Русский
Русский
English
Статистика
Реклама

Усилители

DIY наушники. Как, а главное, зачем

13.02.2021 00:15:04 | Автор: admin

Хочу поделиться своим опытом прослушивания наушников и акустических систем, предложить рекомендации по улучшению опыта прослушивания и рассказать о том, как я пришел к самодельным наушникам и почему советую всем (исходники прилагаются). Для постройки выбрана ленточная технология излучателей и описано, почему она предпочтительнее магнитопланарной.

Введение

Рынок персонального аудио на сегодняшний день широк как никогда. Так или иначе, цифровой контент в период пандемии разлетается быстрее горячих пирожков. А удобнее часто потреблять его через наушники.

Какие же технологии создания излучателей для наушников существуют.

  • Динамические излучатели. Сюда же рубаноид, как вариация на тему. На данный момент мейнстрим и вы, скорее всего, сидите в них.

  • Магнитопланарные излучатели. А также изо-, орто- и прочее. Предупреждая споры я использовал это понятие для всего, где есть магнитная система и плоская катушка, соответствующая этой магнитной системе. Как вариация на тему т.н. излучатель Хейла, называемый ещё АМТ, там мембрана просто сложена особым образом.

  • Катушки с уравновешенным якорем, или, по-простому, арматуры. Часто появляются во внутриушных наушниках.

  • Излучатели на пьезоэффекте. Редкие внутриушные модели в виде высокочастотного элемента.

  • Электростатические излучатели. Крайне редкие наушники за немалые деньги, иногда колонки.

  • Ленточные излучатели. Только одна серийная модель наушников и бесконечное множество ВЧ элементов для стационарных акустических систем.

  • Прочие диковины, типа электродугового излучателя. Оставим на совести экспериментаторов.

Стоит практически эти все технологии умножить на количество всех возможных форм-факторов (закрытые, открытые, внутриканальные и вариации) и количество актуальных моделей покоряет совершенно неведомые высоты.

Можно попробовать заткнуть проблему выбора горой денег. Однако даже в таком случае совершенно не гарантировано высокие потребительские качества, в т.ч. и звука. По одной единственной причине. При обращении к научной литературе, например, к Психоакустике Алдошиной И.А. и ряду статей, выплывет отсутствие единого стандарта определения качества восприятия звуковых систем. На данный момент вся оценка качества звука производится по косвенным параметрам и экспертным методом, чему в указанном источнике уделено существенное внимание. Второй пункт здесь значит значимую субъективность в экспертной оценке, так как, кроме всего прочего, значительно зависит не только он умений и тренировки эксперта, но и от его физического и психологического состояния. Разумеется, поверке это не подлежит и на выходе может быть всё что угодно.

Описанный способ оценки таит в себе двойную лотерею. Те же наушники, чтобы попасть к вам, должны сначала понравиться эксперту, и не одному. И затем понравиться вам. А учитывая, что при производстве постоянно вносятся изменения в конструкцию без какой-либо экспертной проверки (ну решили мы сэкономить денег), то в итоге выбор превращается в подкидывание монетки, где вам надо выбить шесть, семь, восемь орлов подряд.

Реверс инжиниринг

При всём выше сказанном можно прийти к определенным выводам. Все модели на рынке не прослушать. А значит, рынок для нас в таком случае вообще не интересен ввиду глубокой бесполезности. Кажется, самое время изобрести свой велосипед!

От изучения рынка и научных трудов переходим к рассмотрению технологий. Если с динамическими излучателями все понятно, буквально каждый имел с ними дело, то остальные требуют рассмотрения, а желательно непосредственного изучения. Поэтому мной был приобретены и препарированы планарные наушники Fostex RP-50. В целом уже на них я ощутил разницу с обычными динамическими драйверами. Попытка улучшить их конструкцию также дала много информации Оказавшейся мало полезной. По крайней мере я узнал, как с помощью куска хлопкового волокна задушить наушники в нижнем диапазоне.

В целом конструкцию RP-50 можно описать фразой хотели как лучше, получилось как всегда. Заводская конструкция совершенно не раскрывает преимущества планарной технологии и очень высококачественной мембраны, делая всё это мертвым по прибытии.

Ко второй попытке пришлось значительно повысить внимательность при выборе и искать самые необычные варианты, в том числе обратившись к рынку самодельных наушников. Не смотря на все риски в руки попал примечательный образец таких наушников.

Образец полностью оправдал ожидания. Не смотря на четко прослеживаемую аудиофильщину, при приемлемой цене на руках у меня оказался достаточно умно спроектированный продукт. А самое главное, он дает полное представление о технологии магнитопланарных наушников.

Однако, не все оказалось так радужно. Не смотря на чистый, очень детальный звук чего-то все ещё не хватало. На это я сформулировал гипотезу о важности фазовых искажений при использовании полноразмерных наушников. Суть её в том, что на натуральность восприятия влияет наличие больших и случайных фазовых сдвигов в камере между ухом и драйвером. Человек не воспринимает саму фазу, зато разницу фаз между двумя ушами можно услышать замечательно. Попробуйте поменять на одной колонке или наушнике полярность. Так что требуется использовать как можно более компактное исполнение, чтобы минимизировать количество воздуха, в котором могут происходить все эти процессы, думал я. В итоге начал творить...

Самодельные магнитопланарные наушники

Расстояние между дорожками около 0.3 ммРасстояние между дорожками около 0.3 мм

Для опровержения или подтверждения этой гипотезы я занялся созданием своих магнитопланарных драйверов и корпусов для него. Сейчас, с высоты опыта, стало понятно, что количество усилий непропорционально результату. Мне удалось разработать технологию с достаточно хорошей повторяемостью и высокой точностью, почти без фазовых и иных искажений, но я не вырвался из ограничений технологии и все ещё не получил желаемого результата по звуку. К тому же прослушав заводские образцы от Audeze, уверенность в малом смысле продолжения работы в планарной технологии окрепла окончательно. Стало ясно, что ощущений живой музыки сложновато будет добиться на таких рельсах. С высоты опыта сейчас я могу выдвинуть гипотезу, почему же так получилось с планарной технологией. Но об этом чуть позже. Самодельные магнитопланары получились не лучше и не хуже, чем остальные подобные наушники. Даже оригинальный форм-фактор не помог. Что же в итоге? Подняться на уровень выше и посмотреть, где ошибочные выводы могли появиться там. Гипотеза о важности фазовых искажений не подтвердилась. Этот проект был заброшен.

Как оказалось, у такого подхода мало перспектив.Как оказалось, у такого подхода мало перспектив.

Логичнее всего мне показалось обратиться к источнику проблемы - звукорежиссерам. Как же создается контент, как он хранится и воспроизводится. Сразу скажу, что я не беру в расчет специальные бинауральные записи, произведенные в других условиях, но такие ещё надо попробовать найти.

Как воспроизводится музыка

Суть в том, что сведение в первую очередь производится на студийных мониторах колонках. Таким образом, расположение инструментов на виртуальной сцене регулируется лишь их громкостью по каналам. На схеме, что в случае с правильно расположенными колонками этого достаточно.

Со всеми стационарными АС такой подход работает прекрасно. Расположение инструментов выставляется благодаря разности громкости между ушами, частичным взаимным проникновением каналов из левого в правый и наоборот, а также разницей фаз между левым и правым ухом при этом взаимном проникновении каналов. Но только в случае именно такой правильной установки источников звука.

Что же будет, если подать ту же самую запись в наушники? Если раньше инструменты расставлялись на линии между колонками, то если колонки перенести прямо к ушам, линия окажется внутри головы. Там и оказывается вся композиция в большинстве случаев.

С этим поможет бороться цифровая обработка звука. На Хабре уже написана статья, так что сильно углубляться не буду. Стоит ещё раз отметить, что применять такого рода обработку надо для записей, сведённых под колонки. Специальные бинауральные записи не нуждаются в этом.

Что же по итогу. Даже с таким эффектом в звучании магнитопланаров чего-то не хватало. И тут после глубоких раздумий сформировалась вторая гипотеза.

Выводы из полученного опыта

При получении этих идей я пользовался методом от обратного, выявляя факторы, которые однозначно негативно влияют на звуковоспроизведение.

  • Ровный график АЧХ для сохранения тонального баланса

На самом деле при хороших показателях следующих параметров этот также неплох.

  • Ровный график (важно без резких пиков) гармонических искажений

При этом добиваться сверхнизких искажений (меньше 0.1%) практического смысла имеет не очень много. Другое дело, что, как правило, при снижении искажений улучшаются и другие параметры.

  • Высокий динамический диапазон на всех частотах даже вне слышимого спектра в обе стороны.

Излучатель должен преодолеть внутренние силы трения покоя, чтобы отклониться от положения равновесия. Таким образом существует предел необходимого усилия для преодоления трения покоя между слоями материала. Этот параметр по сути определяет минимальную границу динамического диапазона. Обуславливается материалами и тем, как они соединены между собой.

Беря для примера магнитопланарные излучатели, можно сразу зафиксировать один факт они многослойные. Это, как правило, слой ПЭТ пленки или его аналогов, опционально клеевой слой и слой металлического проводника. Правильно сделанная мембрана должна обязательно гофрироваться для того, чтобы её ход был свободнее. Однако, как по мне, в таком бутерброде есть одна проблема в среде соприкосновения металла и полимерной пленки образуется резкое скачкообразное изменение механических параметров, которые при колебаниях неизбежно смещаются относительно друг друга, приводя к потерям энергии. Но это ещё пол беды.

При достаточно малой толщине слоев можно добиться минимизации этих потерь. Более крупная проблема заключена в ограниченном ходе этой самой мембраны ввиду её сильного натяжения. Это натяжение необходимо для сохранения механической прочности конструкции, чтобы та не провисала и не цепляла магнитную систему. Кроме того, слабо или криво натянутая мембрана повышает интермодуляционные искажения. В итоге, суммируя наличие натяжения и потери на трении, получаем на выходе не самый высокий динамический диапазон. Гораздо шире, чем у динамических драйверов, но всё ещё сильно узкий.

Ленточные излучатели

Так я плавно подвожу к самой, на мой взгляд, перспективной технологии в плане динамического диапазона. Ленточные драйвера. В обычной жизни их можно заметить в некоторых стационарных АС в виде твиттеров (высокочастотных излучателей).

В наушниках ленточный тип излучателя практически не используется. По крайней мере из всех серийных заводских моделей существует только один их представитель - Raal SR1A, и тот стоит неприлично дорого, к тому же официально на территории СНГ не распространяется.

Ленточный драйвер прост, как угол дома, даже ещё проще. Самая простая версия излучателя два магнита, кусок гофрированной фольги, всё. С точки зрения акустики это самый идеальный вариант чем меньше деталей и соединений, тем лучше. По ходу движения ленты нет никаких препятствий, разве что стоит какая-то защитная сетка. В более продвинутом исполнении можно добавить магнитопровод по контуру для усиления магнитного поля в рабочей области.

Самое главное динамический диапазон на голову лучше, чем где бы то ни было. Ход ленты может быть какой угодно, смотря как ленту устанавливать. Но также и с высокими частотами, в стационарных АС такой излучатель используется как раз в ВЧ звене, работает он там просто замечательно. Это возможно благодаря изотропии самой ленты. Нет никакого межслойного взаимодействия, клея и т.п. Таким образом сила трения покоя ограничивается лишь силой трения покоя однородного металла. В слое алюминия 15 микрон эти силы крайне малы. Просто за счет отсутствия лишних слоев в виде пленок и клея этот излучатель по-умолчанию лучше, чем магнитопланарный.

Естественно, есть нюансы. Лента в таком излучателе должна быть гофрирована. За счет упругости металла, формованного в виде волны (а такая форма нужна, чтобы ленту не скручивало в трубочку), лента и имеет столь большую амплитуду колебаний. Поэтому приходится делать ленту, которая в излучателе отклоняясь до полного распрямления не выходит за пределы своего предела упругости, чтобы избежать пластичных деформаций. А подстраховка от деформации небольшой зазор между лентой и магнитами для стравливания лишнего давления. В таком случае прочность ленты практически сравнится с прочностью мембраны магнитоплараных наушников. Может быть даже слегка её превзойдет, по крайней мере опыт показывает, что планарная мембрана рвется именно там, где нет ни клея ни металла, по пленке. Например, смерть мембран наушников довольно известного бренда Audeze довольно частый случай и на многих форумах зафиксированы возмущения огорченных владельцев. Стоит дополнить, что речь всё время идет об полностью открытом исполнении наушников, как о самом выгодном с акустической точки зрения. К сожалению, с закрытыми моделями всё посложнее, так что как эталон качества звуковоспроизведения я рассматриваю строго модели с открытой крышкой.

Источник сигнала для ленточных наушников

У ленточных излучателей есть свои особенности при их использовании. Самая важная электрическое сопротивление порядка сотых долей ома. Это значит, что напрямую подключать их к обычным источникам нельзя. Вернее можно, но переживет ли источник это подключение или нет - никто не гарантирует. Как правило, в усилителях на выходе есть защита от короткого замыкания в виде резистора. Если повезет, и усилитель не сгорит, звук всё равно будет очень тихим. Все выходы для наушников в подавляющем большинстве устройств имеют возможность выдавать на выход ток порядка 50 мА, в особых случаях до 100 мА. Этого мало.

Необходимо согласовать электрическую нагрузку и источник сигнала, чтобы их входное и выходное сопротивление было как можно более близким. Таким образом, нужен источник сигнала с минимальным внутренним сопротивлением. Этого можно добиться двумя способами.

Использовать трансформатор. Разумеется, для такого трансформатора выдвигаются особые требования. В идеале его сердечник должен быть из специального железа с минимальным гистерезисом, но на крайний случай подойдет и обычное железо из трансформаторов напряжения бытовых сетей. Одна обмотка должна иметь сопротивление порядка выходного сопротивления усилителя, а вторую обмотку, которая обычно в таком случае делается из литцендрата, из нескольких витков с сопротивлением пары знаков после запятой. Однако, необходимо, чтобы вторая обмотка подключалась к ленте как можно ближе, чтобы минимизировать сопротивление, так как даже метр обычного кабеля будет иметь сопротивление на два порядка выше, чем сопротивление ленты и вновь возникнет рассогласование. Таким образом, трансформатор должен находиться непосредственно у ленты, что несколько неудобно из-за большого веса наушников в таком исполнении. Кстати, ленточные наушники идеально подходят к ламповым усилителям, где как раз есть выходные трансформаторы. Правда при таком сценарии нужно использовать довольно толстый провод.

Второй вариант заключается в создании специализированного усилителя. Строго говоря, можно брать готовый мощный усилитель (хотя бы на 5-10 Вт), только использовать переходник с балластным сопротивлением. Этот резистор согласует (с выделением тепла) выход усилителя и вход наушников, таким образом усилитель работает в своем штатном режиме, а наушники получают наиболее качественный сигнал. Стоит упомянуть, что можно собрать усилитель так, что ему может и не требоваться такой резистор, но эта задача уже для профессиональных электронщиков, к коим я себя не отношу. В любом случае КПД такого решения будет очень низким. Но это того стоит, как минимум, из-за комфорта.

Я придерживаюсь второго варианта со специальным усилителем. Зачем ставить трансформатор, если можно его не ставить? К тому же даже для обычных затычек я используют отдельный усилитель, под ещё один у меня всегда найдется место. Самодельный усилитель по многопетлевой схеме из китайских не оригинальных TDA2030A и OPA2134. Об этом говорит то, что ток покоя усилителя с тремя (!) TDA2030A составляет 70 мА, судя по показаниям ЛБП, при норме по даташиту одной TDA2030A в 80 мА. Все-таки мне очень интересно, что мне подсунули под видом этих ОУ. Накинув балластное сопротивление 15 Ом мне удалось получить нужный выходной ток и получить нужный режим работы ОУ, который для моих излучателей составляет около 0.45 А на канал на максимальной громкости. На этом уровне слушать их на голове невозможно, а вот использовать как небольшие колонки вполне. И сколько угодно тише играет тоже неплохо.

Рекомендации по сборке

Ссылка на Thingiverse.

При сборке ленточных наушников я использовал:

  • Слегка модифицированный Anet A6

  • Anycubic Photon S (скорее для удобства, можно обойтись без него) для печати всего, что проходит по размерам

  • Саморезы M3x8 с потайной головкой

  • Болты с потайной головкой на 20 мм и гайки М3

  • Универсальный клей

  • Фольга, нарезать на ленты размерами 80 мм на 16 мм

  • Листовое железо 2 мм

  • Разъемы и провода. В моем случае 4pin miniXLR и 6.35 TRS 3pin

  • Оголовье. Можно расковырять старые наушники, либо заказать на али. Диаметр чашки 100 мм, втулки по 5 мм с каждой стороны, итого диаметр оголовья должен быть 110 мм

  • Амбушюры диаметром 100 мм

  • Магниты 60 мм на 10 мм на 5 мм

  • Двусторонний скотч

Добиться хорошей чувствительности от лент можно использованием хороших магнитов. По опыту заказа магнитов из Китая скажу на их мощность не стоит рассчитывать. Стоит отметить, что достаточно большие магниты делают из марки N38. Можно сделать индивидуальный заказ и на манит вплоть до самого мощного N52, но цены при таком заказе будут очень неприятными, особенно учитывая малую серию. Есть магазины, предлагающие такую опцию. А также по отечественным магазинам несложно найти менее мощные магниты многих размеров. Только будьте аккуратны, усилие на отрыв у таких магнитов может достигать десятка килограмм, крайне не советую проверять это усилие своими конечностями, травмоопасно. Они ещё и очень хрупкие, если магнит резко ударится о другой магнит, осколки могут полететь во все стороны, и в глаза в том числе. Магазины доставляют магниты с пластиковыми проставками, так их лучше и хранить. Они не трутся друг об друга, оставляя царапины, и их легче отделять.

Сама сборка производится на клей, саморезы и болты M3 с потайной головкой. Клеить, в моем случае, пришлось разъемы проводов и заднюю сетку. Ткань куплена на али, для обтяжки колонок. Оголовье взял от старых ТДС-3, пришлось делать металлическую дугу для сборки в единую конструкцию. Из-за ошибки при разметке этой пластины получилось, что дуга проходит перед чашкой, хотя должна проходить ровно над чашкой. Это временный вариант, жду оголовья из Китая. Втулки сделаны на фотополимерном принтере из мягкой смолы, чтобы амортизировала все телодвижения. Амбушюры можно также заказать на али, там есть вполне приличные варианты из овечьей кожи, или попроще из синтетики, кому как удобнее. Всё подбирается по диаметру чашки - 100 мм. Разъемы Mini-XLR.

Лента

При формовке ленты важно всё делать аккуратно, не допускать попадание мусора на формочки. Очень легко повредить ленту. Перед формованием её лучше разровнять на гладкой поверхности без мусора с помощью сухой тряпочки, или просто пальцами.

После формовки ленты её необходимо полностью растянуть, потянув за концы ленты, до полного разглаживания. Как только вы отпустите концы, лента должна принять свой финальный облик. После этого её можно устанавливать в корпус на двусторонний скотч. Только обратите внимание, что лента должна немного провисать под собственным весом после установки, в пределах одного миллиметра.

Корпус излучателя

Для излучателя необходимо изготовить 4 пластины из железа толщиной 2 мм с хорошей магнитной проницаемостью. Две детали размером 10 мм на 64 мм и две по 10 мм на 32 мм. Это будущая рамка магнитопровода. Длинные пластины вставляются в отведенные ниши, на фото они видны с торцов. Короткие пластины нужно электрически изолировать, а затем просто примагнитить. Заодно можно поджать контакты провода, только провод сначала нужно залудить.

Монтаж короткой пластины. Лучше не сверлить, как в моем случае, а поджать длинный оголенный конец сверху. Провод нужно сделать достаточно тонким, чтобы не деформировать корпус при поджатии контакта. Я пробовал паять с флюсом Ф-64, но показало себя это решение плохо. Пайка имеет нехорошее свойство отходить, да и неудобно при установке магнитопровода, можно ненароком повредить место пайки, что-то сдвинется и его оторвет.

В остальном сборка не должна доставить каких-то проблем. Конечно, она требует некоторой ловкости и инструментов. С другой стороны, здесь нет очень сложных процедур, особенно по сравнению с изготовлением магнитопланаров, которые я из-за этого забросил.

По итогу, немного отладив конструкцию, вы получите весьма уверенное качество звука, ни в чем не уступающее очень дорогим заводским наушникам, всё это при весьма малых трудозатратах. Единственное - советую озаботиться усилением, если у вас нет усилителя хотя бы ватт на 5 с балластным резистором. Продублирую ссылку на свою схему. Подойдет практически любой колоночный усилитель, только не переборщите с мощностью.

Послесловие

Субъективно звук таких наушников однозначный мастхев. Детальность действительно ультимативная, а при правильной настройке ленты басы дают удар. В купе с использованием виртуального объемного звука эффект от прослушивания стоит того, чтобы заняться сборкой. Конечно, все приведенные здесь выводы требуют научного подтверждения. Меня ограничило отсутствие точных измерительных приборов. Для себя лично не вижу смысла так погружаться, свои наушники я сделал.

Что осталось.

Необходимо разработать и собрать эффективный и качественный усилитель для прямого подключения, я пока размышляю над тем, как это можно провернуть. Возможно, стоит собрать даже свой усилитель с выходным каскадом в D классе на дискретных элементах, чтобы заставить его работать в нужных режимах больших токов и низкого напряжения. В теории это крайне эффективное решение, однако, очень сложное в разработке и сборке, и довольно дорогое.

В мечтах приобрести фотополимерный принтер, который способен печатать детали размерами 100 на 100 мм, чтобы изготовить монолитный корпус, это добавит надежности и эстетики.

Покрыть матовым лаком имеющиеся корпуса, чтобы скрыть косяки.

Поставить, наконец, новое красивое оголовье.

Необходимо как-то замерить характеристики получившихся наушников, а для этого нужно сложное и дорогое оборудование в виде измерительного стерео микрофона и качественной записывающей аппаратуры. Такого оборудования у меня нет, всё делалось "на слух", да и цена кусается.

Напоследок видео с демонстрацией работы.

Подробнее..

История домашнего аудио золотая эра Hi-Fi

07.07.2020 20:09:59 | Автор: admin
Магнитная звукозапись и винил, получившие массовое распространение после Второй мировой войны, изменили акустическую экосистему в домах людей. Они не только преобразили подход к прослушиванию музыки, но и поменяли саму музыку. Рассказываем, как это произошло.


Фото Markus Spiske / Unsplash

Новые форматы


Магнитная лента и долгоиграющие пластинки, которые появились после Второй мировой войны, изменили музыкальную культуру. Новые технологии звукозаписи и материалы позволили увеличить объем накопителей, и на них стало влезать больше музыки. Тот же двенадцатидюймовый винил мог уместить до 23 минут аудио, а бобина порядка 30 минут. До этого момента для музыкантов было нормой выпустить всего одну песню, но тогда начали выходить целые альбомы, часто объединенные какой-либо темой.

Первопроходцами эры концептуальных альбомов по праву считают The Beatles и их Rubber Soul он вышел в 1965 году. Вскоре последовали работы других коллективов Aftermath от The Rolling Stones, Pet Sounds от The Beach Boys и Blonde on Blonde Боба Дилана.

Новый звук


Новые форматы стали пространством для выражения музыкальных идей, которые не всегда возможно воплотить вживую. Ярким примером может быть Nowhere Man с уже упомянутого альбома Rubber Soul. В записи этой песни использовалось наложение вокала поэтому во время живого концерта она звучала гораздо проще, чем на альбоме.

Отпечаток на музыке оставили и технические особенности форматов. Магнитную ленту можно было регулярно записывать и перезаписывать, и музыканты начали экспериментировать с новым звуком. Например, частью песни Tomorrow Never Knows с альбома Revolver The Beatles стали пять пленочных семплов, проигрываемых в разном направлении и на переменной скорости. Некоторые музыканты даже нарезали магнитную ленту с аудиозаписями на кусочки и собирали из них оригинальные композиции практика получила название tape splicing (склеивание ленты).

После многократной перезаписи магнитная лента начинала деградировать, что сказывалось на звучании. Эту особенность музыканты также использовали в своих работах. Среди них был британский композитор и один из основателей жанра эмбиент Брайан Ино. Он использовал эффект, который накладывала деградировавшая пленка, во время записи альбома Discreet Music.


Чтобы в полной мере раскрыть звучание новых акустических приемов, понадобилось более совершенное домашнее звуковое оборудование. И оно начало появляться в 50-х 60-х годах прошлого века период называют золотым веком Hi-Fi.

Золотая эра Hi-Fi


Это период, в который была задана звуковая планка и сформированы ожидания потребителей. Именно в 50-е в США появились полочные колонки. Одним из первых подобное устройство представил бренд Acoustic Research, основанный изобретателем и популяризатором колонок закрытого типа Эдгаром Вильчуром (Edgar Villchur). Их колонки были выпущены в 1954 году под названием AR-1. По сравнению с конкурентами устройство имело небольшие размеры и неплохое качество звучания. Однако популярным продукт Acoustic Research стал лишь спустя пять лет, с выходом AR-3.

Каждая из колонок AR-3 содержала три динамика: конический вуфер, купольный твитер и излучатель средних частот. AR-3 быстро стали классикой, повысив планку звучания для домашней аудиотехники.

В Acoustic Research даже устраивали слепые тесты в формате концертов, во время которых музыку попеременно играли живой оркестр и акустическая система. По словам очевидцев, отличия были практически незаметны. Вплоть до 1966 года компания удерживала почти треть американского рынка домашней акустики достижение, не превзойденное ни до, ни после.

Параллельно с рынком акустики начал развиваться рынок аудиоусилителей. Лидером в этой категории долгое время оставался ламповый усилитель Dynaco ST-70, впервые представленный публике в 1959 году. За тридцать с небольшим лет существования модели было продано более полумиллиона экземпляров а современную версию ST-70 производитель поставляет и сейчас.


Фото Fred von Lohmann / CC BY / На фото: Dynaco ST-70

В 1970-х началась гонка за мощностью. Тогда на рынок пришли усилители McIntosh MC3500. Эти устройства до сих пор популярны и уходят с молотка на аукционах за приличные деньги.

Тогда же развивались проигрыватели пластинок. Первая вертушка с прямым приводом без вызывающих излишних вибраций ремней Technics SP-10 вышла в 1970 году. Именно такая разновидность проигрывателей стала популярной среди диско-диджеев, и привела к появлению хип-хопа и электронной музыки. Но не стоит думать, что в золотой век Hi-Fi все было хорошо.

Тогда аудиотехника была, как правило, дорогой, и многие американские установки регулярно выходили из строя. Из-за этих недостатков рынок США (как, впрочем, и мировой) начали постепенно захватывать азиатские компании Pioneer, Kenwood, Sensui. Они производили более дешевое оборудование и проводили активные маркетинговые кампании. Результат налицо по сей день, когда мы говорим о доступном Hi-Fi, первыми в голову приходят имена именно этих производителей.

В любом случае рынок аудио-оборудования в золотую эру был очень бурным. За четверть века конкуренции и технологических гонок была сформирована культура меломанов.



Дополнительное чтение по теме в Мире Hi-Fi:

Как развивалось домашнее аудио от песенных вечеров до первых проигрывателей
Как домашнее аудио становилось массовым
Как развивалось домашнее аудио: эра винила
Терменвокс: инструмент будущего родом из прошлого
Запекать до готовности: кто спасает раритетные записи на магнитной ленте таким способом
История аудиоформатов эпоха кассет и развитие технологий синтеза речи


Подробнее..

Аудиофилькина грамота немного букв о критериях качества, характеристиках и классах HI-FI усилителей

06.11.2020 22:13:06 | Автор: admin
В комментариях к предыдущим статьям возникало масса вопросов относительно выбора HI-FI усилителя. Судя по комментариям и специфическим форумам, на текущий момент актуальны вопросы о критериях качества звука при выборе современных усилителей, о паспортных характеристиках, значимых при покупке, о зависимости качества (верности воспроизведения) от класса усилителя. Отдельно спрашивают о том, действительно ли все усилители класса D хуже, чем усилители других классов. Под катом краткие ответы на эти вопросы.


Критерии качества и проблема компетенций потребителя


Существует несколько подходов потребительского определения качества, но ни один не дает гарантию удачной покупки. Если верность воспроизведения и мощность (громкость) можно оценить субъективно, то с надежностью и стабильностью параметров могут возникнуть проблемы. Сталкивался даже со случаями, когда очень прилично звучащие дорогие усилители малоизвестных high end производителей начинали работать как генераторы, начинали издавать гул в приступе самовозбуждения.

Если не вдаваться в подробности, то для понимания качества продукта следует обладать минимальными познаниями в схемотехнике усилителей и физике процессов, на которых они построены, иметь на руках схему конкретного усилителя и знать об особенностях элементов, использованных в конструкции устройства. Т.е. в идеале для такой оценки нужно быть инженером или как минимум опытным радиолюбителем. Большинство покупателей такими компетенциями не обладает. Это дает возможность для многочисленных маркетинговых манипуляций, начиная от внешнего вида устройства, заканчивая манипулятивным подходом к измерениям базовых параметров.

Формальными критериями качества усилителя для потребителя являются данные мануалов или даташитов. Следует помнить, что они отражают реальную картину лишь в том случае, если измерения проведены в рамках принятых стандартов и там обязательно должна быть указана мощность устройства, диапазон воспроизводимых частот и неравномерность АЧХ, коэффициент нелинейных искажений, соотношение сигнал/взвешенный шум, перечислены аналоговые и цифровые интерфейсы. Реже в документации можно встретить данные о демпфинг-факторе, переходном затухании между каналами и различии усиления каналов.

Мощность


Любые данные в даташитах могут искажаться с целью маркетингового манипулирования. Чаще это происходить с мощностью, о чем мы писали здесь. Так, вместо RMS и DIN, которые имеют четкие критерии расчета, могут использоваться термины вроде program power, которые, по сути, ничего не значат, так как методика расчета мощности известна только создателям усилителя. Тут имеет смысл посмотреть на значение потребляемой мощности, если она приблизительно равна, незначительно больше, и тем более, если меньше заявленной program power, то данные о мощности явно искажены, а использованная методика измерения не дает увидеть сколько-нибудь реальной картины.

Для потребителя это означает, что следует искать в указание RMS и то, что ориентироваться на значение Program power нельзя, т.к. это значение фактически означает т.н. маркетинговую мощность устройства. Достоверные значения это:

DIN значение мощности на реальной нагрузке (для усилителя), ограниченной появлением нелинейных искажений. Измеряется подачей сигнала с частотой 1 кГц на вход устройства в течение 10 минут. Мощность замеряется при достижении 1 % THD (КНИ). Этот стандарт расчета мощности идентичен японскому стандарту EIAJ, принятому Electronic Industries Association of Japan.

DIN Music Power описывает значение длительной нагрузки музыкальным сигналом без риска повреждения. IEC Power тот же DIN Music Power, но со строго определённой длительностью измерений в 100 часов.

RMS (Rated Maxmum Sinusoidal) максимальная (предельная) синусоидальная мощность, при которой усилитель или колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. Обычно на 20 25 % выше DIN. RMS практически аналогичен AES power, определённый стандартом AES2-1984.

В советской и российской документации также можно встретить параметр Номинальная мощность он определяется при среднем положении регулятора громкости усилителя, при которой остальные параметры устройства соответствуют заявленным в техническом описании. Это манипулятивный показатель, как и program power, так как может измеряться при наиболее выгодном значении нелинейных искажений и может подгоняться под действующие стандарты. Что интересно, при всей манипулятивности Советский номинал, как правило, ниже прочих значений, например, номинальная мощность 35 Вт приблизительно соответствует 110 Вт RMS (AES power), 90 Вт IEC Power (DIN Music Power). Значения Program power обычно в два раза (и более) больше RMS, т.е. 35 Вт номинала могут соответствовать 220 Вт Program power.

АЧХ и частотный диапазон


Ещё интересней с частотным диапазоном. Известно, что человек способен слышать частоты от 20 Гц до 20 кГц, при этом в музыкальном сигнале HiRes форматов могут сохраняться ультразвуковые составляющие записи. При этом, очевидно, что широкий частотный диапазон усилителя создается не просто так. Повышение верхнего порога частотного диапазона это способ улучшить переходную характеристику усилителя, так как области верхних частот соответствует переходная характеристика в области малых времен. Подробнее об этом здесь.
Так, действующие до настоящего времени ГОСТ 24388-88. Усилители сигналов звуковой частоты бытовые. Общие технические условия, частично заимствованный из немецкого стандарта DIN 45500 1977 года и доработанный, предполагает для усилителей нулевой группы сложности (т.е. высокой верности воспроизведения) частотный диапазон 10 до 40000 Гц, а для усилителей первой группы сложности от 20 до 25000 Гц.

При этом неравномерность в стандарте указывается как раз в диапазоне слышимых частот и должна составлять не больше 0,3 дБ для нулевой и 0,5 для первой группы. Актуальным международным стандартом для усилителей является IEC 60268-3: 2018, нормы стандарта относительно АЧХ практически идентичны российскому (советскому) ГОСТ и немецкому DIN 45500.

Для потребителя это означает, что имеет смысл выбирать усилитель с диапазоном воспроизводимых частот как минимум от 20 Гц до 20 кГц с неравномерностью АЧХ не более 0,5 дБ. Также, если верность воспроизведения очень критична, имеет смысл выбирать усилитель с диапазоном от 10 Гц до 40 кГц (и выше) и неравномерностью в слышимом спектре (от 20 Гц до 20 кГц) не более 0,3 дБ. Подчеркну, не потому, что покупатель стал летучей мышью и слышит выше 20 кГц, а от того, что расширение частотного диапазона улучшает переходную характеристику.

КНИ (THD)


К значимой характеристике усилителя, которая объективно говорит о качестве, относится коэффициент гармонических (нелинейных) искажений (total harmonic distortion), согласно того же советского стандарта для предварительных и интегральных усилителей (как отдельных устройств) он должен составлять до 0,005% и для усилителей мощности до 0,007% для нулевой группы. А также 0,05% и 0,07%, соответственно, для первой группы. Как и в случае с АЧХ, аналогичные требования существуют во всех современных (и не очень) мировых стандартах для аудиоаппаратуры высокой верности воспроизведения.

Для потребителя это означает, что имеет смысл искать усилитель со значением КНИ с максимальным значением КНИ от 0,07%, а при высоких притязаниях и аудиофильских требованиях к верности воспроизведения 0,007% и ниже. Надо сказать, что найти такой усилитель достаточно просто, так как большинство современных могут похвастаться сравнительно низким КНИ.

IMD


Надо отметить, что помимо гармонических искажений, усилительная аппаратура является источником интермодуляционных, которые крайне редко попадают в даташиты, а между тем, серьезно вредят верности воспроизведения, воспринимаются, как замыленность звука. Стандарт DIN 45500, считающийся источником норм для аппаратуры HI-FI-класса, определял, что для усилителей высокой верности воспроизведения коэффициент интермодуляционных искажений (IMD) в полосе воспроизводимых частот 2508000 Гц (также вне этой полосы при снижении уровня звукового давления на 6 дБ), не должен превышать 3 %.

Из 400 даташитов и мануалов усилителей, которые мне доводилось видеть за последнее время, значения IMD были указаны в пяти, все они стояли больше 100К рублей. И дело даже не в том, что производитель во чтобы-то ни стало пытается скрыть истину, а в том, что измерение дополнительного параметра, о котором знает от силы 0,1% потребителей массовой техники, расценивается как не очень рациональное решение.

Для потребителя это означает, что скорее всего даже в документах достаточно дорогих устройств он этого параметра не найдёт. Определить интермодуляции можно на слух для этого достаточно использовать записи детского и женского дикант хора. Нужно постараться сконцентрировать внимание на отдельных голосах, если этого сделать не удаётся, а отдельные голоса слышаться не четко вероятно, речь идёт о достаточно большом коэффициенте интермодуляционных искажений. Важно также понимать, что их источником может быть не усилитель, а акустическая система, поэтому для этого субъективного теста имеет смысл использовать лучшую из возможных акустических систем либо сравнение с неким эталонным усилителем на одной акустической системе.

Отношение сигнал/взвешенный шум


Отношение сигнал/взвешенный шум параметр усилителей, демонстрирующий уровень шума при отсутствии сигнала. В соответствии с упоминавшимися стандартами, соотношение сигнал/взвешенный шум должно быть не менее 80 90 дБ для предварительных и интегральных HI-FI усилителей и 100 110 для усилителей мощности высокой верности. Минимальным значением для предварительных и интегральных усилителей является 63 дБ и для усилителей мощности 86 дБ. Надо сказать, что с этим параметром у большинства современных усилителей полный порядок, и если значения существенно отличаются от приведённых выше, можно говорить, что речь идёт явно об устройстве низкого качества.

Потребителю имеет смысл обратить внимание на соотношение сигнал/взвешенный шум, так как попытки сделать схемотехническое решение дешевле или не очень профессиональный подход к разводке печатной платы в современной аппаратуре иногда дают плачевные результаты. Важно, чтобы значение было как минимум 60-80 дБ, для притязательных меломанов следует ориентироваться на 90 дБ и выше.

Ламповые чудеса


Иногда в дорогих ламповых устройствах этот показатель ниже, в силу несовершенства архаичных схемотехнических решений, когда этот параметр отдается в жертву ради каких-либо других полезных, с точки зрения создателей или эксцентричных потребителей, эффектов, например, какого-то характерного звучания, которое оценивают, как более музыкальное, тёплое, жанрово совместимое. К слову, аналогичная история происходит с нелинейными искажениями. Так, коэффициент гармоник даже в сверхдорогих ламповых усилителях может достигать 3 и даже 5%.

Классы усилителей


Класс А
Традиционно считается, что наибольшей верностью воспроизведения обладают усилители класса A. В теории, простая схемотехника и, как правило, однотактный режим работы без отсечки сигнала позволяет свести к минимуму нелинейные искажения (как THD, так и IMD), а также уменьшить порядок гармоник. Обратной стороной решения являются крошечные КПД, которые редко превышают 15 17%, а соответственно, дополнительными проблемами становятся громадные размеры и масса. Закономерно растет и энергопотребление.

Для потребителей, стремящихся к максимальной верности воспроизведения, не стесненных в средствах и не опасающихся огромной массы и габаритов этот вариант идеален. Для всех остальных не рационален и неприемлем.

Класс B
В классе B, режим работы двухтактный, элемент (лампа, npn-транзистор) воспроизводит либо положительные, либо отрицательные(pnp-транзисторы) входные сигналы. При этом угол проводимости равен 180 или незначительно превосходит эту величину, в связи с чем растут IMD и THD. Достоинством режима является сравнительно высокий КПД, который в теории может достигать 75%. Сегодня этот класс почти полностью заменили усилители класса D класса A/B.

Класс A/B
Из класса АВ, понятно, что это попытка объединить высокий КПД и низкий коэффициент нелинейных искажений. Чтобы отказаться от ступенчатого перехода, существующего в классе B, применяют угол отсечки 90 градусов и более при переключении усилительных элементов. Соответственно, рабочая точка находится в начале линейного участка вольтамперной характеристики. По этой причине исключается запирание усилительных элементов и через них протекает ток покоя, порой достаточно значительный. Это несколько снижает КПД, по сравнению с классом B, но значительно уменьшает нелинейные искажения. Недостатком этого класса является незначительная проблема стабилизации тока покоя, которая решается различными способами.

Класс D
Самым распространенным, дешевым и высокопроизводительным, а также одним из самых спорных классов усилителей, является класс D. Такие усилители часто называют цифровыми, так как для усиления используется ШИМ-модуляция. Они состоят из блока фильтрации, 4-х канального ШИМ-контроллера, усилителя тока, выходного НЧ-фильтра, блока защит и блока питания. Ключевое достоинство: предельно высокий, по сравнению с другими классами КПД, в теории способный достигать 90% и более. Также класс D имеет ряд проблем, а именно:

  • Нелинейности, вызванные способом модуляции (ошибки тактирования).
  • Несоответствие временных характеристик цепей управления выходными транзисторами.
  • Нелинейность LC-фильтра низких частот.
  • Электромагнитные наводки, в.т.ч. помехи от источника питания.


Врожденными болезнями являются лишь первый и второй пункт, их влияние становится всё меньше с совершенствованием производимых усилительных чипов. Очень многие проблемы, благодаря которым эти усилители заслужили не очень хорошую репутацию, были побеждены производителями ещё в конце нулевых. Нелинейность LC-фильтра низких частот решается схемотехнически и зависит исключительно о схемотехники конкретного усилителя. Электромагнитные наводки и помехи от источника питания решаются также схемотехнически и конструктивно. Соответственно, класс D это совсем не приговор.

Сухой остаток


Основными критериями качества для усилителей являются такие параметры, как мощность, АЧХ, THD. Также имеет смысл обратить внимание на IMD и соотношение сигнал/взвешенный шум. Стандартами, созданными в разных странах за после 40 лет описаны значения этих, которым должны соответствовать усилители высокой верности воспроизведения, к таким стандартам относятся DIN 45500, ГОСТ 24388-88, IEC 60581, IEC 60268-3: 2018, в соответствии с нормами которых созданы большинство современных усилителей. Усилитель высокой верности воспроизведения можно построить в любом классе, в том числе и в классе D, которые в настоящий момент являются наиболее распространёнными. Я постарался выбрать критерии наиболее значимые для верности воспроизведения усилителя. Описал безусловно не все, так демпфинг фактор, разделение каналов по усилению и переходное затухание между стереоканалами я оставил для других материалов. Если вам есть, что добавить буду искренне признателен за дополнительные сведения в комментариях.

Реклама
В нашем каталоге представлен широкий ассортимент разнообразной электроники: наушников, усилителей, акустических систем, телевизоров и других устройств, мы также не обошли стороной приверженцев божественного звука.
Подробнее..

Stereo to mono downmix. ZK-502T, ZK-100, TPA3116, NE5532, AC20B. Доработка стерео в моно. Схема, устройство, хак

08.04.2021 14:12:31 | Автор: admin

Зачем это вообще нужно?! Резонный вопрос. Иногда бывает нужно. Всегда, когда надо подключить один источник звука, например сабвуфер. Или, как в моём случае стояла задача озвучить open-air танцевальное мероприятие. В наличии был гитарный комбик, в который я воткнул плату усилителя D класса ZK-502T на TPA3116 и переделал на питание от литиевой батареи. И всё было хорошо, только воспроизводить он мог только один канал, поскольку динамик один. На самом деле вопросов и решений больше, чем один. Но мы их пропустим и перейдём сразу к технике.

ZK-502T hackZK-502T hack

На плате есть усилитель на TPA3116 класса D, микропроцессор с ЦАПом, АЦП, MUX, USB и blutooth, регулировка высоких и низких частот. Вот совсем не high-end, имеет недостатки, но для наших целей то, что надо.

Проблема заключается в том, что выходные каскады активных устройств в аналоговой цепи как правило имеют малый импеданс и просто закоротить правый и левый каналы нельзя. В лучшем случае устройство уйдёт в защиту, в худшем - сгорит.

Есть разные способы решения данной задачи. Рассмотрим две из них:

  • сумматор на резисторах

  • сумматор на операционном усилителе

Сумматор на резисторах

Вероятно самый простой способ. Берём 3 резистора и паяем по схеме прямо на вход комбика. Потом подаём на один из каналов платы-усилителя и всё.

Простейший сумматор аналогового сигналаПростейший сумматор аналогового сигнала

Не вдаваясь в подробности, будет т.н. взаимопроникновение каналов, что приводит к искажениям. Кроме того, на плате усилителя есть blutooth модуль и его ЦАП прошить будет проблематично.

Сумматор на операционном усилителе

Этот вариант близок к идеальному. Правда посложнее. Тема довольно большая, поэтому ограничимся поверхностным описанием неинвертирующего сумматора, точнее буфера или повторителя на NE5532:

Неинвертирующий сумматор на op-ampНеинвертирующий сумматор на op-amp

Не вдаваясь в подробности, получаем на выходе сумму сигналов обоих каналов без взаимного проникновения и искажений.

Теперь надо найти точку, где вклиниться в схему. Вероятно самое удачное место будет после ЦАПа и мультиплексора и перед операционниками регуровки тембра.

Дальше я снял видео доработки с пояснениями и описаниями работы отдельных блоков схемы:

Операционники живут на двухполярном питании, я делал на однополярном. Это возможно с т.н. виртуальной землёй и блокирующими ёмкостями для ограничения постоянной составляющей. Подробности в видео.


Я поставил себе цель понять, как работают операционные усилители и сделать рабочую схему. И это мне удалось. Заодно разобрался в схеме вышеуказанного усилителя. И вообще узнал много нового.

Надеюсь, кому-нибудь будет полезно!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru