащие в основе критически важных систем алгоритмы, исчерпывающе тестировать эти алгоритмы и обеспечивать отказоустойчивость важных компонентов и систем. Приходите на наши курсы, где опытные менторы и эксперты в своём деле расскажут, как нужно тестировать ПО, чтобы его надёжность была сравнима с надёжностью критических инженерных объектов.

Узнайте, как прокачаться и в других специальностях и навыках или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Инженерия для муравьев как не утонуть в сиропе

16.10.2020 10:22:46 | Автор: admin


Насекомые удивительные создания. Многие из них обладают крайне необычными свойствами и умениями. Кто-то испускает свет, кто-то может пережить ядерный удар, а кто-то бегает так быстро, что вынужден останавливаться, чтобы понять свое местоположение. Уникальностей много, как и семейств насекомых. Муравьи же уникальны своей численностью, организованностью и беспрекословной верой в монархию (Боже, храни Королеву). Разные виды муравьев проявляют те или иные навыки в зависимости от среды обитания и гастрономических предпочтений. К примеру, красные огненные муравьи (Solenopsis invicta) используют собственные тела для постройки живого плота, чтобы пережить наводнения. Однако этот метод спасения от смерти через утопление не является единственным, так как муравьи вполне способны использовать инструменты, чтобы избежать гибели. Ученые из Британского экологического общества (Лондон, Великобритания) выяснили, что черные огненные муравьи используют песок при сборе жидкой пищи, чтобы не утонуть. Как именно муравьи используют песок, меняется ли их поведение в зависимости от ситуации, и насколько эффективен такой навык выживания? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Муравьи прошли долгий путь эволюции, сделавший их самым развитым семейством насекомых в мире с точки зрения этологии, экологии и физиологии. Именно потому они вместе с термитами занимают примерно треть от общей биомассы планеты.


Документальный фильм о муравьях (BBC, Дэвид Аттенборо).

Говорить об особенностях муравьев можно часами, недаром существует целый раздел энтомологии их изучающий мирмекология. В рассматриваемом нами сегодня исследовании основной акцент был поставлен на качестве, которое присуще далеко не всем крупным млекопитающим с куда более развитой нервной системой, чем у муравьев. Речь, конечно же, об умении использовать инструменты.

На данный момент мы знаем множество примеров подобного поведения среди представителей фауны. Тем более удивительно, что ранее подобное считалось невозможным, а инструменты были прерогативой людей. Лишь в 60-е годы прошлого века были официально зафиксированы примеры использования инструментов среди шимпанзе. С тех пор список животных, использующих инструменты, пополнялся новыми видами, родами и семействами.

Подобное умение напрямую говорит о наличии развитых когнитивных функций, потому считалось, что на это способны исключительно существа с большим мозгом. К числу факторов, влияющих на проявление этой способности, относятся изменения окружающей среды и социальные аспекты.


Красные огненные муравьи справляются с наводнениями весьма своеобразным методом, но даже он не дает стопроцентной гарантии выживания колонии.

По сравнению с позвоночными животными, особенно приматами и птицами, беспозвоночные были крайне поверхностно изучены в рамках умения использовать инструменты. Однако недавние исследования показали, что определенная когнитивная гибкость связана с использованием инструментов, избирательным вниманием и поведением в области социального обучения у насекомых. Это открытие побудило ученых задуматься о том, что все таки насекомые, несмотря на куда менее развитую нервную систему, вполне могут использовать инструменты.

К 2010 году было зафиксировано порядка 50 случаев использования орудий труда у 30 различных родов насекомых. Среди них были и муравьи, а именно подсемейство Myrmicinae (виды: Pogonomyrmex badius, Solenopsis invicta Buren, Novomessor albisetosus и несколько видов из рода Aphaenogaster).

Позднее было установлено, что некоторые виды муравьев (например, Aphaenogaster longiceps) могут выбирать подходящий инструмент для добычи жидкой пищи, демонстрируя определенную гибкость муравьев в аспекте использования орудий труда.

И тут возникает вопрос могут ли муравьи менять инструменты и свое поведение в зависимости от ситуации?

Обычно считается, что различные формы сложного познания могут потенциально привести к различным подходам к производству и использованию инструментов, что может облегчить достижение более эффективных и/или менее затратных стратегий использования инструментов.

Муравьи, собирающие пищу за пределами гнезда, должны эффективно выполнять свою задачу, параллельно выживая в условиях окружающей среды, где опасность заключается не только в хищниках, но и в самой местности. Даже сама пища может быть опасной. К примеру, экстрафлорный нектар (EFN от extrafloral nectar), выделяемый растениями, и медвяная падь (секрет насекомых, питающихся соком растений) являются важнейшим источником углеводов для развития колоний многих видов муравьев. Но из-за своего небольшого размера муравьи могут запутаться и утонуть в жидкости во время добычи пищи.


Главные герои исследования рабочие муравьи вида Solenopsis richteri Forel.

Возникает весьма любопытный вопрос осознают ли муравьи риски, связанные с добычей жидкой пищи, в том числе риск утонуть? Как оказалось, осознают. Ученые установили, что муравьи вида Solenopsis richteri Forel (черные огненные муравьи) могут распознавать увеличение риска утопления и соответственно корректировать свою стратегию использования инструментов.

Подготовка к опытам


Колония муравьев, участвующих в опытах, была собрана в округе Туника (штат Миссисипи, США). В специальных тестовых камерах (55х44х12 см) поддерживались необходимые для нормальной жизнедеятельности условия: температура 26 2 C, влажность 45% и неограниченный доступ к пище и воде (замороженные сверчки, 15% водный раствор сахара и дистиллированная вода).

Одним из аспектов, которые хотели проверить ученые, было поверхностное натяжение жидкости. Чтобы определить связь между риском утопления S. richteri и поверхностным натяжением жидкой пищи, была проведена оценка доли утонувших муравьев и степень сложности их спасения при различных концентрациях поверхностно-активного вещества (ПАВ).

Водный раствор сахара (15% по массе) использовался в качестве источника пищи на протяжении всего исследования. Подопытные муравьи могли спокойно плавать на поверхности раствора чистой воды с сахаром, возможно, из-за гидрофобных углеводородов на их кутикуле и высокого поверхностного натяжения раствора. Следовательно, чистый водный раствор сахара должен был представлять минимальный риск утопления для муравьев. Однако добавление ПАВ (TWEEN 80: 0%, 0.05%, 0.1%, 0.5%, 1% и 2%) снижает степень поверхностного натяжения, тем самым увеличивая риск утопления.

Данный риск был количественно оценен с использованием двух измерений: доля утонувших муравьев и время, необходимое для того, чтобы не утонувшие муравьи смогли спастись.

Во время опыта 1 мл водного раствора сахара с различными концентрациями ПАВ переносили в небольшой пластиковый контейнер (2.5 см в диаметре). Один рабочий муравей помещался в центр контейнера. Если муравей опускался на дно контейнера и не мог сбежать в течение 40 минут, его считали утонувшим. Для тех муравьев, которым удалось уцелеть, фиксировалось время, необходимое для спасения. В ходе данного опыта было использовано по 10 рабочих муравьев из каждой колонии (10 колоний всего).

На поведение муравьев может влиять и само ПАВ, используемое в опытах, а точнее его запах. Для оценки этого был использован ольфактометр с Y-образной трубкой. Две трубки вели к двум разным камерам. В одной присутствовал чистый воздух и жидкость с разной концентрацией ПАВ, в другой воздух с запахом TWEEN 80. В начало Y-трубки было помещено 80 особей, после его в течение 20 минут измерялось число особей, вошедших в ту или иную камеру на 3 см и глубже.

Далее были проведены тесты, связанные с риском утопления и формированием стратегии использования инструментов у подопытных муравьев. В тестовой камере был выбор инструментов: крупицы песка разного размера (крупные > 1.19 мм; средние 0.7071.19 мм и мелкие < 0.707 мм). Во время каждого теста была задействована колония муравьев из одной матки, 3 г муравьев и 0.2 г личинок. Каждую колонию переносили в пластиковый лоток (55х44х12 см) с искусственным гнездом.

В ходе данного опыта было 24 комбинации размера песка (крупный, средний, мелкий и смешанный) и концентрации поверхностно-активного вещества (0%, 0.05%, 0.1%, 0.5%, 1.0%, 2.0%), каждая из которых тестировалась отдельно по 12 заходов.

Через два часа после того, как песчинки были помещены в лоток, три пищевых контейнера (диаметром 2/5 см, каждый из которых содержал 1 мл раствора сахарной воды или сахарной воды с определенной концентрацией ПАВ) были помещены между песчинками и колонией муравьев.

Через пять часов после того, как сахарная вода была помещена в лоток, зерна песка, использованные муравьями внутри и снаружи контейнера для еды, были взвешены. Также было подсчитано число утонувших особей.

Важно отметить, что муравьи данного вида способны строить уникальные конструкции для откачки жидкой пищи сифоны, состоящие из песчаных дорожек и песчаных насыпей. Чтобы подробно охарактеризовать эту конструкцию, весь процесс ее построения был записан для шести новых колоний с 1% ПАВ.

Для оценки эффективности столь необычной постройки муравьям были предоставлены песчинки разного размера (всего 12 г). Муравьи строили свою конструкцию для откачки жидкой пищи, после чего их убирали из тестовой камеры. Конструкцию сушили, а затем контролированно добавляли в нее 1 мл сахарной воды с 1% ПАВ. В ходе данного испытания измерялось время, необходимое для откачивания сахарной воды. Спустя 10 минут насыпь песка вне контейнера с пищей взвешивали и сушили. Разница веса до и после сушки показывала количество водного раствора сахара, содержащегося в структуре песка.

Также был проведен опыт, где муравьи строили песчаные структуры над контейнером с сахарной водой, после чего конструкцию сушили, а в камеру помещали другую колонию. Было два варианта: камера без конструкции и камера с конструкцией. Данный опыт проводился для оценки влияния подобных структур из песка на эффективность добычи пищи и на уровень смертности среди муравьев.

Результаты опытов


Сначала было оценено влияние поверхностного натяжения на степень риска утопления. При увеличении концентрации ПАВ поверхностное натяжение водного раствора сахара значительно снизилось с 77.17 0.24 до 43.28 0.24 мН/м (1A) и, соответственно, доля утонувших муравьев значительно увеличилась ().


Изображение 1

Что касается утонувших муравьев, то время их побега из сахарной воды увеличивалось с увеличением концентрации поверхностно-активного вещества (1C). Следовательно, наблюдалась очевидная отрицательная корреляция между временем, необходимым чтобы выбраться из сиропа, и поверхностным натяжением воды (1D).

Анализ поведенческих изменений на добавление ПАВ TWEEN 80 показал, что S. richteri не проявляют каких-либо явных предпочтений относительно TWEEN 80 (2A опыты без запаха ПАВ; опыты с запахом ПАВ). Следовательно, добавление или удаление этого вещества не влияет на их поведение (с точки зрения реакции на запах вещества).


Изображение 2

Далее была проведена оценка стратегий, которые используют муравьи, при различных уровнях риска во время добычи жидкой пищи.

Концентрация поверхностно-активного вещества, размер песчинок и их взаимодействие показали очевидное влияние на количество использованных песчинок (Таблица 1).


Таблица 1

Для сравнения, муравьи использовали значительно меньшее количество мелких песчинок внутри и снаружи пищевых контейнеров по сравнению с песчинками других размеров (3A и ), а в использовании крупнозернистых, средних и смешанных песчинок не было значительной разницы.

Что касается эффекта концентрации поверхностно-активного вещества, то добавление 0.05% ПАВ к сахарной воде привело к использованию большего количества песчинок в пищевых контейнерах по сравнению с контрольной группой и другими вариантами концентрации ПАВ (3D).


Изображение 3

Анализ данных со всех пищевых контейнеров с разными размерами песчинок показал, что число песчинок, использованных за пределами контейнера, практически не меняется в зависимости от концентрации ПАВ выше 0.05% (3E).

Любопытно, что при использовании песчинок разного размера и ПАВ 0.05% муравьи использовали больше песка именно внутри пищевого контейнера. Но комбинация песчинок любого размера с ПАВ больше 0.05% приводит к тому, что муравьи раскладывают песок вне контейнера.

Размер песчинок и концентрация ПАВ оказали значительное влияние на смертность муравьев (таблица 2).


Таблица 2

Число утонувших муравьев было меньше, когда были задействованы более крупные песчинки ().

При этом доля утонувших увеличивалась по мере увеличения концентрации ПАВ (3F). Самая численная смертность наблюдалась в случаях, когда концентрация ПАВ была выше 0.1% вне зависимости от размера песчинок.

Вполне логично, что муравьи предпочитали использовать более крупные песчинки, когда риск утопления увеличивался. Чем выше была концентрация ПАВ, тем больше крупных песчинок использовалось, особенно внутри контейнера с пищей.


Изображение 4

Когда концентрация ПАВ была выше 0.05%, муравьи начинали строить уникальные песчаные сооружения, чтобы соединить песчинки, размещенные внутри и снаружи контейнера (4A-4E).

Любопытно, что при концентрации ПАВ ровно 0.05%, муравьи размещали большую часть песчинок на внутренней стенке контейнера. Подобные конструкции наблюдались только при использовании поверхностно-активного вещества в сахарной воде.

Факт того, что муравьи строят разные песчаные конструкции при разных концентрациях ПАВ, подтверждает гибкость муравьев вида S. richteri в выборе стратегии использования инструментов.

А теперь стоит детальнее рассмотреть эти уникальные песчаные сооружения. Для изучения песчаных сифонов были сделаны записи строительства 13 таких структур.

На начальном этапе строительства муравьи просто питались сахарной водой внутри, когда ее только добавили в контейнер. Спустя 4-10 минут несколько особей утонули в сахарной воде, а другие начинали собирать и складывать песчинки внутри и снаружи контейнера.

Через 1.5 часа за пределами контейнера с пищей было больше песчинок, чем внутри (4A, 4B, 4E, видео ниже).




Муравьи приклеивали песчинки к стенке контейнера (снаружи и внутри), чтобы создать песчаную дорожку, соединяющую жидкость внутри и кучу песка снаружи.

Благодаря такой конструкции жидкая пища перемещалась из контейнера по песчаной дорожке, обеспечивая более безопасный сбор пищи (4A-4D).

Чаще всего к одному контейнеру подходила одна песчаная дорожка, а внешние песчаные насыпи располагались достаточно близко. Но в редких случаях дорожка была 11 см в длину (4E). Также была распространена практика строительства нескольких песчаных дорожек к одной насыпи. В строительстве данной конструкции муравьи использовали песчинки всех имеющихся размеров.

В среднем почти половина сахарной воды (49.67%) была перенесена в насыпь песка в течение пять минут (4F, видео ниже).




При наличии песчаных сифонов на 30 минуте наблюдений 89.87% из всех муравьев находились за пределами контейнера, а на 60 минуте 87.85% (4E, 4G, 4H).

Вполне ожидаемо, что наличие песчаных конструкций сильно повлияло на уровень смертности муравьев (таблица 3).


Таблица 3

При наличии песчаного сифона муравьев, питающихся внутри контейнера, было значительно меньше (5A и 5B). Данный показатель практически не менялся по отношению к концентрации ПАВ (5E и 5F).

Наличие сифона повысило эффективность сбора пищи на 8% (5C): без сифона 10.69 мг и с сифоном 11.54 мг. Этот показатель немного снижался при увеличении концентрации ПАВ (5G).

При наличии сифонной структуры наблюдалась меньшая доля утонувших муравьев, которая увеличивалась пропорционально увеличению концентрации поверхностно-активного вещества (5H).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы (ссылка для скачивания файла .docx) к нему.

Эпилог


Данные наблюдения показали, что муравьи, несмотря на отсутствие развитого мозга, способны не только использовать инструменты, но менять стратегию в ответ на изменения обстоятельств.

Риски, связанные с добычей пищи, влияют на поведение муравьев. Если риск велик, то муравьи стараются не лезть на рожон и начинают строить специальные конструкции из песка, которые переносят жидкую пищу в более безопасное место. За счет этого они могут спокойно собирать пищу, не боясь утонуть в ней.

Описанные в данном труде наблюдения не просто забавны или любопытны, они показывают, что социальные насекомые способны создавать новые стратегии поиска и добычи пищи в зависимости от внешних факторов, а также использовать подручные предметы для создания инструментов добычи.

Кроме того, данный труд показывает, что у муравьев развитые способности в аспекте познания, что ранее приписывалось исключительно позвоночным.

Авторы исследования предполагают, что их труд позволит в будущем куда более детально изучить когнитивные механизмы и стратегии использования инструментов у социальных насекомых. Уникальна ли стратегия для каждого семейства/рода/вида или, возможно, есть некая универсальная стратегия, которой придерживаются все насекомые? Именно на этот вопрос ученые намерены найти ответ в будущих исследованиях.

Пятничный офф-топ:

Юмористическое, но правдивое видео о мутуализме среди муравьев.

Офф-топ 2.0:

Как бы сказал Эрмак из Mortal Kombat: We are many, you are but one

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Короткий путь к Искусственному интеллекту?

07.07.2020 06:22:58 | Автор: admin
Давайте признаемся: мы как-то буксуем. Разработки в сфере ИИ, при всех значительных затратах, не дают ожидаемого выхлопа. Конечно, кое-чего получается, но дело идет медленно. Медленнее, чем хотелось бы. Может, задача не решается потому, что решается не та задача?

Сейчас у нас есть много алгоритмов, выполняющих те или иные (отдельные) когнитивные функции. Одни обыгрывают нас в игры, другие водят машины, третьи Не мне вам рассказывать. Мы создали программы компьютерного зрения, которые различают дорожные знаки лучше, чем мы сами. Программы, которые рисуют и пишут музыку. Алгоритмы ставят медицинские диагнозы. Алгоритмы могут заткнуть нас за пояс в распознавании котиков, но конкретно этот, который для котиков, ни в чем ином, кроме распознавания котиков. А мы-то хотим такую программу, которая решала любые задачи! Нам нужен сильный или универсальный ИИ, но без собственного сознания, чтоб не смог отказаться решать поставленную задачу, верно? Где нам его взять?



Чтобы понять, как работает интеллект, мы обращаемся к единственному примеру, который у нас есть. К человеческому мозгу, в котором, как мы считаем, живет интеллект. Кто-то возразит мозги есть у многих живых существ! Давайте начнем с червяков? Можно и с червяков, но нам нужен алгоритм, который решает не червяковые, а наши, человеческие задачи, верно?

Наш мозг. Представьте его себе. Два кило (по максимуму) податливого розовато-серого вещества. Сто миллиардов (тоже возьмем по максимуму) нейронов, каждый из которых готов отрастить до десяти тысяч динамических связей синапсов, которые могут то появляться, то исчезать. Плюс несколько типов сигналов между ними, да еще и глия сюрприз подкинула тоже что-то проводит, помогает и способствует. (Для справки: нейроглия или просто глия совокупность вспомогательных клеток нервной ткани. Составляет около 40% объёма ЦНС. Количество глиальных клеток в среднем в 10-50 раз больше, чем нейронов). Дендриты недавно удивили оказывается, они выполняют куда больше функций, чем считалось ранее (1). Мозг очень сложная штука. Если не верите спросите у Константина Анохина. Он подтвердит.

Человек все делает с помощью мозга. Собственно, мы это и есть он. Отсюда совершенно неудивительным является представление человека о том, что мозг = интеллект и еще более неудивительна идея скопировать устройство мозга и вуаля! получить искомое. Но мозг это не интеллект. Мозг это носитель. Железо. А Интеллект это алгоритм, софт. Попытки повторить софт через копирование железа это провальная идея. Это культ карго (2). Вы же знаете, что такое культ карго?

Аборигены островов Меланезии (увидев во время WWII, как самолеты привозят оружие, продовольствие, медикаменты и многое другое), соорудили из соломы копии самолетов и будку диспетчера, но никак не помогли себе в получении товаров, потому что не имели никакого представления о том, что скрывается за внешним видом самолетов. Так и мы, разобрав до винтиков калькулятор, не найдем внутри ни одной цифры. И, тем более, никакого намека на какие-либо операции с числами.

Пару лет назад Андрей Константинов в одном из номеров журнала Кот Шрёдингера (12 за 2017 г.), в своей колонке Где у робота душа, написал: Со времён Лейбница мы так и не нашли в мозге ничего, кроме частей, толкающих одна другую. Конечно не нашли! И не найдем. По компьютерному железу мы пытаемся восстановить программу, а это невозможно. В качестве подтверждающего аргумента приведу длинную цитату (3):

нейробиологи, вооружившись методами, обычно применяемыми для изучения живых нейроструктур, попытались использовать эти методы, чтобы понять, как функционирует простейшая микропроцессорная система. Мозгом стал MOS 6502 один из популярнейших микропроцессоров всех времён и народов: 8-битный чип, использованный во множестве ранних персональных компьютеров и игровых приставок, в том числе Apple, Commodore, Atari. Естественно, что мы знаем об этом чипе всё ведь он создан человеком! Но исследователи сделали вид, что не знают ничего и попытались понять его работу, изучая теми же методами, которыми изучают живой мозг.

Химически была удалена крышка, под оптическим микроскопом изучена схема с точностью до отдельного транзистора, создана цифровая модель (тут я немного упрощаю, но суть верна), причём модель настолько точная, что на ней оказалось возможно запускать старые игры (Space Invaders, Donkey Kong, Pitfall). А дальше чип (точнее, его модель) был подвергнут тысячам измерений одновременно: во время исполнения игр измерены напряжения на каждом проводке и определено состояние каждого транзистора. Это породило поток данных в полтора гигабайта в секунду который уже и анализировался. Строились графики всплесков от отдельных транзисторов, выявлялись ритмы, отыскивались элементы схемы, отключение которых делало её неработоспособной, находились взаимные зависимости элементов и блоков и т. п.

Насколько сложной была эта система по сравнению с живыми? Процессор 6502, конечно, и рядом не стоит с головным мозгом даже мыши. Но он приближается по сложности к червю Caenorhabditis elegans ломовой лошадке биологов: этот червь изучен вдоль и поперёк и уже предпринимаются попытки смоделировать его полностью в цифровом виде () Таким образом, задача анализа системы на чипе 6502 не является чрезмерным упрощением. И результаты имеют право быть экстраполированы на системы in vivo.

Вот только исследователи потерпели поражение! Нет, какие-то результаты, конечно, получены были. Анализируя чип, удалось выделить функциональные блоки, набросать схему их вероятных взаимосвязей, получить некоторые интересные подсказки насчёт того, как, вероятно, работает микропроцессор в целом. Однако понимания в том смысле, в каком его требует нейробиология (в данном случае: быть способным исправить любую поломку), достигнуто не было".

В какой-то момент появились исследователи, которые стали говорить примерно то же самое что надо изучать алгоритмы, что нужно понять, какую функцию выполняет интеллект. К примеру, Демис Хассабис (DeepMind), готовясь к выступлению на Singularity-саммите в Сан-Франциско (2010 г.), сказал следующее: В отличие от других выступлений на саммите по теме AGI, мой доклад будет другим, так как я интересуюсь системным уровнем нейронауки алгоритмами мозга а не деталями, как они реализуются мозговой тканью в виде спайков нейронов и синапсов или специфической нейрохимией и т. д. Я интересуюсь, какими алгоритмами мозг пользуется для решения проблем, и которые нам нужно найти, чтобы добраться до AGI.

Однако, спустя 10 (!!!!!) лет, все идет по-прежнему: ученые исследуют мозг и пытаются из внешних проявлений физиологической активности и его внутреннего устройства вычислить, как происходит интересующий процесс. Сколько задач столько процессов. Люди все разные. Мозги у всех немного, но отличаются. Некая усредненная картина, конечно, имеется, однако Представьте себе, что в любой произвольный момент времени мозг решает массу, в том числе и подсознательных задач, отслеживает и контролирует внутреннее состояние организма, воспринимает и интерпретирует сигналы внешней среды (и это мы не говорим о многочисленных петлях обратной связи). Сможем ли мы уверенно выявить, надежно идентифицировать и четко отделить эти активности одну от другой? Возможно ли это в принципе? Честно говоря, сомневаюсь. Не говоря уже о воспроизводимости этих процессов на небиологических носителях

Просмотрим на ситуацию иначе. Что такое задача вообще? Это затруднительная ситуация, с которой сталкивается, и которую пытается разрешить человек. Как показали в середине прошлого века американские математики Герберт Саймон и Аллен Ньюэлл, любая задача в общем виде может быть описана как переход из состояния Система с проблемой в состояние Система без проблемы. Они разработали компьютерную программу, назвав её General Problem Solver (Универсальный решатель задач), но дальше решения задач специфического вида они не продвинулись, поэтому универсальность именно их алгоритма осталась под вопросом. Но формула Система с проблемой --> Система без проблемы оказалась абсолютно верна!



Преобразование Системы это процесс ее перевода из исходного состояния с проблемой в желаемое состояние без проблемы (4). В процессе преобразования, (т. е. решения задачи) проблемная система становится беспроблемной (ну или менее проблемной), улучшается, избавляется от своих недостатков и выживает, т. е. продолжает использоваться. Ой, погодите, что это мы сейчас сказали? Избавление от недостатков? Выживание? Хм Что-то знакомое. Где-то мы это Ах, ну да. Эволюция! Чем меньше недостатков тем больше шансы выжить!

Давайте проверим себя, вспомним и повторим основной постулат: в живой природе бОльшие шансы на выживание имеют организмы, обладающие бОльшим числом полезных свойств (ну, условно рога ветвистее, хвост пышнее). Если же у организма перья бледнее, а голос противнее (вредные свойства), то, скорее всего, жизнь его будет недолгой и пройдет в одиночестве. В итоге, давление отбора ведет к тому, что организмы избавляются от недостатков и становятся все более и более жизнеспособными. Если не верите спросите у сэра Чарльза Дарвина. Он подтвердит.

Итак, мы принимаем как факт, что
а) функцией интеллекта является решение задач (любых) и
б) решение задачи это улучшение Системы (любой), в ходе которого она избавляется от недостатков, становится более жизнеспособной. Иными словами эволюционирует.

Слышите треск? Это наши представления о сложности интеллекта начинают трещать по швам. Получается, что бытовавшие ранее понятия сложность мозга и сложность интеллекта перестают быть тождественными. Что если для получения Интеллекта не надо проводить реверс-инжиниринг нейрофизиологического процесса решения задачи, ловя призрачные тени мышления в коннектоме (тем более, что у каждого человека он уникален) или заниматься глубоким обучением сетей? Что если нам нужно алгоритмизировать процесс эволюции системы, т. е. путь ее преобразования из менее совершенного состояния в более совершенное с помощью известных нам законов эволюции? Что если до сегодняшнего дня мы, действительно, решали не ту задачу?

При этом я вовсе не хочу сказать, что обучением сетей заниматься не надо. У этого и прочих направлений огромные перспективы. И тем более я не хочу сказать, что глубокие исследования физиологии мозга это бессмысленная трата времени. Изучение мозга это важная и нужная задача: мы лучше поймем, как мозг устроен, научимся его лечить, восстанавливать после травм и делать другие потрясающие вещи, вот только к интеллекту мы не придем.

Кто-то мне сейчас наверняка возразит: задачи, которые решает человек, связаны с миллионами самых разных систем природными, общественными, производственными, техническими Материальными и абстрактными, находящимися на разных уровнях иерархии. И развиваются-де они каждая по-своему, а дарвиновская эволюция это про живую природу. Зайчики, цветочки, рыбки, птички Но исследования показывают, что законы эволюции универсальны. Доказательства долго искать не надо они все перед глазами. Имеющие их да увидят. Что ни возьми от спички до Боинга, от танка до контрабаса везде (5) мы видим наследственность, изменчивость и отбор! А все многообразие эволюционных изменений (кажущаяся сложность которых связана с тем, что все системы очень разные по своей природе и находятся на разных уровнях иерархии) можно выразить единственным циклом. Вы же помните, да? Система с проблемой --> Система без проблемы.

Что такое Система с проблемой? Это Система (материальная и абстрактная, социальная, производственная и техническая, научная и любая объект, идея, гипотеза всё, что угодно), в которой обнаружены какие-то недостатки, влияющие (внимание!) на наше желание и возможность её использования. Система недостаточно хороша. Система недостаточно эффективна. У неё низкое соотношение польза / затраты. Мы хотим, можем и готовы от нее отказаться, и часто отказываемся. Но нам нужна другая (выполняющая нужную нам полезную функцию), но уже без проблем более эффективная, без недостатков (или с меньшим их количеством). Ну, вы видели эту картинку выше Конечно, одной стрелочки между двумя крайними состояниями (исходным и желаемым) нам мало. Нам нужен тот самый оператор, преобразователь, верно? Попробуем его найти? Вы же согласитесь, что в случае успеха мы получим описание (хотя бы, для начала и упрощенное) так нужного нам универсального алгоритма?



Исходная точка Система с проблемой. Мы начинаем задумываться о том, чтоб отказаться от её использования. Момент, который мы называем (или ощущаем) Надо что-то делать!
Причина, угрожающая выживанию системы низкая идеальность, выражающаяся в пониженной величине отношения полезных функций системы к функциям затратным (вредным).

Что мы делаем дальше? Мы либо а) создаем новую систему (если система с нужной функций либо не существует, либо у существующей системы нет ресурсов для улучшения) или же б) улучшаем, дорабатываем, существующую (если ресурсы еще есть). Мы изучаем внутреннее устройство и разбираемся с внешним окружением выявляем внешние и внутренние недостатки Системы и после их устранения получаем улучшенную Систему. Систему с повышенной идеальностью и повышенной жизнеспособностью!

В связи с тем, что представленная выше Схема описывает процесс развития, улучшения или, если хотите, эволюции любых систем (в чем легко убедиться, подставив вместо слова Система любое иное по желанию от Абажур до Якорь), я думаю, ее смело можно и даже нужно! назвать Универсальной Схемой Эволюции. И обратите внимание она абсолютно алгоритмична, т. е. полностью подпадает под определение алгоритма: Алгоритм точное предписание о выполнении в определённом порядке некоторой системы операций, ведущих к решению всех задач данного типа. значит может быть реализована в виде компьютерной программы).

В представленном виде Универсальная Схема Эволюции:
естественная законы эволюции выявлены в системах самого разного типа, и их действие проверено в технике, производстве, обществе, природе и мышлении;
объективная законы эволюции не зависят от мнения исследователя и/или пользователя;
логичная и непротиворечивая законы эволюции вытекают один из другого;
полная набор законов эволюции достаточен для описания любой системы;
жесткая законы эволюции нельзя переставлять и
замкнутая законы эволюции образуют цикл: система, пройдя один цикл изменений, тут же начинает новый.

Что у нас получается в итоге: Эволюция системы (представленная в виде Универсальной Схемы) это путь её улучшения, избавления от недостатков. Иными словами, это алгоритм решения задачи. А решение задачи это именно то, чем занимается интеллект. Упрощаем и получаем: Универсальная Схема = описание функции интеллекта.

Конструктивная критика приветствуется. :)



1. Дендриты важнее для мозга, чем ранее считалось chrdk.ru/news/dendrity-vazhnee-chem-schitalos
2. ru.wikipedia.org/wiki/Карго_культ
3. Е. Золотов. Пойми меня! Как неживое помогает разбираться в живом www.computerra.ru/161756/6502
4. Chapter 6. Problem Solving. Artificial Intelligence. A Knowledge-Based Approach by Morris W.Firebaugh University of Wisconsin Parkside PWS-Kent Publishing Company Boston 1988, p. 172.
5. Дарвиновская эволюция в мире техносферы. Мир вещей, создаваемый человеком, развивается по тем же законам, что и живая природа. www.ng.ru/science/2017-01-11/14_6899_evolution.html
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru