Русский
Русский
English
Статистика
Реклама

Сапр системы

CATIA из истории одного проекта

24.08.2020 10:10:39 | Автор: admin
Насколько легко использовать возможности современных систем автоматизированного проектирования для автомобильной отрасли, включая инструменты моделирования поверхностей и функции работы с цифровыми макетами программного решения CATIA V5? Какой это дает эффект, какие возникают проблемы? Лучше всего показать это на конкретном примере.
В данном случае речь пойдет об одном из проектов компании Ладуга.

Ладуга это российская автомобильная инжиниринговая компания, разрабатывающая электронные и механические компоненты и системы для транспортных средств. Она работает с отечественными и зарубежными автомобильными компаниями Daimler, General Motors, Audi, Opel, АВТОВАЗ, КАМАЗ, РОСТЕЛЬМАШ, УАЗ и рядом других.

Конечно, CATIA это не единственный применяемый в компании программный пакет. Ее инженеры работают с CAD пакетами (NX), CAE пакетами (PRADIS, LS-Dyna, Ansa, Ansys, Ansys CFX, Fluent, Ansa, Salome, Code-Aster, OpenFoam). Однако CATIA играет ключевую роль в проектах по разработке дизайна, собственно проектированию и оптимизации в соответствии со стандартами и требованиями к автомобилю.
Например, как спроектировать детали интерьера легкового автомобиля, его внешние поверхности крылья, бампер, то есть экстерьер автомобиля? Без серьезной САПР не обойтись. С деталями двигателя или элементами трансмиссии тоже все непросто.

Сложная задача


В описываемом проекте перед инженерами-проектировщиками стояла задача разработки модуля впуска для двигателя легкового автомобиля. В связи с запуском автопроизводителем новой линейки легковых авто на них было решено устанавливать новый двигатель. Как нередко бывает, новую модель двигателя разрабатывали путём модернизации старого: были изменены и добавлены некоторые компоненты.
В частности, поскольку новый двигатель должен иметь большую мощность и больший рабочий объем, потребовалась модификация модуля впуска
image

Инструментарий проектировщика


Программное обеспечение CATIA V5 позволяет разрабатывать трехмерные модели изделий, ассоциативные чертежи деталей и сборочных единиц, поддерживает работу с большими сборками, ассоциативные связи между 3D-моделью и ее проекциями на чертежах, включает в себя инструменты моделирования поверхностей и работы с цифровым макетом (DMU).

Применяемое нами программное обеспечение CATIA V5 позволяет создавать детали сложной формы, поддерживает параметризацию, в нем достаточно просто редактировать геометрию изделия, например, менять ключевые геометрические параметры. Наши инженеры уже имели опыт работы с данным программным продуктом на предприятиях автомобильной промышленности. И это во многом обусловило его выбор, рассказывает Валерий Овчинников, генеральный директор ООО Ладуга.

Разделение труда


Проект впускного коллектора (модуля впуска) для двигателя легкового автомобиля один из самых крупных и длительных в данной компании. Он реализовывался с июля 2013 года по сентябрь 2015 года. Проектирование и подготовку конструкторской документации выполнили специалисты компании Ладуга, а непосредственно изготовлением изделия и поставкой на конвейер занимается ее индустриальный партнер. Над проектом работали конструкторы и команда расчетчиков Ладуги.

К конструкции изделия предъявляется множество требований. Модуль должен быстро и просто устанавливаться на конвейере, нужен удобный доступ к свечам зажигания и возможность легко замерить уровень масла. Для оценки выполнения этих требований применялся кинематический анализ модели. Непосредственно проектирование изделия выполнялось в пакете CATIA V5. В нем же готовилась конструкторская документация.

Множество подобных проектов компании Ладуга, выполняются в CATIA V5. Они длятся от месяца и дольше, в зависимости от стадии автомобильного проекта. Другие проекты, например, связанные с электроникой, могут выполняться с помощью других программных пакетов, что связано с требованиями заказчиков. Сам процесс проектирования выполняется совместно конструкторами, технологами и расчётчиками. Расчеты в Ладуге выполняются в отдельных CAE пакетах, в том числе разработанных самой компанией.

Определенные конструктора работают с задачами моделирования сложных поверхностей, другие занимаются только моделированием сборок, компоновкой или выпуском чертежей у них более простые рабочие места. Такой продукт, как CATIA, требует от инженера высокой квалификации, особенно это касается работы со сложными поверхностями. Поэтому в компании выделена отдельная группа конструкторов, которая занимается такими задачами.

От прототипа к изделию


Конечно, модуль впуска это прежде всего аэродинамика. Его задача максимально наполнить воздухом цилиндры двигателя. В течение двух месяцев конструктора и расчетчики перебрали множество решений.
Рассматривали варианты банки модуля с дополнительными сквозными колодцами для управления потоками воздуха, внутренними рёбрами, различной формой каналов (раннеров). Всё это обсчитывалось на проверку требований по аэродинамике и акустике. Основными критериями по аэродинамике были максимальное наполнение цилиндров и равномерное распределение воздуха по цилиндрам. А оценка уровня шума особенно важна, поскольку пластиковый корпус модуля мягкий по сравнению с традиционным алюминиевым модулем.
По результатам проектирования изготавливается опытный образец изделия. Модуль впуска работает в подкапотном пространстве в сложных условиях. Стандартная 3D печать в 2013 году, увы, давала на выходе слишком хрупкие детали, которые не могли выдержать ни высоких температур, ни больших нагрузок. Поэтому основной технологией прототипирования тут выступало литье в силиконовые формы.
image
Серийное изделие изготавливается из стеклонаполненного полиамида. Это очень жесткий материал, отвечающий требованиям по шуму и вибрациям. Он может работать в суровых условиях при высоком уровне вибраций и температуре свыше 120 С градусов те самые условия эксплуатации в верхней части двигателя, находящегося под капотом.

В целом, процесс прототипирования организован следующим образом. Первый прототип, как правило, функциональный: на нём проверяются функциональные требования, та же аэродинамика и шумы. При этом необязательно выдерживаются параметры толщины корпуса, его материал может быть другим, главное, чтобы деталь выдержала эти испытания.

После функциональных испытаний изготавливается следующий прототип, уже более близкий к конечному варианту. Он обязательно выполняется из основного материала, чтобы подтвердить, что изделие выполняет все целевые технологические и функциональные требованиям.
Все это были стендовые испытания двигателя. И вот теперь пришла пора испытать нашу конструкцию на автомобиле. И не на одном! Испытателям необходимо предоставить 20-30 экземпляров прототипов.

3D печать в этом случае экономически не всегда целесообразна, и снова вступает в игру литье в силиконовые формы. Суть технологии в следующем: с помощью 3D печати получаем мастер-модель, на ее основе получаем силиконовую форму. Такая форма выдержит изготовление около 30 экземпляров (для более простых деталей возможно больше).

А дальше автомобили с прототипами модуля разъедутся по всем уголкам будущего рынка продаж. Равнины, горы с разряженной атмосферой, жаркие сухие пустыни, высокая влажность, зима и лето именно в этих условиях испытатели вместе с электронщиками калибруют двигатель под новую систему впуска.

После успешных испытаний идут следующие этапы: изготовление серийной оснастки, финальные проверки изготовленных на ней изделий, получение поставщиком одобрения на изготовление и поставку этой детали на конвейер, и, как результат, начало серийного производства детали.

В сжатые сроки


А что со сроками?
На подтверждение принятой концепции у нас было два месяца. Если за это время мы не получаем выполнение целевых требований, то сдвинутся все вехи автомобильного проекта. Ситуация была критической, поскольку за два месяца подобный проект реализовать, как правило, невозможно, рассказывает Валерий Овчинников. Нужно было создать прототип и показать, что заданные технические требования могут быть достигнуты.

Работы начались в июне, а в сентябре компания должна была сдать прототип на испытания. В основном инженеры занимались оптимизацией так называемой банки модуля впуска. Полтора-два месяца у них ничего не получалось, но затем удалось найти оригинальное решение, показавшее наилучшие результаты.

Моделирование в 3D и подготовка документации


С помощью 3D моделирования проектировщики анализировали направление потоков воздуха, равномерность наполнения цилиндров и при необходимости тут же меняли форму банки модуля впуска. Оказалось, что удалось не только удовлетворить требования технического задания, но и превысить их. Новый модуль впуска обеспечил улучшение характеристик двигателя, его мощность и крутящий момент стали выше прежних показателей. При этом даже повысилась экономичность. В сентябре-октябре начались испытания, подтвердившие выводы виртуальных испытаний, а затем специалисты Ладуги приступили к проектированию корпуса в пластике.

Это тоже была непростая работа, потому что полиамид материал сложный. Получались неудовлетворительные условия по компоновке модели, отмечает Валерий Овчинников. Нужно было её аккуратно скомпоновать с учетом литейных уклонов и требований к сварному профилю, чтобы сохранить внутреннюю аэродинамичную поверхность, минимизировать коробление, чтобы все детали сварились с целью обеспечения высокой точности изготовления изделия.

Проектная документация также передается подрядчикам в формате CATIA. Внесение изменений в конструкцию возможно на протяжении всего проекта, даже после начала серийного выпуска, и, согласно договору, компания обеспечивает инжиниринг в течение нескольких месяцев после начала продаж. Иногда в деталях нужны доработки, изменения в оснастке, а это изменение конструкторской документации.
image

Данную задачу значительно упрощает поддержка ассоциативности в CATIA. Когда происходит обновление 3D-модели, то чертежи автоматически обновляются с минимальными ручными правками.

Провал на испытаниях и работа над ошибками


По окончании численных расчетов результаты всегда проверяются испытаниями. На изготовленном прототипе модуля впуска проводились испытания на работу двигателя в разных режимах.
И в этот момент произошел казус, который послужил нам большим уроком: наш модуль впуска взорвался прямо на стенде, рассказывает Валерий Овчинников. В одном из режимов внутри модуля впуска возникло значительное разрежение. Прочность корпуса прототипа оказалась недостаточной: он просто схлопнулся и обломки осыпались в цилиндры двигателя.

Недостаточная прочность материала прототипа (это не основной материал на этой стадии проекта) и различные исследовательские режимы испытаний привели к разрушению конструкции.

Потребовалось повышение прочности и жесткости модуля впуска. Для этого проводились долгие повторные расчеты прочности, акустики и вибрации в ходе оптимизации. В итоге получилась сложная многорёберная структура. По результатам расчетов прочности и жесткости инженеры получали картину распределения напряжений, на основе анализа которой добавляли в конструкцию рёбра жёсткости. Расчёты повторялись снова и снова, чтобы не накопить излишней массы и добиться требуемых результатов.

После этого финальные прототипы успешно прошли испытания. И дальше изделие пошло в работу. Предложенная конструкция модуля впуска была запущена в производство и применяется на автомобилях по сей день.

Новые планы


Сейчас автопроизводитель создает двигатель второго поколения, на который должен устанавливаться новый модуль впуска. Компания Ладуга проектирует этот новый продукт также используя ПО CATIA.
Без данного программного обеспечения работы выполнить было бы просто невозможно. Оно поддерживает проектирование сложных сплайновых поверхностей, а такой функционал просто отсутствует в продуктах более низкого уровня, рассказывает Валерий Овчинников. Но кроме возможностей программы требуется компетенция самого инженера. Он должен уметь пользоваться таким сложным функционалом, работать с такими поверхностями, выглаживать их.

Сложности перехода


Сейчас одна из основных задач компании это переход на CATIA версии 6. Она будет задействована в новых проектах. Такой переход это дополнительные сложности обмена файлами, освоения продукта, его интеграции, наконец, просто изучения.

В данное время у нас даже нет возможности изучать весь новый функционал, внедрять его в проекты. Еще одна серьезная задача интеграция 6-й версии пакета с системой PLM. Это обеспечит грамотное управление изменениями, версиями, составами и так далее. Обсуждается также вопрос проектирования электрических кабелей в перспективных проектах. Для этого в CATIA есть отдельный модуль для проектирования кабелей, позволяющий делать 3D-трассировку жгутов и проводов. Она интегрируется с пакетами ECAD и значительно упрощает разработку электронной архитектуры. Такие задачи сейчас возникают при проектировании автомобилей и электромобилей. Даже в простом автомобиле километры жгутов. Тем более это актуально для электромобилей.

При внедрении CATIA V6 наряду с тем, что мы используем много разного другого программного обеспечения, возникает вопрос экспорта и импорта данных. Это требует применения плагинов, дополнительных конвертеров. Бесшовной интеграции не получается. Но, в конечном счете, и этот вопрос будет решен, уверен Валерий Овчинников.

Даже ведущие конструкторы используют функционал CATIA не более чем на 20% в силу того, что за последние годы разработано множество функций, утверждает он. Как освоить тот или иной функционал, насколько он будет нам полезен это вопрос методологический, и мы этому ещё только учимся. Требуется разработать методологию проектирования с использованием нового функционала.

Наш постоянный партнёр и надёжный поставщик услуг технической поддержки программного обеспечения Dassault Systemes компания СиЭс Групп. Её сотрудники оперативно решают вопросы, касающиеся работы программы CATIA и платформы 3DExperience. Валерий Александрович Овчинников.
Подробнее..

SOLIDWORKS Simulation 2021 быстрое, стабильное и точное моделирование контактов

09.03.2021 14:21:03 | Автор: admin

SOLIDWORKS Simulation 2021 самая полнофункциональная из всех версий этого программного продукта.

Мы по-прежнему нацелены на то, чтобы сделать процедуры моделирования и анализа проектов, выполняемых в SOLIDWORKS, проще и быстрее. Новые и улучшенные функции Simulation 2021 помогут вам вывести качество продукции и скорость ее разработки на беспрецедентный уровень.

Производительность: ускорение процессов моделирования

В SOLIDWORKS Simulation 2021 контактные взаимодействия рассчитываются значительно быстрее, чем в предыдущих версиях. Решение контактных задач ускоряется благодаря использованию параллельных многоядерных вычислений, оптимизации загрузки процессора, более быстрому расчету жесткости и надежной передаче данных о контактных парах. Конструкторы особенно оценят преимущества новой версии при работе с моделями, где имеются многочисленные контактные взаимодействия.

Замеры, выполненные нашими разработчиками и партнерской компанией Computer Aided Technology (CATI), говорят об улучшении производительности в пределах от 25% до 67%.

Рис. 1. Анализируемая модель с многочисленными контактными элементами.

Удобство: стабилизация моделируемых контактов

Многие модели CAD обладают неидеальной геометрией: в них, например, встречаются слегка разъединенные поверхности и тела с зазорами. Такие элементы затрудняют работу решающего модуля, что, в свою очередь, увеличивает затраты времени на моделирование. Функция стабилизации контактов SOLIDWORKS Simulation 2021 решает эту проблему.

Стабилизация работает так: к нуждающимся в этом областям до того, как они вступят в контакт, добавляется небольшое численное значение жесткости. Таким способом решающий модуль преодолевает проблемы нестабильности, и задачи моделирования, выполняемые инженерами-конструкторами, значительно упрощаются.

Вы спросите: а как этим воспользоваться на практике?

Очень просто! Стабилизация применяется к контактам автоматически всегда, когда в геометрии присутствуют зазоры. Эта новая возможность часть нашей концепции надежных настроек по умолчанию. SOLIDWORKS Simulation 2021 сам задает для большинства параметров моделирования оптимальные значения, а пользователям остается лишь изменить отдельные поля.

Рис. 2. Контактная модель с начальным зазором.

Повышенная точность: лучшая сходимость и реалистичное представление контактов искривленных поверхностей

При формировании сетки трудно определить точные зазоры между искривленными поверхностями, особенно когда сетка или ее отдельные элементы имеют пониженное качество. SOLIDWORKS Simulation 2021 автоматически вычисляет условия коррекции геометрии, чтобы улучшить представление цилиндрических, сферических и конических поверхностей. Использование этих условий в дальнейших расчетах повышает точность результатов моделирования. Мы добились прогресса в этом направлении, объединив усилия с разработчиками наших решений SIMULIA, которые специализируются на процессах моделирования.

Рис. 3. Контактное взаимодействие между искривленными поверхностями.

Новая функция: набор диагностических инструментов для повышения качества сетки

Сетка высокого качества это ключ к точности результатов, сходимости и скорости вычислений при моделировании и анализе. В SOLIDWORKS Simulation 2021 представлен совершенно новый набор диагностических инструментов, которые позволяют исследовать качество сетки, выявляя некачественные элементы и предлагая их исправить.

Диагностику можно использовать для проверки соотношения сторон, якобиана и т.п. Инструмент Помощник сетки подсказывает, как уточнить сетку в ключевых областях и добиться качества сетки, пригодного для анализа.

Рис. 4. Элементы недостаточного качества, выявленные с помощью инструментов диагностики.

Новое значение по умолчанию: без принудительных общих узлов

В 2020 версии общие узлы перестали принудительно создаваться по умолчанию. Это позволило упростить и ускорить построение сеток для крупных и сложных сборок. SOLIDWORKS Simulation 2021 продолжил совершенствоваться в этом направлении. Повышена точность результатов в сценариях моделирования, где из-за погрешностей сетки образовались зазоры или небольшие пересечения. Типичный пример такой ситуации оболочки с зазорами, обусловленными их толщиной.

Рис. 5. Сетка без принудительных общих узлов.

Новые и улучшенные функции SOLIDWORKS Simulation 2021 принесли реальные преимущества пользователям. Результаты моделирования стали более достоверными, а получить их теперь проще и быстрее, чем когда-либо. Мы продолжаем внедрять в программный продукт как можно больше элементов автоматизации, чтобы вам оставалось меньше ручной работы. Чем быстрее будет проходить цикл разработки, тем раньше ваша продукция окажется представленной потребителям.

Чтобы получить дополнительную информацию или организовать демо-показ SOLIDWORKS Simulation 2021, обращайтесь к авторизованному партнеру в вашем регионе.

Подробнее..

Из песочницы Поверхностное моделирование при работе над САПР T-FLEX CAD 17

13.07.2020 12:11:27 | Автор: admin

Автор: Тимофеев Сергей, программист-разработчик ЗАО Топ Системы.
Руководитель: Батюченко Игорь, руководитель группы разработки ЗАО Топ Системы.


В статье описывается теоретическая база работы новых операций поверхностного моделирования в T-FLEX CAD 17, а также их основное назначение


Изделия сложных форм


Поверхностное моделирование применяется при проектировании широкого спектра промышленных изделий со сложной формой: от бытовой техники и автомобилей до летательных аппаратов и морских судов. Одним из подходов данного типа моделирования является использование набора опорных профилей и обводных кривых, на основе которых строятся поверхности перехода.


Однако, зачастую, использование стандартных операций для создания подобного рода геометрии бывает не удобным и не эффективным по затраченному времени. При решении задач построения поверхностей с заданными характеристиками конструкторам необходимо использовать единый инструмент, позволяющий выбирать различные варианты задания исходных данных (например, поверхности конического сечения). Поэтому нами был создан механизм построения подобного рода поверхностей с общим набором свойств там, где это допустимо.


1. Переходные поверхности


В T-FLEX CAD 17 операция, включающая в себя семейство поверхностей конического сечения, имеет обобщённое название Переходная поверхность. Назначение операции: создать поверхность перехода между двумя другими поверхностями (в своем большинстве), но имеющую определённые граничные условия, а также конкретную, хотя, возможно, и переменную по длине, форму поперечного сечения (подробнее об этом далее).


В настоящее время операция имеет в своем арсенале десять способов построения, разделенных на три группы по типу сечения:


  • коническое, 4 типа;

  • окружность (дуга), 4 типа;

  • прямая, 2 типа.


В данной статье рассмотрим поверхности конического сечения. И хотя каждый способ имеет схожий механизм построения, для получения результирующей поверхности необходимо задавать свой набор начальных данных. Например, для построения поверхности с типом сечения окружность обязательно задание осевой кривой (но не обязательно прямой линии).


В основе построения поверхностей конического сечения лежат четыре типа алгебраических кривых второго порядка, полученных в результате сечения конуса плоскостью (не рассматривая вырожденные случаи): эллипс, окружность (как частный случай эллипса), парабола и гипербола. Однако, особенностью данных поверхностей является отсутствие необходимости явного указания формы сечения. Определение типа кривой происходит автоматически на основе входных управляющих параметров. Но всё же, где можно найти эти самые кривые в результирующей поверхности, а главное, как узнать, какой тип лежит в основе её (поверхности) построения?

Ответ на вопрос где?: Опорная кривая первое, и, пожалуй, ключевое поле, которое видит пользователь при запуске операции. Есть во всех десяти типах построения. Два основных свойства:


Если в любом произвольном месте (точке) данной кривой построить плоскость, перпендикулярную этой кривой, а затем пересечь ее с результирующей поверхностью получим то самое коническое сечение (Рис. 1 пунктирные линии).


Определяет максимальную длину результирующей поверхности (Рис. 1).



Рисунок 1. Поверхность конического сечения по изогнутой опорной кривой
Рисунок 1. Поверхность конического сечения по изогнутой опорной кривой


Где и как расположены кривые второго порядка, которые являются основным скелетом (базовыми профилями) результирующей поверхности, выяснили. Осталось узнать, как можно управлять формой поверхности (то есть типом и формой самих кривых). Для этого доступны четыре варианта рассмотрим первые два из них:


Дискриминант вещественное число в диапазоне (0; 1). Геометрический смысл показан на рисунке 2 (Рис. 2 сечение, перпендикулярно опорной кривой). При значениях (0; 0.5) эллипс; 0.5 парабола; (0.5; 1) гипербола. В случае симметрии, при значении 0.4142 (корень из двух минус один) окружность.



Рисунок 2. Определение инженерного дискриминанта и поверхность, начинающаяся в точке
Рисунок 2. Определение инженерного дискриминанта и поверхность, начинающаяся в точке
(А точка пересечения касательных на концах граней; АС медиана треугольника)


Промежуточный путь пользователь должен указать промежуточную кривую, через которую в итоге и пройдет результирующая поверхность. Главной особенностью этой кривой является тот факт, что в каждом перпендикулярном сечении вдоль опорной кривой точка пересечения её и плоскости должна лежать строго внутри треугольника, изображённого на рисунке 3 (Рис. 3, треугольник ABC).



Рисунок 3. Условие построения и поверхность через промежуточный путь в форме сплайна
Рисунок 3. Условие построения и поверхность через промежуточный путь в форме сплайна (Point точка пересечения перпендикулярной плоскости и промежуточного пути)



Во всех полях данной операции, где нужно вводить числовые значения (константу), можно подключить график и сделать соответствующие значения переменными по длине опорной кривой. На выбор доступны три типа графика: Полилиния односвязный набор прямых отрезков; Кубический сплайн кривая с возможностью задания касательных условий для каждого узла; По 3D кривой нужно указать две кривые из документа, описывающие закон изменения параметра.


Таким образом, задав переменное значение дискриминанта с помощью графика (например, выбрав тип кубический сплайн), получим различные не только по форме, но и по типу сечения вдоль опорной кривой от эллипса до гиперболы (Рис. 4).



Рисунок 4. Поверхность, заданная графиком дискриминанта в диапазоне (0.4; 0.8)
Рисунок 4. Поверхность, заданная графиком дискриминанта в диапазоне (0.4; 0.8)



Данный тип поверхности является ключевым для многих инженерных отраслей, в частности аэрокосмической. При проектировании авиационной техники поверхность конического сечения одна из самых часто встречающихся операций в дереве построения. Именно поэтому на данном этапе разработки системы мы вынесли в интерфейсную часть чуть больше ручек по настройке результирующей поверхности.



2. Линейчатые поверхности


Линейчатая поверхность поверхность, образованная движением прямой линии. Прямая при этом называется прямолинейной образующей, а движется в пространстве она вдоль направляющих кривых. Чтобы не запутаться, не будем жонглировать названиями таких поверхностей (геликоид, гиперболоид и т.д.), получаемых различными вариациями образующих и направляющих кривых. Просто рассмотрим два варианта построения:



одна из направляющих кривых точка;


заданы обе направляющие кривые (Рис. 5).



Рисунок 5. Примеры линейчатых поверхностей (зелёные линии - направляющие)
Рисунок 5. Примеры линейчатых поверхностей (зелёные линии направляющие)



На первый взгляд всё довольно просто и понятно, особенно по сравнению с поверхностями конического сечения. Прямая это алгебраическая кривая первого порядка, на порядок ниже кривых конического сечения. Зачем нужны данные поверхности и где они применяются? Множество примеров использования встречается в архитектуре. Шуховская башня в Москве сетчатая конструкция в форме линейчатого гиперболоида. Балки являются прямолинейными образующими для каждой секции. Еще один интересный пример, хотя в это будет трудно поверить, но форму чипсов из тубуса тоже можно повторить движением прямой (гиперболический параболоид).



Вернемся к одноименной операции Линейчатая поверхность в T-FLEX CAD 17. Первый тип построения (когда в качестве первой направляющей указана точка) довольно прост и имеет минимум особенностей и ограничений. Рассмотрим случай, когда заданы обе направляющие кривые.


Способ построения поверхности методом, описанным в теории, звучит вполне разумно: нужно создать прямой профиль и протолкнуть его вдоль жестких рамок в виде направляющих кривых. Но если учесть, что эти самые направляющие могу быть совершенно разной формы, длины или даже иметь изломы (составной путь), то возникает целый ряд вопросов, главный из которых: согласно какому закону должно выполняться движение прямой образующей?. В результате, был выбран совершенно иной механизм получения результирующей поверхности.


Вместо того, чтобы проталкивать линейный профиль вдоль направляющих кривых, можно использовать эти самые кривые в качестве двух сечений. Именно поэтому в диалоге операции первые два поля имеют названия Первое сечение и Второе сечение соответственно. Условно, соединив по прямой линии каждую точку первой кривой со второй, мы и получим линейчатую поверхность. Остается лишь определиться с законом, согласно которому будет выполняться выравнивание (распределение) UV кривых в результирующей поверхности. На момент публикации доступны два варианта.



По длине дуги:


Используется полная длина выбранных сечений. Суть выравнивания и пример поверхности показаны на рисунке 6 (Рис. 6).



Рисунок 6. Распределение изопараметрических линий (тип выравнивания по длине дуги)
Рисунок 6. Распределение изопараметрических линий (тип выравнивания по длине дуги)


По опорной кривой:


Границы поверхности определяются длиной и формой опорной кривой. Её смысл аналогичен с операцией Переходная поверхность. Именно в перпендикулярных сечениях к опорной кривой и будут располагаться прямые изопараметрические линии поверхности (Рис. 7).



Рисунок 7. Линейчатая поверхность по опорной кривой
Рисунок 7. Линейчатая поверхность по опорной кривой


В заключение стоит сказать, что оба режима поддерживают возможность создания поверхности между двумя замкнутыми контурами, которые, в свою очередь, могут иметь различное число рёбер и вершин (Рис. 8). При этом сохраняется исходная геометрия сечений (создается несколько поверхностей в рамках одного тела).



Рисунок 8. Поверхности по длине дуги и по опорной кривой
Рисунок 8. Поверхности по длине дуги и по опорной кривой


3. Продолжение по закону


Операции с подобным названием создаются для определенных целей: в продолжение к исходной грани, перпендикулярно выбранному ребру создать новую поверхность (в качестве образующего профиля чаще используется прямая или дуга окружности). Однако, в случае с операцией Продолжение по закону мы получили одну из самых нестандартных возможностей, вышедшей за рамки создания поверхностей при необходимости можно получить твердотельную геометрию с широким набором свойств, необходимых для управления её формой и габаритами.


Доступно два варианта продолжения:


Дугой окружности


Цель создать новую поверхность в продолжение к выбранной грани (в качестве профиля дуга окружности). Но в каком направлении? Самое очевидное решение, что продолжать нужно перпендикулярно выбранному ребру. Однако, возможны ситуации, когда это не является ожидаемым решением. На выбор доступен вариант изопараметрически. В таком случае продолжение будет по касательной к изопараметрическим кривым грани в каждой точке выбранного ребра (Рис. 9).



Рисунок 9. Продолжение обрезанного ребра цилиндрической грани
Рисунок 9. Продолжение обрезанного ребра цилиндрической грани



Помимо выбора направления доступен выбор и граничных условий: G1 (непрерывность по первой производной) и G2 (непрерывность по второй производной кривизне). В первом варианте радиус кривизны указывается в явном виде. В случае выбора условия G2 радиус высчитывается автоматически. Особенностью данного условия является то, что вычислять нужно не радиус кривизны ребра в его точке, а радиус кривизны поверхности в заданном направлении (в этой же точке ребра). Если же кривизна в заданном направлении изменит свой знак, то результирующая поверхность в этом месте будет изгибаться в другую сторону (Рис. 10).



Рисунок 10. Два варианта продолжения для условия G1 и один для условия G2
Рисунок 10. Два варианта продолжения для условия G1 и один для условия G2


Также стоит сказать, что для полей задания радиуса и длины доступно подключение графиков.


Линейным профилем


Для начала рассмотрим данный вариант в контексте построения новой поверхности. Выбрав исходную грань, в отличие от типа профиля в форме дуги окружности, можно указать сразу несколько ребер, которые мы хотим продолжить. При этом выбранные ребра не обязательно должны образовывать один гладко сопряжённый путь (могут и вовсе не иметь общих вершин). То есть два соседних ребра могут соприкасаться под любым углом. В этом случае на выбор доступно три варианта обработки таких изломов: разделить, продлить или скруглить (Рис. 11).



Рисунок 11. Три типа обработки изломов для поверхностей
Рисунок 11. Три типа обработки изломов для поверхностей


Другое назначение данной операции моделирование фрезерной обработки (цилиндрического сечения). Хотя, конечно, имея широкий функционал под рукой (в одной операции), использовать её можно в различных целях. Описание всех возможностей займёт довольно много времени и места, поэтому далее рассмотрим только пример с фрезерованием.


Всё, что нам нужно, это сама твердотельная модель и набор проволочных объектов (принадлежащих одной из её граней), имитирующих путь, по которому должна пройти ось фрезы. Задав соответствующие исходные данные, вначале мы получаем новую поверхность (Рис. 12), по сути такую же, как и в случае, когда мы просто продолжали грань.



Рисунок 12. Шар с различными типами профилей
Рисунок 12. Шар с различными типами профилей


Далее устанавливаем нужные параметры:


  • Направление: нужно установить значение симметрично или разная и указать соответствующую глубину обработки. В данном случае нельзя выбирать только одно направление, так как при последующих булевых операциях в случаях с неплоскими гранями исходного тела образуются так называемые невалидные контакты.
  • Толщина: так как мы условились, что выбранные направляющие являются осевой линией для фрезы, выбираем значение симметрично (Рис. 13, слева).
  • Сглаживание: обработка концов (именно начала и конца) нового тела. Устанавливая значение грани, получаем полное сглаживание торцевых граней (Рис. 13, по центру).
  • Изломы: смысл данной опции при работе с твердотельной геометрией отличается от случаев, когда в результате получаем поверхность. Теперь она работает в связке с опцией Сглаживание и означает то, как именно следует обрабатывать внешние углы в местах изломов. Выставляя значение скругление радиус скругления высчитывается автоматически, исходя из выбранной опции в Сглаживании и значения Толщины (Рис. 13, справа).
  • Булева: заключительная часть создания операции. Устанавливаем значение вычитание.

Рисунок 13. Придание толщины, сглаживание торцов и изломов
Рисунок 13. Придание толщины, сглаживание торцов и изломов


В результате на исходном теле получаем пазы, имитирующие фрезерную обработку (рисунок 14).



Рисунок 14. Результат операции Продолжение по закону
Рисунок 14. Результат операции Продолжение по закону


Пересчёт данного примера на современном ПК занимает менее секунды. И всё же геометрические операции, задействованные в данном примере, являются довольно дорогими по используемым ресурсам (в силу универсальности операции). Тем не менее, подобная операция является уникальной в своём роде.


Заключение


Как говорилось в начале статьи, подход поверхностного моделирования применяется во многих отраслях промышленности. Применяя базовые инструменты САПР T-FLEX CAD, а также описанные выше операции, можно проектировать модели любой сложности, удовлетворяющие всем требованиям к форме изделия, его эргономичности и эстетичности.

Подробнее..

САПР в машиностроении смена поставщика

10.09.2020 20:18:34 | Автор: admin

Объясняем, как понять, что ваша система проектирования устарела и на что смотреть при выборе нового решения. Представляем обзор и сравнение пятерки топовых мировых инструментов на основе таблицы сравнения CAD на ROI4CIO.

Часть I. Как понять, что ваша САПР устарела и что делать дальше


Почему компании ищут другие инструменты


При внедрении ваша CAD-система стояла у истоков прогресса, а сейчас кажется, что она работает как затупившийся инструмент? Возникает логический вопрос стоит ли ее заменять или безопаснее все же попытаться получить больше от существующего ПО? В пользу смены играет возможность выбрать новейшее и передовое программное обеспечение. Но сильна и негативная сторона затраты, обновление аппаратного обеспечения, обучение сотрудников, преобразование устаревших данных.

Недавнее исследование Tech-Clarity показало, что компании-лидеры сократили время разработки продукта на 19%, сократили инженерные затраты на 15%, и на 16% сократили время выполнения заказа именно за счет внедрения тех САПР, которыми пользуются на данный момент. В ходе опроса по этому поводу выяснилось, что количество компаний, перешедших на использование других CAD-систем по коммерческим соображениям, увеличилось с 31% в интервью, проведенных 7 лет назад, до 61% в 2019 году. При этом количество компаний, указавших причиной перехода сами инструменты предыдущих систем, сократилось с 48% до 22%. То есть стала важна не только технологическая сторона продукта. Изменения в ответах на эти вопросы определяют, насколько стратегическими инструментами САПР стали для большинства компаний. Исследование показало и темную сторону смены софта 13 недель в среднем было потрачено на восстановление уровня производительности старой системы и 46 недель в среднем на достижение полной окупаемости инвестиций в новую CAD-систему. Прежний уровень производительности восстанавливался в течение 21 недели и окупался за 50 недель.

Но почему компании меняют инструменты CAD? Лидирующими причинами остаются функциональность и лучшая производительность. За этим следует простота использования и цена. Эти факторы неизменны не только на рынке CAD, но характерны и для выбора другого программного обеспечения. На третьем месте причин смены поставщика оказалось предпочтение пользователей это связывают с двумя тенденциями. Во-первых, руководство понимает, что для оптимизации производительности инженеров им необходимы комфортные условия работы и удовлетворенность от используемых инструментов. Во-вторых, это говорит о прогрессе, достигнутом поставщиками CAD по облегчению работы с данными, создание так называемого мульти-CAD возможности работы сразу с несколькими САПР решениями.

Несмотря на то что инструменты САПР существенно изменились за последние годы, самой распространенной причиной перехода на новую систему до сих пор остается нехватка необходимой функциональности.

Тенденции показывают, что изменениями поставщика САПР чаще движут бизнес-причины. Отношения с поставщиками, стратегическое видение вендора и полный портфель его предложений оказывают большее влияние. Это демонстрирует еще один сдвиг по всему рынку ИТ важность сервиса. Компании хотят, чтобы их поставщик CAD был ценным партнером. За последние 5 лет компании на 82% больше склонны менять инструменты CAD просто потому, что им не нравятся отношения с поставщиком.

Говоря о ROI, компании признают, что при смене CAD закладывают инвестирование в обучение хотя оно и отнимает много времени, в долгосрочной перспективе приводит к повышению производительности.

Критерии выбора новой САПР



Эффективное 3D моделирование
Трехмерная модель должна точно отражать каждый компонент в изделиях и взаимоотношения между ними. Должна быть возможность проектировать как можно меньше этапов без ущерба для качества проектирования.

Оценивая CAD-программы, в первую очередь выясните, насколько эффективен каждый пакет при создании продукции, которую производит ваша компания. Стоит протестировать, насколько легко собирается большое количество деталей и как импортируются приобретенные детали из библиотеки. В итоге новая система должна обеспечить уменьшение количества шагов хотя бы на 20 процентов.

Обмен информацией внутри предприятия
Большинство производителей уже не ведет бизнес только в одной стране и полагается на международные сообщества поставщиков запчастей, инструментов, подсистем, производственного оборудования и дизайна. Так что лучше выбрать популярную систему CAD, поддерживающую множество форматов и стандартов. Минимум поддержки международных стандартов STEP, IGES, VDA и IDF. Этот выбор поможет избавиться от бесконечной конвертации файлов из одной системы в другую, что не только занимает время, но и приводит к ошибкам.

Оцените инструменты для исправления повреждений импортируемых форм. Не ограничивайте ожидания от обмена данными, и обменом файлами: современные системы позволяют сотрудникам и заказчикам вести совместную работу над проектом в режиме реального времени. Такой обмен данными экономит тысячи часов и недель рабочего времени.

Работа над проектом от концепции до производства
Ориентируйтесь на CAD-программы с богатым спектром приложений, сокращающих не только время проектирования, но и тестирования, обработки, расчета стоимости и проверки.

Испытания физических свойств дорогостоящие и медленные. И нынешнее развитие САПР позволяет тестировать внутри ПО воздействие множества физических характеристик кинематики, динамики, напряжения, прогиба, вибрации, температур. Специализированные модули проектирования электропроводки помогут обеспечить правильное подключение оборудования, системы с включенной оценкой затрат позволят следить за соответствием смете.

Управление данными
Сулит выгоду и уменьшение головной боли интеграция CAD с системами управлениями данных о продукте PDM (Product data management). Без PDM проектировщики могут перезаписывать работы друг друга, изобретать заново уже разработанные ранее детали. Вместе эти ошибки тратят сотни часов каждый год и тысячи долларов на бракованные детали. Плюс PDM-систем не только в хранении и организации файлов. Они также помогают находить существующие детали для повторного использования, составлять перечни материалов для оценки стоимости и передавать информацию в системы планирования производственных ресурсов.

Понятный пользовательский интерфейс
Ищите систему с короткой кривой обучения понятным пользовательским интерфейсом. Убедитесь, что процедуры проектирования и производства логически протекают от начала до конца. Выбирайте продукт с компьютерными учебными пособиями и онлайн-сообществом, где можно задавать вопросы и получать на них ответы.

Продуктивные деловые отношения с поставщиком
Уже отмечалось, что одна их самых частых причин смены поставщика вовсе не технические аспекты решения. Подобно тому, как некоторые авиакомпании раздражают клиентов дополнительными сборами за регистрируемый багаж, изменениями рейса, платной водой и одеялами, некоторые поставщики CAD взимают скрытые сборы за программное обеспечение и услуги, в которых нуждается большинство клиентов.

CAD: взгляд в будущее



Чтобы не ошибиться с выбором обеспечения, нужно не только изучить его нынешнее состояние, но и понимать, куда движется развитие всей сферы компьютерного моделирования. Посмотрим, что в моделирующих программах будет улучшено в ближайшие годы.

Автоматизация и искусственный интеллект.Одна из самых масштабных тенденций этих лет автоматизация. Такая тенденция обусловлена развитием искусственного интеллекта. В скором будущем ожидается появление CAD-программ, предугадывающих ваши действия, или исправляющих предыдущие ошибки проектирования. Некоторые вендоры уже внедряют ИИ в программы, а в ближайшие годы он станет еще более распространенным

Облачное ПО. Раньше решения САПР были тяжеловесными и работали только на одном компьютере. С ростом использования облаков, многие приложения и программы работают на облачной инфраструктуре. Такие CAD-программы доступны из любой точки мира и не требуют установки и судя по всему, большинство продуктов будет мигрировать в эту сторону.

Виртуальная реальность. Визуализация и рендеринг постоянно совершенствуются. Инструменты САПР все еще нуждаются в хороших 3D инструментах, чтобы достичь оптимального предварительного просмотра проекта. Благодаря виртуальной реальности некоторые 3D модели можно будет просматривать в физическом пространстве благодаря шлемам. Правда, пока это выглядит более перспективным для архитектурной сферы, чем для машиностроения.

Узкая специализация или возможности персонализации.Уже сейчас существует множество программ, посвященных определенным секторам, например продукт Bentley Systems для проектирования исключительно мостов. Таким образом, у пользователей есть инструменты и функции, необходимые для работы над конкретным проектом. Также будет набирать обороты модулярные системы и предоставление услуг по модели SaaS.

Рассмотрев критерии, на которые необходимо обратить внимание при выборе программы, перейдем непосредственно к софту. Далее идет короткий обзор пятерки лидеров рынка САПР в машиностроительной сфере, их преимущества и недостатки, сравниваем основные характеристик на основе сравнительной таблицы.


Часть II. Сравнение продуктов



MicroStation by Bentley Systems


Передовые возможности MicroStation в области инженерного проектирования, моделирования, визуализации и создания чертежей позволяют специалистам по инфраструктуре во всех отраслях выполнять проекты любого масштаба и сложности.


Bentley MicroStation программное обеспечение для визуального моделирования, разработанное специально для инженеров, конструкторов и архитекторов. Программа оснащена инструментами черчения, моделирования, управления объектами, визуализации. Продукт используется для всех типов инфраструктур и инженерных сетей зданий, дорог, мостов, рельс, водопроводных сетей, горнодобывающих предприятий и сетей связи.

MicroStation используется профессионалами в области инфраструктуры для создания высококачественных цифровых проектов. Он способен поддерживать многодисциплинарные BIM-модели (Building Information Modeling), помогая создавать сложные модели, используемые в архитектуре, проектировании, строительстве и эксплуатации инфраструктур. В решении можно создавать любые геометрические формы. Возможности Bentley MicroStation трехмерного параметрического черчения исчерпывающие: все формы можно создавать с помощью инструментов твердотельного, поверхностного, ячеистого, функционального и топологического моделирования.

MicroStation позволяет участникам проекта работать над задачей совместно. Независимо от того, в каких отраслях работают коллеги, они могут всегда ознакомиться с чертежами, моделями и конструкциями. Это достигается благодаря мощной системе ссылок, позволяющей интегрировать с MicroStation различные форматы файлов. Так, решения позволяет напрямую редактировать DWG-файлы, включающие в себя 2D- и 3D-геометрию и встроенную информацию. Пользователи могут манипулировать несколькими референтными файлами одновременно. Кроме того, MicroStation предлагает функцию отмены, которая позволяет пользователям легко отслеживать и откатывать любые изменения, внесенные в конструкцию, даже на уровне компонентов.

Программное решение способствует соблюдению стандартов рисования и проектирования. Продукт оснащен встроенным устройством проверки, которое определяет элементы, не соответствующие стандартам. Здесь можно создавать отчеты о соответствии для повышения качества моделей и результатов. И, конечно, MicroStation поддерживает цифровые подписи, защищая права интеллектуальной собственности.

Цена на MicroStation варьируются в зависимости от включения в подписку различных продуктов BIM. Bentley Systems использует схему trust licensing, обеспечивающую ценовую гибкость для пользователей. Первое место в нашем списке продукт заслужил за соотношение цены и количества предоставляемых инструментов, широкий охват областей применения, наличию официального поставщика в регионе, поддержке множества библиотек и возможностям коллективной работы над проектом.

Преимущества: производительность, простота использования, соотношение цена-качество-количество услуг и гибкая лицензия оплаты, 13 поддерживаемых языков (включая русский), обучающие вебинары и мощное комьюнити.
Недостатки: работает только на Windows, обучающих материалов больше на английском.
Подойдет для: предприятий всех размеров, градостроительной сферы, проектных групп, ответственных за создание и управление инфраструктурой.

Вид процесса работы


Область проектирования: общее, архитектурное, машиностроительное, электрическое;
Основные функции: оценка затрат, моделирование деталей/сборок, анализ, анимация и рендеринг, документация;
Промышленность: инфраструктура, градостроение, конструкции, энергетика, электроника, производство;
Дополнительные особенности: анализ тел и поверхностей, электрические системы, трубопроводные системы, расчет прочности, проверка на соответствие отраслевым стандартам, встроенные библиотеки;
Рекомендованные ОС: Windows 7, 8, 10.

Inventor Professional by AutoDesk


Программное обеспечение Autodesk Inventor предоставляет решения для проектирования и инжиниринга. C помощью Inventor инженеры могут интегрировать 2D- и 3D-данные в единую среду проектирования, создавая виртуальное представление конечного продукта, проверяя форму, соответствие и функции продукта еще до его создания.


Несмотря на время и усилия, которые последние годы Autodesk посвятил разработке и продвижению платформы Fusion 360, Inventor до сих пор является более зрелым и комплексным продуктом. Его регулярные обновления касаются не только исправления ошибок, но и введения существенных новых функций.

Являясь флагманским инструментом 3D-моделирования Autodesk, Inventor предоставляет множество инструментов для всех этапов процесса разработки продукта. Основываясь на мощных возможностях моделирования, Inventor имеет как встроенные, так и дополнительные наборы инструментов моделирования, рендеринга, CAM и управления данными о продукте.

Inventor поддерживает три традиционных метода 3D моделирования: фристайл, параметрический и прямой. Фристайл (Freeform) используется для органического формирования объектов, таких как глина. Параметрическое моделирование вычисляет различные свойства модели, обеспечивая как количественные определения, необходимые для изделия, так и конфигурируемость детали. Прямое моделирование позволяет проектировщику напрямую изменять грани и вершины модели, не беспокоясь об изменениях других ее составляющих.

В решение включены возможности перевода данных из других САПР и чертежей в формате DWG промышленного стандарта. Для упрощения совместной работы, решение предлагает функцию Shared Views: загрузку облегченной версии модели в облачную программу просмотра моделей от Autodesk. Дальше ней можно делиться с клиентами, поставщиками, партнерами. Они могут не только просматривать, но и измерять, делать разметку, делить на секции и комментировать.

В Autodesk Inventor встроен полнофункциональный инструмент автоматизации проектирования на основе упрощенного кода Visual Basic, который автоматизирует все что угодно в 3D модели или 2D чертеже, читает и записывает в MS Excel и другие базы данных, а также в MS Word.

Работая в Inventor, вы можете оптимизировать выбор материалов на основе воздействия на окружающую среду, затрат и производительности для принятия обоснованных проектных решений.

Преимущества: многообразие методов моделирования трехмерных моделей, широкие возможности сборки подключение файлов из других САПР, симулятор кинематики.
Недостатки: только для Windows, сильная нагрузка на ПК в процессе работы с обеспечением, сложный для обучения, при большом количестве деталей программа часто тормозит вылетает.
Подойдет для: проектирования и разработки машин любого вида.

Вид процесса работы


Область проектирования: общее, архитектурное, машиностроительное, электрическое;
Основные функции: оценка затрат, моделирование деталей/сборок, анализ, анимация и рендеринг, документация;
Промышленность: конструкции, потребительские товары, производство, медицина;
Дополнительные особенности: анализ тел и поверхностей, электрические системы, трубопроводные системы, листовые материалы, генераторы стандартных деталей, расчет прочности, встроенные библиотеки;
Рекомендованные ОС: Windows 7, 8, 10.

SolidWorks by Dassault Systmes


В SolidWorks интегрированы мощные инструменты проектирования ведущие в отрасли детали, сборки и чертежи, встроены возможности моделирования, рендеринга, анимации, управления данными о продукте и оценки стоимости.



SolidWorks программное обеспечение автоматизированного проектирования, позволяющее создавать, моделировать, публиковать и управлять 3D моделями.

SolidWorks обладает богатыми возможностями моделирования и тестирования производительности продукта виртуально в заданных условиях. Аналитические свойства помогают выявлять и решать проблемы сборки на ранних стадиях разработки продукта. Например, присутствует анализ движения, линейный статический анализ частей и ансамбля деталей. Одним из заводских инструментов тестирования является Safety Wizard, который поможет изучить работу на предмет наличия каких-либо структурных недостатков.

SolidWorks способен создавать большие сборные конструкции, содержащие около 100 000 деталей. Этими сложными сборками легко управлять с помощью простых в использовании инструментов для создания и управления проектированием.

Пользователи могут создавать различные конструкции деталей из листового металла, используя специализированные инструменты SolidWorks. Инструмент Weldments упрощает проектирование и производство сварных конструкций, рам и оснований.

Решение помогает разрабатывать конструкции из пластмассы и литых деталей. Есть возможности проектирования пресс-форм, функция крепления электрических кабелей и проектирования кабелепроводов, комплексные функции проектирования трубопроводов и труб, документирования схем электропроводки, трубопроводов и трубок.

Одна из отличительных черт, которая делает это программное обеспечение более простым в использовании возможность настроить палитру инструментов. Чтобы сделать рабочий процесс более эффективным, можно располагать наиболее часто используемые инструменты в нужных для пользователя местах.

SolidWorks совместим с DWG, DXF, STEP, STL, что позволяет работать с файлами из AutoCAD и SketchUp Pro, а также выполнять 3D-печать проектов. Эта САПР также позволяет работать с PDF-файлами и различными файлами растровых изображений, поддерживается eDrawings.

Преимущества: одна из самых популярных CAD-программ в мире, гибкость в настройке, достаточна простая в понимании программа.
Недостатки: часто вылетает, не развиты инструменты для коммуникации внутри проекта, поглощает много ресурса во время работы.
Подойдет для: промышленного проектирования и моделирования в средних и крупных предприятиях, из-за цены не выгодна для малого бизнеса.

Вид процесса работы


Область проектирования: общее, машиностроительное, электрическое;
Основные функции: оценка затрат, моделирование деталей/сборок, анализ, анимация и рендеринг, документация;
Промышленность: конструкции, потребительские товары, энергетика, электроника, производство, медицина, автомобилестроение;
Дополнительные особенности: анализ тел и поверхностей, электрические системы, трубопроводные системы, листовые материалы, генераторы стандартных деталей, расчет прочности;
Рекомендованные ОС: Windows 7, 8, 10.

Компас-3D by АСКОН


Комплексная система автоматизированного проектирования, направленная на машиностроение, разработку чертежей, проектирование кабельных систем и создание документов для инженерных проектов.


КОМПАС-3D мощное и комплексное приложение для трехмерного механического проектирования, обеспечивающее основу для трехмерного параметрического твердотельного моделирования. Поддерживает твердотельное, поверхностное, параметрическое, листовое и объектное моделирование.

КОМПАС-3D включает в себя поддержку неограниченного количества слоев, интеллектуальных размеров, стандартных деталей и осевых линий, а также полный набор инструментов для создания стандартных чертежей. Продукт может расширяться с помощью дополнительных модулей.

Решение поддерживает несколько методик проектирования: восходящее моделирование, снизу вверх (с использованием готовых компонентов), нисходящее моделирование, сверху вниз (проектирование компонентов в контексте конкретного проекта), моделирование на основе эскизного чертежа (например, кинематической схемы) или комбинацию методов моделирования.

Интерфейс прост в использовании, для обучения присутствует встроенная библиотека Азбука КОМПАС-3D с готовыми моделями и подсказками по процессу работы. Пользователи могут работать в 2D и 3D одновременно. Преимуществом для региона СНГ является обширная система онлайн-помощи и групп поддержки пользователей на русском языке. Также бонусом является оформление документации в соответствии с правилами ЕСКД и СПДС. Программа позволяет осуществлять проверку документов на соответствие стандартам оформления по ЕСКД (например, размещение текста или допустимое расстояние между размерными линиями), проверку моделей на технологичность. Проверок, улучшающих качество разрабатываемых моделей и документации, доступно около 200 видов.

КОМПАС-3D импортирует ряд стандартных форматов CAD-файлов, включая DWG, DXF, IGES, SAT, STEP и Parasolid и даже формат SolidWorks eDrawings, поэтому приложение хорошо работает в средах смешанного проектирования.

В комплект поставки решения входит ряд библиотек символов, плагинов и дополнений, среди которых электрические/отопительные приборы, мебель, производственные, механические/водопроводные системы и автомобили. Благодаря поддержке форматов импорта, упомянутых выше, можно подключать и несколько сторонних библиотек.

Решение не ограничивается только моделированием объектов КОМПАС-3D содержит инструменты для интеграции в PLM-среды. Правда, наиболее тесная интеграция все же с собственной системой управления инженерными данными от АСКОН с ЛОЦМАН:PLM.

Преимущества: простота в освоении, интерфейс и дополнительная информация на русском языке, поддержка многих форматов, широкий инструментарий.
Недостатки: вероятность проблем при импорте 3D моделей из сторонних программ, проектировать в 3D сложнее, чем в 2D, хромает возможность визуализации.
Подойдет для: новичков, проектирования инфраструктуры и промышленных объектов, создания чертежей.
Вид процесса работы


Область проектирования: общее;
Основные функции: моделирование деталей/сборок, документация;
Промышленность: конструкции, потребительские товары, производство;
Дополнительные особенности: анализ тел и поверхностей, электрические системы, трубопроводные системы, листовые материалы, генераторы стандартных деталей, расчет прочности, модули за дополнительную плату;
Рекомендованные ОС: Windows 7, 8, 10.

Creo by PTC


Это 3D CAD-решение предоставляет дизайнерам инновационные инструменты для всего цикла разработки продукта от первоначальной концепции до проектирования, моделирования и анализа.


PTC Creo предоставляет специалистам по проектированию надежный и масштабируемый инструментарий с современными средствами повышения производительности. Например, начиная с 4-той серии пакетов решений Creo, туда входит оптимизированная функция Дополненная реальность, Creo AR Design Share. Благодаря этому, онлайн сотрудничество с заинтересованными сторонами в любой точке мира стало намного проще.

За счет технологии Creo Unite вы можете открывать, импортировать и сохранять данные, созданные не только в PTC Creo, работать со сборками из таких систем, как Autodesk Inventor, CATIA, Siemens NX, Solid Edge и SolidWorks.

Продукт поддерживает концептуальное проектирование, промышленное проектирование, проектирование маршрутизируемых систем, 3D-проектирование, имитационное моделирование.

Creo Simulate функция, которая помогает распознавать и исправлять ошибки проектирования до создания прототипов. Как и большинство CAD-программ, Creo также использует менеджер слоев, позволяя выбирать, упорядочивать и редактировать различные разделы, не манипулируя всей конструкцией.

Возможности 3D рендеринга выглядят очень реалистично, а в базе знаний PTC и в созданных пользователями учебниках много полезной информации. В новой версии встроен модуль расширения, Creo Generative Topology Optimization, который автоматически создает оптимизированные конструкции изделий на основании установленных ограничений и требований включая материалы и производственные процессы.

Creo умеет извлекать 3D модели из 2D изображений, а также создавать 2D изображения из 3D моделей. Решение работает с DWG, DXF, STEP, STL, PDF и графическими файлами, плюс возможность 3D печати проектов. PTC также предлагает Creo View Mobile, приложение, которое позволяет просматривать и демонстрировать проекты на смартфоне или планшете.

Преимущества: мощный инструмент рендеринга, множество функций, передовые технологии.
Недостатки: длинная кривая обучения, высокая цена, преимущественно англоязычное коммьюнити.
Подойдет для: продвинутых пользователей, проектирования и моделирования промышленных объектов, решений в аэрокосмической сфере.

Вид процесса работы


Область проектирования: общее, машиностроительное, электрическое;
Основные функции: моделирование деталей/сборок, анализ, анимация и рендеринг, документация;
Промышленность: потребительские товары, электроника, производство, медицина, автомобилестроение, авиастроение;
Дополнительные особенности: анализ тел и поверхностей, листовые материалы, генераторы стандартных деталей;
Рекомендованные ОС: Windows 7, 8, 10.

Автор: Наталка Чех, для ROI4CIO
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru