Русский
Русский
English
Статистика
Реклама

802.11

Выбираем канал для точки доступа Wi-Fi. Исчерпывающее руководство

15.06.2020 22:10:10 | Автор: admin
2,4 ГГц это плохо. 5 ГГц это хорошо. 6 ГГц это ещё лучше, но послезавтра. Все это знают, кого я тут учу, в самом деле. Всё это хорошо, только делать-то что, когда ты такой, как умный, открываешь какой-нибудь Wi-Fi Explorer, а там сатанизм и этажерки, как на скриншоте?

Шаг первый поплакать. Шаг второй нырнуть под кат. Вопрос простой, а ответ нет.

Для начала разминочный тест. Ситуация номер раз: занят один канал в 2.4 ГГц, нужно поставить свою точку доступа. На какой канал?

  1. На любой, кроме того же самого;
  2. Плюс-минус пять каналов от занятого, то есть, шестой и дальше;
  3. Лучше, конечно, на шестой или одиннадцатый;
  4. На тот же самый канал.

Ситуация вторая: диапазон 2,4 ГГц занят двумя точками доступа: одна вещает на первом канале с шириной 40 МГц, вторая на девятом в такой же ширине. Куда нам встать со своей точкой доступа?

  1. На любой канал, кроме первого или девятого, очевидно же;
  2. Желательно на тринадцатый, чтобы как можно дальше от этих двух;
  3. На первый, пятый, девятый или двенадцатый;
  4. На первый или девятый.

Ситуация под цифрой три, тут похитрее задачка: в эфире три точки доступа, по 20 МГц на первом, шестом и одиннадцатом канале (во-первых, это красиво). Куда поставить свою точку доступа?

  1. На любой канал, кроме первого, шестого и одиннадцатого;
  2. На первый, шестой или одиннадцатый наверное, лучше на первый, потому что мощность пониже;
  3. На первый, шестой или одиннадцатый может, есть ещё какая-то характеристика, на которую надо посмотреть?
  4. Третий-четвёртый или восьмой-девятый, что-то из этого, потому что там пустые места есть.

Ситуация 4: Этажерка Безнадёжности. Куда поставить точку доступа?

  1. На каналах с девятого и дальше мощность ниже всех остальных, так что надо ставить туда;
  2. Меньше всего точек доступа на 13 канале, так что на него;
  3. Всё настолько плохо, что уже без разницы. На любой наугад.

Про 5 ГГц я не говорю по той простой причине, что там всё примерно то же самое, но не совсем, а, как всегда в вайфае, всё зависит от всего. Основные принципы выбора там будут примерно те же самые, только кое-что будет полегче, а другое кое-что посложнее. Но это, как говорил Каневский, уже совсем другая история.
Если вы быстро и без запинки ответили на этот стартовый тест, то поздравляю: либо вы узнаете много нового из этой статьи, либо не узнаете ничего. Правильные ответы
Вот такие:
Ситуация 1 любой из ответов лучше варианта 1, но вариант 3 приличнее и вежливее всего;
Ситуация 2 вариант 4;
Ситуация 3 варианты 2 или 3, причём вариант 3 лучше;
Ситуация 4 вариант 3, он же против всех.

Для того, чтобы понять принцип, по которым более правильно так, а не по-другому, нам нужно обсудить на пальцах, как сети Wi-Fi дружат друг с другом если бы это сосуществование было серьезной проблемой, Wi-Fi не торчал бы в каждой кофеварке. Как мы уже выяснили в предыдущей моей заметке, основная цель протокола 802.11 не обеспечение максимально возможной пропускной способности на один мегагерц занятого эфира, а бескомпромиссная совместимость и работоспособность протокола даже в самых плохих условиях (типа заглавной картинки, да). Придуман протокол грамотно, реализован, кхм, по-разному, но в целом тоже не глупо, и всё-таки рано или поздно всякий запас прочности познаёт свой предел.
Итак, представим, что в мире остались всего два устройства, которые умеют работать с Wi-Fi, и это точка доступа и клиент. Первое правило вайфай никому не расска Пока говорит один остальные молчат. И не просто молчат, а внимательно слушают.
Собираясь передать данные, первое, что делает любое устройство Wi-Fi внимательно слушает, не передаёт ли кто свои данные. Получится очень неловко, если мы начнём говорить одновременно с кем-то ещё, не так ли? В отличие от 802.3, он же Ethernet (слишком обобщённо, но пусть будет), в котором момент одновременного разговора определяют, когда он произошёл (помните лампочку Collision на старых хабах? Я тоже нет, но речь о ней), в 802.11 стараются такого момента избежать и не допустить. Главная причина в том, что разница между передаваемым и принимаемым сигналом в вайфае может достигать МИЛЛИАРДА раз (я не шучу!), и то, что передаёт передатчик, может наглухо забить и сжечь приёмник, если он попробует слушать одновременно с передачей. Весь этот этикет взаимного После Вас нет, после Вас! среди устройств 802.11 называется сложной аббревиатурой CSMA/CA, которая делится на три части:
CS Carrier Sense, определение несущей;
MA Multiple Access, множественный доступ;
CA Collision Avoidance, избежание коллизий.
У меня шевелится паучье чутьё на тему того, что вы всю эту лирику уже не раз читали, но потерпите чуть-чуть, сейчас мы доберёмся до мясца нашей задачи о расстановке козы, волка и капусты. В рамках этой заметки нас интересуют первые две буквы, а именно CS. Что это вообще такое?
Так вот, определение несущей это, по сути, и есть механизм определения, говорит ли сейчас кто-то ещё или нет. Всё сводится к тому, что практически постоянно проверяется наличие двух возможных причин занятости эфира Wi-Fi-устройства и все остальные устройства (да, вот так вот ксенофобовато, наши и все остальные двадцать с лишним лет протоколу, а актуальности, как видите, не теряет!). Перед тем, как только подумать о передаче данных, устройству нужно провести оценку занятости эфира (натурально, так и называется Clear Channel Assesment, или CCA). Наши и не наши, по мнению каждого устройства, не равны по значимости, и есть два пороговых значения это SD (Signal Detect), которое означает, что мы услышали что-то на языке 802.11, и ED (Energy Detect), которое означает любую мощность на входе приёмника (любой другой язык).
А теперь внимание: к нашим вайфай-устройства в СТО раз более внимательны, чем к всем остальным. То есть, эфир считается занятым, если мы услышали какой-то 802.11-фрейм на уровне всего на 4 дБ лучше уровня шума мы ооооочень вежливы к другим устройствам Wi-Fi! А все остальные (всякие там Bluetooth, к примеру) помешают что-то передать только тогда, когда уровень сигнала от них будет выше шума на 24 дБ!

Спасибо замечательному David Coleman за эту красивую картинку.

Много это или мало? Давайте приведём самые хрестоматийные числа в качестве примера. Итак, для того, чтобы устройства стандарта 802.11n развили максимальные скорости (при ширине канала в 20 МГц и одном приёмопередатчике это 72,2 Мб/с), им нужен сигнал уровнем примерно -64 дБм при соотношении сигнал/шум не меньше 25 дБ (если кому интересно, откуда я взял эти числа то вот отсюда, пользуйтесь, если до сих пор не заглядывали в статью skhomm Все полезные материалы по Wi-Fi в одном месте). То есть, передачу данных остановит ЛЮБОЙ кадр на этом же канале с уровнем приёма выше -85 дБм! В каком-нибудь многоквартирном доме это добрые плюс-минус два этажа (я терпеть не могу оценивать мощность длиной, но в этом случае готов согрешить ради наглядности), а в чистом поле полкилометра расстояния!

А вот если наше готовое к передаче устройство услышит какой-то сигнал, но не сможет его расшифровать, то оно будет его игнорировать вплоть до -65 дБм, то есть, до тех пор, пока уровень этой сторонней помехи почти не сравняется с уровнем сигнала от той самой идеальной точки доступа, на которую оно и хотело передать данные. Вот это да!
Но позвольте совершенно правильно возразит кто-нибудь моими же собственными пальцами, мы же все знаем, что блютус мешает вайфаю, как ему мешают микроволновки, камеры там всякие!. Совершенно верно. При уровне нечитаемой помехи в, скажем, -70 дБм (ну, то есть, она ещё не считается достаточно сильной для того, чтобы остановить всю передачу и заставить считать среду занятой) она становится тем самым шумом, от которого мы соотношение сигнал/шум и отсчитываем. Мы слышим нашу точку доступа на уровне -65 дБм, мы слышим любой нечитаемый сигнал на уровне -70 дБм, таким образом, наше соотношение сигнал-шум вдруг упало до 5 дБ, а при таких параметрах канальную скорость в 72,2 Мб/с уже не развить, а максимум, что можно развить это несчастные 27 Мб/с. Все в радиусе действия этой помехи резко уронили свои канальные скорости, в итоге за секунду трафика через точку доступа можно прокачать существенно меньше вот и начались тормоза в вайфае, ай-ай-ай, всё плохо, колёсико крутится, ютьюб не грузится. Так-то!
Какое же отношение последует новый логичный вопрос от внимательного идеализированного мной читателя, какой-то там блютус имеет к нашему вопросу? Ведь на картинках в тесте нет никакого блютуса, там только вайфай!. А вот какое: любое 802.11-устройство может декодировать фрейм только тогда, когда он передан ПОЛНОСТЬЮ на канале, который она слушает! Посмотрите на эти две сети:

Точка доступа, работающая на первом канале, в упор не понимает, что говорит вторая точка доступа, потому что слышит только 75% того, что она передаёт (как и точка на втором канале, которая слышит только 75% того, что говорит первая). Именно поэтому она не понимает, что это наши она не считает, что должна уступить среду для передачи! Отсюда соотношение сигнал/шум катится вниз, канальная скорость (а с ней и итоговая пропускная способность) катятся вниз, и, заметьте, совсем даже не пропорционально перекрытию каналов, а обратно пропорционально разнице в мощности чем лучше клиент, который хочет передать данные первой точке, слышит вторую, тем сильнее упадёт его канальная скорость.
Но и это, к сожалению, ещё не все причины разрушительного действия перекрывающихся каналов. Теперь мы обратимся к следующим двум буквам, а именно MA, или Multiple Access. Мы не будем углубляться в детали доступа к среде в протоколах 802.11 я отмечу только одну особенность, которая важна в контексте обсуждаемого вопроса. Итак, после каждого фрейма, неважно, служебный он или содержит данные, любое Wi-Fi устройство должно выждать некоторое время, прежде чем снова пытаться получить доступ к среде. Более того, неважно, само ли оно отправило этот фрейм или только услышало его придётся подождать определённое время, называемое InterFrame Space (IFS), и только потом затевать игру Кто первый застолбит среду. Этих самых IFS существует несколько, и вот что интересно: если наше устройство после передачи фрейма не услышало подтверждения, что адресат его получил, то оно будет ждать дольше, чем если бы получило. В разы дольше.
Вернёмся к картинке из позапрошлого абзаца. Точка доступа с первого канала принимает фрейм. В это время точка доступа со второго канала тоже принимает фрейм. Оба этих фрейма повреждаются, и обе сети вынуждены простаивать бОльшее время, ещё сильнее теряя в пропускной способности (потому что, как мы помним, время = деньги, а для вайфая время = пропускная способность). Полная засада.
Итак, из всего этого следует простое правило: если не можете избежать пересечения каналов ставьте точки доступа на один канал! Да, обе сети потеряют в пропускной способности, но, во всяком случае, они рассчитаны на такую работу.
Я напомню ситуацию 4.
Скрытый текст

В эфире не осталось ни одного канала, на котором не работает две и больше пересекающихся и мешающих друг другу сети, все мешают друг другу, все испытывают проблемы, поэтому ни мощность, ни выбор канала, ни волшебные алгоритмы, ни BSS Coloring, ни крёстная фея в такой ситуации уже не помогут. Можно ставить свою точку доступа куда угодно.
Понятное дело, что в таком беспроводном адке уже ничего не исправить, но что нужно делать, чтобы не оказаться в такой ситуации? В первую очередь, запомнить раз и навсегда, что есть всего три не мешающих друг другу канала в диапазоне 2,4 ГГц первый, шестой и одиннадцатый. Конечно, можно заметить, что третий, восьмой и тринадцатый тоже друг другу не мешают, но, во-первых, тринадцатый можно не везде (в США всего 11 каналов), а во-вторых, если вы отклонитесь от мантры 1-6-11, а кто-то другой не отклонится, то весь эффект сойдёт на нет все каналы снова пересекутся и испортят друг другу жизнь. Это как обжимать витую пару в принципе, если с двух сторон последовательность одинаковая, то может и заработать, только вот разбираться кому-то потом в распиновке каждой розетки будет ох как несладко. Ещё раз: первый. Шестой. Одиннадцатый.
Хорошо, вот ситуация под номером 3.
Скрытый текст

Ну хорошо, вот они, первый, шестой или одиннадцатый. Какой из них выбрать? Да, в принципе, любой из этих трёх подходит, но если выбирать до конца оптимально то нам гораздо важнее, как часто передаются данные на каждом из этих каналов; то есть, идеальный ответ смотреть на ещё один параметр, а именно утилизацию эфира. Это просто: если к точке доступа на первом канале подключено 100 клиентов, а к точкам на 6 и 11 ни одного, то гораздо выгоднее встать на 6 или 11. В англоязычной терминологии есть два слова airtime и utilization, и они означают, строго говоря, не одно и то же, но можно ориентироваться как на одно, так и на другое, показометры эти взаимозависимые.
Теперь ситуация 2.
Скрытый текст

Мы уже поняли, что пересекать каналы нельзя, поэтому варианты с 13 и любым каналом отпадают. Почему же нельзя поставить точку доступа на пятый канал?
Причина в истории. Нет, серьёзно. Каналы шире 20 МГц появились только в стандарте 802.11n, когда впервые предложили слепить воедино два соседних канала и говорить по ним в два раза эээээээ толще? В два раза продуктивнее! Но с точки зрения совместимости вся служебная информация, то есть, все фреймы, которые должны быть понятными для остальных сетей, идёт только в первых 20 МГц занятой полосы. Я напомню вот эту классную картинку с анатомией передачи данных по Wi-Fi, она всегда к месту:

Обратите внимание: только синяя часть на диаграмме использует все 40 МГц эфира! Все шестерёнки протокола крутятся в первых двадцати мегагерцах! Это, кстати, верно и для 80 МГц, доступных в 802.11ac: всё служебное летит в первой двадцатке, а оставшиеся 60 простаивают бОльшую часть времени. Но рано или поздно к вопросу широких каналов мы вернёмся оооо, я обещаю, мы их ещё обсудим!
И в итоге получается, что пятый канал, хоть и попадает целиком внутрь одной сети, всё равно видеть её не будет со всеми описанными вытекающими (кхм, какая двусмысленная фраза). Для нормальной работы нам остаются лишь первый и девятый каналы.
Ну, и первая ситуация теперь вообще не вызывает вопросов, правда?
Скрытый текст

Тезисно сформулируем всё, что мы смогли обсудить в таком сложном ответе на такой простой вопрос:
  • Можно работать на одном канале, но никогда не нужно каналы пересекать;
  • Нам нужны первые 20 МГц канала, остальное по-прежнему нельзя пересекать;
  • (стройный хор): Первый! Шестой! Одиннадцатый!


Пользуясь случаем, передаю привет МГТС, которые в своё время прославились тем, что ставили все домашние роутеры абонентам на шестой канал. Пожалуй, это не самое тупиковое решение, как могло бы показаться на первый взгляд.
Подробнее..

Wi-Fi высокой плотности не существует

02.06.2021 14:09:29 | Автор: admin

В качестве дисклеймера: я обязан предупредить, что эта статья не слишком уж и техническая, однако про технику и шестерёнки 802.11 мы, несомненно, поговорим. Но в основном поговорим про плотность.

Я люблю элементарные вопросы, потому что они (прямо как элементарные частицы) на пути в собственные глубины приводят к бесконечности. Когда мы встречаем фразу Wi-Fi высокой плотности, то так и хочется задать дополнительный вопрос про какую плотность идёт речь? Плотность чего высока? Ответ, как всегда, не так однозначен, как может показаться.

Вот, например, несколько определений, которые я сравнительно легко нагуглил.

Под сетями Wi-Fi высокой плотности (далее СВП) понимается беспроводная среда с высокой концентрацией пользователей, где пользователи подключены к беспроводной сети и интенсивно работают с сетевыми сервисами (источник)

В предыдущей статье мы вывели одно из главных правил Wi-Fi: Пока говорит один остальные слушают. Возникает логичный вопрос раз в каждый момент времени передаёт только одно устройство, есть ли принципиальная разница между, грубо говоря, ста клиентами по 1 Мбит/с или одним клиентом по 100 Мбит/с, если все данные всё равно будут переданы по очереди? О какой плотности идёт речь о плотности передачи данных в эфире?

Следующее определение:

Когда на одно клиентское устройство приходится менее 1 кв.м площади, можно считать, что на Вашем объекте высокая плотность подключений к Wi-Fi (источник)

Как между собой связано расстояние между клиентами и особенности проектирования сети Wi-Fi? Опять же: буду ли я проектировать сеть иначе, если между клиентами будет в 10 раз больше расстояния, но передавать они будут в 100 раз больше данных?

Ещё одно определение:

High-density Wi-Fi is a design strategy for large deployments to provide pervasive connectivity to clients when a high number of clients are expected to connect to Access Points within a small space. A location can be classified as high density if more than 30 clients are connecting to an AP

Или по-русски:

Wi-Fi высокой плотности это стратегия планирования сети для крупных внедрений для предоставления всеобъемлющего сервиса для клиентских устройств, когда большое количество клиентов должны будут подключаться к точке доступа в малом пространстве. Сеть может быть определена как высокоплотная, если к ТД подключено больше 30 клиентов

(источник)

А если 31? Если площадь большая, но клиенты сосредоточены вокруг точек очень плотно это всё ещё высокоплотный Wi-Fi или уже нет?

Да полным-полно всяких формулировок. В 2017 году на конференции БЕСЕДА-2017 Виктор Платов из Cisco определил Wi-Fi высокой плотности как любой, когда в каждой точке покрытия сети видно три или больше точки доступа (это очень хорошее определение, мне оно понравилось своей ёмкостью и красотой). Самое смешное что все они верны. И самое смешное что всё, что приводит к попыткам такого определения, относится к каждой сети Wi-Fi.

Упростим нашу ситуацию по максимуму: в мире осталась одна точка доступа и одно клиентское устройство. Призовём цветные столбики и внимательно посмотрим, как, например, пользовательские данные с точки попадут на клиента.

Для тех, кто пропустил предыдущую статью, я напомню: жёлтое и оранжевое это то, что заставляет Wi-Fi работать вообще, синее это то, что заставляет его работать быстрее, а зелёное это единственная часть, которая вообще нас интересует, а именно пользовательские данные. Всё остальное в Wi-Fi тишина и ожидание, тиканье таймеров и прослушивание эфира. Игра эта смешная и к пользовательскому трафику не очень справедливая, но зато надёжная и увлекательная устройства в неё играют без конца, даже когда пользователь этого не очень-то и хотел бы.

На картинке зелёным показаны симпатичные и, безусловно, очень важные 300 байт пользовательских данных (включая заголовок IP), которые пролетели через сеть Wi-Fi, работающую на максимуме возможностей стандарта 802.11n в канале шириной 20 МГц. Если бы пользователь открыл свойства своего подключения к беспроводной сети, то он бы увидел скромное число 72,2 Мбит/с. Весь процесс этого перелёта занял (в нашем эталонном примере) 407 мкс, из которых чуть больше четверти времени (а именно 115 мкс) в эфире была абсолютная тишина (по мнению устройств Wi-Fi). Если бы её не было, то вся игра началась бы с самого начала, и стало бы ещё хуже.

Возведём ситуацию в абсолют. Представим, что эта картинка повторяется, что называется, спина к спине: ни единой микросекунды не расходуется впустую всегда данные летят, таймеры считаются, никаких тебе переповторов и помех, всё чётко и прекрасно. Нетрудно сделать следующий вывод: больше четверти всего времени в эфире была тишина! Значит, какая бы то ни было мощность на приёмниках, слушавших всё происходящее, была всего лишь в 72% всего времени. А знаете, что самое смешное? Лучше особо и не будет.

Этот процент от времени (какую часть всего времени среда занята передачей хоть какой-то информации) называется утилизацией канала и, собственно, он и показывает потолок всей пропускной способности каждой точки доступа, каждого канала и сети в целом. На этой картинке много переменных: частичка под названием CW меняется в огромных пределах; в зелёную часть можно впихнуть больше данных за то же самое время; синенькая часть в Wi-Fi 6 стала чуть подлинее но в целом потолок определён достаточно явно: если мы хотим, чтобы Wi-Fi работал, 25% времени мы будем слушать тишину.

Неэффективно? Возможно. Зато ультранадёжно!

Утилизация это следующий после сырых мегабит и больших децибеллов параметр, по которому постепенно погружающийся в пучину Wi-Fi инженер начинает использовать в качестве мерила нормальности работы беспроводной сети. После того, как он научился не проверять работоспособность Wi-Fi с помощью Speedtest и понял, что мощный сигнал и пробитые стены не гарантируют хорошей пропускной способности, он поднимается на канальный уровень 802.11 и обнаруживает, что те самые 72,2 Мбит/с, которые рисуются системой в свойствах устройства, недостижимы в принципе протокол устроен так, что скорость передачи данных никогда не превысит 75% от канальной скорости.

Именно утилизация показывает, насколько занят тот или иной канал (считай, точка доступа) и сколько возможностей для передачи может появиться для нового клиента в этой сети. По большому счёту, других параметров для этого и нет. Децибеллы причина утилизации (высокой или низкой как спланируете сеть), мегабиты в спидтесте следствие использования свободной утилизации (а много её свободно или мало опять же, как спланируете сеть). Хорошо спланированная (с помощью высоких децибеллов) сеть при высокой утилизации выдаёт высокие значения Мбит/с. Всё просто!

Что же значат определения Wi-Fi высокой плотности в переводе на простой инженерный? Высокая концентрация пользователей, где пользователи подключены к беспроводной сети и интенсивно работают с сетевыми сервисами это всего лишь высокая утилизация каналов, на которых работает наша сеть. Высокая плотность подключений к Wi-Fi и Большое количество клиентов должны будут подключаться к точке доступа в малом пространстве означает, что на доступное эфирное время точки доступа будет претендовать много клиентских устройств. Утилизация везде и всюду. Но ведь она и в обычной сети, самой что ни на есть домашней, внезапно может уйти в потолок!

Совершенно верно. Поэтому я скажу вот что не существует Wi-Fi высокой плотности. Существует лишь Wi-Fi, о работе которого в условиях высокой нагрузки, позаботились заранее, и Wi-Fi, о работе которого начали заботиться только в условиях уже проявившихся проблем. Больше делений никаких нет. Потому что утилизация это всегда утилизация, а больше эффективность работы нашей сети оценить нечем (ну, кроме итоговых сырых мегабит, да).

Не нужно думать, что рекомендациями из High Density Guide вашего любимого производителя нужно начинать пользоваться только тогда, когда количество пользователей на точку превысило определённое значение (30, к примеру) все эти рекомендации начнут работать сразу, на любой сети, совершенно одинаково повышая их пропускную способность.

Ну и раз уж мы заговорили о рекомендациях стоит поговорить о них подробнее. Каждый производитель считает нужным сообщить разную определённую информацию о том, что он считает максимально выгодным для действий с утилизацией правильно построенной сети, но всю эту информацию можно условно разделить на несколько лозунгов. Их проще всего понимать, созерцая всё те же цветные столбики. Повторим?

<h2>Лозунг первый: Передаём быстрее!</h2>

Ускоряем зелёную часть так, как только можем.

  • Пихаем сюда как можно больше данных (хотя это от нас почти не зависит клиентские устройства в среднем рвут все данные на кадры с полезной частью в районе 300 байт, поэтому все классные историю про агрегацию payload работают в очень ограниченном количестве случаев. Не надейтесь на них);

  • Никакого Rate limiting в воздухе, потому что он растянет зелёную часть (клиент может передать свои 300 байт на скорости 72,2 Мбит/с, но сеть ему говорит Ну уж нет, не больше шести!. В сколько раз дольше он будет занимать эфир?). Шейпите где-нибудь дальше!

  • Обеспечьте максимальную канальную скорость (вот тут пришли децибеллы во всех их формах). Не знаете, сколько радиопопугаев нужно для той или иной канальной скорости? Посмотрите сюда;

  • Выберите точки, которые могут передавать данные на скорости самых быстрых клиентов (если бюджет вам этого не запретит). MIMO 3x3:3 хватит для почти любого клиента Wi-Fi, кроме одной PCI-E карты ASUS, которая 4x4:4, про которую все говорят и никто ни разу в руках не держал;

  • Уменьшите количество неудачных передач (retry rate тут мы начинаем погружаться в дебри траблшутинга Wi-Fi, я постараюсь держаться поближе к поверхности) к примеру, уберите точки подальше от металла и прочих подстилающих поверхностей.

Всё? Не только ведь мы можем ускорить и оранжевую часть! Смотрите: по умолчанию в 5 ГГц это 6 Мбит/с (в 2,4 всего 1 Мбит/с, ха-ха-ха!). Если я хорошо спланирую свою сеть и тщательно всё настрою, то смогу разогнать оранжевую часть (это называется Tx management rate) до 24 Мбит/с и при прочих равных сэкономлю на передаче всё того же фрейма в 300 полезных байт целых 76 мкс! Да это 20% доступного времени (и пропускной способности) просто на халяву!

Конечно, эти самые 24 Мбит/с наложат определённые требования на качество сигнала клиентов, подключенных к ТД. Но без хорошей физики в любом случае не будет хорошей логики (и тем более передачи данных)!

На этом с ускорением передачи покончено, по большому счёту. Но у нас в запасе есть

<h2>Лозунг второй: Передаём меньше!</h2>

  • Всё, что можно не передавать в эфир в топку. Меньше сетей (SSID), созданных на сети (собственно, железо): каждый SSID это десять фреймов Beacon в секунду! Хорошо, если они быстро пролетят через сеть а если они передаются на 1 Мбит/с? Да вы бы ещё мегабит десять данных выжали бы с точки за это время!

  • Если можем просто подключить клиента к сети подключаем, а не тратим время на то, что клиент будет тыкаться в сеть с паролем, неправильно его вводя (привет, гостевые открытые сети!). Домой это, конечно, особо не применимо вспомните про этот пункт, когда займётесь офисной сетью;

  • Если можем не отвечать на тупые вопросы проходящих мимо клиентов о возможностях нашей сети (broadcast Probe Request) не отвечаем;

  • Если начали отвечать не ждём, пока клиент соизволит ответить (он мог сто раз уйти на другой канал, зачем его ждать?);

И так далее, и тому подобное. Для уровней выше тоже верно: не мониторим абонентов бесконечными пингами всех выданных адресов на DHCP-сервере (встречались и такие случаи), режем лишний broadcast Короче, если можем что-то не передать в эфир не передаём!

Ну, и как основное и главное правило

<h2>Лозунг третий: Планируем сеть!</h2>

Каждый канал это доступные 70% времени передачи. Занимаете четыре канала, объединяя их в один на 80 МГц это становится теми же самыми 70% доступного времени, хотя вы могли бы выжать вчетверо больше!

Добавим цветных столбиков?

Сверху наша затюненная сеть на 802.11n в 20 МГц, быстро разбирающаяся с пользовательскими данными по 300 байт в пакете. Снизу сеть на 802.11ac в 80 МГц, с которой больше никаких действий не сделано. В итоге получается, что старый стандарт быстрее передаёт пользовательские данные и к тому же в том же куске эфира их можно уместить четыре одновременно! Жаль, конечно, что это не даст выгоды, например, одному жирному клиенту, который хочет штурмовать выданные провайдером 300-500 Мбит/с через приснопамятный Speedtest что ж, возможно, стоит дать ему широкий канал в 80 МГц, но пожалуйста, не забывайте про то, что клиент будет слышать передачу в таком широченном канале в ДВЕНАДЦАТЬ раз хуже, чем в узком двадцатимегагерцовом!

Переиспользуйте каналы с умом, думайте про частотный ресурс, заботьтесь о хорошем уровне сигнала не только в сторону клиентских устройств, но и от них. В общем, научитесь планировать беспроводные сети это не так уж и сложно, тем более, что всегда есть готовые помочь квалифицированные инженеры, да и вебинаров всяких в интернете полным-полно.

Ну, и последнее определение Wi-Fi высокой плотности, которое хотелось бы обсудить это высокая плотность установки точек доступа. Спустя несколько лет мы все обнаружили, что в наших квартирах зачастую виден десяток разных сетей от всех соседей. Даже в густых лесах уже попадаются микротики с шириной канала 40 МГц в 2,4 ГГц:

А в обычной квартире всё чаще всего существенно хуже:

И лучше, пожалуй, уже не будет. Как минимум, до 6E но это уже, как говорит Каневский, совсем другая история. А пока ваш домашний вайфай имеет такую же плотность, как и офисный, просто пока об этом не знает. Знать нужно вам самим и лучше заранее!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru