Русский
Русский
English
Статистика
Реклама

Расчеты

Нелинейный мир и инструменты для расчета сложных нелинейных задач методом конечных элементов

06.11.2020 14:12:14 | Автор: admin
Привет, Хабр! В названии этой статьи есть словосочетание нелинейный мир Думаю, что большинство читателей поняли смысл этого словосочетания, но я всё же расшифрую его.

Реальные системы можно рассматривать как линейные только в ограниченном диапазоне нагрузок. Реальный же мир вокруг нас нелинеен (рис. 1). Нелинейность есть нарушение принципа суперпозиции в некотором явлении (механической системе): результат действия суммы факторов не равен сумме результатов от отдельных факторов. Однако по разным причинам, в том числе в связи с отсутствием необходимых знаний, навыков моделирования, необходимого программного обеспечения, инженеры зачастую решают задачи только в линейных постановках. Даже когда линейный подход дает очень большие погрешности. Точное же моделирование поведения системы часто требует проведения нелинейного анализа.



Рис. 1

Введение


Пару месяцев назад я опубликовал статью Просто о нелинейном анализе методом конечных элементов. На примере кронштейна. В ней я постарался доступно разъяснить минимальный объем терминов и теории, необходимой для осознанного проведения нелинейного статического анализа, подробно разобрал алгоритм решения простой нелинейной задачи. Повторяться не буду, напомню несколько основных положений и приступим к обзору более сложных явлений, задач механики и инструментов, необходимых для решения этих нелинейных задач.

Линейные допущения часто справедливы, но сегодня при разработке изделий всё чаще необходимо проводить нелинейные расчеты. Чтобы сократить объем экспериментальной отработки, пользователи нуждаются в моделях более высокой точности: уточняются геометрические модели, увеличивается точность физических моделей. Это означает, что учитываются нелинейные эффекты, такие как контакты, большие деформации и свойства материала. Нелинейность задачи может быть обусловлена необходимостью учета истории нагружения конструкции то есть разложение задачи на составляющие воздействия и последующее объединение результатов невозможны. Без учета этих эффектов решения могут оказаться неточными, что приведет к неверным выводам. Или же изделия могут быть спроектированы с очень большим запасом прочности, а потому станут слишком дорогостоящими.

Классическая физика и математика у нас одна, но в разных расчетных комплексах используются разные наборы алгоритмов и инструментов для решения задач методом конечных элементов. В этой статье я расскажу об инструментах, имеющихся в арсенале пре-постпроцессора Femap с решателем NX Nastran, за более чем 35 лет многократно доказавшим свои надежность, точность и скорость. Для решения самых сложных нелинейных задач, в том числе если необходимо учесть историю нагружения конструкции, подходит модуль многошаговых нелинейных решений Multistep Nonlinear (SOL401 / SOL402).

Контакты и применение сабкейсов


В рамках одного многошагового решения можно изменять условия контакта поверхностей с помощью сабкейсов. Сабкейсы это отдельные решения, из которых можно сложить общее решение со сложной историей приложения нагрузок, изменения граничных условий. Например, при моделировании сборки можно добавлять или удалять контакты в определенной последовательности.

Трение может быть учтено в настройках контакта, а коэффициент трения быть постоянным или изменяться в зависимости от скорости, температуры и времени. Детали, которые контактируют, обычно рассматриваются как деформируемые. Но если одна часть намного жестче другой, стоит рассматривать ее как жесткую, чтобы упростить задачу без существенных погрешностей. Это также позволяет применять принудительное перемещение твердого тела на жесткой части в качестве нагрузки.

На рис. 2 изображена модель, в которой резиновое уплотнительное кольцо задано гиперупругим материалом. Моделирование позволяет вычислить напряжения и перемещения в резиновом уплотнительном кольце, используемом для уплотнения крышки, надетой на цилиндр. В целях повышения эффективности модель строится с использованием осевой симметрии. Видимый круг это поперечное сечение уплотнительного кольца. Размеры кольца уплотнителя в ненапряженном состоянии меньше диаметра цилиндра, поэтому начальное положение уплотнительного кольца показывает, что уплотнительное кольцо и цилиндр частично перекрываются. На первом этапе моделирования при определении контакта производится компенсация перекрытия, то есть уплотнительное кольцо растягивается радиально. Затем колпачок опускается и уплотнительное кольцо деформируется при соприкосновении со стенкой цилиндра. Таким образом образуется уплотнение.


Рис. 2

Геометрические несовершенства конечно-элементной сетки могут быть исправлены путем настройки допусков по зазорам и натягам или путем сглаживания граней. В случае возникновения трудностей со сходимостью есть множество вариантов решения этой проблемы. Например, опция Нормальная регуляризация полезна, когда условия контакта включают мягкие материалы, такие как резина. Тангенциальная регуляризация позволяет избежать разрывов в силах трения. Кроме того, локальная жесткость и демпфирование в контакте контролируются пользователем, что также может использоваться для улучшения сходимости. В постпроцессоре могут быть проанализированы следующие результаты: контактное давление, расстояние по нормали, скольжение, контактные силы.

Существует множество применений для контактов, включая болтовые соединения, имитацию падения и посадку с натягом. Моделировать болтовые соединения можно с помощью 1D конечных элементов (балки, стержни), 2D (плоские элементы) или 3D-элементов. Преднатяжение можно выполнять с помощью нескольких сабкейсов например, если нужно смоделировать последовательность затяжки болтов. Сабкейсы преднатяжения могут быть реализованы не только первыми по счету, но и в любой последовательности. При анализе других сабкейсов вычисленные преднапряжения сохраняются, но фактическая нагрузка на болты может изменяться при дальнейшем приложении нагрузок. Пользователи могут анализировать нормальные, сдвиговые напряжения, моменты в болтах на протяжении всего решения.

На рис. 3 изображена модель, позволяющая проанализировать следующую последовательность сборки/нагрузки/разгрузки: затяжка болта 1, затяжка болта 4, затяжка болта 2, затяжка болта 3, приложение эксплуатационной нагрузки, снятие нагрузки, снятие затяжки.


Рис. 3

Большие перемещения (деформации) и анализ после потери устойчивости


Большие линейные и угловые перемещения это фундаментальные нелинейные эффекты (рис. 4). Они учитывают изменение положения нагрузки по мере деформации системы. Также существует эффект изменения жесткости изделия от нагрузки. Решение после потери устойчивости это нелинейное решение с включенными эффектами больших деформаций.

Нагрузка вызывает потерю жесткости изделия, приводящую к последующим большим деформациям при небольших изменениях нагрузки. Существуют эффективные алгоритмы, позволяющие анализировать систему после превышения критической нагрузки потери устойчивости.


Рис. 4

Анализ после потери устойчивости это особый тип статического сабкейса в Femap. В стандартном квазистатическом анализе нагрузки увеличиваются в соответствии с законом, определенным пользователем. Но некоторые изделия неустойчивы из-за их формы после достижения определенного уровня нагрузки. Такие изделия скачкообразно теряют жесткость в некотором диапазоне нагрузок. Для решения подобного рода задач следует использовать алгоритм длины дуги (arc length) с его помощью решают задачи неустойчивого изгиба, потери устойчивости. Решение позволяет не только определить критическую нагрузку потери устойчивости на изгиб, но и проанализировать, как будет вести себя конструкция после того как она потеряет устойчивость. Вместо изменения нагрузок, основанных на временном приращении, алгоритм автоматически изменяет приращения нагрузки пропорционально перемещениям, а не времени.

Начальные несовершенства формы оказывают в задачах потери устойчивости большое влияние. Несовершенства формы могут быть учтены как искривления в геометрии/сетке, что можно использовать для учета несовершенств производственного процесса. Пользователь может моделировать места преднамеренного изгиба или моделировать повреждения, полученные в ходе эксплуатации.

Физическая нелинейность (нелинейность свойств материалов). Пластичность, гиперупругость, вязкость, ползучесть и композиты


В традиционном линейном анализе все материалы рассматриваются как линейные и упругие. Многошаговый нелинейный решатель Femap поддерживает нелинейные свойства совместно с изотропным, ортотропным, анизотропным поведением. Также поддерживаются еще несколько нелинейных моделей поведения материала, включая пластичность, гиперупругость, ползучесть и повреждение (damage). Пользователям, которым требуется задать уникальные свойства материалов, предоставлена возможность дополнительно добавлять собственные модели материалов.

Пластичные модели материалов с различными настройками доступны для моделирования. Пользователи могут задать кривую напряжений-деформаций как билинейную или полилинейную (рис. 5). Эффекты нагрузки/разгрузки могут быть описаны с помощью изотропных, кинематических или смешанных моделей упрочнения. Кривые напряжений-деформаций также могут быть дополнены температурной зависимостью. Таким образом материалы, зависимость свойств которых от температуры необходимо учесть при решении задачи, могут быть описаны адекватно.


Рис. 5

Гиперупругие материалы благодаря своим свойствам широко используются в различных отраслях. Они не зависят от скорости деформации. К таким материалам относятся резина, пена, биологические и полимерные материалы. Они поддерживают очень большие деформации (более 600%), практически несжимаемы, а также для них могут быть заданы температурные зависимости. Доступны стандартные модели материалов Муни-Ривлина (Mooney-Rivlin), Огдена (Ogden) с эффектом Муллинса (Mullins) и модели пенопласта. На рис. 6 изображена модель кожуха рукоятки переключения передач. Материал кожуха задан как гиперупругий резиновый материал с использованием модели Муни-Ривлина. Поверхности кожуха настроены для самоконтакта.


Рис. 6

Вязкоупругие материалы это упругие материалы, обладающие способностью рассеивания механической энергии из-за влияния вязкости.

Эластичные материалы, такие как резина, растягиваются мгновенно и быстро возвращаются в исходное состояние после снятия нагрузки. Вязкость (внутреннее трение) это свойство тела оказывать сопротивление перемещению одной его части относительно другой. Femap поддерживает вязкоупругие материалы с формулировками серий Кельвина и Прони. Модель Кельвина отражает явление упругого последействия, которое представляет собой изменение упругой деформации во времени, когда она или постоянно нарастает до некоторого предела после приложения нагрузки, или постепенно уменьшается после ее снятия (рис. 7). Когда снимается напряжение, материал постепенно расслабляется до недеформированной стадии. Модель Кельвина применяется для органических полимеров, резины, дерева при невысокой нагрузке.


Рис. 7

Деформации типа ползучести происходят с течением времени без какого-либо изменения нагрузки. Деформация при ползучести, как и при пластичности, является необратимой (неупругой), поведение материала при ползучести несжимаемое.
Многие материалы, особенно в условиях высокой температуры, могут испытывать деформации типа ползучести. Femap использует стандартную модель ползучести Бейли-Нортона и позволяет задавать температурные зависимости для определяющих коэффициентов.

В большинстве материалов при действии постоянной нагрузки выделяют три стадии ползучести (рис. 8). На первой стадии скорость деформации уменьшается со временем. Это явление наблюдается в течение короткого периода времени. Вторая стадия, более длительная, характеризуется постоянным значением скорости деформации. На третьей стадии скорость деформации быстро увеличивается вплоть до полного разрушения материала (разрыва образца).


Рис. 8

Многошаговый нелинейный решатель Femap может моделировать нелинейное поведение композиционных материалов в результате внутрислоевого или межслоевого разрушения (рис. 9).

В случае внутрислоевого разрушения отдельные слои ослабевают и теряют жесткость при превышении определенного уровня нагрузки. Решатель отслеживает жесткость каждого слоя в изделии и обновляет жесткость элемента по мере того как слои становятся более поврежденными. В крайнем случае может произойти полная потеря жесткости в элементе. Внутрислоевые разрушения (для однонаправленного или тканого слоя) бывают различных типов: разрушение волокон, разрушение матрицы, разрушение связей между матрицей и волокнами.

При межслоевом разрушении связь между слоями изделия может ослабнуть и потерять жесткость. Femap использует связующие элементы для моделирования такого поведения. Моделирование показывает области, где связь теряется и слои могут отделяться.


Рис. 9

Учет истории нагружения. Многошаговые решения с применением сабкейсов


Состояние конструкции в некоторых случаях зависит от последовательности приложения нагрузок, то есть нелинейность задачи может быть обусловлена необходимостью учета истории нагружения конструкции. Есть задачи, в которых достаточно учесть исходное напряженно-деформированное состояние (часто для нелинейностей, связанных с поведением материала). Но иногда бывает необходимо учесть сложную историю нагружения, состоящую из нескольких сабкейсов с изменяющимися силовыми факторами и граничными условиями. Граничные условия могут меняться при изменении площадок контакта.

Важной особенностью многошагового нелинейного решателя Femap является то, что он может поддерживать несколько сабкейсов и выполнять различные решения такие как статические, динамические, модальные в отдельных сабкейсах в рамках одного решения. В дополнение к изменению типа анализа в сабкейсах также можно изменять настройки параметров и граничные условия. Это открывает пользователям большие возможности настройки решений. Вот типовой сценарий с использованием сабкейсов: каждый сабкейс начинается с условий, в которых закончился предыдущий сабкейс. Такой сабкейс называется последовательным. Но пользователь также может начать решение снова и не в последовательном сабкейсе.

На рис. 10 показан пример моделирования трех компонентов авиационного двигателя: два фланца и ступица соединены болтами в несколько этапов. Для эффективного решения используется симметричный сектор модели. На первом этапе анализируются отклонения от пресс-формы для одного фланца и ступицы. На втором два болта затягиваются, чтобы соединить фланец и ступицу. На третьем рассматривается запрессовка второго фланца. На четвертом затягиваются еще два болта, чтобы соединить второй фланец и ступицу. Затем, на пятом этапе, анализируется нагрузка от высокоскоростного вращения полностью соединенных деталей. Последним шагом является модальный анализ он используется для прогнозирования напряжений от вибрации. Этот полный набор из шести шагов может быть выполнен в рамках одного анализа, что позволяет получить богатый набор данных для понимания напряженно-деформированного состояния двигателя.


Рис. 10

В дополнение к статическим сабкейсам поддерживаются динамические (transient). Этот тип сабкейса может начинать решение или следовать за статическими сабкейсами (рис. 11). При запуске решения могут быть применены начальные условия в форме перемещений или скорости. Например, для моделирования падения рационально начинать решение с точки непосредственно перед ударом и задавать начальную скорость, равную скорости удара. Если динамический анализ следует за статическим или другим динамическим анализом, то отклонения, скорости, ускорения в начале сабкейса будут такими же, как в конце предыдущего сабкейса.

В динамическом сабкейсе сгенерированные силы инерции, демпфирование, матрица жесткости и силы уравновешены приложенными нагрузками. Силы инерции можно отключить при анализе переходных процессов. Это очень полезно для ускорения решения и перехода к стационарному состоянию.


Рис. 11

Динамический анализ и моделирование кинематических связей


Моделирование падения часто выполняется для электронных приборов, чтобы понять, насколько хорошо они переживут столкновение с землей. На рис. 12 отображен ударный процесс, возникающий при падении тепловизионной камеры. Материал корпуса из поликарбоната моделируется как упругопластичный материал, а внутренняя печатная плата и электронные компоненты как линейно-упругие материалы. Динамический анализ начинается с точки соприкосновения тепловизора с землей. Камере задается начальная скорость, соответствующая высоте, с которой она была сброшена (в данном случае это высота 1 метр). Камера быстро соприкасается с землей и отскакивает. Анализируются напряжения и деформации корпуса и бортов.


Рис. 12

Femap поддерживает применение кинематических связей для соединения различных частей сборки. Поддерживаются основные типы шарниров, такие как цилиндрические, сферические шарниры, жесткие и гибкие направляющие.
На рис. 13 изображен процесс развертывания солнечных панелей спутника, соединенных посредством цилиндрического шарнира. С помощью данной модели можно оценить вибрации и определить уровень напряжений.


Рис. 13

Заключение


Главными критериями качества для оценки расчетной модели и полученных результатов всегда были и будут сравнение с натурными экспериментами и аналитическими решениями. Нелинейные модели не являются исключением из правил. Разработчики Femap из компании Siemens проверяют нелинейные формулировки с помощью тестов NAFEMS (Международная ассоциация инженерного моделирования и анализа) и аналитических решений.
В дополнение к проверке формулировок, алгоритмы регулярно тестируются с помощью большой библиотеки тестовых моделей, чтобы избежать появления ошибок по мере добавления улучшений и расширений.

Однако перед каждым инженером каждый раз встает вопрос адекватности принятых допущений, правильного использования имеющихся программных инструментов и многокритериальной оценки полученных результатов.

В данной статье предложен обзор актуальных нелинейных задач и инструментов для их решения. Безусловно, этой информации недостаточно, чтобы на практике приступить к решению вышеобозначенных задач. Поэтому приглашаю вас на бесплатный вебинар Femap и возможности модуля многошаговых нелинейных решений Multistep Nonlinear, который состоится 19 ноября 2020 года в 12:00. Во второй половине вебинара я решу задачу растяжения металлического образца с учетом пластичности и изотропного упрочнения материала.


Ознакомиться с обзором возможностей расчетного комплекса Femap с NX Nastran можно здесь, а скачать бесплатную пробную версию Femap с NX Nastran здесь.

Филипп Титаренко,
продакт-менеджер по направлению Femap
АО Нанософт
E-mail: titarenko@nanocad.ru

Литература
1. Femap с NX Nastran, Simcenter 3D Многошаговые нелинейные решатели: SOL401 / SOL402.Multistep Nonlinear (перевод Ф.В. Титаренко). Siemens.
2. NX Nastran Handbook of Nonlinear Analysis (Solutions 106 and 129). Siemens.
Подробнее..

Из песочницы Расчеты переходных процессов в электрических сетях

15.06.2020 14:21:28 | Автор: admin
Энергетика обширная сфера деятельности, и расчеты в ней производятся разные: расчет рентабельности строительства новых станций, расчет перенапряжений, расчет оставшегося времени до конца рабочего дня в пятницу вечером. Все эти темы в одной статье не уместить, поэтому сконцентрируюсь на той, которой занимался в течение последних лет, расчеты переходных процессов в электрических сетях. Кому интересно, что это такое и как оно происходит в современном мире, прошу под кат.

Оглавление


  • Зачем вообще что-то рассчитывать в энергетике?
  • Переходные процессы это
  • Переходные процессы и режим реального времени
  • Нельзя просто так взять и рассчитать переходный процесс
  • Куда и как запустить модель?
  • Управление по управлению всеми управлениями
  • Все уже сделано до нас
  • Заключение

Зачем вообще что-то рассчитывать в энергетике?


Причины довольно стандартны для любой технической/инженерной сферы: экономия, безопасность, нормативы и прочие банальности. Несколько примеров:

  • Чем точнее мы знаем, какие перенапряжения могут возникнуть, тем меньше денег можно затратить на изоляционный материал, имеющий достаточный запас прочности.
  • Чем больше информации имеется о резонансных частотах в сети, тем точнее можно настроить систему управления и эффективнее справляться с воздействием внешних факторов.
  • Чем детальнее изучено поведение оборудования в тех или иных режимах, тем проще соблюсти нормативы, пройти сертификацию или приёмку.
  • И т. д.
  • И т. п.

Что объединяет приведенные выше примеры? То, каким образом можно получить всю эту интересующую нас информацию. Те, кто помнит название статьи, уже догадались: это можно сделать, рассчитав переходные процессы.

Впрочем, если у вас есть деньги и время для проведения экспериментов, то можно одними расчетами не ограничиваться, ведь теория это хорошо, а теория, подкрепленная экспериментами, еще лучше. Правда это может быть долго, дорого и не всегда возможно, ведь ставить эксперименты на работающей энергосистеме это, выражаясь местным сленгом, сродни запуску тестов на продакшн сервере если что-то пойдет не так, то мало не покажется.

Ну а если нет ни времени, ни денег, ни желания проводить расчеты
то придется либо везде закладывать значительный запас прочности, либо подвергать риску человеческие жизни.

Переходные процессы это


Если по-простому, переходный процесс это когда токи и напряжения в электрической сети изменяются во времени вследствие различных событий, таких как короткие замыкания, отключения выключателей, удары молнии и проч. и проч. Переходные процессы явления чаще всего временные. В электроэнергетике они могут длиться как нано- и микросекунды (переключение транзисторов, удары молнии), так и несколько минут или часов (межсистемные колебания, электромагнитные бури).

Рассчитать переходный процесс значит узнать, как именно изменяются токи и напряжения.

Переходные процессы обычно плавно перетекают в установившиеся. В установившемся процессе, если опять же по-простому, величины токов и напряжений постоянны. А как же напряжение в розетке, которое меняется 50 раз в секунду? спросите вы. В принципе, это тоже можно рассматривать как непрекращающийся переходный процесс, но если амплитуда, частота и фаза синусоидального сигнала постоянны, то гораздо удобнее рассматривать как установившийся. Для этого существуют свои методы, но об этом как-нибудь в другой раз.

Кто круче, переходные или установившиеся процессы?
Все самое интересное происходит во время переходных процессов. Если при изучении установившихся меня посещают мысли типа Шок! В номинальных условиях оборудование выдает номинальный ток, то при расчете переходных можно, например, узнать, что недостаточная нагрузка на линии электропередач может привести к феррорезонансу и перенапряжениям, из-за чего многомиллионное оборудование сгорит или взорвется (события вымышлены, совпадения случайны).

Вот, например, напряжения на конденсаторе при подключении его к трехфазной сети 10 кВ (если что, конденсаторов на самом деле три по одному на каждую фазу):


Где-то сейчас замигали лампочки

Вопрос: когда начинается переходный процесс?

Вопрос со звездочкой: когда заканчивается переходный процесс и начинается установившийся?

Ответы
Начинается переходный процесс в 0.05 с и переходит в установившийся примерно в 0.13 с.
Но если к вопросу подходить с математической точностью, то переходный процесс здесь вообще никогда не заканчивается, так как описывается дифференциальными уравнениями с решениями в виде экспонент. А экспоненты, даже затухающие, к нулю только стремятся. Но об этом чуть позже.

Переходные процессы и режим реального времени


Есть еще одна область применения расчетов переходных процессов это расчеты в реальном времени. Если обычно все гонятся за уменьшением времени расчетов, то здесь, наоборот, очень важно, чтобы расчет одной секунды проходил ровно за одну секунду. Это применяется, например, для прототипирования, тестирования и отладки устройств, предназначенных для взаимодействия с реальным миром: систем управления, защиты и т.д.

Поясню на примере: система управления электростанцией знает, что для реакции на событие X электростанции понадобится две секунды, а на событие Y три. Чтобы дебажить эту систему управления, её подключают не к реальной электростанции, а к так называемому симулятору, имитирующему поведение электростанции. Симулятор в реальном времени рассчитывает переходные процессы, которые происходили бы в электростанции, и ведет себя соответствующе: отвечает на событие X за две секунды, а на Y за три вне зависимости от количества ядер процессора и тактовой частоты. Система управления при этом думает, что работает с реальной электростанцией.


Слева: система управления и электростанция дружно работают на благо родины.
Справа: ничего не подозревающая система управления коварно обманута и подключена к симулятору


Нельзя просто так взять и рассчитать переходный процесс


В рассчитываемой электрической сети могут иметься тысячи различных компонентов, поэтому ручной расчет переходных процессов практически неприменим к реальным задачам в электроэнергетике все считается на компьютере. Расчеты переходных процессов в реальном времени производить вручную еще сложнее, ведь вам понадобится еще и секундомер.

Ну и
сверхчеловеческая скорость тоже не помешает, т. к. новые данные надо выдавать раз в несколько микросекунд.

В начале расчета стоит определиться, какая от него требуется информация. Например, нам нужно узнать перенапряжения, возникающие при коротком замыкании в преобразователе постоянного тока на морской ветроэлектростанции. С типом расчетов всё и так понятно из названия статьи нужно рассчитывать переходные процессы.


Вот так схематично эта система может выглядеть

Затем нужно разработать математическую модель рассчитываемой системы: ветровой электростанции, преобразователей, кабеля и прилегающей электрической сети. Этот этап может быть довольно сложным, ведь не всегда сразу ясно, насколько детальны должны быть модели. Чем больше деталей, тем точнее результат, но тем больше времени надо потратить на расчеты. Никто не любит долго ждать, поэтому приходится искать компромисс. Часто для удовлетворительной точности требуются многие десятки дифференциальных и не очень уравнений для каждого устройства.

Как только модель системы у нас появилась, можно запустить её в солвер (об этом чуть дальше), задать начальные условия и все рассчитать. Как происходит типичный расчет:

  • Интересующий период времени разбивается на отрезки с шагом интегрирования t. Чем меньше шаг интегрирования, тем медленнее процесс расчета и точнее результаты. Часто используются величины t от единиц до десятков микросекунд.
  • Величины токов и напряжений в момент времени (t-t) используются для расчета величин на следующем моменте времени (t).
  • Начальные условия, т. е. начальные величины токов и напряжений, находятся из предположения, что в момент времени t=0 был установившийся режим.

Когда расчет закончен, можно использовать результаты по назначению (ну или обнаружить перенапряжения в миллиарды вольт и понять, что кто-то перепутал плюс с минусом).

Куда и как запустить модель?


Основу ПО для расчета переходных процессов составляет солвер программа, решающая систему уравнений. Особую популярность в области переходных процессов имеют солверы, основанные либо на методе узловых потенциалов, либо на методе пространства состояний. Метод пространства состояний подходит для практически любых систем дифференциальных уравнений, а в методе узловых потенциалов используются законы Ома и Кирхгофа, что делает его удобным именно для электрических систем.

Дифференциальные уравнения математических моделей нужно привести к удобоваримому для солвера виду, т. е. к превратить их в систему линейных алгебраических уравнений. Для этого применяется численное интегрирование. Часто используется метод трапеций, его и рассмотрим. Все уравнения ветровой электростанции из предыдущей главы здесь писать не буду, ограничусь одним скромным конденсатором. Ток и напряжение на нем связывает дифференциальное уравнение вида

$$display$$i=C \frac{du}{dt}$$display$$


Пошаговый расчет методом трапеций для любопытных
Сначала перейдем к конечным разностям:

$$display$$i=C\frac{\Delta u}{\Delta t}$$display$$


Применим суть метода трапеций на двух последовательных моментах времени (t-t) и (t):

$$display$$\frac{i(t)+i(t-t)}{2}=C \frac{u(t)-u(t-\Delta t)}{\Delta t}$$display$$


А теперь вынесем величины для момента времени (t-t) в отдельное слагаемое:

$$display$$i(t)=u(t) \frac{2C}{\Delta t} - \left[i (t-\Delta t) + u(t-t) \frac{2C}{\Delta t} \right]$$display$$


Тем, кому хочется попробовать свои силы самостоятельно, предлагаю разделаться таким же образом с уравнением для индуктивности.

Уравнение конденсатора после метода трапеций:

$$display$$i(t)=u(t) \frac{2C}{\Delta t} - \left[i (t-\Delta t) + u(t-t) \frac{2C}{\Delta t} \right]$$display$$


Величины для момента времени (t-t) вынесены в отдельное слагаемое, т. к. известны из расчета предыдущего момента времени. Теперь вместо дифференциального у нас есть обычное линейное алгебраическое уравнение. Если подключить фантазию, то можно заметить, что финальное уравнение очень похоже на резистор, подключенный параллельно с источником тока.

Не вижу тут никаких резисторов, одни формулы!
Если что, величина резистора равна $inline$\frac{\Delta t}{2C}$inline$, а источника тока $inline$\left[- i(t-\Delta t) - u(t-t) \frac{2C}{\Delta t} \right]$inline$.

Аналогичным образом уравнения других элементов приводятся к комбинациям резисторов и источников тока. А такие электрические схемы умеет решать каждый уважающий себя солвер, основанный на методе узловых потенциалов.


Легким движением руки схема превращается

Не все элементы в электрических сетях представляются в виде резисторов и источников тока, но все в итоге представляются в виде линейных алгебраических уравнений, которые можно скормить солверу. А если не представляются в виде линейных, то можно линеаризовать, рассчитать якобиан, применить метод Ньютона, но все равно решить, пусть и с итерациями. Но не будем сильно углубляться, об этом тоже как-нибудь в другой раз.

Управление по управлению всеми управлениями


В реальных электрических сетях очень часто используются системы управления: в электроприводе, в ветровых генераторах, в преобразователях постоянного/переменного тока и т. д. Они оказывают сильное влияние на переходные процессы, поэтому их тоже приходится учитывать в расчетах.

Сложность уравнений в системах управления теоретически ограничена лишь фантазией инженеров: дискретные передаточные функции пятого порядка? Пожалуйста. Синус от логарифма? Дайте два, один гиперболический. Из-за этого солвер для систем управления часто приходится использовать отдельный, посложнее.

Впрочем, часто системы управления однонаправлены, т. е. сигналы приходят с датчиков, проходят обработку и отправляются в управляющие устройства (типа транзисторов) без каких-либо самозацикливаний. Расчет такой системы управления относительно прост, ведь можно последовательно применять всякие алгебраические операции и горя не знать.


Два сложения, два умножения и один интеграл. Легкотня!

Про направление систем управления
К сожалению, иногда выходные сигналы приходится подавать себе самому на вход, что называется алгебраической петлей (algebraic loop). Это усложняет расчеты, так как вместо последовательных операций теперь надо решать систему уравнений, возможно даже нелинейных. Этого особо никто не любит, т. к. приходится либо итерировать, либо как-то разрывать этот порочный loop. Например, вставляя задержки между выходом и входом. Все это может негативно сказываться на точности и/или скорости расчетов.

Все уже сделано до нас


Ну а если не хочется самому разрабатывать модели и солверы, можно воспользоваться уже существующими программными продуктами. Приведу лишь широко известные в узких кругах энергетиков программы, ибо составить исчерпывающий список задача не из простых. У меня бэкграунд скорее энергетика, чем электронщика, поэтому некоторые популярные программы со схожим функционалом из области электроники наверняка пропустил. Если знаете что-то похожее поделитесь в комментариях.

  • EMTP: специализированное ПО для расчета переходных процессов в электрических сетях. Может использоваться и для расчета установившихся процессов
  • ATP: то же самое
  • PSCAD: то же самое
  • PowerFactory: то же самое
  • Simulink: популярен, знаменит, много методов интегрирования. Но для электрических сетей с большим количеством элементов подходит с трудом. А для прототипирования очень даже.
  • SimPowerSystems: надстройка над Simulinkом специально для электрических систем.
  • Hypersim: расчеты в реальном времени
  • RTDS: тоже расчеты в реальном времени
  • PSS/E: может как и в установившиеся, так и в переходные процессы
  • LTspice: с упором на электронику

Половина этих продуктов из Канады: EMTP, PSCAD, SimPowerSystems, Hypersim, RTDS. Не скажу, с чем связан такой интерес канадцев к переходным процессам, но разбираются они в них не хуже, чем в хоккее.

Заключение


Надеюсь, было познавательно. Ну или хотя бы не очень скучно целых пять картинок в статье, как-никак.
Подробнее..

Из песочницы Как выбрать оптимальный материал на ранних этапах проектирования?

16.06.2020 16:14:27 | Автор: admin
Казалось бы, есть наработанные годами сферы применения материалов. Есть рекомендации от производителя материалов бери и делай. Но в современном мире потребителям доступны сотни тысяч различных материалов со своими особенностями. Как разобраться в этом хаосе? Как понять, что выбранный материал обладает наилучшими свойствами для конкретной детали? И главное, как процесс выбора материала сделать алгоритмизированным, повторяемым и обоснованным? Давайте разберёмся.

Диаграмма Эшби с индексами эффективности

Состояние вопроса в России


Собственно, написать эту статью меня заставила как раз скудность информации по этой теме в отечественной литературе. Есть малое число источников, где рассматривается строгая методология выбора материала для конкретных применений. Методология в отечественной литературе относится к рекомендациям и не обладает математической строгостью, от чего не так прекрасна, как могла бы быть. Есть и хорошие новости. Если методология не распространена в России это не означает что её нет в мире. И сразу оговорюсь, что эта методика не заменяет уже сложившееся представление о выборе материалов, а дополняет его и вносит системность в подход к выбору материала.

Про эту методологию я узнал, когда у меня появился доступ к Ansys GRANTA Selector. Немного поломав мозг и прочитав пару книг делюсь информацией, что я накопал.

На рисунке ниже показан алгоритм принятия решения при выборе материала из учебника Кондакова А.И. из МГТУ им. Н.Э. Баумана [1]. Данная методика предлагает определить наиболее важные для материала свойства, задаться критериями выбора этих свойств и произвести отсев материала по этим свойствам. Если произвести отсев не получается, то необходимо обратиться к изделиям-аналогам и материалам, из которых они изготовлены. После определения перечня материалов на него накладываются ограничения по технологичности и стоимости. И заканчивается всё некоторым кратким перечнем материалов и их характеристик, по которым уже можно определить финального кандидата.



Это прекрасный метод. И в нем всё логично. Но он не отвечает на вопрос какими критериями свойств материалов нужно задаться?. Вы, конечно, можете сказать, что если мы проектируем самолёт, то детали должны быть прочными и лёгкими, ещё, желательно, дешёвыми. И воспользоваться таким параметром как удельная прочность отношение прочности к плотности. И вы будете правы. Частично. Точнее, только в том случае, если ваш самолёт это стержень, работающий на растяжение. Почему? А потому что в таком подходе вы не учитываете форму объекта и вид нагрузки.

Соотношения должны быть чуть сложнее, как в книге Расчёт, проектирование и постройка сверхлёгких самолётов (выдержка показана в таблице ниже) [2].



В этой же книге приводится пример сравнения применения древесины с распространёнными в авиации металлическими материалами: при работе на растяжение древесина не уступает материалам из таблицы. При работе на изгиб даже лучше. А вот при работе на сжатие древесина уже в 2-3 раза хуже.



И даже эти соотношения покрывают только малую часть возможных видов нагрузок, форм и вообще физических приложений. И тут остаются вопросы как быть с остальными применениями?, как собрать это в единую методологию?.

Методология из Кембриджа


Михаэль Эшби, материаловед и профессор из Кембриджа, как раз и занялся исследованиями в этой области. По результатам своих изысканий издал ряд книг, в которых описана данная методология. Дальше этот раздел написан по книге Materials Selection in Mechanical Design [3], которая есть в открытом доступе.

В данной книге приводится более простая схема принятия решения по выбору материала (рисунок ниже).



Схема предлагает сначала отсеять материалы по наиболее ярким свойствам. Например, если у проектируемой детали есть требования по прозрачности или по возможности производить деталь только штамповкой, то это сразу сильно сужает перечень потенциальных кандидатов в материалы. В данном подходе в начале поиска рассматривается весь перечень из существующих материалов. Как ни странно, это может привести к неожиданным результатам. Если в схожих по назначению деталях годами использовался алюминий, то неожиданным может стать применение стеклонаполненного полиамида.

Далее, уже более узкий перечень, предлагается проранжировать в зависимости от необходимых свойств. Для этого нужно задаться некоторым оптимизационным критерием, вроде тех, что представлены в книге про сверхлёгкие летательные аппараты. На этом мы сосредоточим внимание чуть ниже.

При использовании этой схемы предполагается, что на входе в процесс выбора материала информация о потенциальных материалах представлена в общем виде. То есть мы можем использовать даже некоторые оценочные свойства или диапазоны свойств для марки материала. Например, полиамид-6 выпускает огромное количество предприятий. У всех из них материал, получается немного разным, с уникальным набором свойств. Для определения перечня потенциальных кандидатов нам не важно знать точные свойства для каждого производителя. Нам достаточно понимать, что материал полиамид-6 может иметь некоторый разброс свойств и знать этот разброс. Отсюда получается, что у нас должен появится этап, на котором мы уточняем свойства материалов. Это может быть информация из ГОСТов, DINов, информация из научных журналов, листков данных производителей и так далее.

С учётом этой информации у нас остаётся ещё более узкий перечень. Но было бы странно не учесть такие показатели как доступность материала на локальном рынке, действующие договора с поставщиками, потенциальные риски из-за санкций и другие локальные особенности.

Ну и наконец, принятие решение о применении конкретного материала или группы материалов.

Теперь вернёмся к основному этапу ранжированию. Данный этап можно применять не только в методологии Эшби, а использовать, например, при выборе из имеющихся на предприятии 20 материалов.

Мы должны получить некоторые критерии, по которым было бы удобно ранжировать материалы. Для этого зададимся несколькими условиями: функцией, целью и ограничениями.

Любая деталь создаётся, чтобы выполнять какую-то функцию или несколько функций: способность держать давление, передавать тепло, выдерживать изгибающую нагрузку, передавать электрический заряд и так далее. При проектировании инженер ставит цель сделать деталь лёгкой, прочной, дешёвой, эффективной или ещё какой-нибудь. Может и их сочетанием. Но при этом всегда есть ограничения: деталь должна иметь фиксированные размеры, работать в определённом диапазоне температур. Этот перечень определяет условия выбора материала.



Далее мы можем поставить вопрос каким образом достичь поставленной цели?. Если речь идёт о жёсткой балке, то можно выбрать материал с высоким модулем упругости, можно увеличить площадь поперечного сечения, можно сделать балку с малой длиной. Если балка должна быть лёгкой, то можно выбрать материал с наименьшей плотностью, сократить длину, уменьшить площадь поперечного сечения. Как-то слишком много вариантов для раннего этапа, не так ли?

Это подталкивает к мысли, что можно вывести некоторые соотношения, которые будут учитывать вид нагружения и поставленные цели. Такие соотношения будем называть индексом эффективности.

В общем смысле, индекс эффективности это комбинация свойств материала, характеризующая применение материала в конкретной области.

Формализуем эту мысль. Заметим, что эффективность каждого конкретного применения будет зависеть от функциональных требований (выдерживать нагрузку, передавать тепло), геометрических параметров (размеры, форма) и свойств материала (относящихся к конкретному применению):

$$display$$p=f\left(F,G,M\right)$$display$$

где $inline$p$inline$ эффективность, $inline$f()$inline$ функция (в математическом смысле), $inline$F$inline$ функциональные требования, $inline$G$inline$ геометрические параметры, $inline$M$inline$ свойства материала.

При такой формулировке целью становится минимизация или максимизация $inline$p$inline$.

Функцию $inline$p=f(F,G,M)$inline$ можно выразить таким образом, чтобы она состояла из произведения трёх функций, каждая из которых определялась бы набором параметров $inline$F$inline$, $inline$G$inline$ и $inline$M$inline$ (почему будет ясно на примере чуть ниже):

$$display$$p=f_1(F) f_2(G) f_3(M)$$display$$

При таком разделении функция $inline$p$inline$ пропорциональна $inline$f_3(M)$inline$, определяющейся свойствами материалов, и независимой от функциональных требований $inline$F$inline$ и геометрических параметров $inline$G$inline$. Очевидно, что при увеличении функции $inline$f_3(M)$inline$ будет возрастать и $inline$p$inline$. В таком случае функцию $inline$f_3(M)$inline$ можно рассматривать отдельно и именно она будет определять индекс эффективности материалов. То есть можно оптимизировать функцию $inline$f_3(M)$inline$ не зная всех функциональных требований $inline$F$inline$ и геометрических параметров $inline$G$inline$ и рассматривать их отдельно, уже при самом конструировании. То есть мы сначала подбираем оптимальный материал, а затем уже занимаемся конструированием и оптимизацией конструкции.

Рассмотрим на нескольких примерах.

Предположим, что мы выбираем материал для цилиндрического стержня, работающего на растяжение. У нас определена длина $inline$L$inline$ и растягивающее усилие $inline$F$inline$. Цель минимизировать массу при соблюдении условий прочности. Функцию, цель и ограничения соберём в таблицу ниже.





В данном случае максимизация эффективности означает минимизацию массы при способности нести нагрузку $inline$F$inline$. Сначала мы ищем функцию, значения которой можно минимизировать или максимизировать. В данном примере речь идёт о минимизации массы $inline$m$inline$. Уравнение, называемое целевой функцией, имеет вид:

$$display$$m=AL\rho$$display$$

где $inline$A$inline$ площадь сечения, $inline$L$inline$ длина, $inline$$inline$ плотность.

В данной задаче длина $inline$L$inline$ и нагрузка $inline$F$inline$ определены и фиксированы, а площадь сечения $inline$A$inline$ может изменяться в процессе конструирования. Уменьшение $inline$A$inline$ будет приводить к уменьшению $inline$m$inline$, но в тоже время $inline$A$inline$ будет участвовать в соотношении для напряжений:

$$display$$\frac{F}{A}\le\sigma$$display$$

Отсюда можно выразить $inline$A$inline$ и подставить его в уравнение выше и сразу разделить переменные по их типам:

$$display$$m\geq\left(F\right)\left(L\right)\left(\frac{\rho}{\sigma}\right)$$display$$

В первой скобке присутствует $inline$F$inline$ функциональная переменная; во второй $inline$L$inline$ геометрическая переменная; в третьей константы материала. Отсюда можно выразить индекс эффективности:

$$display$$M=\frac{\sigma}{\rho}$$display$$

Сразу установим правило, по которому индекс эффективности стоит выражать так, чтобы его необходимо было максимизировать. То есть чем выше этот индекс тем лучше для конкретного применения материала.

Рассмотрим второй пример балка, нагруженная сосредоточенной силой $inline$F$inline$, с квадратным сечением $inline$b \times b$inline$ и длиной $inline$L$inline$. Балка подвержена изгибу. Длина фиксирована. Необходимо ограничить прогиб балки некоторой величиной $inline$$inline$, то есть ограничением является жёсткость балки. Также необходимо чтобы балка имела минимальную массу. Функцию, цель и ограничения соберём в таблицу ниже.





Выразим жёсткость величиной $inline$ S=F/$inline$, которая должна быть больше либо равной соотношения, определяемого из уравнения прогиба:

$$display$$S=\frac{F}{\delta}\geq\frac{C_1EI}{L^3}$$display$$

где $inline$E$inline$ модуль упругости, $inline$C_1$inline$ константа, определяемая из граничных условий и $inline$I$inline$ момент инерции, определяемый для квадратного сечения как:

$$display$$I=\frac{b^4}{12}=\frac{A^2}{12}$$display$$

Напомню, что наша целевая функция имеет вид:

$$display$$m=AL\rho$$display$$

Получаем, как и в прошлом примере, противоречие между уменьшением массы и увеличением жёсткости при увеличении размеров поперечного сечения будет увеличиваться жёсткость, а вместе с ней и масса, которую мы вообще-то хотим снизить.

Соберём теперь все в целевую функцию:

$$display$$m\geq\left(\frac{12S}{C_1L}\right)^{1/2}\left(L^3\right)\left(\frac{\rho}{E^{1/2}}\right)$$display$$

Тут, как и в прошлом примере, нас интересует только часть, отвечающая за свойства материала, то есть последний член уравнения. Выразим индекс эффективности:

$$display$$M=\frac{E^{1/2}}{\rho}$$display$$

Мы рассмотрели два примера, характерных только для механических задач. Вообще данных подход содержит в себе не только массовые, упругие и прочностные свойства. В нем также можно учесть стоимость материалов, тепловые, электрические и другие характеристики. Если классифицировать применения данного подхода, то получится вот такая структура:



К счастью, для каждого случая нам не нужно решать такие задачи. Их уже посчитали за нас:















Для учёта нескольких критериев, значения наносятся на пузырьковую диаграмму Эшби (рисунок ниже). Овалы на диаграмме отображают разброс свойств для каждого типа материала. Данная диаграмма построена для балки, работающей на изгиб. По оси $inline$X$inline$ отложен индекс эффективности, определяющий стоимость за единицу жёсткости. По оси $inline$Y$inline$ отложен индекс эффективности, определяющий отношение массы и жёсткости. Критерии на диаграмме преобразованы таким образом, что чем меньше значение критерия, тем дешевле и легче будет получаться конструкция при той же жёсткости.



Отсюда получается, что чем ближе материал находится к левому нижнему углу, тем эффективнее будет его применение для легкой, дешёвой и жёсткой балки, работающей на изгиб.

Есть и другой способ отображения диаграммы Эшби. Он описан на странице Википедии.

Пример в Excel


Для примера я составил таблицу в Excel. Предположим, что у нас на предприятии применяют всего 6 материалов. Нужно из этих 6 материалов выбрать наилучшие, для следующих случаев:

  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть лёгкой и прочной. По ТЗ определена длина. Можно изменять сечение;
  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть лёгкой и прочной. По ТЗ определена длина, сечение и его ширина. Можно изменять высоту сечения;
  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть дешёвой и прочной. По ТЗ определена длина, сечение и его ширина. Можно изменять высоту сечения;
  • Лёгкая пружина, способная запасать как можно больше упругой энергии без разрушения.

Ответы в таблице:



Сравнение первого и второго примеров показывает, что полностью вольное изменение площади сечения и изменение только ширины, при заданной высоте, будет приводить к разным результатам. При изменяемой ширине сечения обоснованным будет применение более прочного, но и более тяжёлого материала. А все потому, что прочности в формулах индексов эффективности будут отличаться степенью.

Сравнение второго и третьего примеров показывает, что стремление к лёгкой или дешёвой конструкции будут давать разные результаты. Но это не означает, что конструкция не может быть и лёгкой, и дешёвой. Для решения такой задачи необходимо ещё одно измерение. Нужно построить график Эшби, на котором отложить массовый индекс эффективности по одной оси и ценовой индекс эффективности по другой оси.

В последнем примере показан выбор материала для элемента, запасающего энергию. Стоит обратить внимание на то, что для всех четырёх применений мы получили разные оптимальные материалы.

Литература


  1. Кондаков А.И., Васильев А.С. Обоснование выбора материалов при технической подготовке производства деталей машин. Москва: МГТУ имени Н. Э. Баумана, 2008.
  2. Чумак П.И., Кривокрысенко В.Ф. Расчёт, проектирование и постройка сверхлёгких самолётов. Москва: Патриот, 1991.
  3. Ashby M. Materials selection in mechanical design. 2nd ed. Oxford: Butterworth-Heinemann, 1999.
  4. Википедия: Выбор материала
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru