Русский
Русский
English
Статистика
Реклама

Аккумуляторы

Мото AGM аккумулятор ввод в эксплуатацию

08.06.2021 12:19:01 | Автор: admin

Привет, Хабр! Сегодня мы введём в эксплуатацию сухозаряженный мотоциклетный AGM аккумулятор. Данное руководство можно использовать и для обычных сухозаряженных кальциевых АКБ с жидким электролитом.

Заодно обсудим, чем отличаются разные типы свинцовых аккумуляторов, и как это сказывается на их применении. Как всегда, будут видео и показания приборов.

Такие маленькие аккумуляторы используются в мотоциклах, скутерах, квадроциклах, гидроциклах, снегоходах, мотокультиваторах, мини-тракторах и даже опрыскивателях.



Основным отличием мотоциклетного AGM аккумулятора от привычных резервных (для источников бесперебойного питания, ИБП) и тяговых является назначение, соответственно которому нормируются ключевые параметры. У аккумуляторов, предназначенных для разных целей и условий применения, эти параметры разные.
Напряжения в этой статье будут приводиться для наиболее распространённых 12-вольтовых аккумуляторных батарей, к которым относится и подопытная.
Для стартерного или маломощного резервного аккумулятора титульной является полезная ёмкость 20- часового, иногда 10-часового разряда до 10.5 или 10.8 вольт под нагрузкой. Пример GS-12-12 L: 12 вольт, 12 ампер*часов.



Для тягового (глубокого цикла) в качестве основного параметра нормируется ёмкость 2-часового разряда (6-DZM-12: 6 банок, то есть, 12В, 12 А*ч), для мощного резервного мощность 15-минутного разряда (HR-W 12-34: 12В, 34 ватта на банку). Вот и ответ на вопрос, почему тяговая или премиум ИБП батарея того же напряжения, той же титульной ёмкости имеет массу, цену и иногда размер заметно выше, чем у бюджетной линейки для ИБП.



При глубоких разрядах химического источника большими для него током и мощностью вступает в силу закон Пейкерта, согласно которому, полезная отдаваемая ёмкость окажется ниже, чем при более низких токах.
Причины такого феномена поляризация и загромождение пор активных масс продуктами реакции, в случае свинцового аккумулятора кристаллами сульфата свинца. Выход из положения заложить больше активных масс, что, наряду с более стойкой конструкцией тоководов, пластин и предотвращающими их разрушению сепараторами, пригодится и для повышения следующих характеристик.



Вторым и третьим важнейшими параметрами являются количество циклов заряд-разряд и срок службы при постоянном буферном подзаряде до снижения ёмкости на 20-40 процентов. Дополнительно в информационном листке (даташите) к аккумуляторной батарее производители обычно предоставляют таблицы и графики ёмкости при разных токах и мощности разряда до разных напряжений с учётом температуры.



В отличие от тяговых и резервных, стартерный аккумулятор после ёмкости имеет второй, самый ключевой параметр пусковой ток, нормируемый как ток холодной прокрутки по тому или иному стандарту измерений. Именно он определяет способность запустить двигатель стартером, что является наипервейшей задачей автомобильной или мотоциклетной АКБ.
Потому основное свойство стартерной аккумуляторной батареи кратковременно выдавать весьма значительный ток,а затем оперативно восполнять затраченный заряд от генератора.

Стартерный аккумулятор современного транспортного средства, в котором много потребителей электроэнергии, в том числе, таких мощных, как нагревательные приборы и лебёдки, которое часто эксплуатируется в городском режиме коротких поездок, кроме достойной ёмкости, должен обладать и третьим важным свойством способностью выдерживать циклирование и длительное пребывание в состоянии частичной заряженности PSoC, partial state of charge. Именно поэтому под капот всё чаще ставят AGM или EFB (SFB и др.) стартерные батареи, имеющие некоторые черты тяговых.

В AGM absorbent glass mat жидкий электролит не плещется свободно, а пропитывает сепараторы из стекловолокна стекломаты. Подобные стекломаты, наряду с конвертами, защищающими пластины, могут быть в конструкции EFB, где электролит свободно плещется. Также эти батареи премиум-сегмента снабжены усиленными решётками и утолщёнными активными массами по сравнению с обычными стартерными и дешёвыми резервными. Всё это повышает надёжность и стойкость, но чаще всего затрудняет диффузию ионов и перемешивание электролита, потому при эксплуатации продвинутых АКБ следует учитывать их особенности.



Итак, перед нами новый AGM аккумулятор Siltech DC MF 1205 12 В 5 А*ч. В комплекте паспорт с инструкцией на русском языке, сам аккумулятор, винты с гайками для клемм, удобная батарея капсул с дозированным электролитом и клапанные пробки на заливные горловины, конструктивно объединённые с верхней крышкой.



Вскрывать ёмкости с электролитом не следует, плёнки на горлышках капсул пробиваются иглами заливных горловин при установке ёмкости на аккумулятор. Но мы всё же проткнём одну из плёнок, чтобы измерить плотность рефрактометром. (Не повторяйте это!)



Плотность чуть выше 1.31. В очередной раз убеждаемся, что в AGM заливают электролит повышенной плотности.



Формовка сухозаряженных аккумуляторов производится на заводе, далее пластины сушат, и уже из сухих формованных пластин собирают аккумулятор. Срываем наклейку, предохраняющую от кислорода, влаги и пыли, видим заливные горловины с иглами.



Перед заливкой электролита подключим к клеммам АКБ вольтметр с регистратором, чтобы посмотреть, как произойдёт активация химического источника тока. Исходная температура аккумулятора 24.3 градуса Цельсия.



Аккуратно переворачиваем ёмкость-дозатор, устанавливаем её сверху батареи и утапливаем вниз, прокалывая плёнки на горлышках. Это пришлось делать двумя руками. потребовалось прилагать усилие равномерно с левой и правой стороны.



Ещё не весь электролит поступил в банки аккумулятора, а его температура уже поднялась почти на 2 градуса, до 26.2.



Убедились, что весь электролит вытек, снимаем ёмкость-дозатор. Температура 31 градус.



Активация идёт полным ходом, с выделением теплоты. Реакция экзотермическая.
Так как электролит поступал в банки неравномерно, рост напряжения при активации также неравномерный. За минуту напряжение разомкнутой цепи (НРЦ) поднялось с 10.72 до 12.55 вольт, затем две минуты росло до 12.7 и продолжает расти.



Прошло полчаса, на клеммах 12.78 В. Температура снижается, активацию можно считать завершённой.



Мотоциклетные аккумуляторы маркируются в японском индустриальном стандарте JIS. Нашу АКБ производитель маркировал собственным кодом DC MF 1205, но в JIS такой типоразмер обозначается UT5L-BS. Именно этот пункт выбираем в меню тестера.



Внутреннее сопротивление 18.18 мОм, ток холодной прокрутки 165 А, НРЦ 12.72 В. Батарея исправна.



Тестер показывает, что АКБ полностью заряжена, но инструкция предписывает, что перед установкой аккумулятора на транспортное средство после активации его обязательно необходимо зарядить, в противном случае батарея теряет до 20% ёмкости.



Инструкция рекомендует заряжать током 1/10 ёмкости, (в нашем случае 500 мА), и остановить заряд при достижении напряжения 16 вольт. Рекомендуется полная зарядка на стационарном зарядном устройстве не реже, чем один раз в 3 месяца.



В лаборатории автоэлектрики Вектор мы предпочитаем при заряде постоянным током перед высоковольтным дозарядом произвести этап основного заряда током 10% ёмкости до напряжения от 14.1 до 14.8 вольт, в зависимости от типа аккумулятора, (обычно 14.4-14.7), дождаться снижения тока при этом напряжении, и заряжать далее при повышенном напряжении более низким током, обычно 2% от ёмкости.



Однако одноэтапный профиль из инструкции Siltech предписывает не держать АКБ при 16 вольтах, а сразу отключать заряд по достижении этого напряжения. Так как это стартерная AGM, этот профиль можно считать годным для безопасного заряда, но в таком случае важно не прозевать момент достижения 16 вольт и немедленно отключить ток.



Заряжать можно как стабилизированным источником тока и напряжения в виде зарядного устройства (ЗУ) или блока питания, так и ЗУ с автонастройкой параметров заряда с микропроцессорным управлением в реальном времени. Таких продвинутых автоматов сегодня существует много, например, зарубежные СТЕК, Optimate, NOCO и отечественные изделия от предприятий ЛБ-Электро, Автоэлектрика, Балсат. Мы воспользуемся прибором Бережок-V на базе ЗУ Вымпел-30 производства Орион СПБ.



При запуске заряда автомат подал на нашу 5 А*ч АКБ ток, выросший примерно за секунду от рекомендованных в инструкции 0.5 до 5 ампер, то есть, 1C, 100% ёмкости, казалось бы, десятикратное превышение. Что это, глюк, сбой, ошибка или недоработка алгоритма?



На самом деле, никакого превышения нет. По Вудбриджу, ток начала заряда постоянным напряжением как раз составляет 100% ёмкости. И такое начало первого этапа далеко не редкость из мира сверхбыстрых методов заряда и полезных моделей, их реализующих. Наоборот, это происходит повседневно под капотом авто. Генератор автомобиля часто выдаёт 60 ампер, а то и больше, 60 А*ч аккумуляторной батарее. Но это не значит, что так можно зарядить аккумулятор за час, или что этот ток можно держать вплоть до 16 вольт. Как только напряжение на клеммах достигает уставки регулятора напряжения, зарядный ток снижается.

Не всегда состояние аккумуляторной батареи позволяет принимать такой высокий ток после запуска двигателя стартером, часто мешает прогрессирующий разбаланс из-за недозаряда и сульфатации. И увы, никогда полный выравнивающий восстановительный заряд не может осуществиться при напряжениях бортовой сети автомобиля, (если не говорить о гипотетических сложных микропроцессорных системах, где в бортсети есть контроллер заряда, датчик батарейного тока, и так далее). Потому не реже,чем раз в 3 месяца, аккумулятору необходим стационарный заряд. Стационарный то есть, не от штатного генератора, а от специализированного зарядного устройства или источника питания, адекватно управляемого вручную или автоматом.



5 ампер было при 13.5 вольтах, а по прошествии 5 минут при 14.1 В всего 4 ампера. Далее напряжения будут расти, а максимальные токи снижаться, это общее правило почти всех методов и профилей заряда. Исключение составляют специальные режимы для эффективного перемешивания электролита, когда подаются значительные токи при перенапряжениях в течение нормированного времени, а также режимы буферного и периодического подзаряда в хранении. Параметры этапа зависят также от температуры аккумулятора, которая может меняться в ту или иную сторону по внутренним и внешним причинам несколько раз на протяжении заряда.



На утро следующего дня ЗУ в режиме хранения, заряд завершён. На клеммах 13 вольт.



Тестер показывает 16.38 мОм, 184 А, 12.88 В. Параметры батареи улучшились в сравнении с теми, что были до заряда: 18.18 мОм, 165 А, НРЦ 12.72 В.



Электронную нагрузку настроим на ток 20-часового разряда по ГОСТ до 10.5 вольт. Для 5 А*ч АКБ этот ток равен 250 мА.



Аккумулятор отдал 5.461 А*ч. Прекрасный результат.



На разряженной АКБ тестер показывает 129.87 мОм, ТХП 24 А, здоровье 16%, НРЦ 11.03 В, и предписывает зарядить и повторно проверить.



Степень заряженности 0%, потому и внутреннее сопротивление высоко, здоровье и токоотдача низкие. Будем заряжать.



Прошли 2 часа после заряда, можно закрыть крышку и использовать аккумулятор по назначению. Он введён в эксплуатацию.



Показания тестера после разряда 15.27 мОм, 196 А, 12.92 В. Благодаря контрольно-тренировочному циклу (КТЦ), они ещё более улучшились с предыдущих 16.38 мОм, 184 А, 12.88 В. Здоровье АКБ 100%.

По итогам измерений, и пусковой ток, и ёмкость данного аккумулятора соответствуют заявленным, производитель не обманывает, эту сухозаряженную АКБ можно рекомендовать к приобретению.

Итак, после заливки сухозаряженного свинцово-кислотного аккумулятора его действительно необходимо зарядить, чтобы не получить потерю ёмкости и токоотдачи, что мы увидели из показаний приборов в данном эксперименте.

Статья составлена в сотрудничестве с аккумуляторщиком Виктором VECTOR.


Подробнее..

Перемешивается ли электролит в аккумуляторе при движении автомобиля?

17.06.2021 12:20:28 | Автор: admin

Привет, Хабр! Серная кислота почти вдвое тяжелее воды, и её водные растворы, в том числе аккумуляторный электролит, склонны к расслоению: тяжёлая кислота вытесняет лёгкую воду вверх и опускается вниз. Как это влияет на работу аккумуляторной батареи, и насколько эффективно перемешивает электролит тряска при движении транспортного средства? Проведём эксперимент с видео и показаниями приборов.

Перед началом опыта, вспомним известные факты о расслоении электролита:

Основная токообразующая реакция в свинцовом аккумуляторе, двойная сульфатация по Гладстону-Трайбу, требует для заряда воды, которая расходуется из электролита с выделением кислоты, а при разряде наоборот, расходуется кислота и выделяется вода.

Обязательными условиями заряда участка активной массы являются наличие в этом участке воды, а также электрический потенциал не ниже необходимого для преодоления термодинамической электродвижущей силы ЭДС на этом участке. ЭДС тем выше, чем выше концентрация кислоты.

Следовательно, повышенная концентрация электролита в нижней части банок и глубине намазок пластин АКБ аккумуляторной батареи ведёт к тому, что для преодоления термодинамической ЭДС требуется более высокое напряжение на клеммах. При недостаточном напряжении заряд участка активной массы (АМ) с повышенной концентрацией кислоты не произойдёт никогда. Также препятствует заряду и недостаток воды в данном участке АМ.

И заряд, и разряд активных масс ведут к расслоению электролита, так как выделяющаяся при заряде кислота стремится вниз, а образующаяся при разряде вода вверх. Таким образом, если не предпринять специальных мер, при любой глубине циклирования или просто саморазряде АКБ расслоение электролита прогрессирует.

Современные типы АКБ характеризуются плотными сепараторами, препятствующими оплыванию активных масс и короткому замыканию. Они повышают надёжность, виброустойчивость и срок службы АКБ, но и препятствуют перемешиванию электролита, усугубляя тенденцию к расслоению.

Чем более прогрессирует расслоение электролита, тем большая доля активных масс при штатном зарядном напряжении не заряжается, то есть, остаётся в виде сульфата свинца, склонного переходить в труднорастворимую форму. Это явление называется сульфатацией. Не следует путать с двойной сульфатацией п. 1 нормальной токообразующей реакцией. Сульфаты имеют меньшую плотность, чем заряженные АМ губчатый свинец отрицательных пластин и оксид свинца положительных, потому сульфатированные намазки увеличиваются в объеме, что ведёт к разрушению конструкции аккумулятора и коротким замыканиям. П. 5 этому препятствует, но при отсутствии периодического выравнивающего заряда АКБ с расслоением и сульфатацией теряет ёмкость, токоотдачу и концентрацию кислоты в верхних слоях электролита.

Электролит с низкой концентрацией кислоты замерзает при более высокой (менее минусовой) температуре, потому расслоение электролита ведёт к выходу аккумулятора из строя в зимнее время.


По просторам Всемирной Паутины с давних времён гуляет множество мифов о губительности кипячения, заряда с перенапряжением и выделением водорода и кислорода, пузырьки которых перемешивают электролит, для автомобильных АКБ. Многие руководствуются этими мифами при заряде АКБ и выборе для этого зарядных устройств ЗУ.

Отчасти поэтому, во многих моделях ЗУ производители ограничивают напряжение на уровне, не допускающем кипения электролита, в других моделях предоставляют пользователю выбор максимальных напряжений заряда путём ступенчатого переключения или плавной регулировки, даже если ЗУ представляет собой не просто источник питания со стабилизацией тока и напряжения (СС/CV), а имеет алгоритмы автоматического управления напряжением и током согласно табличным значениям профиля или на основании измерения характеристик АКБ.

Водород, аэрозоль серной кислоты и сероводород, могущие выделяться при заряде аккумулятора, действительно опасны, потому заряжать следует в проветриваемом помещении, адекватно управлять током, напряжением и временем заряда, изучить и соблюдать технику безопасности.

В сегодняшнем эксперименте посмотрим, насколько перемешают электролит пара современных отечественных ЗУ, и насколько это требуется от ЗУ вообще, применительно к стартерной аккумуляторной батарее. Ведь она монтируется на автомобиле (мотоцикле, снегоходе, катере...), а тот испытывает ускорения и вибрации при движении. Некоторые авторы считают, что поездки перемешают электролит, потому в функции зарядного устройства это не входит. Давайте попробуем, и узнаем.


Подопытным будет аккумулятор АКОМ +EFB 6СТ-60VL. Со времени предыдущего стационарного обслуживания он использовался на автомобиле 4 месяца. График работы владельца автомобиля сутки через трое, каждая поездка занимала 20 минут. Стартер и сигнализация за трое суток простоя в каждом таком цикле расходовали примерно 3 ампер*часа.

Начнём с измерения параметров текущего состояния. И как всегда, в первую очередь вымоем корпус и зачистим клеммы.


Напряжение разомкнутой цепи НРЦ, оно же ЭДС без нагрузки, по показаниям трёх приборов 12.48, 12.50, 12.52 В.


Плотность электролита по банкам колеблется от 1.22 до 1.23. В крайних банках плотность ниже, в средних выше. Это тенденция, обычная для свинцовых батарей.


Итак, наблюдаем расхождение: НРЦ соответствует уровню заряженности выше 80%, плотность электролита при котором должна быть 1.24, а по плотности уровень заряженности получается 75%, НРЦ должно быть 12.4 В. Причиной такого несоответствия как раз является расслоение электролита за 4 месяца эксплуатации под капотом. Повышенная концентрация кислоты в нижней части банок создаёт завышенное НРЦ. АКБ в таком состоянии необходим стационарный заряд.


Напряжение под нагрузочной вилкой не падает ниже 10 вольт, аккумулятор способен крутить стартер. Но если почитать инструкцию от производителя, то там чётко и ясно написано: если плотность ниже 1.25, аккумулятор требуется зарядить до плотности 1.28. Также в инструкции сказано,что можно оценить степень заряда по напряжению, и рекомендуется производить стационарный заряд при НРЦ ниже 12.5, но если имеется доступ к электролиту, то лучше проверить его плотность.


Приступаем к заряду зарядным устройством BL1204 на программе 2.


Заряд длился 9 часов. Плотность по банкам составила от 1.23 до 1.24.


По графику напряжения на клеммах, видно, что ЗУ производит основной заряд с подачами и паузами разной продолжительности, а затем три этапа непрерывного дозаряда, после чего последовали тест АКБ и буферный режим 13.65 В. Однако для кальциевой АКБ до 14.8 вольт происходит лишь основной заряд, потому продолжим заряд на программе 4.


Время заряда составило 1 час 16 минут плюс 20 часов в режиме буферного хранения. Плотность поднялась ещё на одну сотую и составила от 1.24 до 1.25. Сделаем ещё один проход на 4-й программе.


Время заряда снова 1 час 16 минут. Плотность поднялась всего на 0.005. Перезапустим программу 4 в третий раз.


Третий проход длился те же 1 час 16 минут. Плотность снова поднялась на 0.005. Отключаем ЗУ от АКБ. После отстоя продолжительностью 18 часов 20 минут НРЦ 13.20 В. При плотности 1.25 это говорит об очень сильном расслоении электролита. Запустим программу 4 ещё раз.


Заряд длился на этот раз около 50 минут. Плотность электролита не поднялась. Попробуем воспользоваться другим ЗУ.


Возьмём Бережок-V, установим 15.9 В то же максимальное напряжение, что у BL1204.


Ток изменяется от -0.2 до 4.5 ампер. Отрицательное значение тока не ошибка токовых клещей, а разрядные импульсы в асимметричном (реверсивном) заряде.


Заряд длился 4 часа, за которые ЗУ сделало две длительные паузы, и затем перешло в режим хранения не поддержание буферного напряжения, как BL1204, а периодический подзаряд.
В пиках напряжение достигает тех же 15.9.


Плотность в 5 банках составила 1.26 или чуть выше, и в одной 1.255. Оставим АКБ на ночь дозаряжаться в режиме хранения.


По прошествии 15 часов, импульсы тока доходят до 5 А, снижаясь менее чем за секунду до 1 А.
Для отбора проб электролита из глубины банок воспользуемся удлинённой пипеткой, гибкий наконечник которой может пройти сбоку от пластин. Короткой пипеткой произведём отбор, как обычно, из верхнего слоя.


Плотность верхнего слоя составила 1.26, нижнего почти 1.31. Это весьма значительное расслоение, обуславливающее высокое напряжение разомкнутой цепи при недозаряженных и сульфатирующихся нижних частях пластин. Ни одно из применённых ЗУ при заряде нашего аккумулятора до 15.9В с расслоением не справилось.


Устранят ли поездки такое расслоение? Для непосредственной проверки установим АКБ под капот, для чего пришлось удлинить провод массы.


Для лучшего перемешивания прибавим напряжение бортовой сети с 14.3 до 14.8 В, так как это позволяет сделать трёхуровневый регулятор напряжения.


Приборная панель Gamma GF-618 позволяет регистрировать данные поездок, что тоже очень пригодится в нашем эксперименте.


Пробег за трое суток в городском режиме составил 143.7 километра. Большое количество разгонов и торможений должно способствовать перемешиванию электролита.


Израсходовано 12.8 литров бензина.


После таких поездок плотность на глубине составила 1.29.


Плотность сверху 1.27. Предписываемого инструкцией значения 1.28 так и не достигли. Расслоение до сих пор присутствует. Покатаемся ещё трое суток, на этот раз, не только по городу, но и по трассе.


Итого за 6 суток автомобиль двигался восемь с половиной часов.


Общий пробег за это время 377.8 км.


Бензина затрачено 28.8 литра.


Плотность электролита наверху и внизу, наконец, уравнялась, и составила чуть ниже 1.27.


Итак, чтобы устранить расслоение в Ca/Ca EFB аккумуляторе после нескольких перезапусков стационарного заряда до 15.9 вольт, понадобилось почти 378 километров пробега и 29 литров бензина при напряжении бортсети 14.8 В. Сделаем выводы:
Q: Перемешивается ли электролит в современном кальциевом аккумуляторе с высокой плотностью сепараторов и упаковки пластин при движении транспортного средства?
Да, действительно перемешивается.
Q: Насколько такое перемешивание эффективно?
Мягко говоря, не очень.При более низком напряжении бортовой сети и более коротких поездках расслоение электролита продолжило бы прогрессировать
Q: Остались ли после всех стараний в испытуемом аккумуляторе недозаряд и сульфатация?
Да, остались. Чтобы считать данную АКБ заряженной, мы должны получить плотность верхних слоёв не менее 1.28.
Q: Проявляют ли EFB аккумуляторы, вместе со склонностью к расслоению электролита, заявленную стойкость к длительному недозаряду (PSoC, partial state of charge, состояние частичной заряженности) и циклированию с глубокими разрядами?
Да, как показывают другие наши исследования, которые продлжаются, уже выложено несколько видео, и готовятся следующие видео и статьи.
Q: Тем не менее, будут ли ёмкость, токоотдача и устойчивость к замерзанию электролита деградировать если не предпринимать периодических регламентных процедур по полному стационарному заряду?
Будут, у любого свинцово-кислотного аккумулятора, потому что препятствует замерзанию концентрация кислоты в растворе, полезная ёмкость обеспечивается количеством заряженных (десульфатированных) активных масс, а способность отдавать ток полезной нагрузке и оперативно восполнять затраченную энергию от генератора автомобиля или иного зарядного устройства действующей площадью активных масс. На ёмкость и токоотдачу влияет доступность воды для заряда и кислоты для разряда, т.е. расслоение электролита напрямую вредит этим ключевым для химического источника тока параметрам.

Теперь давайте всё-таки продолжим заряд данной аккумуляторной батареи. На этот раз начнёт Бережок-V, при том же напряжении окончания заряда 15.9 В.


Заряд продолжался около 4 часов, плюс 4 часа в хранении.


Плотность поднялась с чуть ниже 1.27 до 1.275. Передаём эстафетную палочку BL1204.


Заряд длился около часа, и далее 14 часов в режиме хранения.


Плотность осталась 1.275.


Установим на Бережке-V ограничение напряжения 16.7 вольт и запустим заряд.


По прошествии 4 часов ЗУ автоматически перешло в режим хранения. Плотность и над пластинами, и на глубине чуть выше 1.28. Электролит перемешан, расслоение устранено.


Адекватный стационарный заряд не только перемешивает электролит эффективнее, чем ускорения и вибрации при движении транспортного средства, но и позволяет более полно зарядить аккумуляторную батарею, устранить сульфатацию, поднять эксплуатационные характеристики.


Спустя сутки, имеем следующие показания тестера:
Здоровье 100%, внутреннее сопротивление 4.81 мОм, ток холодной прокрутки 574 из 560 А по стандарту EN. НРЦ 12.80 В соответствует плотности 1.28. Расслоения нет, АКБ в полном порядке, можно ставить под капот.

Статья составлена в сотрудничестве с аккумуляторщиком Виктором VECTOR, осуществившим описанные опыты.


Подробнее..

Чем кальциевые аккумуляторы отличаются от гибридных?

21.06.2021 16:11:25 | Автор: admin
Они отличаются тем, что у гибридных (Ca+, Ca/Sb) свинцовый сплав положительных решёток легирован сурьмой, а отрицательных кальцием, тогда как у кальциевых (Ca/Ca) те и другие кальцием. В результате, выделение газов происходит при разных напряжениях заряда, и токи окончания заряда при этих напряжениях тоже разные.

Однако, современные автомобильные аккумуляторы отличаются не только составом металлов, но и плотностью установки пластин в банках, а также сепараторами между пластинами, которые влияют на распределение ионов носителей заряда в электролите, а значит, и потенциалы, и токи при том или ином напряжении на клеммах. Потому случаются казусы, когда кальций ведёт себя как гибрид или гибрид как кальций.


Обманывают ли нас производители, или мы не всегда учитываем влияния конструкции на электрохимические процессы? Проведём серию испытаний пары аккумуляторных батарей (АКБ), изображённых на фото.

В сегодняшнем эксперименте участвует батарея 6СТ-64L Тюмень PREMIUM СаСа 64 А*ч. Кальциевая технология освоена Тюменским аккумуляторным заводом (с лосем на логотипе) в 2019 году.


Аккумулятор полностью разряжен, плотность электролита 1.07 граммов на кубический сантиметр. Ареометр утонул ниже шкалы. (Выводим тюменского лося на чистую воду, шутка для тех, кто знает: электролит полностью разряженного свинцово-кислотного аккумулятора вода, потому что вся кислота в намазках, в виде сульфатов свинца).


Тестер показывает уровень заряженности (state of charge, SoC) 0%, внутреннее сопротивление 9.77 мОм, ток холодной прокрутки (ТХП) 283 из 620 А по стандарту EN, напряжение разомкнутой цепи (НРЦ, оно же электродвижущая сила ЭДС без нагрузки) 11.53 В, и предписывает зарядить аккумулятор.


Заряжать будем зарядным устройством (ЗУ) Кулон-720. Настроим следующие параметры заряда: предзаряд до 12 В 2 А, основной заряд 14.7 В 6.4 А 24 часа, хранение 13.2 В 0.5 А.


Дозаряд у Кулона-912 реализован качелями, так принято называть управление двухпороговым компаратором или компаратором с гистерезисом по напряжению. Когда напряжение на клеммах достигает верхней планки, ЗУ отключает зарядный ток. Когда поляризация релаксирует, напряжение на клеммах снижается, и при касании нижней планки ЗУ возобновляет подачу тока. Продолжаются эти циклы до превышения максимального времени. Установим пороги 15.6 и 14.7 В, ток 3.2 А, продолжительность 16 часов.


Прерывистый дозаряд качелями или моргалкой служит затем, чтобы минимизировать потерю воды на электролиз, и при этом по возможности полнее зарядить АКБ и перемешать электролит. Исторически этот способ сложился применительно к зарядным устройствам (источникам питания), у которых было невозможно оперативно регулировать зарядный ток, и вместо снижения силы тока, его прерывали по таймеру с помощью реле указателей поворота, либо по напряжению с помощью компаратора. Чтобы компаратор не возобновлял заряд моментально после его отключения, а делал паузу, понадобился гистерезис.

Некоторые энтузиасты считают электролиз воды при заряде аккумулятора вообще недопустимым, и устанавливают низкий верхний порог качелей. Дозаряд с такими настройками затягивается надолго, и часто не устраняет расслоения электролита и сульфатации глубинных слоёв намазок. Поверхность пластин при этом может выглядеть идеально: коричневая у положительных и серебристая у отрицательных, но при изгибе материала активных масс (АМ) он хрустит, выдавая присутствие сульфатов в глубине. Разумеется, для проверки пластин на хруст АКБ следует вскрыть и разобрать, потому эти факты не общеизвестные.
Крайне не рекомендуем разбирать любые химические источники тока без адекватной всесторонней подготовки: техники безопасности, оборудованного рабочего места (не на кухне и не в жилом помещении), средств индивидуальной защиты, знания дела и навыков работы, а прежде всего, понимания, зачем это делается. Компоненты химических накопителей энергии по своей природе токсичные, едкие, а часто ещё и пожаровзрывоопасные.

Другие энтузиасты пошли дальше и стали регулировать интегральный ток с помощью широтно-импульсной модуляции (ШИМ, PWM) более высокой частоты, чем доли герца единицы герц, реализовав подачи зарядного тока одной и той же амплитуды пачками импульсов ШИМ. В любом случае, для эффективного заряда свинцово-кислотного аккумулятора, необходимо обеспечить присутствие воды в зоне реакции, т.е. перемешивать электролит, так как при заряде АМ затрачивается вода и выделяется кислота, и потенциал заряжаемого участка АМ должен быть достаточным для преодоления термодинамической ЭДС и осуществления реакции Гладстона-Трайба.


Пошёл предзаряд.


Вскоре ЗУ перешло к этапу основного заряда.


За три с половиной часа залито 22.4 А*ч, напряжение на клеммах 13.3 В. Оставим ЗУ работать на ночь.


На следующий день время заряда составило 19 часов 42 минуты, аккумулятору сообщено 75.3 А*ч. Напряжение дозаряда доходит до установленных 15.6, ток при этом напряжении снизился до 1.2 А.


Алгоритм ЗУ не просто включает и отключает ток, а продолжает заряд некоторое время при максимальном напряжении, отключает, после падения включает сначала заряд постоянным напряжением по нижней уставке, затем по верхней, с ограничением тока не выше установленного.


Плотность электролита уже чуть выше 1.25.


С момента начала заряда прошло 23 часа, залито 77.4 А*ч. Ток при 15.6 В снизился до 1 А.
АКБ продолжает заряжаться, плотность электролита поднялась чуть выше 1.26.


Заряд продолжался 26 с четвертью часов, батарее передано 79.2 А*ч. Ток при 15.6 В не снижается.


Плотность 1.27.


29 с половиной часов от начала заряда, залито 80.9 А*ч. Ток при 15.6 В снизился до 0.9 А. Оставим ещё на ночь.


На утро аккумулятору сообщено 82.6 ампер*часа, ЗУ в режиме хранения. С начала заряда прошло 45 с половиной часов.


Плотность во всех банках 1.28. Нам удалось зарядить эту АКБ после глубокого разряда за один подход.


Однако возникают сомнения в том, что эта АКБ полностью кальциевая. При заряде она повела себя как гибридная. Ca/Ca аккумулятору 16 часов дозаряда, а именно такое максимальное значение можно установить на Кулоне-720, и его мы как раз установили, бывает недостаточно. Приходится перезапускать заряд.

Разряжать будем электронной нагрузкой ZKE EBD-A20H, по ГОСТ током 5% номинальной ёмкости 3.2 А до касания под нагрузкой 10.5 В.


Прибор подключается к ПК по USB и позволяет строить графики напряжения и тока. После начала разряда стабилизированным током напряжение растёт вследствие зависимости сопротивления электролита от концентрации кислоты, затем вскоре начинает плавно снижаться по мере разряда аккумулятора.


Через 8 часов разряда напряжение на клеммах 12.22 В. Слито 26.78 А*ч, 332.45 Вт*ч.


Через 20 с половиной часов разряд продолжается, на клеммах 11.07 В, АКБ отдала 66.86 А*ч, что уже превышает паспортную ёмкость. Как видно из графика, в конце разряда напряжение снижается быстрее, модуль первой производной выше.


На последней минуте график резко пошёл вниз.


Разряд завершён, напряжение после снятия нагрузки начало расти. Время разряда составило 20 часов 44 минуты, отданная ёмкость 67.39 А*ч.


Через 3 минуты после снятия нагрузки напряжение на клеммах выросло до 11.42 В. Подождём ещё час.


Прошёл час с момента завершения разряда, НРЦ 11.63 В.


Плотность электролита ниже 1.10. Ставим на заряд.


Заряд продолжается 26 часов 19 минут, залито 79.2 А*ч. Ток при 15.6 В 1 А.


Плотность уже 1.27. Аккумулятор заряжается очень легко при дозаряде качелями с максимальным напряжением 15.6. Так обычно ведут себя гибридные Ca/Sb, а не кальциевые Ca/Ca аккумуляторы.

Смотрим интенсивность газовыделения в качелях до 15.6. Это также признак гибридной АКБ. В силу более низкого напряжения начала газовыделения, расход воды при эксплуатации у этой АКБ выше, чем у других современных Ca/Ca. Это следует обязательно помнить, не забывать проверять уровень электролита, и своевременно доливать дистиллированную воду.

GIF 7952.5 Кбайт

А так кипит при дозаряде с перенапряжениям вторая участница тестов оригинальная запасная часть LADA 6СТ-62VL производства жигулёвского завода АКОМ, типичная полностью кальциевая Ca/Ca батарея. Для такого газовыделения понадобилось 16.2 вольта при постоянном токе 2% ёмкости, то есть, 1.2 ампера, безо всякого прерывания качелями.

GIF 7597.95 Кбайт

Тесты АКБ Лада объёмны и заслуживают как минимум отдельной статьи, потому здесь приведём только их конечные результаты, нужные для сравнения двух испытуемых образцов.



Показания тестера у Тюмени: здоровье 100%, ТХП 687 из 620 А по EN, внутреннее сопротивление 4.02 мОм, НРЦ 12.96 В. У Лады: EN 722 из 600 A, 3.82 мОм.


Просадка под нагрузочной вилкой 200 А до 10.64 В.


Для сравнения, Лада проседает до 10.90.


Масса тюменского аккумулятора 16.4 кг.


Сведём данные тестирования двух аккумуляторных батарей в одну таблицу:
Фактическая удельная ёмкость на килограмм массы батареи у АКБ Лада на 11.57% выше, чем у Тюмень Премиум, удельный ток холодной прокрутки на 13.69%. Оба этих параметра зависят не от кальция и сурьмы в свинцовом сплаве, а от собственно массы активных масс и их рабочей площади, а также конструкции решёток и тоководов. Получается, действующих активных масс у тюменского аккумулятора меньше, а несуще-токоведущих конструкций больше. Это признаки классической докальциевой технологии, по которой часто производились гибридные Ca/Sb батареи.

Итак, по итогам испытаний двух АКБ типичной современной Ca/Ca Лада производства АКОМ (завод, использующей технологию Exide), и тюменской Premium с маркировкой Ca/Ca и лосем на логотипе, можно сделать следующие выводы:

  1. Оба аккумулятора проявили прекрасные характеристики: ёмкость по ГОСТ и пусковой ток по цифровому тестеру и нагрузочной вилке выше паспортных, однако Лада показывает заметно лучшие параметры, чем Тюмень Premium.
  2. Жигулёвская АКБ АКОМ при заряде ведёт себя как полагается Ca/Ca, тогда как тюменская заряжается как гибридная: рано начинается газовыделение, электролит перемешивается без затруднений, выравнивающий заряд проходит легко и быстро.
  3. Тюменская Премиум изготовлена по более старой технологии, чем жигулёвская Лада. Именно поэтому, несмотря на современный кальциевый сплав и отрицательных, и положительных решёток, тюменская АКБ имеет меньшую плотность упаковки пластин и проявляет свойства, характерные для гибридной, а не Ca/Ca АКБ.

Так мы раскрыли секрет странных аккумуляторных батарей: электрохимические процессы в своей кинетике зависят не только от химии, но и от физики, в частности, геометрии электродов и сепараторов между ними.

В модерновых Ca/Ca батареях кальциевый сплав и компактная конструкция с плотными сепараторами действуют синергично, усугубляя как снижение потери воды, что очень хорошо, так и затруднение перемешивания электролита и дозаряда, и это не то, чтобы плохо, но необходимо учитывать при выборе профиля заряда.

В традиционных батареях, даже если изготовить все решётки по технологии Ca/Ca, внутренняя конструкция более массивная и просторная, заряжать и перемешивать электролит легче и быстрее, но и воды выкипает больше. Это одна из причин, приведших разработчиков свинцовых аккумуляторов к модерновым конструкциям. Экономия свинца, с соответствующим экологическим аспектом, и при этом повышение долговечности, стойкости к вибрации, предотвращение оплывания активных масс и короткого замыкания, другие цели, которые также преследуют модерновые конструкции АКБ.

Следует ли трактовать результаты опытов так, что тюменский аккумуляторный завод лось вводит покупателей в заблуждение, и АКБ Тюмень Премиум плохая АКБ? Категорически нет. Для автомобилей с низким бортовым напряжением Тюмень Премиум прекрасный выбор.

Тюмень Премиум хорошая АКБ, достойно проявившая себя на испытаниях. Она не гибридная, а действительно кальциевая, в плане современного материала решёток пластин. Но конструкция батареи не модерновая плотно упакованная, а традиционная, вследствие чего, при изготовлении затрачивается больше свинца, и газовыделение наступает при меньшем напряжении. И именно поэтому АКБ маркирована не VL, как Лада, что означает очень низкий расход воды, а L низкий расход. Всё честно.

Это необходимо учитывать при эксплуатации: тюменская Ca/Ca под капотом автомобиля теряет воду не как типичная Ca/Ca, а как гибридная Ca+. Нужно своевременно проверять уровень электролита и доливать дистиллированную воду, и пробки для этого завод-изготовитель предусмотрел.

Напоследок сравним Тюмень Премиум с антикварной аккумуляторной батареей 6СТ-60ЭМ из статьи про капсулу времени:
Почти три десятилетия прожиты недаром, и сегодняшний технологический уровень Тюменского аккумуляторного завода позволяет производить батареи с удельной эффективностью по ёмкости на треть, а по пусковому току на две трети более высокой, чем старые сурьмянистые батареи. Потому слова классическая и модерновая применительно к конструкции АКБ не следует понимать превратно. Современные аккумуляторы разных отечественных производителей и марок показывают достойные характеристики и имеют свои области для успешного применения.

Статья написана в сотрудничестве с автором экспериментов и видео Аккумуляторщиком Виктором VECTOR.


Подробнее..

Перевод Руководство по перезаряжаемым литиевым аккумуляторам для начинающих

13.07.2020 14:10:08 | Автор: admin


Когда-то аккумуляторы были тяжёлыми и неуклюжими предметами, выдававшими смехотворно мало энергии для своего размера и веса. К счастью, со временем технологии улучшаются, и в 2020 году у нас есть прекрасные мощные литий-полимерные аккумуляторы, выдающие столько энергии, сколько может понадобиться вашему мобильному проекту. Однако при их использовании нужно учесть некоторые моменты поэтому предлагаю вам прочесть руководство для начинающих о том, как правильно использовать LiPo в своём проекте.

Так много типов!


Первые коммерческие литий-ионные аккумуляторы вышли на рынок в 1991 году, и за прошедшие с тех пор почти 30 лет мы наблюдали быстрый их прогресс. В итоге у нас появилось множество различных технологий и типов аккумуляторов, делящихся по типу конструкции и используемых материалов. Чтобы правильно обращаться с аккумуляторами, важно знать, какой именно тип попал к вам в руки, и очень важно обратить на это внимание.


Литий-ионные элементы форм-фактора 18650 из ноутбука. Подобные наборы обычно соединяются точечной сваркой никелевых полосок.

Обычно литий-ионными, или Li-ion аккумуляторами называют всю технологию перезаряжаемых литиевых батареек целиком, однако часто так называют традиционные элементы с цилиндрическим металлическим корпусом. Один из вариантов многоуважаемые 18650, однако вообще их существует множество вариантов и размеров. Их крепкие корпуса сделали их популярными для использования в средствах передвижения, так как последние испытывают значительные физические нагрузки.

Литий-полимерными, или Li-Po называют литий-ионные батарейки, использующие полимерный электролит вместо жидкого. Благодаря этому их можно делать в виде ёмкостей различной формы. Такая гибкость делает их полезными для таких применений, как смартфоны и планшеты, где требуется аккумулятор большой ёмкости и плоской формы. Также их часто используют в радиоуправляемых моделях, поскольку их небольшой вес даёт существенное преимущество летающим аппаратам.


Литий-полимерные пакетные аккумуляторы для использования в радиоуправляемых моделях.

Lithium-HV, или литиевые аккумуляторы высокого напряжения это литий-полимерные батарейки, использующие специальную кремний-графеновую добавку на плюсовой клемме, благодаря которой она не повреждается высоким напряжением. Если заряжать большинство литиевых аккумуляторов до напряжения выше 4,2 В, они будут значительно потеряют в ёмкости, а их срок службы будет заметно уменьшаться. Используя эту добавку, можно заряжать элементы до 4,32 В без подобных негативных последствий. Повышение напряжения даёт примерно 10% прибавку к плотности энергии по сравнению с обычными литий-полимерными аккумуляторами.

Литий-железо-фосфатные аккумуляторы , или LiFePO4, используют немного изменённую химию, благодаря чему они могут выносить больше циклов заряда/разряда за счёт немного меньшей энергетической ёмкости. Лучше всего они работают в диапазоне от 3,0 В до 3,65 В, а не в типичном для стандартной химии литий-ионов диапазоне 3,0-4,2. Благодаря этому и очень плоской кривой разряда делает их идеальными для замены 12 В свинцовых батарей во многих случаях, а вместо оригинальных шести элементов используются четыре. Обычно они более стабильными, меньше подвержены саморазряду и потере ёмкости со временем.

Уважайте границы



Ошибка может привести к неприятным результатам

По сравнению с большинством типов аккумуляторов, литиевые элементы плохо переносят неправильное обращение. Разряд ниже нижнего предела приводит к формированию медных дендритов, из-за чего у них уменьшается ёмкость и может произойти короткое замыкание. Перезаряд может привести к повреждению анода отложениями лития, из-заа чего могут образоваться литиевые дендриты, что часто приводит к короткому замыканию или самоподдерживающейся реакции с выделением тепла аккумулятор начинает дымиться и гореть. Также каждый элемент в группе нужно поддерживать на том же уровне напряжения, что и все его соседи, чтобы элементы не слишком быстро деградировали.

Важно не заряжать литиевые элементы слишком быстро. Также на эффективность работы аккумуляторов сильно влияет окружающая температура. Литиевые аккумуляторы не любят температур ниже нуля, особенно при полном заряде. Их нельзя заряжать при отрицательной температуре. Поскольку металлический литий может отложиться на минусовом электроде, что может повредить элемент или вызвать короткое замыкание. В принципе, их можно заряжать при температуре до -5C, однако это нужно делать очень медленно. Кроме того, аккумуляторы могут повредиться, если заряжать их при температурах выше 45C.

При выходе за указанные пределы в лучшем случае вы просто убьёте аккумулятор, в худшем случае он загорится и взорвётся. Кроме того, эти элементы подвержены раздуванию, выделению газа, да и вообще кажутся не очень удобными в работе. Может показаться, что иметь с ними дело чересчур сложно. К счастью, современная электроника научилась справляться с их проблемами. Правильное оборудование и меры предосторожности дают возможность использовать литиевые аккумуляторы безопасно и эффективно. Однако все, кто работает с ними, должны уяснить себе потенциальные опасности. Боб Бэддели в прошлом ноябре опубликовал отличную статью на эту тему.

Работа с аккумуляторами


В случае использования отдельных элементов или их групп, к примеру, при использовании LiPo аккумуляторов в радиоуправляемых моделях, достаточно просто использовать специальное зарядное устройство для литиевых аккумуляторов. При зарядке нужно подключать провода для проверки балансировки [позволяют измерять напряжение на каждом из элементов по отдельности / прим. перев.], особенно если батарея разрядилась полностью. Наибольшей эффективности в работе батарей можно добиться при использовании умных зарядных устройств (особенно в случаях с LiFePO4 и элементами высокого напряжения). Убедитесь, что у вас есть способ остановить разрядку батарей в случае слишком сильного понижения напряжения будь то предупреждающий световой индикатор, звуковой сигнал или просто автоматическое отключение.


Подобные модули отлично подходят для интеграции литиевых аккумуляторов в прототип

Если вашему устройству требуется интегрированный аккумулятор, вам подойдут специальные платы защиты и заряда. Существуют готовые модули и интегральные схемы, позволяющие без проблем контролировать работу литий-ионных батарей. В принципе их множество от тех, которые просто разрывают контур при понижении напряжения, до комплексных решений по зарядке и защите. Такие компании, как Adafruit, продают модули, которые отлично подойдут для начинающих любителей электроники, желающих интегрировать удобное решение по заряду и контролю аккумуляторов без необходимости проектировать платы самостоятельно. Однако существуют открытые решения, которые будет легко интегрировать в собственную плату в будущем.


Система управления батареей (BMS) для аккумуляторов из 12 элементов, способного выдавать до 60 А.

Для более крупных проектов с самостоятельно собранными батареями хорошо подойдут системы управления батареей (BMS). BMS, по сути, не сильно отличается от микросхемы защиты, она просто разработана для более крупных задач. BMS обычно используется для аккумуляторов, состоящих из десятка или более элементов, и часто в таких проектах, как электровелосипеды и другие средства передвижения. BMS паяется непосредственно к аккумуляторам, и подсоединяется к каждому элементу в отдельности [к группе элементов, соединённых параллельно / прим. перев.]. Её задача балансировка элементов, ограничение тока разрядки для безопасности, управление процессом зарядки. Опытные сборщики батарей часто интегрируют BMS в корпус или кожух самого аккумулятора, оставляя снаружи только коннектор. Это позволяет пользователю просто добавить готовый аккумулятор в свой проект, не беспокоясь о защите.

Если вашему проекту необходима особая устойчивость к воздействию окружающей среды, вам также придётся отслеживать температуру аккумулятора. Отслеживать температуру ячеек, в особенности во время зарядки отличный способ защитить аккумулятор от повреждения. У лучших чипов и BMS есть функция отслеживания температуры. На таком уровне сборки вы уже будете делать батарею самостоятельно, внедряя термопары в нужные места во время сборки. Для аккумуляторов, выдающих большие токи, температуры нужно отслеживать в обязательном порядке. Практически во всех электровелосипедах и электромобилях есть оборудование для отслеживания температуры аккумуляторов и управляющих систем.

Итог


Литий-ионные батарейки могут быть опасными, но при правильном использовании они достаточно безопасны для большинства проектов. Главное использовать правильное оборудование, чтобы убедиться, что вы не выйдете за пределы диапазонов напряжения и температуры, иначе может случиться беда. Надеюсь, что данная инструкция поможет вам в поисках информации по включению литиевых аккумуляторов в свой проект.
Подробнее..

Ионисторы вместо стартерного свинцово-кислотного аккумулятора

18.01.2021 18:09:31 | Автор: admin

Идея запуска ДВС от ионисторов (на западе их называют суперконденсаторы) не нова, в сети есть несколько публикаций и видео роликов. В тех которые я смотрел либо ничего не вышло, либо получилось слишком дорого. Получилось заводить двигатель только на ионисторах емкостью 3 тысячи фарад. На 500 и 700 фарадах двигатель ни у кого не завелся.

Теория

Набравшись опыта коллег по цеху, решил сначала провести эксперименты на виртуальной модели гибридного аккумулятора. Для этого взял замечательную программу Yenka. Нашел в сети, то что у вазовского стартера рабочий ток примерно 150-200 амер. Но ионисторов в Yenka не нашел. Использовал обычные конденсаторы только с большой емкостью. В результате виртуальных экспериментов ионисторы в 500 фарад крутили стартер аж 3.5 секунды, пока напряжение не упало ниже 8 В.

Падение напряжения при виртуальном "прокручивании" стартера от сборки из 6 ионисторов по 500ФПадение напряжения при виртуальном "прокручивании" стартера от сборки из 6 ионисторов по 500Ф

Эксперимент в программе показывает, что можно завестись от сборки из шести 500 фарадников. Но на практике у коллег не получилось. Возможные причины:

  1. я напутал в схеме в программе;

  2. программа "врет";

  3. на самом деле ток стартера выше;

  4. на практике были поддельные ионисторы;

1 и 2 я поверил расчетами "на коленке" получился схожий с программой результат. 3 и 4 проверить не удалось.

Изначально мне сильно не понравились клеммы на 500 фарадных ионисторах, они меньше чем на UPS-ных аккумуляторах. А если посмотреть на клеммы авто аккумуляторов и толщину провода к стартеру, то можно предположить, что из-за малого сечения клемм ионисторов было сильное падение напряжения на них и тока не достаточно чтобы провернуть стартер.

У конденсаторов, в отличии от аккумуляторов, под нагрузкой нет стабильного напряжения. То есть, если подключаем стартер к заряженной до 14 вольт батареи ионисторов, то через 2 секунды работы напряжение упадет до 11 вольт, еще через 2 секунды до 7 вольт. Чтобы напряжение снова поднялось, нужно заряжать конденсаторы. Под поэтому время работы стартера сильно зависит от начального напряжения. Так как максимальное напряжение одного ионистора 2.7 вольт, а генератор в машине может выдавать до 14.5 вольт в сборе нужны минимум 6 ионисторов,тогда максимальное напряжение составит 16.2 вольт. Было бы разумно использовать весь потенциал ионисторов и заряжать их до 16 вольт. Не нашел достоверной информации о том не сгорит ли стартер от 16 вольт. Но в характеристиках других электроприборов в машине русским по белому сказано: "до 15 вольт". Решил рискнуть стартером и собрать гибридный аккумулятор, где будет 6 банок ионисторов на 16.2 В подключенные только к стартеру, балансировочная плата, обычный аккумулятор на 12 вольт для питания всего остального и заряжаемый от генератора, и повышающий преобразователь чтобы повысить напряжение от 12 до 16 вольт.

Еще существенный недостаток ионисторов, особенно китайских - быстрый саморазряд. Поэтому если оставлять преобразователь постоянно включенный то он быстро высадит аккумулятор. Так как на зарядку ионисторов требуется время, решил сделать момент включения преобразователя как можно раньше - при снятии машины с сигнализации. От сигналки идет только минус, поэтому пустил через реле.

Закупка

Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.

Преобразователь сначала купил в китайском магазине повышающий, собрал схему, преобразователь сразу сгорел. Не учел то, что в нем не было ограничения по току, а у ионисторов практически нулевое сопротивление, вот и получилось короткое замыкание на выходе преобразователя. Ограничение по току бывает в повышающе-понижающих, купил - тоже сгорел но не сразу. Купил третий другого исполнения - работает отлично!

Аккумулятор взял обычный от UPS на 7 Ач.

Сборка

В качестве корпуса будет коробка от старого свинцового аккумулятора. Крышку срезал так, чтобы клеммы остались на месте. Иначе клеммы будут на крышке и соединять их нужно будет соплями гибкими проводами. А я хочу все силовые соединения сделать жесткие резьбовые. Полностью перегородки вырезать не стал, ширина одной банки как раз подошла под диаметр одного ионистора, оставил куски перегородок как изоляторы и для крепления преобразователя.

Резьба на ионисторах оказалась не стандартная - М10x1.0 (у стандартной шаг 1.5 мм, у этой 1 мм). Гайки чудом нашел в магазине грузовых запчастей.

Между собой соединил алюминиевой полосой сечением 3х1 мм, сделанной из обрезка тавра, купленного в магазине крепежа.

зажим плашечный ПА-2-2 ВКзажим плашечный ПА-2-2 ВК

Внутри аккумуляторные клеммы проводились к пластинам свинцовым стержнем стержнем 12 мм. Для соединения с ним взял зажим плашечный ПА-2-2 ВК и отпилил от него кусок, нужно размера. К болту зажима прикрутили алюминиевую полосу, идущую к ионистору.Балансировочную плату соединил с перемычками тонкими проводами с клеммами на винты. Точно так же как и преобразователь и аккумулятор.

Общий плюс на 12В вывел через стенку корпуса ботом 6 мм. Точно так же вывел минус включения преобразователя.

Фото
Подгорели зажимы при плохом контактеПодгорели зажимы при плохом контакте

Эксперименты

Опыты будем ставить на "Калине" с двигателем 1.6 16 клапанов. При заряде ионисторов до 16 вольт летом холодный двигатель с легкостью заводится. Прогретый заводится даже при 14 вольт. Зимой при температуре -11 так же успешно завелся но уже с трудом. Бывали случае что с первой попытки не заводится, для второй попытки нужно ждать 1.5 минуты пока заряжаются ионисторы. Но со второй попытки всегда заводится. На новом стандартном аккумуляторе в любые морозы машина заводилась с первой попытки.

Сейчас, зимой, сдох аккумулятор от UPS, либо он просто не предназначен для работы на морозе, либо мне его изначально дали еле живой. Его не хватает даже на втягивающее стартера, но ионисторы заряжает. Заказал 4 LiFePO4 аккумуляторы и балансир.

Подробнее..

Перевод DIY-зарядник для аккумуляторов ноутбуков на базе контроллера MP26123MP26124

18.05.2021 16:06:28 | Автор: admin

Это не первый мой проект по разработке зарядного устройства для батарей ноутбуков. Отмечу, что в первом проекте я использовал Max1873. Но для контроля заряда пришлось использовать микроконтроллер ATtiny. Все бы ничего, но здесь требовалось написать специфический код, что усложнило проект.

Второй проект работает на базе MP26123 или MP26124 от Monolithic Power Systems. Эти чипы дают возможность заряжать разряженный аккумулятор, прекращать зарядку при достижении 100% уровня заряда, разряжать уже заряженную батарею и контролировать ее температуру. Достоинством контроллеров является еще и то, что основной FET-свитч расположен внутри, что снижает сложность компоновки. Пример собранной платы в самом начале статьи. Ну а под катом обсудим подробности проекта.

Подробности проекта


Для разработки платы я изучил спецификацию контроллеров MP26123 и MP26124. Обозначения элементов, которые нужны для платы, показаны на схеме ниже. Есть и исходный файл, если вам захочется изменить дизайн платы.


Важный момент: контроллеры не понижают ток заряда, не ограничивают входной ток. Но на плате есть плавкий предохранитель на 5А. Вместо традиционного для многих плат диода Шоттки я использую PFET для снижения нагрева. PFET вместо диода также используется, чтобы не использовать падение напряжения на диоде в 0,4В. Это важно, поскольку энергии от близкой к полному разряду батареи из 3 ячеек едва хватает для подсветки экрана ноутбука. Контроллеры MP26123/MP26124 запитывают нагрузку понижающего стабилизатора LM2596 либо от батареи, либо от входных 19В. Падений напряжения при подключении или отключении блока питания нет. Контакт включения MP26123/MP26124 находится на самом краю платы, так что при необходимости Pi может отключить зарядку.

На простой SR latch всегда подается питание для того, чтобы активировать нагрузку понижающего регулятора. Это требуется в случае включения кнопочного выключателя питания. SR latch запитывается от 3,3В линейного регулятора или от входного 19В питания. Ток, потребляемый батареей при отключенной нагрузке понижающего регулятора, составляет 315 мкА. Внутренний саморазряд батареи в 2% плюс потери в 3% из-за защитной схемы приводят к полной разрядке аккумулятора за 324 дня. Если вы не планируете использовать ноутбук все это время, лучше просто вынуть аккумулятор. В этом случае саморазряд в 2% приведет к полной разрядке батареи примерно через два года (при условии, конечно, что батарея при извлечении была заряжена на 100%).

Если напряжение аккумуляторной батареи падает ниже 3В для одной ячейки, контроллеры MP26123/MP26124 выполняют предварительную зарядку в течение 30 минут, снижая ток до 10% от тока заряда. Благодаря резистору R12 я снизил полный ток заряда до 1А. Согласно спецификации, контроллеры могут выдержать и 2А, но мне не хотелось сильно нагружать систему. Как только напряжение аккумулятора достигает максимального уровня, зарядное устройство перейдет в ждущий режим (в 10% от номинального тока), а потом отключится.

Максимальное время зарядки установлено на 4,5 часа с конденсатором С6 емкостью в 0,15 мкФ. Значение времени можно менять путем изменения емкости конденсатора для этого есть таблица данных с формулой. При необходимости термистор батареи 10K NTC может быть подключен к контроллеру питания для отключения тока заряда при повышении или, наоборот, понижении температуры до заданного уровня. По дефолту отключение будет выполнено при 40 C (верхняя граница) или 11 C (нижняя). Если термистор не подключаете, то установите резистор на 10К для эмуляции комнатной температуры.

К сожалению, у контроллеров MP26123/MP26124 есть ряд недостатков. Так, их можно использовать только для заряда ячеек литиевых батарей с напряжением каждой ячейки не более 4,2В. Старые аккумуляторы, где значение было 4,1В, и новые с элементами 4,35 В заряжать при помощи этого устройства нельзя. Но если установить контроллер Max1873, то проблем нет.


Что касается пайки контроллеров, то я использовал самодельную печь, но, конечно, для сборки платы лучше использовать паяльную станцию с нагревом воздуха.

Особенности платы


Ширина дорожек на плате рассчитана на ток не менее 3A. Было проверено несколько вариантов, в итоге было решено остановиться на минимальной ширине дорожек в 5 мм. В первом варианте платы использовалось 3,3В от MP26123 для SR latch, что активировалось лишь при подключении к розетке. Обновленная конструкция включает отдельный линейный регулятор на 3,3В, который поддерживает SR latch в рабочем состоянии хоть при подключенном питании, хоть без него. Размеры платы 62 мм * 54 мм.


Что касается цены, то три платы, изготовленные OSHPark.com, мне обошлись в $26 с доставкой силами USPS. Можно использовать и JLCPCB.com, для этого воспользуйтесь файлом архива MPS_Charge_Controller_2021-02-23.zip. Пять плат обойдется заказчику в $10 со стандартной доставкой.


На графике ниже показаны результаты тестирования MP26123, заряжающего аккумуляторную батарею 3S2P от Lenovo T61.



Также я разместил инструкцию на Instructables, где показано, как подключить плату зарядного устройства батареи к Pi, Teensy и видеокарте. В мануале рассказывается, как использовать Raspberry Pi с питанием от батареи в модифицированном ноутбуке. Там же приложен код на Си, который управляет связью с батареей по шине SMBus, отображая указатели уровня заряда и выключая ноутбук при разряде.

Подробнее..

ДВС всё ещё жив микро- и мини-гибриды

02.03.2021 14:06:25 | Автор: admin
image
Уже почти половина новых автомобилей, выпускаемых в Евросоюзе, относится к микрогибридам.

На фоне кучи новостей о развёртывании инфраструктуры под новые электромобили и спорах о стандартах зарядки многие могли пропустить реинкарнацию старого подхода, который теперь называют технологией Start-Stop. Это отличный вариант не тратить энергию на повышение энтропии Вселенной, пока вы просто стоите в пробке. Если вы стоите дольше пары секунд, то двигатель автоматически отключается и не ест вхолостую топливо. Сейчас подробнее расскажу, как это работает и почему обычные батареи очень быстро умрут при таком режиме. Я как раз как бывший инженер сервис-центра видел много батарей, умерших из-за не подходящих для них нагрузок.

Хочу много лошадей из крохотного мотора


image
Фотохимический смог в Пекине.

Есть несколько тенденций в современном автопроме, пусть, возможно, и не все им рады.
Во-первых, это честные или почти честные старания автопроизводителей выполнять требования регуляторов по созданию всё более чистых автомобилей. К сожалению, нормы по экологичности плохо сочетаются с пожеланиями покупателей в плане динамики разгона и мощности двигателя. В итоге всплывают дизельгейты, но в целом прогресс в этой области очень заметен, что критично для крупных городов. Ситуация с фотохимическим смогом постепенно улучшается, если, конечно, город не использует угольные электростанции.

Во-вторых, есть тенденция к удешевлению. Потребитель хочет получить больше лошадей за те же деньги. Если раньше нормальными считались полуторалитровые моторы в 5070 л. с., то теперь тот же самый мотор часто выдаёт 120, а то и 150 лошадиных сил. Понятно, ничто не даётся просто так. В итоге моторы требуют установки турбин, более качественного топлива, точного управления впрыском и становятся практически неремонтопригодны.

С другой стороны, снижение цикла обновления автомобиля приводит к своеобразному переходу на CICD в автопроме. Если раньше новая технология была почти незаметна на фоне большого парка старых автомобилей, то сейчас ротация происходит быстрее. Системы ABS, ESP и VSC сейчас постепенно становятся стандартами для любых машин, включая бюджетные. Собственно, классический ДВС уже далеко не тот ДВС, что был раньше. Да, на кукурузном масле и непонятном топливе из грязной канистры он ехать отказывается. Но в среднем он стал существенно мощнее и экономичнее, пусть и ценой долговечности. Вот только старые элементы пришлось существенно дорабатывать.

Стоим на светофоре


image
Так выглядит типичный график заряда-разряда во время поездки на автомобиле с системой старт-стоп. Обычные аккумуляторы убиваются с пугающей скоростью.

Самая неприятная часть городского цикла непрерывное дёрганье в бесконечной очереди, когда стоишь в пробке. Для экономии топлива и была разработана система старт-стоп, чтобы отключать двигатель во время вынужденных пауз. Причём они ставятся не только на классические гибриды, где сочетаются электропривод и ДВС, но и на чисто бензиновые двигатели. Экономия довольно существенная: 310 % с потолком в районе 12 %.

Первая система такого рода была установлена на Toyota Crown ещё в 1974 году, но с тех пор очень многое изменилось в работе двигателя и других систем. Сильно поменялся паттерн езды. Раньше почти не возникала система, когда приходилось заводить ещё работающий двигатель. Сейчас с учётом коротких циклов продвижения в пробке такое происходит несколько раз в день. Это потребовало разработки более сложного стартёра с тандемным соленоидом, который обеспечивал повторный запуск двигателя при ещё вращающемся коленчатом вале. Но правильный синхронизированный запуск это только часть проблемы. Попробуем посмотреть на современную реализацию в многочисленных гибридах.

Гибриды, микрогибриды и все остальные


Текущий рынок привёл к тому, что между полностью электрическим автомобилем и привычным ДВС-вариантом сформировалось несколько промежуточных классов.

Традиционный ДВС это почти все бюджетные линейки машин: классическая трансмиссия, объём двигателя небольшой, чтобы соответствовать современным экологическим нормам. Запуск двигателя осуществляется с помощью обычной свинцово-кислотной батареи в 12 В.

Микрогибриды это всё те же ДВС, но уже с системой старт-стоп. Та самая первая Toyota Crown формально относится к этому классу. Ключевое отличие в стартёре, о котором мы говорили раньше. Для корректной работы он должен иметь мощность порядка 35 кВт. Обычный аккумулятор не сможет долго служить в рваном режиме работы постоянных зарядов-разрядов и многократных запусках двигателя высокими токами. Поэтому для этого типа автомобилей подходят только AGM- и EFB-аккумуляторы. Внутри AGM не традиционная серная кислота в жидком виде, а специальный абсорбированный электролит в виде пропитанных пористых стекловолоконных структур. Это позволяет ему выдерживать такие режимы работы. А у EFB пластины потольше, специальные приблуды в активную массу, да и сепаратор специальный, а на Эксайде поверх этой самой замороченной активной массы еще и сеточку из стеклоткани для устойчивости вмазывают.

Мини-гибриды: к традиционной схеме с линией в 12 В добавляются новая электрическая система на 48 вольт и небольшой электрический двигатель. Он маломощный, но его достаточно, чтобы прокатиться пару метров в глухой пробке и не дёргать основной ДВС постоянными запусками. Питается обычно от литиевой батареи на 48 вольт. Свинцово-кислотный аккумулятор всё равно используется в схеме для запуска двигателя в холодном состоянии и в случае, если вдруг электрический контур не справился с этим.

Полный гибрид: в этой схеме скорее уже возможна поездка чисто на электроприводе на короткие расстояния. Чаще всего есть возможность подзарядить тяговый литиевый аккумулятор от зарядного устройства напрямую. Активно используется система рекуперации при торможении. В целом автомобиль намного ближе по своей структуре к электромобилям. Например, тот же ДВС стоит часто упрощённой конструкции, часто работающий не в рамках классического цикла Отто, а на базе циклов Миллера, Аткинсона. На электрический этап приходится основная, самая неэффективная для ДВС часть ползание по пробкам со скоростью 510 км/ч, когда стоит первая передача, а педаль газа не нажата.

image
Если посмотреть на текущие пропорции, то 47 % автомобилей это классические ДВС, 48 % микрогибриды, оборудованные системой старт-стоп, и остальные занимают по 1 %. Реальных чистых электромобилей исчезающе мало.

Что такое AGM- и EFB-аккумуляторы


image
Выглядит страшно, но этот разобранный аккумулятор лучше классических свинцовых.

AGM (Absorbent Glass Mat) это технология изготовления свинцово-кислотных аккумуляторов, при которой электролит не плещется свободно внутри, а зафиксирован на специальных губках из стекловолокна. Тонкие стеклянные волокна при этом абсолютно не входят в реакцию с серной кислотой, а за счёт волокнистой структуры они практически нечувствительны к вибрациям и механическим повреждениям. То есть даже если корпус будет повреждён, то кислота не будет литься во все стороны, как в классическом аккумуляторе, а останется питанным в стекловолокне, типа как памперс работает. Только стеклянный. Только не надо разбирать их самостоятельно и проверять. Это всё равно очень опасно. Часть микропор остаётся свободной от электролита. Это нужно для создания свободного пространства для рекомбинации газов.

image

Внутри всё сформировано в виде пакета пластин, которые могут иметь разные толщину и площадь активной поверхности этой самой активной массы. Если нам нужна батарея с большой ёмкостью и невысокими токами увеличиваем толщину, уменьшаем площадь. В автомобильном применении AGM актуальнее обратный вариант увеличение площади пластин со снижением их толщины. Такие аккумуляторы могут отдавать больший ток и быстрее заряжаться, но имеют меньшую ёмкость. Пластины в блоках прижаты намного плотнее друг к другу, что помогает лучше удерживать активную массу, чем у обычных батарей. Также может использоваться ещё более плотная упаковка не в пластины, а в туго свёрнутые свинцовые рулоны цилиндрической формы со стекловолоконной прокладкой-сепаратором.

Благодаря своей структуре такие батареи имеют несколько преимуществ:

  • они не требуют обслуживания. Риски утечки кислоты или проблем из-за вибрации минимальны;
  • значительно меньший саморазряд в сравнении с современными свинцово-кислотными батареями;
  • скорость заряда в несколько раз больше классических аккумуляторов, за счёт чего они подходят для системы старт-стоп;
  • они работают в цикле неполного заряда, который является проблемой в обычном городском цикле, где вы не успеваете нормально полностью зарядить аккумулятор;
  • их сложнее убить кратковременным глубоким разрядом, но при длительном разряде они тоже умрут;
  • а ещё их можно трясти, наклонять и вообще монтировать под углом. Только прям совсем переворачивать не стоит.

Ключевое отличие от AGM EFB-батарей в том, что EFB проще и дешевле в производстве. В них электролит не связан, как в AGM, а находится в свободном виде. Но в отличие от классических свинцово-кислотных аккумуляторов у них более толстые свинцовые пластины. Положительные пластины у них пакетируются в стекловолоконный флис, что предотвращает осыпание активного вещества. Поэтому они хоть и обладают меньшим по сравнению с AGM током заряда-разряда, но могут выдержать примерно вдвое больше циклов зарядки по сравнению с классическими аккумуляторами. Короче, это такой промежуточный по своим характеристикам продукт, который стоит дешевле, чем AGM.

image
Впрочем, и сложности у них у всех общие с классическими свинцовыми аккумуляторами. При высокой температуре у них увеличивается саморазряд, а в морозы их ёмкость падает. Поэтому, если у вас за бортом минус 30, то стоит задуматься об обогреваемой парковке. Ёмкость и так упала из-за переохлаждённого электролита, так ещё и ледяной двигатель с густым маслом требует больше оборотов для запуска.

Что есть интересного у нас


Немного расскажу про нашу компанию. В Exide мы производим много аккумуляторов как раз для микрогибридов сейчас это примерно 3040 % всего европейского автопарка. В новые автомобили чаще всего попадает именно аккумулятор нашего производства. Сейчас около 70 % европейских автомобильных брендов ставит именно наши линейки, но со своим брендингом.
У нас есть несколько видов батарей: AGM, EFB, Premium, Excell и Classic. Последние три классические. Excell базовый надёжный вариант с хорошей ценой.
Excell отличается более высоким стартовым током, что особенно чувствуется зимой. Ток примерно на 15 % выше, чем у Classic. А СLassic это для тех, у кого автомобиль попроще, совсем без прибамбасов, и цена имеет значение.

У Premium будут самые высокие токи холодной прокрутки примерно на 30 % выше Classic. Кроме того, выше скорость заряда из-за нашей технологии Carbon Boost 2.0. В активную массу отрицательных пластин вносится специальная углеродная добавка, которая также позволяет увеличить заряжаемость, особенно из состояния глубокого разряда, примерно вдвое. Изначально их разрабатывали именно под системы старт-стоп, но в дальнейшем включили и в классическую линейку.

На всех батареях классической серии стоит наклейка, предупреждающая, что они не подойдут для системы старт-стоп. Цикл работы, характерный для микрогибридов, быстро выведет их из строя, как и другие обычные аккумуляторы. Для таких систем мы предлагаем ставить AGM или EFB. Эти два типа почти одинаковы по своим параметрам, но в AGM электролит полностью иммобилизирован за счёт пропитывания специальных стекловолоконных структур, а в EFB он жидкий. Собственно, EFB это скорее промежуточный вариант между классическим свинцово-кислотным аккумулятором и более дорогим AGM.

Кстати, если уж что и использовать как источник резервного питания, так это аккумуляторы для старт-стоп, а не обычные, которые быстрее выходят из строя из-за меньшего числа возможных циклов заряда-разряда.

Похороны временно переносятся


К полной замене автомобилей с ДВС на электромобили мы будем двигаться ещё долго: лития на нашей планете более чем достаточно. Но только небольшая часть его месторождений является коммерчески рентабельной. При этом уже сейчас электроавтомобили составляют примерно 50 % всего спроса с тенденцией роста до 75 % в ближайшие 10 лет. А ещё весёлые проблемы с выделенными линиями от электростанций до заправок, где каждая зарядка может отъедать до 150 кВт.

Скорее всего, в ближайшее время мы увидим расцвет именно промежуточных гибридных решений, которые продлят жизнь как свинцовым аккумуляторам в новых эффективных формах, так и ДВС. А там, может, и вообще на водородные элементы перейдём вместо лития.
Подробнее..

EFB-аккумулятор, младший брат AGM

16.03.2021 14:17:52 | Автор: admin
image

Я уже рассказывал про AGM-аккумуляторы, которые очень хороши в системах, где требуются большие токи и большое количество циклов заряда и разряда. Но при всех приятных бонусах этой технологии у неё есть один проблемный момент AGM ощутимо дороже. А лучшее враг хорошего. Из-за приятной цены, относительно лучших по показателям систем, кстати, свинцово-кислотные аккумуляторы и актуальны более 120 лет. Именно для того, чтобы занять более бюджетную нишу автомобильных аккумуляторов с системой старт-стоп, где требования по глубине разряда не столь велики, как у AGM, но где традиционный свинцово-кислотный аккумулятор умирает очень быстро, и были созданы EFB (Enhanced Flooded Battery).

Посмотрим, можно ли делать даунгрейд до обычных свинцово-кислотных, и в каких случаях, наоборот, есть смысл заменить старый EFB на AGM.

Спойлер: нет, более функциональный AGM не всегда имеет смысл ставить вместо обычного аккумулятора. Часто EFB или даже обычный новый аккумулятор будет оптимальным решением.

Принцип работы


С точки зрения химии ничего глобально отличного от традиционных свинцово-кислотных аккумуляторов не происходит. Всё та же обратимая реакция на пластинах с превращением свинца и его оксидов в сульфат и обратно. В качестве электролита используется серная кислота. Ключевые отличия заключаются в компоновке и составе элементов.

Во-первых, для этого типа батарей мы используем специальные типы токоотводящей решётки и рецепты активной массы. Это нужно для того, чтобы снизить внутреннее сопротивление и потери энергии при заряде на нагрев самого аккумулятора в процессе работы. При этом сами пластины толще классических примерно на 3050 %.

Во-вторых, положительные пластины заключены в специальные конверты-сепараторы из особо прочного пористого пластика на основе полипропилена. При этом на поверхности одной из пластин вмазана специальная армирующая сетка из стекловолокна. В отличие от AGM, где жидкий электролит почти полностью сорбирован, в EFB всё-таки есть свободная несвязанная кислота. Тем не менее плотность упаковки всё равно намного больше, чем в классических свинцово-кислотных аккумуляторах, а зазоры между пластинами меньше.

Плюсы EFB


image

У этих аккумуляторов есть те же проблемы, что и у классических: они боятся глубокого разряда и хранения в таком разряженном виде, но в гораздо меньшей степени. Если мы полностью разрядим обычную батарею и оставим её на неделю-две, то на поверхности пластин начнут образовываться крупные кристаллы сульфата свинца. В норме кристаллы должны быть микроскопического размера для обратимого превращения в оксид при заряде. В случае же глубокого длительного разряда кристаллы будут менять свои размеры, перекристаллизовываясь, и продолжат расти, разрывая активную массу, отваливаясь и осыпаясь на дно аккумулятора. Наиболее крупные кристаллы уже теряют возможность превратиться в оксид свинца полностью, ещё больше снижая ёмкость и увеличивая внутреннее сопротивление. Так происходит неизбежная деградация всех аккумуляторов этого типа.

Но у EFB, как и у AGM, свинцовые пластины прикрыты стекловолокном, которое не даёт активной массе осыпаться и помогает батарее пережить глубокий разряд дольше. Кроме стандартных особенностей этого типа батарей, мы добавили в активную массу отрицательных пластин специальную углеродную добавку. Технологию назвали Carbon Boost. Она позволяет ещё больше снизить деградацию батарей, препятствуя сульфатации пластин. Плюс за счёт высокой проводимости углерод создаёт что-то вроде дополнительных проводящих каналов внутри активной массы. В результате при зарядке кристаллы сульфата превращаются в оксид гораздо быстрее и в большем объёме.

Углеродная добавка это не мифическая вещь типа персидского порошка от клопов у Остапа Бендера, а вполне себе тоже патентованное, но реальное соединение сложного состава. У Carbon Boost первого поколения это был специально химически активированный природный графит, а Carbon Boost 2.0 это синтетически созданное высокомолекулярное соединение на основе углерода. Кому надо оценить красоту зубодробящего химического названия поиск по патентам в открытом доступе.

В итоге за счёт более плотной упаковки пластин и дополнительного эффекта от внесения углеродной добавки мы получаем аккумулятор, который может быстрее заряжаться более высокими токами. При этом за счёт более низкого внутреннего сопротивления мы не приближаем тепловую смерть Вселенной бессмысленным разогревом аккумулятора, а максимально переводим электрическую энергию в энергию химических связей. Это очень важно для машин с системой старт-стоп. Обычный аккумулятор просто не успевает получить достаточный заряд в режиме непрерывного включения и выключения мотора, из-за чего быстро выходит из строя от недозаряда.

Что поставить вместо старой батареи


image

Тут всё относительно просто. Лучше всего ставить именно то, что рекомендует производитель, если вы ничего существенного не меняли в своем автомобиле. Например, не ставили электрообогреватели стёкол, сидений, мощную акустику и другие потребители энергии, которые не шли в исходной комплектации.

Самое главное правило нельзя делать даунгрейд. Как правило, параметры аккумулятора рассчитываются с очень небольшим запасом, и при переходе на более низкую ступень вы получите нехватку стартового тока, устойчивости к циклам заряда-разряда и гарантированно, быструю деградацию аккумулятора. То есть штатный AGM нельзя заменить новым качественным EFB, так как пиковые токи и количество циклов заряда и его скорость у него всё равно лучше. Аналогично нельзя менять AGM и EFB на традиционные батареи. У них быстро наступят разрушение активной массы и коррозия токоотводящих решёток решеток, если поставить их на машины с системой старт-стоп.

У нас, например, есть топовая модель Exide Premium. Это классический аккумулятор с прекрасными показателями токов холодной прокрутки, сопоставимыми с AGM. Но у него нет стекловолоконной защиты от осыпания активной массы, и устойчивость к циклической заряде-разряде у него в разы ниже, чем у EFB. Он отлично подойдёт для замены штатного аккумулятора в обычных автомобилях, но никакие рекуперация и старт-стоп с ним работать нормально не будут.

Можно ли делать апгрейд? Тут всё немного сложнее. В рамках классической линейки EXIDE Classic -> EXIDE Excell -> EXIDE Premium можно. Разве только что более мощный аккумулятор будет стоить дороже. Более того, вы можете на обычный автомобиль поставить EFB, и оно будет отлично работать.

Если у вас стояла обычная батарея


Апгрейд на EXIDE EFB имеет смысл делать, если вы не любите лишний раз лезть под капот и хотите на несколько лет дольше туда не заглядывать для очередной замены батареи. EFB имеет больше циклов заряда-разряда при прочих равных.
Апгрейд на EXIDE AGM для обычного автомобиля смысла, скорее всего, не имеет. Больший по сравнению со стандартной батареей ток позволит вашей суровой акустике на полтора киловатта не хрипеть, когда при превышении максимального тока обычный аккумулятор начинает просаживать напряжение на пару вольт. В других ситуациях это будет пустой переплатой. Обычный автомобиль редко нуждается в настолько большой мощности, сверхвысокие токи могут помочь при запуске на сильном морозе, но цена будет существенно выше.
Во всех остальных случаях лучше взять EXIDE Premium с углеродной модификацией такой же, как у EFB. Он самый мощный и ёмкий в линейке классических, медленнее деградирует. Если хотите сэкономить берите EXIDE Classic или EXIDE Excell, чтобы соответствовать классу вашего старого аккумулятора. Разумеется, не надо ставить Classic на полноприводный кроссовер с подогревом сидений и кастомной акустикой.

Если у вас стояла EFB


Меняйте на такую же EXIDE EFB равного класса. EXIDE Classic, EXIDE Excell, EXIDE Premium использовать нельзя! Мы специально даже наклейки добавляем на AGM и EFB о том, что замена на традиционную батарею недопустима.

EXIDE AGM имеет смысл ставить опять-таки в случае мощной дополнительной аппаратуры. В остальных случаях вы вряд ли сможете почувствовать какие-то преимущества от намного более мощной батареи даже в автомобилях с системой старт-стоп. Если вы всё-таки решите установить AGM, то обязательно учтите, что автомобили с системой старт-стоп имеют BMS контроллер заряда батареи. Лучше уточнить у производителя, сможет ли штатный контроллер нормально с ней работать.

Не только автомобили


EFB-аккумуляторы работают почти так же круто, как AGM, но стоят дешевле. Если цена вас устраивает, то можно смело заменять устаревшие традиционные аккумуляторы в обычных автомобилях. Только помните, что, хотя они и необслуживаемые, но в отличие от AGM у них всё-таки есть свободный электролит. Сильно трясти, хранить в перевёрнутом виде их не стоит.

Кстати, по своим характеристикам, как и AGM, они должны лучше подходить для тех же ветряков и солнечных панелей с нестабильным профилем зарядки и разряда: больше токи, больше полных рабочих циклов. Хотя и тут лучше использовать специализированные аккумуляторы. А ещё никакого взрывоопасного водорода и долива электролита при правильном использовании.
Подробнее..

Перевод Новая коммунальная услуга электростанция из аккумуляторов

02.04.2021 16:10:53 | Автор: admin

Аккумуляторные ячейки заряжаются при помощи расположенных на крыше солнечных панелей, и формируют сеть, обеспечивающую всё здание резервным энергопитанием, к которому можно подключаться в часы пиковой нагрузки



Аккумулятор ecoLinx в апаратаментах Soleil Lofts в пригороде Солт-Лейк-Сити. Разрабатываемые аккумуляторные ячейки совместно формируют т.н. виртуальную электростанцию

Строительная фирма Soleil Lofts, возводящая апартаменты в пригороде Солт-Лейк-Сити, заманивает в них потенциальных покупателей разными удобствами: бассейны, три спа-салона, баскетбольную площадку, бытовую технику, место для выгула собак.

Однако более всего Майка Канненберга, менеджера по продажам из местной технологической компании, привлекло другое тихая аккумуляторная батарея в красивом корпусе.

В апартаментах Канненберга, как и во всех остальных 600 жилых помещениях этого комплекса стоимостью в $156 млн, установлена новая аккумуляторная батарея ecoLinx производства немецкой компании Sonnen. Эти аккумуляторы размером примерно с водонагреватель заряжаются от солнечных батарей, установленных на крыше, и совместно формируют т.н. виртуальную электростанцию. Эта система не только обеспечивает 12,6 МВт*ч резервной энергии всему зданию, но и облегчает использование возобновляемой энергии, получаемой прямо на месте.

Как сказал 38-летний Канненберг, если я могу внести свой небольшой вклад в улучшение мира и очищение Юты, я сделаю это с удовольствием.

Развитие технологий производства аккумуляторов и солнечных панелей вместе со стремлением компаний расширять использование возобновляемой энергии привело к тому, что виртуальные электростанции становятся ценным дополнением для коммерческих и жилых помещений. Также этому способствует повышение спроса на более надёжные системы энергообеспечения, возникшее благодаря недавнему отказу энергосети в Техасе и постоянным отключениям электроэнергии в Калифорнии, при помощи которых пытаются уменьшить ущерб от периодических пожаров.

Аккумуляторы пригодятся в зданиях всякого рода, включая университетские и корпоративные кампусы, сказал К.Р. Герро, вице-президент по инновациям национальной строительной компании Meritage Homes.

В 80-х люди ставили себе солнечные панели, потому что хотели сделать что-то хорошее, сказал он. Сегодня установка таких систем из солнечных панелей и аккумуляторных батарей, как у Soleil, равнозначна размещению у себя на кухне банкомата, выдающего по $20 в месяц.

Всё больше водителей пересаживаются на электромобили, а владельцы недвижимости всё чаще понимают ценность генерации и хранения энергии на месте особенно в таком месте, где может потребоваться заряжать десятки электромобилей одновременно.

Многие компании, особенно из энергетического сектора, видят потенциал виртуальных электростанций. Калифорнийский стартап OhmConnect планирует построить крупномасштабную систему подобного рода, получив $100 млн от Sidewalk Infrastructure Partners (среди которых есть и Alphabet, родительская компания для Google). Лос-анджелесская Swell Energy получила $450 млн на создание домашней виртуальной электростанции, помогающей работе энергосети.

В Юте Soleil Lofts подписала первое подобное соглашение с энергокомпанией Rocky Mountain Power, по которому та может подключаться к этой сети аккумуляторов как к источнику питания. Соглашение позволяет системе сэкономить на стоимости генерации энергии, а девелоперам на стоимости её внедрения. Так утверждает управляющая компания апартаментов Wasatch Group.

Директора Wasatch считают виртуальные электростанции доказательством того, что аккумуляторы это умное вложение денег для владельцев недвижимости.

Виртуальная электростанция обеспечивает постоянный доход и повышает привлекательность апартаментов для арендаторов, сказал Райан Питерсон, президент Wasatch Guaranty Capital, занимающейся недвижимостью и инвестициями. Одна из причин, по которым мы обращаемся к возобновляемой и солнечной энергии она уменьшает операционные расходы и улучшает денежный поток, что очень важно для владельцев недвижимости.

Проект Soleil находится на сосредоточении нескольких тенденций: перехода к более чистой и возобновляемой энергии, быстро падающей стоимости аккумуляторов и хранения энергии, и старания девелоперов уменьшить влияние на окружающую среду. Согласно Boston Consulting Group, стоимость хранения энергии за последние 10 лет упала на 80%.

За прошлый год хранилища энергии в США значительно выросли. По данным U.S. Energy Storage Monitor, в третьем квартале добавилось 476 МВт*ч, что на 240% больше по сравнению с предыдущим.

Однако ситуация ещё далека от энергосистемы, полностью работающей на возобновляемой энергии. В отчёте Калифорнийского университета в Беркли, изучающем переход на возобновляемую энергию, предполагается, что к 2035 году США потребуется хранилище в 150 ГВт*ч, чтобы содержание чистой энергии в энергосети достигло 90%.

Мы достигли поворотного момента, сказал Марк Дайсон, эксперт по чистой энергии из RMI, организации из Колорадо, занимающейся возобновляемыми источниками энергии. Поскольку цены так сильно упали, особенно на аккумуляторы, ожидаю, что всё больший процент новых домов будет использовать эти технологии. Виртуальные электростанции это самая дешёвое и ценное обновление из тех, что нужно сделать для энергосистемы США.

Потребление электричества зданиями в течение дня постоянно колеблется. Источники возобновляемой энергии и аккумуляторные батареи могут сгладить эти циклы, сохраняя энергию при минимальных нагрузках, и подключаясь к хранилищу в периоды больших нагрузок. Это должно снизить стоимость электроэнергии.

В зданиях, где эффективно используется энергия, производится возобновляемая энергия и хранится энергия, готовая к использованию в нужный момент, заключена большая ценность, сказал Герро.


Солнечная энергия, накапливаемая в апартаментах Soleil Lofts, хранится в аккумуляторах, к которым может подключаться местный поставщик энергии, Rocky Mountain Power.

У Meritage есть семь демонстрационных проектов по стране, в частности, в Аризоне, Калифорнии, Северной Каролине и Техасе. Компания пытается понять, как лучше оптимизировать энергосеть и уменьшить стоимость энергии. Герро считает, что в скором времени больше управляющих компаний воспользуются этой системой сдвига нагрузки,

Для компании Wasatch апартаменты Soleil Lofts обеспечивают как финансовые, так и маркетинговые преимущества. Потенциальных арендаторов привлечёт зелёная энергетика комплекса, а в перспективе стоимость энергии в нём будет ниже. По словам Питерсона, аккумуляторные батареи выигрывают по стоимости энергии у обычных зданий.

Wasatch начала исследовать возобновляемую энергию уже много лет назад, пытаясь снизить цены во всех своих жилых комплексах, насчитывающих порядка 20 000 апартаментов, а также в офисах, отелях и промышленных производствах. Экономии от одних только солнечных панелей не получалось, поэтому четыре года назад компания начала изучать работу комбинации из панелей и аккумуляторов. Wasatch сделала Soleil испытательным проектом, и наладила сотрудничество с Rocky Mountain Power и Sonnen, начав решать проблемы, связанные с устройством виртуальных электростанций.

Прошлой осенью апартаменты частично заработали, и с тех пор, по словам Питерсона, проект хранения энергии оправдал все ожидания. Система аккумуляторных батарей, обошедшаяся в $34 млн, из которых $3,3 покрыли гранты от Rocky Mountain Power, продают энергию обратно энергокомпании, чтобы покрыть периоды пиковой нагрузки. Питерсон говорит, что жители за счёт этого экономят 30-40% на стоимости электричества.

Подобные проекты становятся источниками энергии реального времени, говорит Уильям Комю, вице-президент по пользовательскому восприятию и инновациям в PacifiCorp, родительской компании для Rocky Mountain Power. Чтобы достичь к 2030 показателя в 60% возобновляемой энергии, Rocky Mountain Power нужно активно инвестировать в системы хранения, а также небольшие распределительные центры вроде Soleil. Он сказал, что падение цен на аккумуляторы будет открывать больше возможностей для расширения.

Другие девелоперы тоже организовывают хранилища энергии на аккумуляторных батареях совместно с энергокомпаниями. Related Companies установила в Гейтвей-центре в Бруклине аккумуляторы на 4,8 МВт*ч на площадях, которые всё равно никто бы не использовал. Теперь это хранилище энергии, управляемое энергетической компанией Enel X.

Компании отказались раскрывать детали лизинга, но вице-президент Related, Люк Фолк, сказал, что подобная аккумуляторная система хранения может помочь его компании и другим подобным ей зарабатывать деньги и достигать целей зелёной энергетики.


Бассейн с подогревом от солнечной энергии в апартаментах Soleil Lofts.


Среди других удобств зарядки для электромобилей.

Новаторский подход Soleil показал, что подобные проекты могут работать, но воспроизводить их не так-то легко. Комю сказал, что с этим связаны технические проблемы, и для достижения успеха часто необходимо, чтобы у владельцев уже был подобный опыт. Он предсказывает, что по мере того, как другие энергетические компании будут повышать процент возобновляемой энергии, таких партнёрств будет становиться всё больше.

А новым клиентам уже не нужно будет проходить все этапы, которые Wasatch прошла с нуля, сказал Комю.

Wasatch планирует расширять модель Soleil. Готовится уже шесть пилотных программ, которые будут реализованы в уже существующих объектах недвижимости в Калифорнии. Их цель узнать, смогут ли другие здания достичь той же эффективности и снижения стоимости. Питерсон хочет, чтобы в итоге появилось некое решение под ключ, которое позволит оснащать недвижимость других владельцев виртуальных электростанций.

Мы считаем, что это возможно, и как только мы сможем это доказать, этой модели откроются куда как более широкие перспективы, сказал он.
Подробнее..

Правильный аккумулятор для дома на колёсах

13.05.2021 14:15:47 | Автор: admin
image
А помните время, когда было достаточно просто палатки для выезда?

Нельзя просто так взять и воткнуть обычный аккумулятор в дом на колёсах, лодку или автономный источник питания где-то в горах. Точнее, можно. Но через короткое время он деградирует, и его придётся выбросить. Многие через это проходили, когда пытались использовать обычные стартерные батареи в качестве ИБП для домашнего сервера или как буфер для солнечной батареи.

Чтобы батарея не умирала от глубокого разряда, её внутренняя структура должна быть оптимизирована для таких сценариев. Например, для свинцово-кислотных аккумуляторов нужны более толстые пластины иной конфигурации. Как альтернатива пойдёт литий-ионный вариант, но он очень дорог в пересчёте на запасаемую энергию. Литий имеет смысл использовать там, где вы самостоятельно тащите эту батарею на себе, например, в походах. В остальных ситуациях классические свинцово-кислотные батареи по-прежнему самый дешёвый способ запасти энергию. Сегодня я расскажу о том, что будет со стартовым аккумулятором при его эксплуатации в качестве резервного и какой тип надо было брать изначально.

Что такое сульфатация


Свинцово-кислотные аккумуляторы постепенно вытесняются литием во многих сферах, в первую очередь там, где требуются малый вес и высокая энергоёмкость. Условный телефон с пластинами свинца был бы весьма специфичным девайсом. Тем не менее они до сих пор актуальны там, где нужно запасти большой объём энергии за умеренную цену, а вес особо некритичен. На велосипед, например, в качестве вспомогательного тягового аккумулятора не поставишь: замучаешься тащить. А вот в автодом, как резервный аккумулятор на дачу или катер запросто. Там вес всё равно неважен, а цена на литий уже кусается.

Всё бы хорошо, но у свинцово-кислотных есть одна очень неприятная особенность они катастрофически быстро деградируют при чрезмерном разряде. По мере разряда свинец на катоде из диоксида постепенно переходит в сульфат. На аноде аналогично идёт образование сульфата свинца, но уже не из оксида, а из чистого губчатого свинца.

Реакция на положительном электроде (зарядка идёт слева направо):

image

Реакция на отрицательном электроде (зарядка идёт слева направо):

image

В норме эта реакция почти обратима. Чем более мелкодисперсные кристаллы сульфата свинца образуются, тем легче протекает обратная реакция при зарядке. Кристаллы мелкие, а внутреннее сопротивление пластины невелико, пока батарея не сильно разряжена. Грубо говоря, когда вы разрядили батарею на 2030 % всё хорошо. До 100 % можно будет зарядить практически без потерь.

Вот так выглядят новые пластины
image
Положительная пластина до процесса формирования.

image
Зеленоватая отрицательная пластина до процесса формирования.


Если аккумулятор разряжать достаточно сильно, а тем более в ноль и подержать некоторое время в разряженном состоянии, то кристаллы сульфата свинца станут настолько крупными (процесс перекристаллизации), что начнут деактивировать активную массу, превращая её в балласт и разрывая внутреннюю структуру пластин. Более крупные кристаллы сульфата свинца, образующиеся на поверхности, печально отвалятся от основной массы и осядут на дне аккумулятора. С этого момента они не смогут участвовать в реакции заряда. Но даже кристаллы, оставшиеся на пластине, из-за своего высокого сопротивления будут очень неохотно превращаться обратно в металлический свинец и оксид. Суммарная рабочая площадь пластин резко падает, и батарея отправляется на утилизацию. Особенно сильно пострадает типовая АКБ от вибрации в разряженном состоянии это ускорит осыпание пластин.

image

Если немного поработать ножовкой, то можно добраться до внутренностей аккумулятора. В домашних условиях так делать не надо: они необслуживаемые и с недружелюбной кислотой внутри. Мы такие операции с распиливанием иногда проводим для экспертной оценки того, как чувствует себя аккумулятор после гарантийного срока службы. Вскрытие показало, что пациент умер от вскрытия и мог бы ещё поработать.

image
Вот так выглядят разряженные пластины. Белёсые участки это сульфат свинца в виде кристаллов, которые уже не участвуют в электрохимической реакции разряда.

Как восстановить активную массу?


Многие производители стараются бороться с этим различными способами. Мы используем специальные углеродные добавки в активную массу отрицательных пластин для снижения их внутреннего сопротивления, увеличения скорости заряда и снижения риска образования крупных, плохо растворимых кристаллов сульфата свинца. Технологию назвали Carbon Boost, я уже упоминал о ней в прошлых постах. И всё же это не панацея, и даже самые защищённые аккумуляторы умирают от длительного недозаряда даже с учётом стекловолоконной технологии в AGM и использования Carbon Boost.

Частично растворить крупные структуры можно специальными зарядными устройствами, но это всё равно не вернёт исходных параметров батареи, так как часть активной массы просто осыплется на дно АКБ. Хотя бывают варианты и похуже.

Правильный тип аккумулятора


Фундаментальный принцип проектирования почти любой батареи заключается в том, что мы выбираем либо более высокую ёмкость, либо более высокие токи при прочих равных. В свинцово-кислотных АКБ это достигается в первую очередь балансом между толщиной пластин и их количеством. Более тонкие пластины позволяют разместить больше пластин в батарее. Увеличение рабочей площади пластин даёт более мощный выброс энергии, необходимой для запуска двигателя. Более толстые пластины повышают устойчивость к циклам, обеспечивая безопасное, более глубокое и продолжительное время разряда, и могут использоваться для питания различного оборудования.

image
Стартерные батареи и батареи долгосрочного питания сильно отличаются по строению и используются в различных целях.

Собственно именно этот баланс и важен при выборе аккумулятора. Аккумулятор для запуска двигателя должен иметь возможность отдать большой ток даже в условиях зимы, поэтому в нём применяется больше пластин для достижения большей рабочей поверхности. Он очень редко питает что-то значительное, когда двигатель выключен. По сути, если у вас работают автомагнитола, обогреватель сидений и фары, то почти всегда в этот момент двигатель заведён, и основное питание потребителей обеспечивает генератор.

У автодомов всё не так. Если вы едете в дикую местность на автодоме, то вряд ли будете стоять с заведённым двигателем. Как ни крути, но на холостом ходу двигатель всё равно будет непрерывно жрать топливо. Поэтому подразумевается, что вы накопите достаточное количество энергии по дороге к стоянке в аккумуляторах, а запуск двигателя это скорее аварийный вариант, если вы не рассчитали ваши потребности и время стоянки.

Резервная батарея чаще всего должна работать, когда двигатель выключен. Обычно это не очень мощные потребители: неяркое светодиодное освещение, компактный холодильник, который скорее термос, и тому подобное. Высокие пиковые токи тут совершенно не нужны. Но зато гораздо более востребованы более энергоёмкие аккумуляторы, способные дольше отдавать энергию. В структуре таких батарей используется меньшее количество более толстых пластин, и как следствие с меньшей рабочей площадью.

Если провести аналогию, то стартовые аккумуляторы спринтеры, а резервные бегуны на длинные дистанции.

image
Equipment-линейка самая энергоэффективная и живучая на длинных дистанциях.

У Exide есть две-три ключевые линейки батарей, при этом, как показано на картинке, для одного и того же запаса энергии могут понадобиться три обычных Exide Dual, или один гелевый, или литиевые аккумуляторы:

  1. Starter (обычный, AGM) отдают пиковые токи и предназначены только для запуска двигателя. В качестве источника резервного питания они не подходят: в таком режиме эксплуатации они быстро выйдут из строя.
  2. Dual (обычный, AGM и EFB ) промежуточный вариант, совмещающий два режима работы: пуск двигателя и питание электрооборудования. Они могут отдать большой ток и лучше переносят сильный разряд. Ими можно запустить двигатель, и при этом они подойдут для использования в качестве источника для не очень прожорливого оборудования, например, освещения, телевизора, зарядки электробритвы или насоса для циркуляции воды. При этом более продвинутая технология EFB с применением Carbon Boost и AGM даёт больше запаса энергии из расчёта на килограмм и большую скорость приёма заряда.
  3. Equipment (AGM, GEL, Li-ion) специально для питания оборудования. Двигатель ими в теории завести можно, но это не их профиль: пиковые токи у них существенно ниже. Зато заряд они держат очень долго и могут длительное время питать много разных потребителей. В принципе, если такие аккумуляторы установить на моторную лодку, они вполне смогут длительное время питать ультразвуковой сонар для поиска рыбы или навигационное оборудование. При этом двигатель можно длительное время держать выключенным, чтобы не мешать рыбалке.

image
Обратите внимание, что за счёт применения различных технологий и более толстых пластин можно глубже безопасно разряжать аккумуляторы резервного питания.

Что ещё важно учитывать?


Для правильного подбора аккумулятора необходимо оценить суммарную мощность всех энергопотребителей и необходимое время работы между перезарядками:

image

Когда вы рассчитываете энергоёмкость, которая вам потребуется для автономной работы, всегда накидывайте 20 % как коэффициент безопасности. Это хороший резерв на случай превышения квоты и будущей деградации аккумуляторов.

Не забывайте про контроллер заряда и мониторинг. Иначе вы можете приехать в свой замечательный автономный дом в горах и обнаружить, что солнечные батареи занесло снегом два месяца назад, а аккумуляторы разрядились в ноль и теперь кандидаты под замену. Всегда оставляйте пару свободных процентов заряда для возможности подачи аварийного сигнала.
Подробнее..

Что сможет заменить литий в аккумуляторах?

14.07.2020 10:11:05 | Автор: admin
Роль лития, а точнее, литий-ионных аккумуляторов в нашей жизни трудно переоценить. Они используются повсюду: в мобильных телефонах, ноутбуках, фотоаппаратах, а также в наземном, водном и железнодорожном транспорте и космической технике. Литий-ионные батареи вышли на рынок в 1991 году, а уже в 2019 их изобретателям присудили Нобелевскую премию по химии за революционный вклад в развитие технологий. При этом литий дорогостоящий щелочной металл, а его запасы весьма ограничены. В настоящее время не существует близкой по эффективности альтернативы литий-ионным батареям. Из-за того, что литий один из самых легких элементов в периодической таблице Менделеева очень непросто найти ему замену для создания емких аккумуляторов.

Международный коллектив ученых НИТУ МИСиС, ИБХФ РАН и Центра имени Гельмгольца Дрезден-Россендорф установил, что вместо лития в аккумуляторах можно использовать натрий, уложенный особым способом. Натриевые батареи будут существенно дешевле, при этом не уступая по емкости литий-ионным, а в перспективе и превосходя их.

shutterstock-765810658

В ходе исследований было установлено, что если атомы внутри образца уложить определенным способом, то другие щелочные металлы также будут демонстрировать высокую энергоемкость. Наиболее перспективная замена литию натрий, так как даже при двуслойной компоновке атомов натрия в структуре биграфена (два слоя графена сверху и снизу) емкость такого анода становится сопоставимой с ёмкостью обычного графитового анода в литий-ионных аккумуляторах: около 335 мА*ч/гр (миллиампер-час на грамм материала) против 372 мА*ч/гр у лития. При этом натрий гораздо более распространен в природе, чем литий. Например, обычная поваренная соль на половину состоит из этого элемента.

Особенный способ укладки атомов не что иное, как расположение их в несколько слоев, один над другим. Такая структура создается путем перехода атомов из куска металла в пространство между двумя листами графена под высоким напряжением, что имитирует процесс заряда аккумулятора. Получается сэндвич слой углерода, два слоя щелочного металла, и снова слой углерода.

DSC-8981

Долгое время считалось, что атомы лития в аккумуляторах могут располагаться только в один слой, в противном случае система будет нестабильна. Несмотря на это недавние эксперименты наших коллег из Германии показали, что при тщательном подборе методов можно создавать многослойные стабильные структуры лития между слоями графена. Это открывает широкие перспективы к увеличению емкости таких структур. Поэтому нам было интересно изучить возможность формирования многослойных структур с другими щелочными металлами, в том числе и с натрием, при помощи численного моделирования, рассказывает один из авторов исследования, научный сотрудник лаборатории Неорганические наноматериалы НИТУ МИСиС Илья Чепкасов.

Из нашего моделирования следует, что атомы лития гораздо сильнее связываются с графеном, однако увеличение числа слоев лития приводит к меньшей стабильности. Обратная тенденция наблюдается в случае натрия при увеличении числа слоев натрия возрастает стабильность таких структур, это дает надежду на то, что такие материалы будут получены в эксперименте, заключил старший научный сотрудник лаборатории Неорганические наноматериалы НИТУ МИСиС и ИБХФ РАН Захар Попов.

Следующий шаг научной группы создание экспериментального образца и изучение его в лабораторных условиях. Этим займется зарубежная часть команды из Центра имени Гельмгольца Дрезден-Россендорф. В случае успеха можно будет говорить о создании нового поколения натриевых аккумуляторов, которые будут сопоставимы по емкости с литий-ионными, или даже будут превосходить их, стоя при этом в разы дешевле.

Статья об исследовании опубликована в журнале Nano Energy.
Подробнее..

Шведский аккумулятор из углеродных волокон произведет революцию в дизайне автомобилей

17.04.2021 14:23:59 | Автор: admin

К концу января 2021 года количество электроавтомобилей в России превысило отметку в 10 тысяч единиц, представленных 18 моделями 14 различных марок. При этом еще в январе 2020 года их количество не превышало 6 тысяч. Несмотря на значительный прирост, Россия еще не входит в топ-25 стран-лидеров по объему продаж электромобилей. Что обусловлено в первую очередь отсутствием на территории России официального представительства крупнейших производителей электрокаров и мировых брендов электромобилей. Также в России слабая мотивационная база, предоставляемая покупателям электромобилей. Поэтому автовладельцы все еще склоняются в пользу приобретения автомобиля с ДВС.

В правительстве уже принимаются меры для того, чтобы автовладельцы пересели на электрички. Пакет мер для Федерального закона об экологичном транспорте разрабатывается уже несколько лет, при этом, по разным оценкам экспертов, будет принят не ранее 2023 года. Тогда как во многих странах Европейского Союза (ЕС) уже несколько лет существует ряд льгот и преференций для владельцев электрокаров. Но водителей отпугивает не только цена на электромобили, но и страх перед разряженной батареей за сотни, а иногда и тысячи километров от крупного города, в котором еще должна быть заветная зарядная станция, тем более в зимнее время при температурах в ряде регионов 3040 градусов ниже нуля.

А в течение следующих нескольких лет аккумуляторы, которые будут использоваться в электромобилях, станут настолько дешевыми, что электромобиль будет стоить не больше, чем автомобиль аналогичного размера с двигателем внутреннего сгорания. Но эти электромобили по-прежнему будут весить больше, чем их аналоги с бензиновым двигателем, при этом аккумуляторные батареи в электромобилях составляет 20-25 процентов от общей массы транспортного средства.

Но выход есть: превратить конструктивные элементы автомобиля в сами аккумуляторы.


Батарея из углеродного волокна в виде крышки багажника

Задача


Главный технический директор Volvo Хенрик Грин говорит: Как наиболее эффективно интегрировать аккумуляторную батарею в автомобиль? Ну, если вы делаете это традиционным способом, вы помещаете батарею в модуль; затем вы помещаете несколько модулей в коробку. Потом вы помещаете коробку в автомобиль, и тогда у вас есть стандартизированное решение, которое можно масштабировать в течение 10 лет.

Но по сути, это довольно неэффективное решение с точки зрения веса, пространства и т.д. Итак, здесь действительно можно пойти глубже, и как бы напрямую интегрировать клетки в тело и избавиться от этих модулей, коробок и прочего. Это задача, над которой мы работаем в будущих поколениях автомобилей, и она кардинально изменит их сборку
.

Tesla также работает над разработкой новых аккумуляторных модулей, которые являются структурными элементами, но создает эти структурные модули из традиционных цилиндрических ячеек. Однако есть более элегантный подход к этой идее, и группа из технологического университета Чалмерса в Швеции во главе с профессором Лифом Аспом сделала прорыв в этом отношении.


Демонстрация тестовых батарей из углеродного волокна


Что это и с чем едят?


Наиболее широко углеродное волокно используется в качестве легкого и высокопрочного конструкционного материала в довольно дорогих экзотических автомобилях и самолетах, но постепенно он становится совершенно обычным явлением. Сегодня углеродное волокно используется в велосипедах и клюшках для гольфа, и даже можно приобрести себе бумажник из углеродного волокна.

Выдающиеся свойства углеродного волокна заключаются в том, что в качестве готового материала его можно сделать намного прочнее и легче, чем металлические детали аналогичного размера. Например, углеродное волокно имеет предел прочности на разрыв (то есть сопротивляется растяжению) примерно в четыре раза больше, чем сталь, и в восемь раз больше, чем алюминий. Кроме того, он намного жестче (сопротивляется изгибу), чем сталь или алюминий. При этом такое увеличение прочности сопровождается резким снижением веса: обычно деталь из углеродного волокна весит лишь треть от веса стальной детали того же объема.


Как композитный материал, углеродное волокно получает свою жесткость и легкость благодаря двум вещам: во-первых, это пряди углеродной нити, которая тоньше человеческого волоса, и эпоксидная смола, которая связывает углерод в форму. Второе, что придает композиту прочность, это химические соединения для объединения двух материалов и последующего их смешивания. Процессы производства углеродного волокна различаются в зависимости от формы деталей, но все методы производства имеют нить и клей.

Конструкция батареи представляет из себя анод из углеродного волокна и катод из алюминиевой фольги, покрытый фосфатом лития и железа, которые разделены стекловолоконным сепаратором в матричном материале структурного электролита батареи. Анод выполняет тройную функцию, удерживая ионы лития, проводя электроны и усиливая все одновременно. Электролит и катод аналогичным образом поддерживают структурные нагрузки и выполняют свою работу по перемещению ионов.


Тесты


Исследователи протестировали различные типы стекловолокна, в результате чего были получены элементы с номинальным напряжением 2,8 В, и достигли лучших результатов с точки зрения производительности батареи с более тонким полотняным переплетением. Элементы, использующие эту конструкцию, имели удельную емкость 8,55 Ач/кг, плотность энергии 23,6 Втч/кг (при 0,05C), удельную мощность 9,56 Вт/кг (при 3C) и толщину 0,27 мм. Для сравнения, это 4680 ячеек, которые Тесла помещает в свои машины, чтобы иметь плотность энергии 380 Втч/кг. Однако этот показатель плотности энергии для цилиндрических ячеек не включает массу структурной матрицы, которая их окружает (при использовании в качестве структурных панелей).

image



Батарея из углеродного волокна от Tesla

Что касается структурных нагрузок, то наибольшая жесткость была также достигнута при использовании простого стекловолоконного переплетения 25,5 ГПа. Это примерно похоже на пластик, армированный стекловолокном, тогда как пластик, армированный углеродным волокном, даст результат в 10 раз больше, в зависимости от того, сделан трансферным формованием или является ткаными листами, предварительно пропитанные смолой (известные как pre-preg).

Группа профессора Аспа сейчас работает над тем, чтобы повысить жесткость и электрические характеристики заменой алюминиевой фольги катода на углеродное волокно. Группа также тестирует еще более тонкие сепараторы. Они надеются достичь 75 Втч/кг и 75 ГПа, что приведет к получению элемента, который будет намного жестче, чем алюминий (68 ГПа) и намного легче.


Перспективы


Создание электромобилей или даже самолетов из структурных композитных батарей пока еще долгосрочный проект, и даже в лучшем случае структурные аккумуляторные элементы могут не скоро приблизиться к характеристикам специализированных элементов, используемых на данный момент. Но поскольку они заменят более тяжелые металлические конструкции, получившийся автомобиль должен стать намного легче, дешевле и экологичнее

Между тем, Асп считает, что преимущества использования такой технологии можно будет увидеть раньше: Структурная батарея следующего поколения обладает фантастическим потенциалом. Через несколько лет вполне возможно будет производить смартфоны, ноутбуки или электрические велосипеды, которые будут весить вдвое меньше, чем сегодня, и будут в разы компактнее.



На правах рекламы


Наши эпичные серверы это как Tesla в автомобилестроении. Используем новейшие процессоры от AMD, исключительно быстрые NVMe накопители от Intel и никогда не экономим на железе только брендовое оборудование и самые современные решения на рынке!

Подробнее..

Аккумуляторы против батареек

04.08.2020 22:11:12 | Автор: admin
Номинальное напряжение щелочных батареек 1.5 вольта, а номинальное напряжение NiMh-аккумуляторов 1.2 вольта, из-за этого многие думают, что аккумуляторы могут не работать в устройствах, предназначенных для работы от батареек. Я изучил, как меняется напряжение на батарейках и аккумуляторах при разрядке в разных режимах.

Для теста были использованы хорошие батарейки Lexman и аккумуляторы, использующие технологию Eneloop Fujitsu AA 2500 mah и IKEA LADDA AAA 900 mAh.




Для тестирования ёмкости и нагрузочной способности батарейки и аккумуляторы разряжались в трёх режимах:

Разряд постоянным током 200 мА. Такая нагрузка свойственна для электронных игрушек;
Разряд импульсами (10 секунд нагрузка, 20 секунд пауза) 2500 мА для батареек AA и 1000 мА для AAA. Такая нагрузка свойственна для мощных устройств;
Разряд в режиме постоянное сопротивление с начальным током 1000 мА. Этот режим эмулирует работу фонаря или устройств с электромоторами.

Измерение делались при разряде до напряжения 0.7 В.

Разряд постоянным током 200 мА



Отданная энергия:
AA: аккумулятор 2.97 Втч, батарейка 2.52 Втч;
AAA: аккумулятор 1.08 Втч, батарейка 1.00 Втч;

Аккумуляторы AA дают больше энергии на 15%, аккумуляторы AAA на 7%.

Хоть начальное напряжение на аккумуляторах ниже, уже после разряда на треть оно становится равно напряжению на батарейках. При разряде батареек на 10% напряжение падает до 1.4 В и дальше при разряде до 90% оно плавно падает до 1 В. Аккумуляторы ведут себя по-другому. При первых 30% разряда напряжение плавно падает с 1.4 до 1.2В, а дальше остаётся почти неизменным до тех пор, пока аккумулятор не разрядится на 90%, в последние 10% работы аккумулятора напряжение начинает падать до 1 В и ниже.

Разряд в режиме постоянное сопротивление с начальным током 1000 мА



Отданная энергия:
AA: аккумулятор 3.02 Втч, батарейка 1.55 Втч;
AAA: аккумулятор 1.08 Втч, батарейка 0.59 Втч;

При большой нагрузке аккумуляторы AA дают больше энергии на 49%, аккумуляторы AAA на 45%.

При такой нагрузке напряжение на батарейках уже после 1% разряда падает ниже напряжения на аккумуляторах!

Разряд импульсами 2500 мА (10 секунд нагрузка, 20 секунд пауза)



Отданная энергия: аккумулятор 2.61 Втч, батарейка 0.82 Втч;

При сверхвысокой нагрузке разница между батарейками и аккумуляторами становится ещё больше: аккумулятор даёт более, чем втрое больше энергии.

На графике хорошо видно, что напряжение под нагрузкой у аккумулятора выше с первой секунды разрядки.

Аккумулятор выдерживает гораздо большую нагрузку, поэтому разница напряжения при подаче и снятии нагрузки у него не велика (около 0.1 В), а у батарейки она достигает 0.5 В.

Разряд импульсами 1000 мА (10 секунд нагрузка, 20 секунд пауза)



Отданная энергия: аккумулятор 0.94 Втч, батарейка 0.50 Втч;

Точно такая же картина при разряде сверхбольшим током батареек и аккумуляторов ААА.
аккумулятор даёт почти вдвое больше энергии и напряжение на нём выше в течение всего разряда.


Из моих экспериментов можно сделать следующие выводы:

Аккумуляторы дают преимущества в любых режимах, но особенно большая разница наблюдается при питании мощной и сверхмощной нагрузки аккумулятор может давать в три и более раз больше энергии.
Несмотря на то, что номинальное напряжение у аккумуляторов меньше (1.2 В, а у батареек 1.5 В), фактически в процессе разряда оно становится больше, чем у батареек (с самого начала при большой нагрузке и приблизительно после трети разряда при маленькой).
Аккумуляторы не очень целесообразно использовать в устройствах с очень маленьким потреблением (часы, пульты), где батарейки меняются реже, чем раз в год.
В устройствах, батарейки в которых садятся чаще, чем раз в год, применение аккумуляторов даёт не только экономию, позволяет заботиться об экологии, но и обеспечивают более долгую работу без подзарядки (смены батареек).

2020, Алексей Надёжин
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru