Русский
Русский
English
Статистика
Реклама

E-ink

Беспроводная мини погодная станция с e-paper экраном на батарейках

25.02.2021 12:15:55 | Автор: admin
Приветствую всех читателей Habr! В своей сегодняшней статье хочу поделиться с вами своим новым устройством датчиком температуры, влажности и давления с функцией предсказания погоды. Датчик работает на микроконтроллерах nRF52. Данный проект это логическое продолжение этого проекта. В новом датчике используется дисплей на электронных чернилах размером 2.9 дюймов. В датчике установлен сенсор BME280, так же есть место под установку датчиков SI7021, HTU21D. Работает от батареек CR2450. Может передавать данные в системы Умного Дома, так же может работать в режиме без сети.




Для этого проекта был выбрана модель дисплея на электронных чернилах GDEH029A1 размером экрана 2.9 дюймов. Примерно через 3 месяца тестирования на смену этому дисплею производители выпустили на рынок новую модель GDEM029T94(V2 по версии Waveshare).
Старую модель стало трудно купить, поэтому пришлось добавлять поддержку нового дисплея в проект.



Характеристики дисплеев:
Разрешение: 296х128
Диапазон рабочих температур: 0 50 C
Потребление в рабочем режиме: 3мА
Потребление в режиме глубокого сна: 1мкА
Минимальное время обновления экрана: 0.3 сек.

Разрабатывал сразу несколько вариантов плат под несколько вариантов радио модулей nRF52 от разных производителей. Остановился на модулях MINEW MS50SFA2 (nRF52832) и EBYTE E73 2G4M08S1C (nRF52840), E73 2G4M08S1E (nRF52833).



Модуль MINEW MS50SFA2 имеет небольшие размеры, но не очень большое количество выведенных ножек. В моем проекте были задействованы все доступные ножки MS50SFA2. У модулей E73 ножек на много больше, поэтому впоследствии была разработана расширенная версия датчика. В раcширеной версии добавлен активный биззер, датчик освещенности MAX44009, заменены батарейки с CR2450 на ААА.

Схема датчика



Корпус датчика печатается на FDM 3D принтере, что бы добиться более или менее приличного вида, корпус после печати необходимо отшлифовать наждачной бумагой и отполировать. Так как у датчика есть светодиод, а в расширенной версии датчик освещенности, то в корпусе необходимо было сделать два сквозных отверстия, после сверления отверстий, они были залиты полимерной смолой для SLA 3D принтера и засвечены УФ лампой, после этого отполированы.





ПО датчика было сделано для работы в сети MySENSORS, это открытый проект домашней автоматизации. К слову, датчик будет нормально работать и без сети. На данный момент в проекте поддерживается работа с двумя моделями дисплеев GDEH029A1, GDEM029T94. Возможно позднее будет добавлена поддержка трехцветных дисплеев.

Опишу немного функционал устройства. Устройство при подаче питания осуществляет попытку поиска сети, если сеть не найдена, то устройство переходит в основной режим работы без работы в сети (не шлет данные), но периодически делает короткие запросы на поиск сети(~раз в час). Интервал опроса сенсора один раз в минуту, обновление экрана и отправка данных(если сеть доступна) происходит при изменении данных температуры на 0.5C, влажности на 1%, давления на 1 единицу, уровня освещенности на 1 люкс, изменения прогноза по погоде. Интервал опроса батарейки задается пользователем в интервале от 1 часа до 24 часов, по умолчанию опрос один раз в 6 часов.

Датчик может настраиваться внешними командами из интерфейса УД. Для этого необходимо активировать нужный пункт меню конфигурация датчика нажатием кнопки меню. После активации режима конфигурации датчик перейдет в режим прослушивания на 20 секунд. В этот интервал необходимо отправить команду. Внешними командами можно настроить интервал проверки батарейки, изменить вывод информации на экран в инверсии, отключить индикацию светодиода, отключить звуковой сигнал.

Описание алгоритма расчета прогноза погоды (NXP Application Note 3914 | John B. Young)

При работе в радиосети датчик передает данные:
  • Температура,
  • Влажность,
  • Атмосферное давление,
  • Уровень освещенности,
  • Прогноз погоды,
  • Уровень сигнала,
  • Уровень заряда батарейки,
  • Причина перезагрузки






Для компиляции нужной версии ПО необходимо сконфигурировать файл MyConfig.h.
В файле задаются:
  • Язык вывода информации (RU,ENG)
  • Режим оптимизации питания при передаче данных
  • Подключение датчика освещенности
  • Подключение активного биззера
  • Скорость передачи данных
  • Версия подключенного дисплея


//#define EINK_V1#define DCPOWER#define LIGHTSENS#define BIZZER#define LANG_EN//#define MY_DEBUG//#define MY_PASSIVE_NODE//#define MY_NODE_ID 101#define MY_RADIO_NRF5_ESB#define MY_NRF5_ESB_MODE (NRF5_1MBPS)//#define MY_NRF5_ESB_MODE (NRF5_250KBPS)#define MY_RESET_REASON_TEXT#define SN "EFEKTA WeatherStation 290"#define SV "0.45"


Потребление датчика в режиме сна составляет в среднем 3мкА (на nRF52840 больше), в режиме считывания сенсора и обновления экрана 5мА(среднее), в режиме передачи данных 8мА(среднее), время передачи одного сообщения 10мc (идеальные условия).

Проект датчика в варианте с модулем MINEW MS50SFA2 может быть легко повторен. Из сложных моментов можно выделить пайку разъема под шлейф экрана. Как это сделать проще рекомендую посмотреть мое короткое видео по пайке разъема. Так же датчик можно приобрести готовым, тем самым поддержав мои открытые разработки.

Видео пайки разъема



Фото датчика

















Видео с демонстрацией работы датчика



GitHub проекта github.com/smartboxchannel/

В файле readme находится инструкция по установке и настройке среды для редактирования и компиляции ПО для датчика.

В завершении сделаю небольшой фото анонс проектов с которыми в скором времени поделюсь и о которых раскажу.

Новые проекты на стадии тестирования
Датчик качества воздуха на батарейках с e-paper экраном(аналогов не нашел)









Мини датчик влажности почвы с e-paper дисплеем(аналогов не нашел)










Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов, а так же хотите узнавать первыми о моих проектах, то приглашаю всех заинтересованных в телеграм чат DIYDEV.

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Спасибо за внимание, всем добра!

Подробнее..

Мультисенсорный беспроводной датчик с E-Ink дисплеем

08.04.2021 12:19:54 | Автор: admin
Приветствую всех читателей Хабра и особенно читателей раздела DIY или Сделай сам! В сегодняшней статье я расскажу о своем очередном DIY проекте из серии устройств с дисплеями на электронных чернилах(e-ink). Устройство о котором пойдет речь это беспроводной мультисенсорный датчик с e-paper дисплеем 2.13 дюймов. На датчик можно установить сенсор температуры и влажности SHT21, HTU21D, SI7021, сенсор температуры влажности и давления BME280, сенсор атмосферного давления BMP280, сенсор освещенности MAX44009. Датчик работает от одной батарейки CR2450. Но ничего не мешает напаять на датчик держатель под батарейки CR2430 или CR2477.




Проект датчика с e-ink дисплеем размером 2.13 дюймов начинался достаточно давно. Первый прототип был сделан более года назад. Та первая версия работала на двух батарейках cr2450, имела стабилизированное питание. Со временем проект изменялся и оптимизировался, уменьшались размеры, менялись радио модули и сенсоры.


Плата окончательной версии датчика имеет размеры 72 mm * 31 mm, толщина текстолита 1.2mm. Размеры датчика в корпусе 76mm * 35mm * 12mm.
Устройство работает на микроконтроллере nRF52840, используется радио модуль MS88SF3 от компании MINEW. Модуль не имеет боковых падов для пайки, они расположены снизу радио модуля. Эта особенность немного напрягала, но глаза боятся, а руки делают. В итоге модуль достаточно просто напаивается феном (плату устройства, на которую устанавливался радио модуль я грел снизу).


Устройство имеет две модификации платы. В модификации А на датчике установлен сенсор BME280, светодиод, в модификации B добавлен датчик освещенности, датчики температуры и влажности SHT21, HTU21D, SI7021, добавлена возможность установки сенсора BMP280, добавлена защита от переполюсовки на транзисторе.




В модификации B место под пайку сенсоров BME280 и BMP280 сделал универсальным, BMP280 отлично устанавливается на место BME280. Это изменение я сделал уже в крайней ревизии второй версии датчика. Причиной стало резкое удорожание сенсоров BME (в среднем на 70% на последние два месяца). Теперь появилась возможность заменить функционал BME280 установив на плату BMP280 + SHT21 (серия BMP пока не поднимается в цене). Если кому-то известна причина такого роста цен на сенсоры BME, расскажите об этом в комментариях.


Корпус датчика был напечатан на FDM 3D принтере. После печати корпус дополнительно шлифовался и полировался. Для светодиода в модификации А и сенсора освещенности в модификации B в верхней части корпуса на внутренней стороне имеются углубления для последующего сверления отверстий. Просверленные отверстия я заливал полимерной смолой для SLA принтера.


Программа датчика написана под опенсорс проект MySensors. Датчик выводит на дисплей данные с сенсоров, заряд батарейки, уровень сигнала, прогноз изменения погоды на ближайшие часы. Рядом с данными с сенсоров так же выводится стрелками направление изменения значений. Было несколько вариантов дизайна интерфейса, варианты 2 и 3 доступны на моем гитхаб.






Есть возможность по нажатию кнопки инвертировать экран. На кнопку добавлен функционал простого меню с пунктами: инвертирование цвета, конфигурация устройства, презентация устройства, сброс датчика. В режиме конфигурации датчик в течение 20 секунд слушает эфир, в это время можно с контроллера УД отправить на датчик конфигурационные команды: изменение интервала отправки данных с сенсоров(от 1 минуты до 1 часа с шагом в 1 минуту), изменение интервала отправки данных о состояния батареи и уровне сигнала(от 1 часа до 24 часов). В режиме презентации устройство отправляет на контроллер УД данные о себе(название, версия прошивки) и о сенсорах, делает запрос о том в какой системе(метрическая или имперская) работает сеть. Так же отправляет свои конфигурационные настройки.

При работе в радиосети датчик передает данные:
  • Температура,
  • Влажность,
  • Атмосферное давление,
  • Уровень освещенности,
  • Прогноз погоды,
  • Уровень сигнала,
  • Уровень заряда батарейки,
  • Причина перезагрузки


Если сеть работает в метрической системе, то данные о температуре отправляются и выводятся на экран в Цельсиях, а данные об атмосферном давлении в миллиметрах ртутного столба(только при компиляции RU версии), иначе температура выводится в Фарингейтах, а атмосферное давление в Паскалях.

Перед компиляцией программы необходимо внести изменения в конфигурационный файл aConfig.h.
Какая языковая версия будет скомпелированна(RU или ENG):
#define LANG_RU

Вывод дебага в сериал:
#define MY_DEBUG

Мощность радиопередатчика:
#define MY_NRF5_ESB_PA_LEVEL (0x8UL)

Скорость передачи данных:
#define MY_NRF5_ESB_MODE (NRF5_1MBPS)


Потребление устройства в режиме сна 5 мкА, в режиме чтения сенсоров и обновления экрана 2-3 мА. В режиме передачи данных 8 мА, в режиме прослушивания 5мА. Время обновления экрана 300мс, время передачи одного сообщения с данными сенсоров 10мс, время передачи сообщения о заряде батареи с ожиданием эхо 100-300мс. Срок работы на одной батарейке CR2450 год и более(с конфигурацией опроса сенсоров раз в минуту и отправкой данных при изменении, опросе напряжения батарейки один раз в 6 часов и обязательной отправкой без сравнения).

Видео с демонстрацией работы датчика:

Рекомендую подписалтся на мой домашний канал, на нем я впервую очередь публикую самую свежую информацию о своих новых опенсорс проектах, их тестах.


Фото датчика:















GitHub проекта github.com/smartboxchannel/

В файле readme находится инструкция по установке и настройке среды для редактирования и компиляции ПО для датчика.

Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов, а так же хотите узнавать первыми о моих проектах, то приглашаю всех заинтересованных в телеграм чат DIYDEV.

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Спасибо за внимание, всем добра!

Подробнее..

Миниатюрный датчик качества воздуха на батарейке с e-ink экраном

21.06.2021 12:17:59 | Автор: admin
Приветствую всех читателей Habr! В своей сегодняшней статье, хочу рассказать вам о своем новом DIY беспроводном устройстве датчике качества воздуха. Помимо оценки качества воздуха, датчик может оценивать уровень освещенности в помещении, температуру, влажность и атмосферное давление, на основе данных атмосферного давления, устройство может предсказывать прогноз погоды. Это полностью открытый проект.



Внутреннее устройство


Датчик работает на микроконтроллерах nRF52, были разработаны 4 версии плат датчика под радиомодули nRF52 разных производителей. Одна основная и еще три расширенные версии (пояснения будут чуть ниже по тексту).

Используемые в проекте модели радиомодулей:

  • основной MINEW MS88SF3 (nRF52833, nRF52840)
  • дополнительные: MINEW MS50SFA1 (nRF52810, nRF52811), MINEW MS50SFA2 (nRF52832), EBYTE E73-2G4M08S1C (nRF52840) и EBYTE E73-2G4M08S1E (nRF52833)

Используемые в проекте сенсоры:

  • сенсор качества воздуха в помещении для измерения ЛОС SGP40
  • сенсор давления, температуры и влажности BME280
  • сенсор освещенности MAX44009

Позднее, из-за проблем с производством электронных компонентов и невероятном росте цен на многие компоненты, в проект были добавлены сенсоры BMP280 и SHTC3 которые по функционалу способны заменить сенсор BME280. По этой причине, были сделаны три дополнительные модификации плат, так же добавлена поддержка дополнительных радиомодулей, добавлена защита от переполюсовки, доработан дизайн плат.

Устройство может выводить данные на экране и передавать данные в системы Умного Дома, так же может работать в режиме без сети.

Для вывода информации использовался e-ink дисплей со сверхнизким потреблением и диагональю 2.13 дюймов компании WaveShare.



Характеристики дисплея:

  • Разрешение: 250x122
  • Диапазон рабочих температур: 0 50 C
  • Потребление в рабочем режиме: 3мА
  • Потребление в режиме глубокого сна: 1мкА
  • Минимальное время обновления экрана: 0.3 сек.

В ближайшее время в проект будет добавлена поддержка дисплея DES e-Ink 2.13 c рабочим температурным режимом -20C~60C (что такое DES).
..upd Пока статья писалась сделал драйвер, дисплей протестирован, в морозильнике работает :), из минусов разрешение 212х104, но зато морозов не боится, в общем рабочий вариант.


Основная версия PCB датчика:

Дополнительные версии:



Основным сенсором в данном проекте является сенсор качества воздуха в помещении SGP40. Можно сказать что это новинка на рынке от компании Sensorion c весьма неплохими характеристиками.


Сенсор измеряет общую концентрации летучих органических веществ (TVOC). В сравнении с предыдущим датчиком этой компании SGP30 потребление было значительно снижено, 48 мА при измерении у SGP30 и 2.6мА у SGP40. Правда предыдущий датчик мог отдавать уже готовые значения VOC и эквивалента СО2, в то время как новинка отдает сырые данные которые в дальнейшем надо обрабатывать на стороне МК при помощи поставляемой с датчиком библиотеки с алгоритмом расчета качества воздуха. Даташит на датчик SGP40.


Для работы в батарейном и низко потребляющем устройстве пришлось доработать библиотеку Adafruit_SGP40. Была добавлена работа с нагревателем сенсора, получение, сохранение, выгрузка текущих состояний алгоритма для быстрого старта датчика, например после замены батарейки, минуя режим обучения. Почему-то никто не озадачился этими моментами, найти готовую библиотеку поддерживающую полный функционал сенсора мне не удалось. Модифицированная библиотека находится на моем GitHub.

Схема устройства:



Передача датчиком данных с сенсоров в системы Умного Дома реализована на открытом проекте MySENSORS.




Функционал датчика


Устройство, при подаче питания, осуществляет попытку поиска сети, если сеть не найдена, то устройство переходит в основной режим работы без работы в сети (не шлет данные), но периодически делает короткие запросы на поиск сети(~раз в 2 часа). Интервал опроса сенсора SGP40 3 секунды, чтение остальных сенсоров, отправка данных, основное обновление экрана раз в 1 минуту. Обновление экрана и отправка данных(если сеть доступна) происходит при изменении данных уровня качества воздуха (TVOC) на 10 единиц, температуры на 0.5C, влажности на 5%, давления на 1 единицу, при изменении уровня освещенности на 10 люкс, при изменении прогноза по погоде. Интервал опроса батарейки задается пользователем в интервале от 1 часа до 24 часов, по умолчанию опрос один раз в 6 часов.
Так же есть дополнительная подпрограмма для обновления экрана и отправка данных при резком повышении уровня TVOC на 30 единиц, интервал проверки раз в 6 секунд.

При первом включении устройства, происходит цикл обучения алгоритма расчета качества воздуха, в моей реализации максимальное время обучения 12 часов. После обучения, датчик начинает сохранять в памяти МК текущие состояния алгоритма с четырехчасовым интервалом. При сбросе устройства, при возобновлении работы после выключения устройства, при замене батареек происходит проверка наличия записей состояний алгоритма в памяти, если они есть то эти данные выгружаются, и устройство минует период обучения. Для удаления сохраненных данных, необходимо нажать на кнопку меню на устройстве и выбрать соответствующий пункт меню. сброс устройства.

Доступный функционал кнопки меню:

  1. Инверсия экрана
  2. Отправка презентации
  3. Вход в режим конфигурации внешними командами по радио
  4. Поиск сети
  5. Сброс устройства

Так же, помимо кнопки меню, датчик может настраиваться внешними командами из интерфейса УД. Для этого необходимо активировать нужный пункт меню конфигурация датчика нажатием кнопки меню. После активации режима конфигурации, датчик перейдет в режим прослушивания на 20 секунд. В этот интервал необходимо отправить команду. Внешними командами можно настроить интервал проверки батарейки, изменить вывод информации на экран в инверсии, выбор режима работы: LP (чтение сенсора SGP40 раз в 3 секунды) или ULP (чтение сенсора SGP40 раз в 5 секунд).

Датчик умеет анализировать данные атмосферного давления и рассчитывать по ним прогноз погоды, выводить на экран данные о прогнозе погоды и отправлять эти значения в УД. Описание алгоритма расчета прогноза погоды (NXP Application Note 3914 | John B. Young)

На экране рядом с каждым типом данных выводится индикация направления изменения значений.



Для компиляции нужной версии ПО необходимо сконфигурировать файл aConfig.h.

//#define MY_DEBUG#define LANG_RU // If this is not used the English localization will be displayed.#ifndef LANG_RU#define LANG_EN#endif#define SN "eON Air Quality Sensor"#define SV "0.99"#define MY_RADIO_NRF5_ESB#define MY_NRF5_ESB_PA_LEVEL (0x8UL)//#define MY_PASSIVE_NODE//#define MY_NODE_ID 151//#define MY_NRF5_ESB_MODE (NRF5_1MBPS)#define MY_NRF5_ESB_MODE (NRF5_250KBPS)#define ESPECIALLY#define SEND_RESET_REASON#define MY_RESET_REASON_TEXT

Потребление датчика в режиме сна составляет в среднем 33мкА (смотрите даташит на SGP40), в режиме считывания сенсоров и обновления экрана 4мА(среднее), в режиме передачи данных 8мА(среднее), время передачи одного сообщения 10мc (идеальные условия).
Датчик работает от батарейки CR2477 (950мА), среднее расчетное время работы устройства 1 год(зависит от конфигурации прошивки, установленных сенсорах на устройстве, больше сенсоров больше данных нужно будет отправлять, а передача по воздуху это основной потребитель), данных о реальном сроке работы пока нет, устройство пока работает 2 месяца.



Модели разработанного корпуса датчика я печатал на FDM 3D принтере, что бы добиться более или менее приличного вида, корпус после печати шлифовался и полировался. На задней крышке корпуса можно установить магниты.



GitHub проекта github.com/smartboxchannel/

В файле readme находится инструкция по установке и настройке среды для редактирования и компиляции ПО для датчика.

OPEN SOURCE HARDWARE CERTIFICATION
OSHWA UID: RU000004


В завершении, уже как обычно, сделаю небольшой фото анонс проектов с которыми в скором времени поделюсь и о которых расскажу (Датчики влажности почвы Zigbee, Уличный датчик температуры и влажности Zigbee Long Range, Датчик качества воздуха bme680 c e-ink3.7).

Новые проекты на стадии тестирования












Если вам интересно все, что связано с DIY, вы являетесь DIY разработчиком или хотите только начать, вы заинтересованы в использовании DIY девайсов, а так же хотите узнавать первыми о моих проектах, то приглашаю всех в телеграм чат DIYDEV.

Если вы как и я, хотите понять что такое Zigbee, попытаться сделать свои первые DIY Zigbee устройства, то приглашаю вас в чат для разработчиков zigbee девайсов/прошивок ZIGDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тех кто смотрит в будущее IOT приглашаю в телеграм-чат Open Thread (Matter, Project CHIP). (что такое Thread?, что такое Matter?)

Спасибо за внимание, всем добра!


Подробнее..

Собираем недорогой 9.7quot E-Ink дисплей для отображения чего угодно

08.07.2020 12:13:32 | Автор: admin
Всем привет. Давно хотел собрать большой E-Ink дисплей, который можно поставить на стол и отображать на нем полезную информацию (погоду, календарь и т.д.) В этой статье расскажу, как можно собрать такое устройство на базе ESP32 и дисплея от Kindle DX значительно дешевле, чем Waveshare.



Идея собрать такое устройство возникла еще зимой. Отдавать 120 вечнозеленых за дисплей от Waveshare и 30 за их контроллер совсем не хотелось. Поиск на али показал, что можно купить 9.7 дисплей ED097OC4 от Kindle DX за 30 долларов с доставкой. На нем и решил остановиться.
После гугления решил остановиться на вот этом самодельном контроллере hackaday.io/project/168193-epdiy-976-e-paper-controller и он же на гитхабе github.com/vroland/epdiy Проект активно развивается и я решил к нему присоединиться.

Дальше, как мне казалось, все будет просто: заказываем платы и компоненты, собираем, подключаем и радуемся. Но не тут то было. Спаяв плату и скомпилировав демку, я получил вот такую картинку.



Связался с автором проекта, пришли к выводу, что причиной мог стать сдвиговый регистр (я применил немного не тот, который указан). Но предположение не подтвердилось. После ковыряния кода и экспериментов с частотой сигнала было найдено решение.
Как оказалось, дисплеи ED097OC4 бывают как минимум трех типов: обычный ED097OC4, высоко контрастный ED097TC2 (если хотите такой, стоит уточнить у продавца) и низкого качестве, которые и попались мне. Подробности изучения проблемы доступны вот здесь github.com/vroland/epdiy/issues/15

Тем не менее, фикс в прошивке сделан и все заработало с почти незаметными артефактами в виде сжатия нескольких пикселей в районе полос на 1/3 и 2/3 экрана (обратите внимание на показания температуры на первой картинке в статье).

Пришло время написать программу для отображения погоды. Тут пришлось допилить драйвер и добавить недостающие функции отрисовки. А дальше портируем вот этот замечательный проект github.com/G6EJD/ESP32-e-Paper-Weather-Display под наш дисплей и драйвер, немного меняем расположения элементов, убираем рамки и делаем прочие украшательства на свой вкус. Подробно останавливаться на коде не буду, все описал на гитхабе github.com/vroland/epdiy/tree/master/examples/weather

В итоге имеем интересное многофункциональное устройство на базе уже народного модуля умного дома ESP32 и одного из самых больших и доступных E-Ink дисплеев на рынке. Все вместе (дисплей, компоненты, печатные платы) мне обошлось около 70 долларов.

Полезные ссылки:
essentialscrap.com/eink/waveforms.html
hackaday.io/project/21607-paperback-a-desktop-epaper-monitor
hackaday.io/project/11537-nekocal-an-e-ink-calendar
Подробнее..

Мини Термометр amp гигрометр с E-PAPER на nRF52 или о том, что пока не выпустили производители

10.09.2020 06:07:43 | Автор: admin
Приветствую всех читателей Habr! Хочу поделится с вами своим новым опенсорс проектом. Из названия статьи понятно что речь пойдет о датчике температуры и влажности с дисплеем на электронных чернилах. Уже достаточно давно я попробовал сделать проект датчика температуры с такими дисплеями в виде ардуино модуля. С тех пор тема e-ink дисплеев меня заинтересовала.

Целью данного проекта была разрабока миниатюрного датчика, сравнимого по размерам с обычными беспроводными датчиками температуры, но при этом получить еще и вывод данных на самом устройсве. И при всех этих условиях что бы устройство работало от небольшой батарейки достаточно долго. Что из этого получилось, прошу оценить и не скупится на комментарии.




Датчик работает на чипах nRF52, для данного проекта был выбран модуль от компании MINEW. Модуль небольшого размера, имеет 18 выводов, 13 из которых gpio, два варианта антен, печатная и керамическая, так же на модуль устанавливается несколько вариантов чипов, nRF52810 и nRF52832, а после непродолжительного общения с менеджментом компании мне без вопросов поставили на эти модули чипы nRF52811. Так я кстати получил свои первые 811-ые и к тому же по цене в полтора раза ниже чем мог бы купить у дистрибьютеров просто чипы, но это уже другая история. На модуле разведен вариант схема DC-DC и часовым кварцем. Размеры модуля 12мм х 15мм. Присутствует металлический экран.



Из линейки e-ink дисплеев выбор естественно пал на достаточно новую модель м размером экрана 1.02 дюйма. Стоимость одного дюйма электронных чернил составила 500 рублей, что мне показалось приемлемо. Небольшие трудности с разработкой платы под этот дисплей вызвал его разъем, 30 пиновый FPC c шагом в 0.5мм. Ширина FPC разъема намного больше ширины самого дисплея, что вызвало неудобство при проектировании. Но зато было проше с объвязкой дисплея, она проще чем на других моделях (даташит GDEW0102T4).



Из цифровых сенсоров температуры и влажности решил остановится на sht20, их и в достаточном колличестве было у меня, простой достаточно, хорошая цена, удобный размер. Так же одним из плюсов можно назвать то что вместо sht20 при желании легко установить sht21, si7020, si7021, htu20d, htu21d и hdc1080, но последний вариант не самый очень ;).

Под датчик проектировалось 2 платы, одна под экран и его объвязку, вторая под радиомодуль, сенсор температуры и влажности и батарейку. Ключевыми параметрами размеров плат были размеры экрана и батарейки. На плате c экраном были заложены отверстия под винты (1.4 х 3) для крепления платы к корпусу, на второй плате были сделаны вырезы для удобной установки винтов. Так как это DIY устройство я мог себе позволить поставить вкусную батарейку CR2450. Ну а если мне покажется когда то что устройство толстовато, то я всегда смогу напаять держатель под батарейку CR2430. В итоге получилось две платы размерами 36мм на 26мм.



Корпус проектировался в СолидВоркс, модели плат были экспортированны из DipTrace в формате DXF, которые уже в СолидВоркс были преобразованы в 3D модели. Корпус состоит из двух частей и кнопки, Крепления половинок корпуса друг к другу сделано так же винтами(1.4 х 4) с одной стороны и выступающим зацепом c другой стороны. Сделаны два отверстия для циркуляции воздуха для сенсора температуры и влажности.



В этом проекте корпус был напечатан на FDM принтере, конечно качество печати ниже чем на SLA принтере, но по прочности изделия из из жидких смол сильно уступают изделиям из филаментной нити, а из за особенностей корпуса, прочность была важна. Так что морально приготовился к шлифовке и полировке. Впринципе получилось достаточно качественно.



Примерно так происходила разработка железа, постарался описать все этапы и некоторые нюансы, если она вам показалась трудоемкой, то то это не так, трудоемким на самом деле было ПО. Как и прежде я свои проекты делаю под MySensors, хотя признаюсь что уже не с тем энтузиазмом что прежде. В какие то моменты реализации стал упиратся, каких то вещей не хватает, какие то просто невозможны. Альтернативой на данный момент для себя я вижу Open Thread, по крайней мере он кажется достаточно привлекательным.

Cхема устройства







В итоге все свои требования к функционалу реализовать получилось. Устройство может работать с контроллером УД, так же устройсво может работать напрямую с каким либо устройством в сети МySensor. Привязка устройст для прямого обмена может происходить как посредством конфигурации устройств через контроллер УД, внешними командами, так и без участия контроллера УД с помошью простого нажатия кнопки для активации режима привязки(binding). Датчик температуры и другое устройство к которому привязан датчик могут нормально поддерживать обмен даже без работающего шлюза MySensors или работающего контроллера УД, что безусловно повышает отказоустойчивость. Отдельная проблема была с драйверами eink дисплея, вероятно потому что дисплей достаточно новый, на сайте производителя и сайте WaveShare(предлагающий eink экраны Good Display под своим брендом) реализации библиотек достаточно сырые. Пришлось что то переделать, что то дописать. В датчике реализовано поддержка нескольких языков, инверсия цвета по внешнец команде в режиме конфигугрирования устройства, несколько вариантов шрифтов так же меняемые по внешней команде пв режиме конфигурации устройства. Датчик выводит на экран показания температуры и влажности, заряд батареи и уровень сигнала. Интервал замеров температуры и влажности, интервал замера уровня батарейки можно задать так же внешней командой. Для температуры и влажности в минутах, для уровня заряда батарейки в часах. Передает датчик в УД следующие данные: температура, влажность, уровень заряда в %, напряжение, уровень сигнала, причину перезагрузки.



Посмотреть как это выглядит можно в небольшом видеоролике

таймстампы интересных моментов:
3.10 Конфигурирование (смена шрифта, инверсия цвета)
5.10 Замер потребления, работа WTD

Если кому то интересны мои разработки то после прочтения статьи рекомендую перейти на канал и подписатся, там информацию по новым разработкам я публикую в первую очередь.

В спящем режиме датчик потребляет 2мкА, сброс WTD кажные 5 секунд, потребление в момент сброса 4-5мкА. в режиме работы с экраном и сенсором температуры и влажности 2-3мА, в режиме передачи 5-8мА(такой диапозон в 3 мА связан с тем что датчик сам регулирует мощность передачи на основе данных по уровню сигнала.

Под спойлером фотографии датчика













На этом хочу откланяться, если вам интересно все что связано с DIY, вы являетесть DIY разработчиком, или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат DIYDEV

Всех кто хочет делать устройства, начать стороить автоматизацию своего дома предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм чат Open Thread.

Мой GitHub этого проекта, схема, гербер файлы, зд модели корпуса, bom, ПО

Всем как всегда Добра!
Подробнее..

Беспроводной DIY датчик тепрературы и влажности с e-paper дисплеем

26.09.2020 22:13:23 | Автор: admin
Всем привет! Сегодня хочу рассказать читателям о своем DIY проекте датчика температуры и влажности с e-ink дисплеем. Это будет некая обзорная статья об этапах создания устройства, будет много картинок. Идея этого проекта родилась около двух лет назад, примерно тогда я увлекся беспроводными автономными устройствами. Целью проекта было создание небольшого девайса для знакомства и изучения дисплеев на электронных чернилах. Было решено на плату добавить датчик температуры, что бы можно было выводить какие то полезные данные на экран, ну и передавать данные далее в систему умного дома.




Первая версия устройства была сделана на микроконтроллере atmega328 и радио-модуле nRF24L01. Очень быстро стало понятно что для работы с e-ink дисплеем не хватает памяти, а энергопотребление устройства довольно большое.


Тест первой версии устройства

Используется датчик температуры и влажности SHT20. Питание от трех батареек CR2430 (6V) через step down converter.

Следующая версия устройства, была разработана на nRF52832. Для этой версии был выбран радио-модуль от компании Holyiot YJ-16048. Характеристики радио-чипа: ARM Cortex-M4F с ОЗУ 512кб 64кб. Встроенный приемопередатчик 2,4 ГГц, поддержка BLE, ANT, ESB (совместимо с nRF24L01). Подробнее об этой версии рассказано тут.

В этом варианте, проблем с хранением в памяти микроконтроллера большого количества данных не было. Наличие в nRF52 режима DC-DC, для работы радио в режиме с оптимизацией питания (экономия до 40%), позволило сократить максимальное пиковое потребление до 7-8мА. Вторая версия датчика, как и первая планировалась как модуль для разработки, поэтому вопрос выбора корпуса не ставился.


Тест работы прототипа второй версии.

Так же используется датчик температуры и влажности SHT20. Питание от двух батареек CR2450 через step down конвертер TPS62745DSSR с малым энергопотреблением.

Вторая версия датчика показала хорошие результаты: низкое потребление, длительное время работы на одном комплекте батареек, возможность хранения и вывода тяжелой графики.

Естественно проект захотелось довести до состояния законченного устройства. Поэтому первым этапом, стал корпус. Для возможности установки в корпус был переработан дизайн платы. Модель корпуса была разработана в программе SolidWorks. Первые корпуса я печатал на бытовом SLA принтере Anycubic Foton. Плюсами была высокая точность печати и простота пост-обработки корпуса (полировка). Из минусов (на тот момент) печати корпуса полимерной смолой была хрупкость. Не то чтобы напечатанная модель разваливалась в руках, но если собранное устройство (с батарейками) уронить, то скорее всего корпус треснет (что и случилось однажды).

Так же из за этого свойства материала, были проблемы с закручиванием винтов для соединения двух частей корпуса. После нескольких десятков вкручиваний выкручиваний винтов в отверстиях под резьбу выработался материал стенок и винты стали прокручиваться. Выше в скобках я написал на тот момент, так что сейчас дела обстоят гораздо лучше. На рынке стали появляться смолы, по вполне разумной цене и с отличными прочностными характеристиками.





Тест работы прототипа третьей версии

В этой версии был расширен список сенсоров. Помимо SHT20, ПО может работать и с датчиками si7021, HTU21D, а так же с BME280 (отдельная версия платы).

Начиная с этой версии, устройство может работать от одной батарейки. Работа через step down конвертер или напрямую от батареек, устанавливается перемычками. Так же, с помощью перемычек, устанавливается последовательность подключения двух батареек: последовательное или параллельное. Плюс к этому, расширен список радио-модулей и разработаны версии плат под радио-модули EBYTE и MINEW.

Для работы в более экономичном режиме, была добавлена поддержка чипов nRF52810 и nRF52811, что позволило сократить потребление в спящем режиме до 1,7 2мкА.

Чтобы придать корпусу больше прочности, было решено разработать модель корпуса под печать на FDM принтере. Сама модель была упрощена, а из дизайна удалены грани.

Ввиду того, что прочность материалов для FDM печати выше, была уменьшена толщина стенок, а все зазоры между корпусом и платой были минимизированы.

В настоящий момент, разработаны 3 варианта корпуса, под разные батарейки. От самого тонкого, для батареек СК2430 до максимально прочного, под две батарейки CR2477. Все варианты моделей корпусов доступны на GitHub этого проекта.




Так же было переработано ПО, была добавлена функция конфигурирования устройства через систему Умного дома, что избавило от необходимости перепрошивать устройство.

В настоящий момент, можно настраивать:

  • интервалы опроса сенсора температуры и влажности
  • интервалы чтения уровня заряда батарейки
  • привязка к другим устройствам для передачи данных
  • включение режима автономной работы без интеграции в умный дом.
  • Так же, в интерфейс была добавлена поддержка нескольких языков и возможность инверсии цвета экрана .










Тест работы обновленной третьей версии.

В видеоролике демонстрируется работа устройства с радиосетью MySensors и конфигурирование устройства через отправку параметров из системы умного дома.

Данный проект и сейчас продолжает активно развиваться. Уже есть прототип четвертой версии, точнее наверное это уже ответвление, так как четвертая версия существенно переработана по железу. Также, на основе этого проекта родилось еще несколько аналогичных проектов под другие размеры экранов.

Информацию по данному проекту можно найти на GitHub. Проект открытый, на гитхаб доступы файлы для изготовления плат, схемы, модели корпусов и программный код.






По мере того, как мои проекты будут готовы, я обязательно буду о них рассказывать.

Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат DIYDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Всем, как всегда добра!
Подробнее..

Беспроводной DIY датчик температуры и влажности с e-paper дисплеем

27.09.2020 00:06:12 | Автор: admin
Всем привет! Сегодня хочу рассказать читателям о своем DIY проекте датчика температуры и влажности с e-ink дисплеем. Это будет некая обзорная статья об этапах создания устройства, будет много картинок. Идея этого проекта родилась около двух лет назад, примерно тогда я увлекся беспроводными автономными устройствами. Целью проекта было создание небольшого девайса для знакомства и изучения дисплеев на электронных чернилах. Было решено на плату добавить датчик температуры, что бы можно было выводить какие то полезные данные на экран, ну и передавать данные далее в систему умного дома.




Первая версия устройства была сделана на микроконтроллере atmega328 и радио-модуле nRF24L01. Очень быстро стало понятно что для работы с e-ink дисплеем не хватает памяти, а энергопотребление устройства довольно большое.


Тест первой версии устройства

Используется датчик температуры и влажности SHT20. Питание от трех батареек CR2430 (6V) через step down converter.

Следующая версия устройства, была разработана на nRF52832. Для этой версии был выбран радио-модуль от компании Holyiot YJ-16048. Характеристики радио-чипа: ARM Cortex-M4F с ОЗУ 512кб 64кб. Встроенный приемопередатчик 2,4 ГГц, поддержка BLE, ANT, ESB (совместимо с nRF24L01). Подробнее об этой версии рассказано тут.

В этом варианте, проблем с хранением в памяти микроконтроллера большого количества данных не было. Наличие в nRF52 режима DC-DC, для работы радио в режиме с оптимизацией питания (экономия до 40%), позволило сократить максимальное пиковое потребление до 7-8мА. Вторая версия датчика, как и первая планировалась как модуль для разработки, поэтому вопрос выбора корпуса не ставился.


Тест работы прототипа второй версии.

Так же используется датчик температуры и влажности SHT20. Питание от двух батареек CR2450 через step down конвертер TPS62745DSSR с малым энергопотреблением.

Вторая версия датчика показала хорошие результаты: низкое потребление, длительное время работы на одном комплекте батареек, возможность хранения и вывода тяжелой графики.

Естественно проект захотелось довести до состояния законченного устройства. Поэтому первым этапом, стал корпус. Для возможности установки в корпус был переработан дизайн платы. Модель корпуса была разработана в программе SolidWorks. Первые корпуса я печатал на бытовом SLA принтере Anycubic Foton. Плюсами была высокая точность печати и простота пост-обработки корпуса (полировка). Из минусов (на тот момент) печати корпуса полимерной смолой была хрупкость. Не то чтобы напечатанная модель разваливалась в руках, но если собранное устройство (с батарейками) уронить, то скорее всего корпус треснет (что и случилось однажды).

Так же из за этого свойства материала, были проблемы с закручиванием винтов для соединения двух частей корпуса. После нескольких десятков вкручиваний выкручиваний винтов в отверстиях под резьбу выработался материал стенок и винты стали прокручиваться. Выше в скобках я написал на тот момент, так что сейчас дела обстоят гораздо лучше. На рынке стали появляться смолы, по вполне разумной цене и с отличными прочностными характеристиками.





Тест работы прототипа третьей версии

В этой версии был расширен список сенсоров. Помимо SHT20, ПО может работать и с датчиками si7021, HTU21D, а так же с BME280 (отдельная версия платы).

Начиная с этой версии, устройство может работать от одной батарейки. Работа через step down конвертер или напрямую от батареек, устанавливается перемычками. Так же, с помощью перемычек, устанавливается последовательность подключения двух батареек: последовательное или параллельное. Плюс к этому, расширен список радио-модулей и разработаны версии плат под радио-модули EBYTE и MINEW.

Для работы в более экономичном режиме, была добавлена поддержка чипов nRF52810 и nRF52811, что позволило сократить потребление в спящем режиме до 1,7 2мкА.

Чтобы придать корпусу больше прочности, было решено разработать модель корпуса под печать на FDM принтере. Сама модель была упрощена, а из дизайна удалены грани.

Ввиду того, что прочность материалов для FDM печати выше, была уменьшена толщина стенок, а все зазоры между корпусом и платой были минимизированы.

В настоящий момент, разработаны 3 варианта корпуса, под разные батарейки. От самого тонкого, для батареек СК2430 до максимально прочного, под две батарейки CR2477. Все варианты моделей корпусов доступны на GitHub этого проекта.




Так же было переработано ПО, была добавлена функция конфигурирования устройства через систему Умного дома, что избавило от необходимости перепрошивать устройство.

В настоящий момент, можно настраивать:

  • интервалы опроса сенсора температуры и влажности
  • интервалы чтения уровня заряда батарейки
  • привязка к другим устройствам для передачи данных
  • включение режима автономной работы без интеграции в умный дом.
  • Так же, в интерфейс была добавлена поддержка нескольких языков и возможность инверсии цвета экрана .










Тест работы обновленной третьей версии.

В видеоролике демонстрируется работа устройства с радиосетью MySensors и конфигурирование устройства через отправку параметров из системы умного дома.

Данный проект и сейчас продолжает активно развиваться. Уже есть прототип четвертой версии, точнее наверное это уже ответвление, так как четвертая версия существенно переработана по железу. Также, на основе этого проекта родилось еще несколько аналогичных проектов под другие размеры экранов.

Информацию по данному проекту можно найти на GitHub. Проект открытый, на гитхаб доступы файлы для изготовления плат, схемы, модели корпусов и программный код.






По мере того, как мои проекты будут готовы, я обязательно буду о них рассказывать.

Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат DIYDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Всем, как всегда добра!
Подробнее..

Энтузиасты собирают ноутбук на электронной бумаге. Выбираем дисплей и шасси

24.04.2021 14:08:39 | Автор: admin


С тех пор, как корпорация E Ink в 1997 году запатентовала технологию отображения информации на основе электрофореза и зарегистрировала соответствующий бренд, разные производители покупали лицензии и интегрировали e-ink в свои устройства. Первыми стали читалки Sony Librie в 2004 году и Amazon Kindle в 2007-м. Эти дисплеи не мерцают в принципе, не утомляют глаза и практически не потребляют энергию во время отображения картинки, так что идеально подходят для чтения.

С 1997 года технология сильно усовершенствовалась. Дисплеи увеличились, появился цвет, уменьшился показатель времени обновления экрана. В последние годы наконец-то вышли смартфоны и планшеты с цветной бумагой (Hisense, Onyx Boox).

Но за четверть века никто так и не сделал нормальный ноутбук. Почему?

Попытки действительно были. Можно вспомнить Pixel Qi и OLPC, Boox Typewriter, Yoga Book C9309 и ThinkBook Plus. Но ни один из них не стал востребован рынком по разным причинам: изъяны UX/UI, слабые технические характеристики, высокая себестоимость производства, проблемы с лицензированием и интеграцией технологии.

Однако в моддерском сообществе развернулась бурная деятельность. Во-первых, из читалок электронных книг делают разные гаджеты: календари, настенные фоторамки, планшеты под GNU/Linux, а компания Pine64 недавно анонсировала одноплатный компьютер Quartz64 с нативной поддержкой e-ink.

Все эти проекты вдохновили энтузиаста Александр Сото на создание первого полноценного ноутбука на электронной бумаге. Для этого он запустил общественную инициативу EI2030. Уже сформированы первые рабочие группы и начался выбор комплектующих.

Thinkpad T480




Сначала в качестве донора для шасси выбрали Thinkpad T480, который вроде бы неплохо подходит для этой цели:


Кроме того, в корпусе T480 достаточно места, чтобы развернуться.



Дисплей. Dasung HD-FT


Александр Сото говорит, что дисплей Dasung по скорости обновления и производительности заметно превосходят планшеты Onyx Boox Max 2. К тому же, недавно появились новости, что Onyx нарушает условия лицензии на ядро Linux и отказывается публиковать исходники, так что лучше не иметь с ними дела.

Поскольку мониторы Dasung подключаются по HDMI и запитываются по USB, важно наличие всех необходимых портов на T480 без адаптера.

Прямо с монитора, то есть без внешнего софта, доступны следующие настройки:

  • Изменение режимов работы (M1, M2, M3, Fast, Fast+, Fast++, Black, Black+, Black++)
  • Настройка контрастности
  • Очистка экрана
  • Включение/выключение подсветки



Рабочие группы


В рамках инициативы EI2030 сформированы рабочие группы, которые сфокусируются на отдельных задачах, которые им интересны. Они будут обмениваться информацией и ресурсами.

Например, рабочая группа Low-Power E-Paper OS займётся изучением операционных систем реального времени и разработкой порта Linux на процессоры Ambiq Apollo 3 и 4 или аналогичные микропроцессоры с низким энергопотреблением для встроенных Linux-систем.

Другая рабочая группа углубится в низкоуровневые задачи управления, то есть разработку опенсорсного драйвера для дисплея. В фокусе внимания разные системы на кристалле с интегрированным контроллером, семейства микроконтролллеров i.MX7/8 и RK3566.



Отдельная задача спроектировать новое шасси/корпус, который станет основой для будущих моделей ноутбуков. Ведь понятно, что донор Thinkpad T480 это временное решение для начала. В будущем планируется сделать открытый и свободный дизайн. В качестве примеров приводятся хакерский самодельный ноутбук Olimex TERES-I и похожие проекты VIA OpenBook, MNT Reform и EOMA68. Желательно проектировать дизайн опенсорсными инструментами.



Ещё две рабочие группы займутся изучением разных технологий неэмиссионных дисплеев, таких как e-ink, Display Electronic Slurry (DES) и Reflective Liquid Crystal Display (RLCD), а также психологическими преимуществами от работы с электронной бумагой. Например, низкий уровень усталости глаз. Эта же группа будет изучать удобные интерфейсы, повышающие комфорт работы.

Первые задачи


В проекте EI2030 сформировалась инициативная группа порядка десяти энтузиастов, которые наметили для начала три главные задачи.

Выбор дисплея


Рассматриваются панели e-ink в диапазоне от 10,3" до 13,3". Кроме вышеуказанных дисплеев Dasung, на рынке присутствуют панели ES103TC11, ED133UT22, ES133TT33, Waveshare и Sony. Можно закупать панели оптом, на вторичном рынке, снимать с других устройств. Согласно первым переговорам, минимальная партия от производителя составляет от 10000 до 50000 штук.

RLCD и DES тоже рассматриваются.


Полноцветная 10,1-дюймовая электронная бумага типа Display Electronic Slurry (DES) от компании Good Display с разрешением 2232*1680 пикселей, источник

С другой стороны, RLCD поддерживает частоту обновления до 60 FPS, так что и эту технологию не стоит упускать из виду. Такие дисплеи известны по проектам One Laptop per Child и Pixel Qi, а также устанавливаются на многие модели умных часов. Но на рынке пока нет дисплеев RLCD большого размера и высокого разрешения.

Интерфейс к дисплею




Есть три способа управления дисплеем:

  • Cпециальная микросхема контроллера для управления экраном.
  • Система на чипе (SoC) со встроенным контроллером.
  • Быстрый микроконтроллерный блок для эмуляции контроллера с GPIO.

Несколько примеров:


Можно составить базу данных панелей, которые используются во всех устройствах e-ink, и подобрать совместимые опенсорсные варианты. База станет справочником для тех, кто покупает девайсы на вторичном рынке.

Шасси


Шасси ноутбука ещё одно важное соображение, о котором следует подумать при создании ноутбука. Соотношение сторон на доступных экранах 10.3" и 13.3" составляет 4:3, а ноутбуки с таким соотношением трудно найти.

Здесь можно создавать шасси с нуля или взять один из существующих вариантов. Как упоминалось выше, в качестве вариантов рассматриваются Thinkpad T480, VIA OpenBook c открытым дизайном, MNT Reform и EOMA68, которые также сделали свои файлы дизайна открытыми и доступными для других.

Дизайн модельного ноутбука Olimex TERES-14 за 240 евро тоже открыт. Файлы печатных плат и шасси для распечатки лежат в формате KiCad и FreeCAD.


Olimex TERES-14

Прочему бы не рассмотреть вариант доработки Olimex TERES-14, подключив к нему дисплей на электронной бумаге?

Энтузиасты EI2030 приглашают присоединиться к проекту всех желающих.

В обсуждении на Hacker News обращают внимание, что сейчас не лучшее время для аппаратных начинаний, потому что на рынке дефицит комплектующих. Например, инженерам в одной компании частенько приходится перепроектировать печатные платы, потому что у поставщика отсутствует тот или иной конкретный конденсатор.

Вообще, дизайн это всего 10% работы, а большинство таких проектов не доходят даже до стадии прототипа.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru