Русский
Русский
English
Статистика
Реклама

Canbus

Встраиваемый компьютер AntexGate. От прототипа к серийному производству

08.07.2020 14:22:16 | Автор: admin
image

Не так давно мы с командой разработали небольшой встраиваемый компьютер для решения задач IIoT и промышленной автоматизации. Первую статью о нашем устройстве можно посмотреть здесь.

Разрабатывать устройство решили на распространенном и оттестированном модуле Raspberry CM3+, что позволило нам создать компьютер с большими вычислительными способностями, огромным сообществом и простотой его использования. Под катом расскажу по этапам, от чего отталкивались и к чему пришли в итоге.

Муки выбора корпуса


Для устройств даже в промышленной сфере очень важен внешний вид устройства и законченность, таким образом начались долгие поиски корпуса, подходившие под наши требования по размеру. Хотелось максимально много уместить в одну коробку и самые минимальные параметры платы получались 10*10 см.

После того, как мы заказали несколько вариантов корпусов, пришлось большее количество из них выбросить, так как они подходили только для домашних поделок и продавать их людям в таком виде не представлялось возможным. Основным претендентом на тот момент стал алюминиевый корпус с пластиковыми крышками 10*10*5 см (рисунок 1).

image
Рисунок 1 Первый вариант корпуса

Получив этот корпус в руки, было принято решение остановиться на нем. В этот же момент разработка платы подходила к концу и уже можно было по чертежам предварительно оценить, каким образом обрабатывать торцы для выводных разъемов. Однако пластиковые крышки корпуса после механической обработки сделали вид не товарным и мы опять пришли к поделке, а не к законченному коммерческому продукту.

Глянец весь быстро поцарапался и в этой блестящей рамке отверстия выглядели очень асимметрично (рисунок 2). Ожидание и реальность, как говорится.

image
Рисунок 2 Пластиковые крышки корпуса

Однако отказываться от корпуса не пришлось, потому что у производителя был такой же, но с алюминиевыми торцами, мы быстро его заказали и удивились, насколько он идеально выглядел (рисунок 3). Торцы очень красивые, матовые и бонусом была дополнительная помехозащищенность. Стоил такой корпус уже немного дороже, но красота требует жертв.

image
Рисунок 3 Металлический корпус

Вторая попытка обработать торцы была гораздо удачнее. Технологию надписей мы выбрали путём гравировки (рисунок 4), однако были недостатки которые пришлось решать. Самое главное это то, что гравер (сверло) очень маленький и нежный, скорость нанесения гравировки достаточно низкая. Плюс само сверло часто ломается. Из-за всего этого сильно растёт цена из-за потребляемой электроэнергии и трудозатрат. Также внутрь гравировки набивается грязь и постепенно окисляется алюминий, делая надписи менее заметными.

image
Рисунок 4 Гравировка металлического корпус

Эту технологию пробовали менять на лазерную гравировку, но получилось некрасиво. Лазер выжигал краску некорректно, а надписи получались темными.

В итоге мы пришли к шелкографии с запеканием в печи (рисунок 5). Эта технология оказалась самой быстрой и очень крепкой. Всё свелось к тому, чтобы заказать единожды шаблон (фотовывод) и по нему делать партию до 50 штук в день.

image
Рисунок 5 Шелкография корпуса

Исправление недоработок


С корпусом закончили, а вот с платой оставались недоработки. Задумка нашего компьютера в том, чтобы любой пользователь мог спокойно установить дополнительное оборудование в устройство, открутив четыре болта на корпусе, как в свой ноутбук. Я думаю прошли те времена, когда на корпуса клеили наклеечки Не вскрывать, потеря гарантии.

Внутри корпуса есть периферия для прошивки вычислительного модуля, SIM-карта и многое другое. Однако была одна проблема с монтажом платы в корпус, а именно выводные светодиоды на ножках, которые постоянно гнулись у наших клиентов, взявших прототипы на тест (рисунок 6).

image
Рисунок 6 Выводные светодиоды на ножках

В этой связи пришлось поменять диоды на ножках на SMD-светодиоды, которые светят в бок и проблема с установкой платы в корпус решилась, больше ничего не гнулось (рисунок 7).

image
Рисунок 7 SMD-светодиоды

Индикация была глубоко внутри корпуса и чтобы увидеть свет приходилось смотреть под прямым углом на торец. В голову пришла идея световодов из полимерных прозрачных материалов (рисунок 8). Оставалось найти бюджетный, но эстетически красивый вариант. В голову пришел молочный плексиглас с прозрачностью 20% с толщиной листа 3 мм, в первой же фирме лазерной резки подобрали диаметр миниатюрного цилиндра, он был равен диаметру отверстия в корпусе. Особенность в том, что станок при лазерной резке дает небольшой скос нижнего диаметра на 0.1 мм и таким образом мы получили мешок миниатюрных усеченных конусов с нижним диаметром 2,9 мм и верхним 3 мм, а высота была 3 мм как и толщина торцов нашего корпуса. Вставляем конус в отверстие и запрессовка крепко загоняет эти световоды в отверстие, а небольшая капелька клея с обратной стороны фиксирует их намертво.

image
Рисунок 8 Световоды из плексигласа

Итак, устройство получило эстетичный вид при небольших вложениях в корпус, однако этот путь хорош на старте производства и уменьшение издержек планируется путем изготовления подобного корпуса при наращивании производства. Литье из пластика не рассматривается в виду дорогого запуска производства и низких экранирующих способностей по сравнению с металлом.

Итог


image

Спасибо за внимание! Надеемся, что мы вдохновим читателей на переработку Ваших личных проектов в более масштабное производство с коммерческими перспективами. В нашей великой стране на полочках у инициаторов пылятся действительно нужные вещи, которые могут заменять зарубежные производства.

В следующей статье мы расскажем Вам историю тестирования и тонкости настройки mPCIe 3G-модема Huawei и mPCIe LoraWan-модуля MikroTik.
Подробнее..

Встраиваемый компьютер AntexGate 3G-модем. Полезные настройки для более стабильного интернет-соединения

03.08.2020 14:12:05 | Автор: admin
image

В сфере промышленной автоматизации существует негласная парадигма, в которой многие производители промышленного оборудования делают контроллеры отдельно, а модемы отдельно. Как правило, каждое устройство помещается в свой корпус, имеет своё питание, большие габариты и высокую стоимость. Такой вариант разделения функционала имеет свои преимущества и недостатки, но, по нашему мнению, он ведет, скорее, к бльшей коммерциализации, чем обусловлен какими-то объективными причинами. Поэтому мы решили пойти немного по другому пути и сделали универсальное устройство, которое представляет из себя свободно программируемый контроллер на базе Linux с модемом в едином корпусе. Это нам позволило в своих проектах практически совсем отказаться от привычных всем щитов автоматизации и прийти к более мобильным решениям.

Под катом этой статьи мы поделимся с Вами тонкостями настройки модема и несколькими полезными скриптами для более стабильного 3G-соединения.

Предпосылки и решения


При разработке своего устройства мы руководствовались тем, что оно должно выходить в мобильный интернет, чтобы подключаться к облачным платформам. Было два пути: напаивать модем на плату, либо использовать mPCIe-разъемы. Мы остановились на втором варианте и предусмотрели сразу два mPCIe-разъема (рисунок 1), поскольку такой вариант нам показался более интересным и гибким. Ведь установка и замена модема занимает считанные секунды, плюс для пользователя появляется необходимая вариативность и он может использовать такие комбинации mPCIe-модулей, которые ему необходимы под конкретный проект. Кроме 3G-модема это может быть LoraWan или Wi-Fi модули. Плюс ко всему mPCIe-решения зарекомендовали себя как достаточно надежные и качественные.

image
Рисунок 1 mPCIe-разъемы

В качестве основного 3G-модуля для нашего устройства мы рассматривали следующие варианты:

  • MikroTik R11e-LTE6
  • Quectel EC25-E
  • YUGA CLM920 TE5
  • HUAWEI MU709s-2p

Однако после проведения тестов наиболее предпочтительным для нас в плане надежности и соотношения цена-качество оказался модем фирмы HUAWEI (рисунок 2). Мы взяли его за основу и устанавливаем опционально в наши устройства. Поэтому в дальнейшем мы будем рассматривать настройку и скрипты относительного модема этой модели. Возможно, этот скрипт будет универсальным и будет полезен для других модемов, однако стабильность работы с другими моделями не гарантируется. Для Rasbian Buster и HUAWEI MU709s-2p всё работает отлично.

image
Рисунок 2 Модем HUAWEI MU709s-2p, установленный на плату устройства

Использование скрипта для перезагрузки 3G-модема


Для более устойчивой и безотказной работы мы написали скрипт, который будет пинговать заданный IP-адрес, а если же определенное в настройках количество пингов не прошло, то GSM-модем перезагрузится, тем самым восстанавливая зависшее сетевое соединение. Стоит отметить, что модем определяется в системе как сетевая карта lan1.

Архив со всеми необходимыми файлами можно скачать по этой ссылке. Также текст самих скриптов представим ниже.

Файл check_inet.sh необходим для проверки наличия интернет соединения. Если заданный IP-адрес не пингуется, то мы дергаем 19 ногу и перезапускаем модем по питанию. Код из себя представляет следующий вид:
#!/bin/bash#count=0;#echo "Start script"#echo 19 > '/sys/class/gpio/export'while [ true ]; do# sleep 30. /home/pi/igate.conf#echo $usb_port#echo 'AT^NDISDUP=1,1,''"'$apn'"''\r\n' #echo 'AT^NDISDUP=1,1,"internet.mts.ru"\r\n' flag=0for ((i = 1; i <= $ping_count; i++)); do#for i in {1..$ping_count}; do #делаем 5 пингов до сервера#ping -I eth1 -c 1 8.8.8.8 > /dev/null || flag=$(($flag+1))ping -I $interface -c 1 $ping_ip || flag=$(($flag+1))sleep 1doneif [ "$flag" -ge "$ping_error" ]; then #если потерь пакетов больше 3х#echo "рестарт модема - начало"#count=$((count+1))#echo $count#рестарт модемаsudo ifconfig eth1 downecho 19 > '/sys/class/gpio/export'echo out > '/sys/class/gpio/gpio19/direction'echo 0 > '/sys/class/gpio/gpio19/value'sleep 1echo 1 > '/sys/class/gpio/gpio19/value'sleep 15sudo ifconfig eth1 upsleep 1#echo -en 'AT^NDISDUP=1,1,"internet.mts.ru"\r\n' > /dev/ttyUSB3#АТ команда для записи настроек точки доступа APNecho -en 'AT^NDISDUP=1,1,''"'$apn'"''\r\n' > $usb_port#echo "рестарт модема - конец"fisleep $timeoutdone 

Файл start_inet.sh запускает check_inet.sh после перезагрузки устройства:
#!/bin/bash### BEGIN INIT INFO# Provides:          start_inet# Required-Start:    $remote_fs $syslog# Required-Stop:     $remote_fs $syslog# Default-Start:     2 3 4 5# Default-Stop:      0 1 6# Short-Description: Example initscript# Description:       This service is used to manage a servo### END INIT INFOcase "$1" in     start)        echo "Starting check_inet"        sudo /home/pi/check_inet.sh > /dev/null 2>&1 &        #/home/pi/check_inet.sh        ;;    stop)        echo "Stopping check_inet"        #killall servod        sudo kill -USR1 $(ps ax | grep 'check_inet' | awk '{print $1}')        ;;    *)        echo "Usage: /etc/init.d/check_inet start|stop"        exit 1        ;;esacexit 0

Также в архиве находится файл конфигурации igate.conf

Последовательность настройки:
1. Добавьте правило соответствия физического подключения COM-порта модема к концентратору USB. Для этого поправьте файл по следующему пути:
sudo nano /etc/udev/rules.d/99-com.rules

2. Добавьте в файл следующую строку:
KERNEL==ttyUSB*, KERNELS==1-1.5:2.4, SYMLINK+=GSM

3. Сохраните правила и перезагрузите устройство. Теперь порт Вашего модема будут определять по удобному псевдониму /dev/GSM;
4. Скачайте архив по предложенной выше ссылки, либо самостоятельно создайте файлы check_inet.sh, start_inet.sh и igate.conf;
5. Скопируйте файл check_inet.sh в папку:
/home/pi/

6. Сделайте файл check_inet.sh исполняемым:
sudo chmod +x /home/pi/check_inet.sh

7. Скопируйте файл start_inet.sh в папку:
/etc/init.d/

8. Сделайте файл start_inet.sh исполняемым:
sudo chmod +x /etc/init.d/start_inet.sh

9. Обновите конфигурацию автозагрузки выполнив команду:
sudo update-rc.d start_inet.sh defaults

10. Скопируйте файл igate.conf в папку:
/home/pi/

11. Настройте файл конфигурации. Ниже представлен файл конфигурации с комментариями:
#ip-адрес пинга. Скрипт будет пытаться пинговать этот ip-адрес, если определенное в параметре [ping_error] количество пингов не прошло, скрипт будет перезагружать GSM-модем, тем самым восстанавливая зависшее сетевое соединение.ping_ip=8.8.8.8#точка доступа APN. Это адрес точки доступа Вашего интернет-провайдера, он выдается вместе с сим-картой.apn=internet.mts.ru#период проверки соединения 3G (период пинга). Период выполнения скрипта. Каждые 30 секунд будет осуществляться проверка пингов.timeout=30#количество пингов. Общее количество пингов.ping_count=5#количество неуспешных пингов для рестарта модема. Количество неуспешных пингов, после которых необходимо выполнять перезагрузку модема. Не может быть больше чем [ping_count]. Процент потерянных пакетов нужно подбирать индивидуально в зависимости от качества покрытия сети.ping_error=3#LAN интерфейс модема. Сетевой интерфейс модема, обычно на устройстве AntexGate определяется как [eth1], посмотреть название можно выполнив команду ifconfiginterface=eth1#USB порт модема. Физический USB порт к которому подключена сетевая карта, обычно на устройстве AntexGate определяется как [ttyUSB4]usb_port=/dev/GSM


Управление скриптом


Запуск в фоновом режиме файла скрипта check_inet.sh:
/etc/init.d/start_inet.sh start

Остановить check_inet.sh:
/etc/init.d/start_inet.sh stop

Скрипт также автоматически запускается после перезагрузки устройства.

Варианты применения устройства


Рассмотрим основные задачи, под которые можно использовать устройство:
  1. Контроллер с выходом в интернет для передачи данных в облако;
  2. 3G-роутер для задач в поле;
  3. Контроллер для умного дома с резервирующим каналом 3G. То есть можно использовать LAN-порт как основной канал связи, а 3G в качестве резервного, чтобы всегда был доступ к устройству;
  4. Базовая станция LoRaWAN, то есть опрос устройств по LoRaWAN и передача данных в облако через сеть 3G или LTE;
  5. Устройство для мониторинга транспорта (подключение по CAN и стыковка с различными сервисами)

На самом деле, вариантов применения такого устройства может быть очень много и несомненным его плюсом является законченность, универсальность и мобильность. Одно устройство может заменить привычный шкаф автоматизации и стать незаменимым решением в Ваших проектах.
Подробнее..

Хакаем CAN шину авто. Мобильное приложения вместо панели приборов

28.02.2021 04:04:14 | Автор: admin
Мобильное приложение VAG Virtual CockpitМобильное приложение VAG Virtual Cockpit

Я продолжаю изучать CAN шину авто. В предыдущих статьях я голосом открывал окна в машине и собирал виртуальную панель приборов на RPi. Теперь я разрабатываю мобильное приложение VAG Virtual Cockpit, которое должно полностью заменить приборную панель любой модели VW/Audi/Skoda/Seat. Работает оно так: телефон подключается к ELM327 адаптеру по Wi-Fi или Bluetooth и отправляет диагностические запросы в CAN шину, в ответ получает информацию о датчиках.

По ходу разработки мобильного приложения пришлось узнать, что разные электронные блоки управления (двигателя, трансмиссии, приборной панели и др.) подключенные к CAN шине могут использовать разные протоколы для диагностики, а именно UDS и KWP2000 в обертке из VW Transport Protocol 2.0.

Программный сниффер VCDS

Программный сниффер VCDS: CAN-SnifferПрограммный сниффер VCDS: CAN-Sniffer

Чтобы узнать по какому протоколу общаются электронные блоки я использовал специальную версию VCDS с программным сниффером в комплекте. В этот раз никаких железных снифферов на Arduino или RPi не пришлось изобретать. С помощью CAN-Sniffer можно подсмотреть общение между VCDS и автомобилем, чтобы затем телефон мог прикинуться диагностической утилитой и отправлять те же самые запросы.

Я собрал некоторую статистику по использованию диагностических протоколов на разных моделях автомобилей:

  • VW/Skoda/Seat (2006-2012) - приборная панель UDS. Двигатель и трансмиссия VW TP 2.0

  • Audi (2006-2012) - приборная панель VW TP 2.0. Двигатель UDS. Трансмиссия VW TP 2.0

  • VW/Skoda/Seat/Audi (2012-2021) - везде UDS

Протокол UDS

Unified Diagnostic Services (UDS) - это диагностический протокол, используемый в электронных блоках управления (ЭБУ) автомобильной электроники. Протокол описан в стандарте ISO 14229-1 и является производным от стандарта ISO 14230-3 (KWP2000) и ныне устаревшего стандарта ISO 15765-3 (Diagnostic Communication over Controller Area Network (DoCAN)). Более подробно в википедии.

Диагностические данные от двигателя по протоколу UDS (Skoda Octavia A7)Диагностические данные от двигателя по протоколу UDS (Skoda Octavia A7)

В моей машине (Skoda Octavia A5) приборка использует UDS протокол, это дало мне легкий старт разработки, т.к. данные были в простом формате Single Frame SF(фрейм, вся информация которого умещается в один CAN пакет) и большинство значений легко поддавались расшифровке. Volkswagen не дает документацию на формат значений, поэтому формулу расшифровки для каждого датчика приходилось подбирать методом логического мышления. Про UDS протокол очень хорошо и с подробным разбором фреймов написано на canhacker.ru.

Разбор UDS пакета в формате Single FrameРазбор UDS пакета в формате Single Frame

Пример запроса и ответа температуры моторного масла:

7E0 0x03 0x22 0x11 0xBD 0x55 0x55 0x55 0x557E8 0x05 0x62 0x11 0xBD 0x0B 0x74 0x55 0x55

Запрос температуры моторного масла:

  • 7E0 - Адрес назначения (ЭБУ двигателя)

  • Байт 0 (0x03) - Размер данных (3 байта)

  • Байт 1 (0x22) - SID идентификатор сервиса (запрос текущих параметров)

  • Байт 2, 3 (0x11 0xBD) - PID идентификатор параметра (температура моторного масла)

  • Байт 4, 5, 6, 7 (0x55) - Заполнитель до 8 байт

Ответ температуры моторного масла:

  • 7E8 - Адрес источника (Диагностический прибор)

  • Байт 0 (0x05) - Размер данных (5 байт)

  • Байт 1 (0x62) - Положительный ответ, такой SID существует. 0x22 + 0x40 = 0x62. (0x7F) - отрицательный ответ

  • Байт 2, 3 (0x11 0xBD) - PID идентификатор параметра (температура моторного масла)

  • Байт 4, 5 (0x0B 0x74) - значение температуры моторного масла (20.1 C формулу пока что не смог подобрать)

  • Байт 6, 7 (0x55) - Заполнитель до 8 байт

Первая версия мобильного приложения VAG Virtual Cockpit умела подключаться только к приборной панели по UDS.

VAG Virtual Cockpit - экран с данными от приборной панели по протоколу UDSVAG Virtual Cockpit - экран с данными от приборной панели по протоколу UDS

VW Transport Protocol 2.0

Volkswagen Transport Protocol 2.0 используется в качестве транспортного уровня, а данные передаются в формате KWP2000. Keyword Protocol 2000 - это протокол для бортовой диагностики автомобиля стандартизированный как ISO 14230. Прикладной уровень описан в стандарте ISO 14230-3. Более подробно в википедии.

Т.к. KWP2000 использует сообщения переменной длины, а CAN шина позволяет передавать сообщения не больше 8 байт, то VW TP 2.0 разбивает длинное сообщение KWP2000 на части при отправке по CAN шине и собирает заново при получении.

Диагностические данные от двигателя по протоколу KWP2000 (Skoda Octavia A5)Диагностические данные от двигателя по протоколу KWP2000 (Skoda Octavia A5)

ЭБУ двигателя моей машины использует протокол VW TP 2.0, поэтому мне пришлось изучить его. Видимо Volkswagen разрабатывала транспортный протокол не только для работы по надежной CAN шине, но и для менее надежных линий связи, иначе нет объяснения для чего требуется такая избыточная проверка целостности данных. Главным источником информации по VW TP 2.0 является сайт https://jazdw.net/tp20.

Разбор протокола VW TP 2.0 на примере подключения к первой группе двигателя:

200 01 C0 00 10 00 03 01

Настраиваем канал с двигателем. Байт 0: 0x01 - двигатель, 0x02 - трансмиссия. Байт 5,4: 0x300 - адрес источника

201 00 D0 00 03 40 07 01

Получили положительный ответ. Байт 5,4: 0x740 - к двигателю обращаемся по этому адресу

740 A0 0F 8A FF 32 FF

Настраиваем ЭБУ на отправку сразу 16 пакетов и выставляем временные параметры

300 A1 0F 8A FF 4A FF

Получили положительный ответ

740 10 00 02 10 89

Отправляем команду KWP2000 startDiagnosticSession. Байт 0: 0x10 = 0b0001 - последняя строка данных + 0x0 счетчик отправляемых пакетов 0 (0x0 - 0xF)

300 B1

Получили первый ACK

300 10 00 02 50 89

Получили положительный ответ. Байт 0: 0x10 - cчетчик принимаемых пакетов 0

740 B1

Мы отправили первый ACK, что получили ответ

740 11 00 02 21 01

Делаем запрос. Байт 0: 0x11 - счетчик отправляемых пакетов 1. Байт 3: 0x21 - запрос параметров. Байт 4: 0x01 - из группы 1

300 B2

Получили второй ACK

300 22 00 1A 61 01 01 C8 13

Байт 0: 0x22 - 0b0010 (не последняя строка данных) + 0x02 (cчетчик принимаемых пакетов 2). Байт 1,2: 0x00 0x1A длина 26 байт. Байт 3,4: 0x61 0x01 - положительный ответ на команду запроса параметров 0x21+0x40=0x61 из 0x1 группы. Байт 5: 0х01 - Запрос RPM (соответсвует протоколу KW1281). Байт 6,7: (0xC8 * 0x13)/5 = 760 RPM (формула соответствует протоколу KW1281)

300 23 05 0A 99 14 32 86 10

Байт 1: 0x05 - запрос ОЖ. Байт 2,3: (0x0A * 0x99)/26 = 57.0 C. Байт 4: 0x14 = запрос лямбда контроль %. Байт 5,6: 0x32*0x86; Байт 7: 0х10 - двоичная настройка

300 24 FF BE 25 00 00 25 00

0x25 0x00 x00 - Заполнитель, до 8 параметров

300 15 00 25 00 00 25 00 00

Байт 0: 0x15 - 0b0001 (последняя строка данных) + 0x5 (счетчик принимаемых пакетов 5)

740 B5

Отправляем ACK. Прибывляем к нашему предыдущему ACK количество полученных пакетов 0xB1 + 0x4 = 0xB5

300 A3

Запрос KeepAlive, что мы еще на связи

740 A1 0F 8A FF 4A FF

Ответ KeepAlive

740 A8

Мы разрываем связь

300 A8

ЭБУ в ответ тоже разрывает связь

Во второй версии мобильного приложения VAG Virtual Cockpit появилась возможность диагностировать двигатель и трансмиссию по протоколу VW TP 2.0.

VAG Virtual Cockpit - экран с данными от двигателя по протоколу VW TP 2.0VAG Virtual Cockpit - экран с данными от двигателя по протоколу VW TP 2.0

Диагностический адаптер ELM327

Для меня некоторое время было вопросом, как получить данные из CAN шины и передать на телефон. Можно было бы разработать собственный шлюз с Wi-Fi или Bluetooth, как это делают производители сигнализаций, например Starline. Но изучив документацию на популярный автомобильный сканер ELM327 понял, что его можно настроить с помощью AT команд на доступ к CAN шине.

Копия диагностического сканера ELM327Копия диагностического сканера ELM327Не все ELM327 одинаково полезны

Оригинальный ELM327 от компании elmelectronics стоит порядка 50$, в России я таких не встречал в продаже. У нас продаются только китайские копии/подделки, разного качества и цены 10-30$. Бывают полноценные копии, которые поддерживают все протоколы, а бывают и те которые умеют отвечать только на несколько команд, остальные игнорируют, такие адаптеры не имеют доступ к CAN шине. Я например пользуюсь копией Viecar BLE 4.0, который поддерживает 100% всех функций оригинала.

Для работы с протоколом UDS через ELM327 нужно указать адреса назначения, источника и разрешить длинные 8 байтные сообщения, по умолчанию пропускается максимум 7 байт.

Последовательность ELM327 AT команд для работы с UDS по CAN шине:

ATZ // сброс настроекAT E0 // отключаем эхоAT L0 // отключаем перенос строкиAT SP 6 // Задаем протокол ISO 15765-4 CAN (11 bit ID, 500 kbaud)AT ST 10 // Таймаут 10 * 4 мс, иначе EBU шлет повторные ответы каждые 100 мс, а мы не отвечаем, потому что ожидаем конца, а нам нужен только первый ответAT CA F0AT AL // Allow Long (>7 byte) messagesAT SH 7E0 // задаем ID, к кому обращаемся (двигатель)AT CRA 7E8 // CAN Receive Address. Можно задать несколько 7XeAT FC SH 7E0AT FC SD 30 00 00AT FC SM 1 // Режим Flow Control 1 должен быть определен после FC SH и FC SD, иначе в ответ придет "?"03 22 F4 0С 55 55 55 55 // UDS запрос оборотов двигателя

Для работы с протоколом KWP2000 через ELM327 нужно только указать адреса назначения и источника.

Последовательность ELM327 AT команд для работы с VW TP 2.0 по CAN шине:

ATZ // сброс настроекAT E0 // отключаем эхоAT L0 // отключаем перенос строкиAT SP 6 // Задаем протокол ISO 15765-4 CAN (11 bit ID, 500 kbaud)AT PB C0 01AT SP B // Задаем протокол USER1 CAN (11* bit ID, 125* kbaud)AT ST 10 // Таймаут 10 * 4 мс, иначе EBU шлет повторные ответы каждые 100 мс, а мы не отвечаем, потому что ожидаем конца, а нам нужен только первый ответAT SH 200 // Обращаемся к 200 IDAT CRA 201 // Ждем ответа от 201 Блок управления двигателем, 202 - Transmission, 203 - ABS, 207 -  Приборная панель01 C0 00 10 00 03 01 // Initiate channel setup with ECU module - 01, request it use CAN ID 0x300; Transmission 02; ABS 03AT SH 740 // адрес блока 740 получен в ответе на предыдущую командуAT CRA 300 // Ждем ответа от 300 IDA0 0F 8A FF 32 FF // Tell ECU module to send 16 packets at a time, and set timing parameters10 00 02 10 89 // Send KWP2000 startDiagnosticSession request 0x10 with 0x89 as a parameter.B1 // ACK11 00 02 1A 9B // Запрос названия блока KWP2000

Мобильное приложение VAG Virtual Cockpit

Для разработки мобильного приложения подключаемого к автомобилю требовалось:

  • Сниффером собрать трафик от диагностической утилиты VCDS

  • Изучить работу протоколов UDS, VW TP 2.0, KWP2000

  • Настроить диагностический сканер ELM327 на работу с UDS и VW TP 2.0

  • Изучить новый для меня язык программирования Swift

Мобильное приложение VAG Virtual Cockpit для iOSМобильное приложение VAG Virtual Cockpit для iOS

В итоге получилось приложение, которое сочетает в себе функции отображения точных данных панели приборов и диагностика основных параметров двигателя и трансмиссии.

Пару слов про точность данных. Штатная панель приборов не точно показывает скорость - завышает показания на 5-10 км/ч, стрелка охлаждающей жидкости всегда на 90 C, хотя реальная температура может быть 80 - 110 C, стрелка уровня топлива до середины идет медленно, хотя топлива уже меньше половины и при нуле на самом деле топливо еще есть в баке. Производитель это делает для удобства и безопасности водителя.

На данный момент приложение показывает следующие параметры:

Приборная панель

Двигатель

Трансмиссия (температура)

1) Какая дверь открыта
2) Скорость
3) Обороты
4) Температура масла
5) Температура ОЖ
6) Топливо в баке в л.
7) Запас хода в км.
8) Средний расход
9) Время в машине
10) Пробег
11) Температура за бортом

1) Обороты
2) Массовый расход воздуха
3) Температура забора воздуха
4) Температура выхлопа (рассчитанная)
5) Критический уровень масла
6) Уровень масла
7) Наддув турбины (реальный)
8) Наддув турбины (ожидаемый)
9) Пропуски зажигания в цилиндрах
10) Углы откатов зажигания в цилиндрах

1) ATF AISIN (G93)
2) DSG6 (G93)
3) Блок управления DSG6 (G510)
4) Масло диска сцепления DSG6 (G509)
5) Мехатроник DSG7 (G510)
6) Процессор DSG7
7) Диск сцепления DSG7

Я стремлюсь чтобы приложение поддерживало как можно больше моделей автомобилей. Пока что поддерживаются производители: Volkswagen, Skoda, Seat, Audi. На разных комплектациях могут отображаться не все параметры, но это поправимо.

Сейчас я провожу тестирование версии 3.0. Приложение доступно только на iOS, после релиза 3.0 перейду к разработке версии для Android.

Если интересно потестировать и есть желание принять участие в проекте, то установить приложение можно по ссылке https://testflight.apple.com/join/Yx9vcPxQ. Также я веду бортжурнал на drive2.ru, где делюсь полезной информацией и новостями о VAG Virtual Cockpit.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru