Русский
Русский
English
Статистика
Реклама

Формула-1

Перевод Почему маховики не прижились в автомобилях?

07.03.2021 12:13:35 | Автор: admin

Идея родилась при подготовке к гонкам Формулы-1, однако с переменным успехом выступила лишь на гонке 24 часа Ле-Мана.




В 2010 году во время 10-часовой гонки Petit Le Mans, проводящейся в городе Брэзелтон, шт. Джорджия, США, экспериментальный гоночный автомобиль компании Porsche 911 GT3 R Hybrid находился в первой 20-ке среди 45 автомобилей. В это время репортёры телевизионной сети Speed брали интервью у Марго Т. Оге, которая тогда была директором отдела транспорта и качества воздуха при агентстве по охране окружающей среды США.

Репортёры при каждой возможности обращали внимание зрителей на новый автомобиль Porsche. Гибридные автомобили для дорог общего пользования становились всё более привычными, и Оге постоянно подчёркивала большую значимость этого автомобиля, вкупе с энергетической независимостью и низкими углеродными выбросами. Именно таких целей и добивалось агентство.


В 2009 году командам F1 первые разрешили использовать гибридные системы. Команда Williams решила разработать гибрид с маховиком вместо химических аккумуляторов. Но эта система так и не вышла на трассу.

Однако, как и его ближайший гибридный родственник с гонок Формула-1, эту модель 911 GT3 R не планировалось выпускать на улицы. Этот гибрид использовал маховик. Вместо совместного применения бензинового двигателя внутреннего сгорания и электродвигателя с аккумуляторами, гоночная машина совместила плоский шестицилиндровый ДВС с электромеханической системой хранения энергии на маховике.


Как выглядел маховик Williams Hybrid Power

Инженеры Porsche начали изучать применение гибридных систем в гонках в 2007 году. Примерно в то же время руководство F1 разрешило интеграцию гибридных технологий. С сезона 2009 года F1 позволила командам использовать умеренные гибридные системы рекуперации кинетической энергии (kinetic energy recovery system, KERS).


Williams открыла дочернюю компанию Williams Hybrid Power для разработки и полировки гибрида с маховиком. В 2010 году она организовала партнёрство с Porsche Motorsport для создания 911 GT3 R Hybrid

Большинство команд F1 разрабатывало системы рекуперации на основе аккумуляторов, однако команда Williams создала электромеханический маховик. В итоге из-за технических ограничений гонок команде Williams так и не довелось выставить эту машину на трассу. Интересно, что компания Chrysler также пыталась сделать гибридный автомобиль с ДВС/маховиком для Ле-Мана за 15 лет до этого, но и их разработка не дошла до гонок.


Audi успешно использовала гибридную систему с маховиком для машины R18 e-tron Quattro. Эта машина выигрывала Ле-Ман три раза подряд.

Однако Porsche в итоге купила лицензию на технологию Williams Hybrid Power, и вознамерилась адаптировать её для гонок на выносливость в модели 911 GT3 R Hybrid. Компания Audi также занялась внедрением маховика в свой всепобеждающий дизель-электрический прототип R18 e-tron Quattro. В прототипе использовался доработанный маховик производства британской компании GKN, делающей запчасти для автомобилей и самолётов. Она купила эту технологию у Williams ещё в 2014 году. Полученный гибрид с маховиком выиграл десятки гонок, включая и 24 часа Ле-Мана в 2012, 2013 и 2014 годах.


Схема гибридной системы Audi R18 e-tron Quattro

Учитывая такой вклад производителей в спортивные автомобили, очень многие наблюдатели ожидали, что технология маховика через несколько лет перейдёт и на обычные автомобили. Но этого так и не произошло. Почему?

Высокооборотистый ускоритель


Вкратце автомобильная гибридная система с маховиком использует механическую энергию маховика для кратковременной дополнительной помощи двигателю внутреннего сгорания. На осях или в колёсах машины расположены электромоторы/генераторы. Они копят кинетическую энергию, которая в ином случае просто уходит в тепло при торможении колодками.


GT3 R Hybrid был создан для гонок на выносливость на знаменитом состязании 24 часа Нюрбургринга в 2010 году

Но вместо того, чтобы отправлять эту энергию в химический аккумулятор для хранения и последующего использования, электричество используют для раскрутки маховика. Электрическая энергия преобразуется в кинетическую энергию вращения посредством инновационного магнитного материала (иногда это магнитный порошок), нанесённого на маховик. Чем больше энергии приходит, тем быстрее он крутится. Это, кстати, отличает его от гибридной системы с механическим маховиком, которую компания Nissan безуспешно пыталась разработать для Ле-Мана 2015 года.


Схема трансмиссии у GT3 R Hybrid. Красным обозначены компоненты маховика, силовая электрика и два мотора/генератора.

Количество энергии, которое можно снять с маховика, определяется его массой и скоростью вращения. Обычно он вращается со скоростями от 25 000 до 55 000 об/мин. Для преобразования хранящейся в маховике кинетической энергии обратно в электрическую вращающееся магнитное поле генерирует ток, идущий в обратном направлении, и энергия поступает на те же самые моторы/генераторы, что собирали её во время торможения.


Схема GT3 R Hybrid под другим углом

Как было упомянуто ранее, эти моторы могут располагаться прямо в колёсах. Или же такой мотор можно подсоединить к ведущему валу двигателя через бесступенчатую трансмиссию или другую сцепку. По запросу она соединяется с валом, забирает энергию у маховика и превращает её в кинетическую энергию, вращающую вал и ведущие колёса.


У обычного автомобиля на этом месте располагается пассажирское сиденье. У GT3 R Hybrid там стоит маховик.

Маховики часто сравнивают с конденсаторами, способными быстро накапливать и отдавать энергию. Сторонники этой технологии считают её преимуществами малый вес, стоимость и малое воздействие на окружающую среду по сравнению с традиционными гибридами, использующими химические аккумуляторы.

Маховик 911 GT3 R был сделан из композитного углеволокна, и его диаметр равнялся 406 мм. Корпус маховика, также сделанный из углеволокна, располагался на месте пассажирского сиденья. Маховик отправлял и получал энергию от электрических моторов/генераторов по 80 л.с. (60 кВт), располагавшихся в обеих передних колёсах. Такая конфигурация позволяла улучшить управление автомобилем на поворотах.

Ёмкость маховика в машине Porsche составляла 0,2 кВт*ч. Он мог выдавать до 163 л.с. (122 кВт) на периоде до 6 секунд, помогая разгонять машину после поворотов или на длинных дистанциях в зависимости от того, как водитель решал применить дополнительную энергию, нажимая на специальную кнопку на руле.

Общая мощность всей системы составляла 670 л.с. (500 кВт), а весила машина примерно 1300 кг. Маховик с корпусом весили порядка 47 кг значительно меньше, чем аккумулятор у электрических гибридов. В целом машина весила на 104 кг больше, чем обычные гоночные Porsche GT3, вместе с которыми она ездила по треку.

В Porsche решили, что хранить энергию в маховике в условиях экстремальных гоночных нагрузок надёжнее, чем в литий-ионных аккумуляторах. В отличие от последних, маховик можно было полностью заряжать (т.е. разгонять до максимальной скорости) и разряжать (останавливать почти полностью) много раз в минуту без всяких побочных эффектов.

Благодаря относительно эффективному использованию горючего, не самый быстрый среди участников гонки 2010 года 24 часа Нюрбургринга 911 GT3 R Hybrid лидировал восемь часов подряд. В гонке 2010 года Petit Le Mans машина пришла 18-й сказался износ деталей.

В 2011 году она снова вышла на трассу, но потом в Porsche сконцентрировались на прототипе 919 Hybrid для чемпионата мира по автогонкам на выносливость.

Не быстрое, а медленное хранение и восстановление энергии


Переход на 919 Hybrid в частности был связан с тогдашним проектом суперкара от Porsche. Так утверждает президент и генеральный директор североамериканского подразделения Porsche Motorsport, Дэниел Армбрюстер.

Примерно тогда мы уже начали работать над гибридным заряжаемым прототипом спортивного автомобиля 918 Spyder, вспоминает он. И в обоих моделях, 919 и 918, обнаружилось, что литий-ионные аккумуляторы обеспечивают наилучший баланс между сохранением энергии и мощностью питания.

Езда по дорогам общего пользования заключается в постоянном разгоне и торможении, что как раз подходит для рекуперативного торможения. Однако в таких условиях ни о каком быстром разгоне с максимальным ускорением от одного поворота до другого, как в гонках, речи не идёт. Вместо быстрого и интенсивного восстановления энергии, и последующего активного её сохранения, на передний план выходит сравнительно медленная генерация энергии, из-за чего главным становится вопрос её хранения.

Гибридная технология с использованием маховика в 911 GT3 R Hybrid позволяла экономить топливо, что уменьшало время, проведенное на пит-стопе, по сравнению с соперниками, поясняет Армбрюстер. В гонках маховик работает эффективнее из-за постоянного резкого торможения и резкого разгона. Для такого режима отлично подходит кратковременное хранение энергии с мощной отдачей.

Но у этой технологии есть свои недостатки. В целом, в маховике не получается хранить много энергии только ту, что дало торможение, говорит он. Аккумулятор же способен стабильно и долговременно хранить энергию, и с этими показателями маховику не сравняться. Во многих местах Европы возможность разгоняться, не делая выбросов в атмосферу, оказывается важной. Поэтому решение на основе аккумуляторов представляется наилучшим вариантом.

И хотя Porsche отказалась от маховика из-за ограниченной ёмкости, Армбрюстер добавляет, что нет сомнений в том, что 911 GT3 R Hybrid сыграла важнейшую роль, доказав применимость гибридной технологии в скоростных гонках.

Глен Паско, ведущий инженер Williams Advanced Engineering, говорит, что с сегодняшней точки зрения понятно, что быстрый захват и отдача энергии в системах с маховиком больше подходит для режимов езды с периодической пиковой нагрузкой.

Кроме поездок по центру города цикл работы типичного пассажирского автомобиля не подходит под режим ''разгон-торможение'', свойственный маховикам, говорит Паско. Энергия, хранящаяся в маховике, постоянно теряется, а в химическом аккумуляторе она может храниться очень долго.

На автобусах


Принцип работы маховика от Williams всё же нашёл применение в городских условиях в 2015 году, когда GKN модифицировала эту систему для установки на лондонские автобусы. В гибридную систему Gyrodrive с маховиком входит тяговый двигатель, связанный с ведущим валом машины, электрический маховик, инвертер для мотора/маховика, и электронная система управления.

Эта система с различными вариациями использовалась в как в одноэтажных, так и в двухэтажных автобусах британского производителя Alexander Dennis. Однако Gyrodrive оказалась слишком большой и дорогой для легковых городских автомобилей (например, такси), которые постепенно переходят на аккумуляторы.

Глен Паско говорит, что в настоящее время в WAE не занимаются какими-либо маховиками. Однако он добавляет, что мы работем с широким спектром индустрий и тщательно изучаем требования клиентов, поэтому такая технология может найти своё применение в будущем.

Среди примеров применения могут оказаться и гонки, если их устроители позволят использовать подобные устройства. Хотя в настоящее время, судя по всему, их больше интересуют аккумуляторные гибриды и технологии быстрой зарядки. Сейчас WAE занимается разработкой топливных систем на водородных ячейках для больших самосвалов. Там рекуперативное торможение используется практически так же, как у маховиков.

Президент североамериканского подразделения Porsche Motorsport говорит, что его компания постоянно оценивает, какие технологии дают наилучшее решение в конкретных ситуациях, и не отказывается заранее ни от каких подходов.

Армбрюстер объясняет, что в стратегию Porsche входят ДВС, спортивные заряжаемые гибриды и полностью электрические машины. Также мы исследуем вопрос синтетического топлива, делающего ДВС уже существующих машин более дружественными к окружающей среде.

Иронично, что большая часть тех из нас, кто столкнётся с гибридными автомобилями с маховиками, будет ехать в машине в качестве пассажира, а не водителя. Также в разработке находятся статичные маховиковые системы. Немецкая компания Chakratec недавно развернула маховиковую систему хранения энергии в гостинице Premier Inn в Лейпциге, позволяющую сглаживать пиковые нагрузки на зарядные станции для электромобилей.

Но всего десять лет назад гоночные автомобили, оснащённые маховиками, лидировали в гонке 24 часа Нюрбургринга и убедительно соперничали с более лёгкими GT3. В будущем инвестиции в эту технологию могут как облегчить эту систему, так и увеличить её энергетическую ёмкость, и вновь дать гонщикам маховики в спорте, где редко что-то выбрасывают просто так.
Подробнее..

Из песочницы Moneyball и Формула-1 модель прогнозирования результатов квалификаций

07.07.2020 18:11:11 | Автор: admin


Сразу скажу: я не IT-специалист, а энтузиаст в сфере статистики. Помимо этого, я на протяжении многих лет участвовал в различных конкурсах прогнозов по Формуле-1. Отсюда вытекают и задачи, стоявшие перед моей моделью: выдавать прогнозы, которые были бы не хуже тех, которые создаются на глаз. А в идеале модель, конечно, должна обыгрывать человеческих оппонентов.

Эта модель посвящена прогнозированию исключительно результатов квалификаций, поскольку квалификации более предсказуемы, чем гонки, и их проще моделировать. Однако, конечно, в будущем я планирую создать модель, позволяющую с достаточно хорошей точностью предсказывать и результаты гонок.

Для создания модели я свел в одну таблицу все результаты практик и квалификаций за сезоны 2018 и 2019. 2018-й год служил в качестве обучающей выборки, а 2019-й в качестве тестовой. По этим данным мы построили линейную регрессию. Если максимально просто объяснять регрессию, то наши данные это совокупность точек на координатной плоскости. Мы провели прямую, которая меньше всего отклоняется от совокупности этих точек. И функция, графиком которой является эта прямая это и есть наша линейная регрессия.

От известной из школьной программы формулы $inline$y = kx + b $inline$ нашу функцию отличает только то, что переменных у нас две. Первая переменная (X1) это отставание в третьей практике, а вторая переменная (X2) среднее отставание по предыдущим квалификациям. Эти переменные не равнозначны, и одна из наших целей определить вес каждой переменной в диапазоне от 0 до 1. Чем дальше переменная от нуля, тем большее значение она имеет при объяснении зависимой переменной. В нашем случае в качестве зависимой переменной выступает время на круге, выраженное в отставании от лидера (или точнее, от некоего идеального круга, поскольку у всех пилотов эта величина была положительной).

Поклонники книги Moneyball (в фильме этот момент не объясняется) могут вспомнить, что там с помощью линейной регрессии определили, что процент занятия базы, aka OBP (on-base percentage), более тесно связан с заработанными ранами, чем другие статистические показатели. Мы преследуем примерно такую же цель: понять, какие именно факторы наиболее тесно связаны с результатами квалификаций. Один из больших плюсов регрессии в том, что она не требует продвинутого знания математики: мы просто задаем данные, а потом Excel или другой табличный редактор выдает нам готовые коэффициенты.

По сути, с помощью линейной регрессии мы хотим узнать две вещи. Во-первых, насколько выбранные нами независимые переменные объясняют изменение функции. И во-вторых, насколько велика значимость каждой из этих независимых переменных. Иначе говоря, что лучше объясняет результаты квалификации: результаты заездов на предыдущих трассах или итоги тренировок на этой же трассе.

Тут надо отметить важный момент. Конечный результат складывался из двух независимых параметров, каждый из которых вытекал из двух независимых регрессий. Первый параметр сила команды на этом этапе, точнее, отставание лучшего пилота команды от лидера. Второй параметр распределение сил внутри команды.

Что это значит на примере? Допустим, мы берем Гран-при Венгрии сезона-2019. Модель показывает, что отставание Феррари от лидера составит 0,218 секунды. Но это отставание первого пилота, а кто им будет Феттель или Леклер и какой разрыв между ними будет, определяется другим параметром. В этом примере модель показала, что впереди будет Феттель, а Леклер проиграет ему 0,096 секунды.



К чему такие сложности? Не проще ли рассматривать каждого пилота по отдельности вместо этой разбивки на отставание команды и отставание первого пилота от второго внутри команды? Возможно, это так, но мои личные наблюдения показывают, что смотреть на результаты команды гораздо надежнее, чем на результаты каждого пилота. Один пилот может допустить ошибку, или вылететь с трассы, или у него будут технические проблемы все это будет вносить хаос в работу модели, если только не отслеживать вручную каждую форс-мажорную ситуацию, что требует слишком много времени. Влияние форс-мажоров на результаты команды гораздо меньше.

Но вернемся к моменту, где мы хотели оценить, насколько хорошо выбранные нами независимые переменные объясняют изменения функции. Это можно сделать с помощью коэффициента детерминации. Он продемонстрирует, в какой степени результаты квалификации объясняются результатами практик и предыдущих квалификаций.

Поскольку мы строили две регрессии, то и коэффициента детерминации у нас тоже два. Первая регрессия отвечает за уровень команды на этапе, вторая за противостояние между пилотами одной команды. В первом случае коэффициент детерминации равен 0,82, то есть 82% результатов квалификаций объясняются выбранными нами факторами, а еще 18% какими-то другими факторами, которые мы не учли. Это достаточно неплохой результат. Во втором случае коэффициент детерминации составил 0,13.

Эти показатели, по сути, означают, что модель достаточно хорошо предсказывает уровень команды, но испытывает проблемы с определением разрыва между партнерами по команде. Однако для итоговой цели нам не нужно знать разрыв, нам достаточно знать, кто из двух пилотов будет выше, и с этим модель в основном справляется. В 62% случаев модель ставила выше того пилота, который действительно был выше по итогам квалификации.

При этом при оценке силы команды результаты последней тренировки были в полтора раза важнее, чем результаты предыдущих квалификаций, а вот во внутрикомандных дуэлях все было наоборот. Тенденция проявилась как на данных 2018, так и 2019 года.

Итоговая формула выглядит так:

Первый пилот:

$$display$$Y1 = (0,618 * X1 + 0,445 * X2)$$display$$


Второй пилот:

$$display$$Y2 = Y1 + (0,313 * X1 + 0,511 * X2)$$display$$



Напоминаю, что X1 это отставание в третьей практике, а X2 среднее отставание по предыдущим квалификациям.

Что означают эти цифры. Они означают, что уровень команды в квалификации на 60% определяется результатами третьей практики и на 40% результатами квалификаций на предыдущих этапах. Соответственно, результаты третьей практики в полтора раза более значимый фактор, чем результаты предыдущих квалификаций.

Поклонники Формулы-1 наверняка знают ответ на этот вопрос, но для остальных следует прокомментировать, почему я брал результаты именно третьей практики. В Формуле-1 проводится три практики. Однако именно в последней из них команды традиционно тренируют квалификацию. Однако же в тех случаях, когда третья практика срывается из-за дождя или других форс-мажоров, я брал результаты второй практики. Насколько я помню, в 2019 году был только один такой случай на Гран-при Японии, когда из-за тайфуна этап прошел в укороченном формате.

Также кто-то наверняка заметил, что модель использует среднее отставание в предыдущих квалификациях. Но как быть на первом этапе сезона? Я использовал отставания с предыдущего года, но не оставлял их как есть, а вручную их корректировал, основываясь на здравом смысле. Например, в 2019 году Феррари в среднем была быстрее, чем Ред Булл на 0,3 секунды. Однако похоже, что у итальянской команды не будет такого преимущества в этом году, а может, они и вовсе будут позади. Поэтому для первого этапа сезона 2020, Гран-при Австрии, я вручную приблизил Ред Булл к Феррари.

Таким образом я получал отставание каждого пилота, ранжировал пилотов по отставанию и получил итоговый прогноз на квалификацию. При этом важно понимать, что первый и второй пилот это чистые условности. Возвращаясь к примеру с Феттелем и Леклером, на Гран-при Венгрии модель посчитала первым пилотом Себастьяна, но на многих других этапах она отдавала предпочтение Леклеру.

Результаты


Как я говорил, задачей было создать такую модель, которая позволит прогнозировать не хуже людей. За основу я брал свои прогнозы и прогнозы своих партнеров по команде, которые создавались на глаз, но при внимательном изучении результатов практик и совместном обсуждении.

Система оценки была следующая. Учитывалась только первая десятка пилотов. За точное попадание прогноз получал 9 баллов, за промах в 1 позицию 6 баллов, за промах в 2 позиции 4 балла, за промах в 3 позиции 2 балла и за промах в 4 позиции 1 балл. То есть если в прогнозе пилот стоит на 3-м месте, а в результате он взял поул-позишн, то прогноз получал 4 балла.

При такой системе максимальное количество баллов за 21 Гран-при 1890.
Человеческие участники набрали 1056, 1048 и 1034 балла соответственно.
Модель набрала 1031 балл, хотя при легкой манипуляции с коэффициентами я также получал 1045 и 1053 балла.



Лично я доволен итогами, поскольку это мой первый опыт в построении регрессий, и он привел к достаточно приемлемым результатам. Безусловно, хотелось бы их улучшить, поскольку я уверен, что с помощью построения моделей, даже таких простых, как эта, можно добиваться лучшего результата, чем просто оценивая данные на глаз. В рамках этой модели можно было бы, например, учесть тот фактор, что некоторые команды слабы в практиках, но выстреливают в квалификациях. Например, есть наблюдение, что Мерседес часто не был лучшей командой в ходе тренировок, но гораздо лучше выступал в квалификациях. Однако эти человеческие наблюдения не нашли отражения в модели. Поэтому в сезоне 2020, который начнется в июле (если не произойдет ничего непредвиденного), я хочу проверить эту модель в соревновании против живых прогнозистов, а также найти, как ее можно сделать лучше.

Помимо этого, я надеюсь вызвать отклик в комьюнити любителей Формулы-1 и верю, что с помощью обмена идеями мы сможем лучше понимать, из чего складываются результаты квалификаций и гонок, а это в конечном счете цель любого человека, который делает прогнозы.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru