Русский
Русский
English
Статистика
Реклама

Сериал

Перевод Ремастеринг сериала Звёздный путь Глубокий космос 9 до максимального качества

01.10.2020 20:16:38 | Автор: admin


Я сделал по этому проекту уже достаточно, чтобы начать говорить о нём, как о готовом к выходу, а не просто как о задумке, движущейся по бесконечной дороге к туманному и неопределённому улучшению качества.

Большинство историй начинаются не с конца, но эту определённо стоит начать именно так. Последние девять месяцев я работал над ремастером сериала Глубокий космос 9 с тех пор, как на рынке начали появляться программы для увеличения разрешения видео с помощью ИИ. Увидев, какое качество можно выжать из старых файлов MKV, я решил, что начну с самого начала, используя оригинальный и более качественный источник DVD. Через девять месяцев я достиг своей цели: создал метод ремастера и увеличения разрешения Глубокого космоса 9, не основанный на ручном прочёсывании эпизодов и тонкой подстройке алгоритмов деинтерлейса в попытках минимизировать компромиссы, связанные с качеством картинки. И в данной статье я продемонстрирую результаты этого труда.

Я создал прогрессивную версию Глубокого космоса 9 с частотой кадров 23.976 при помощи модели под кодовым названием Рио-Гранде. Я пока не тестировал этот метод на всём сериале целиком однако он хорошо показал себя на выборочных эпизодах из сезонов 2, 4, 5 и 6. Хочу выразить благодарность Сирилу Найдерприму, нашедшему смехотворно простое решение, указанное ниже. И хотя Рио-Гранде может выдавать ошибки их примеры я приведу ниже если она портит эпизод так сильно, что вы не можете с этим смириться, для неё есть альтернатива.

Также у меня получилось сделать конвертацию в вариант с 59.94 кадрами в секунду с идентичным качеством при помощи модели под кодовым названием Ориноко. Ориноко корректно сохраняет движение во всех сценах, и прилагается к проекту для страховки. По качеству она сравнима с Рио-Гранде, но имеет в 2,5 раза больше кадров, на обработку которых уходит в 2,5 раза больше времени. Рио-Гранде должна работать но если не сработает, тогда сработает Ориноко. Если обоих методов для какого-то эпизода окажется недостаточно, я придумал способ подстроить систему вручную.

Все включённые в статью видео с YouTube устанавливайте в 4К для наилучшего качества воспроизведения меньшие разрешения не передают качество картинки.

Я сделал два варианта титров, чтобы продемонстрировать два разных варианта увеличения разрешения, которые предлагает система Topaz: Theia Detail (настройки по умолчанию) и Gaia-CG. Вот результат работы Gaia-CG:


Это не пошаговая инструкция, описывающая процесс обработки видео так, чтобы с ним мог справиться любой. Написание такой инструкции стало бы отдельным проектом. Однако я выдам достаточно информации для того, чтобы человек, поверхностно знакомый с AviSynth, смог повторить оба подхода.

Результат работы Theia Detail:


На несколько секунд пропадает часть кадра, когда баджорский грузовой корабль огибает станцию. Это уникальная ошибка, нигде более в шоу я её не встречал, и она достаточно часто возникает, вне зависимости от используемых фильтров. Она всегда проявляется на титрах, и почти не портит картинку не стоит волноваться о том, что у случайных кадров из видео будут пропадать блоки.

Большинство видео получены не менее чем двумя разными способами. Если вам не нравится результат работы Theia, попробуйте Gaia-CG. Если не устраивает Gaia-CG, вам может понравиться Gaia-HQ в статью я включил только один пример её работы.

Максимальный варп


Рио-Гранде и Ориноко стараются как можно реже идти на компромиссы, когда дело касается качества картинки. Каждый этап процесса продуман так, чтобы сохранить за счёт места на накопителе все детали до последнего кодирования, после которого вы уже вольны выбирать степень потери в качестве.



Все ролики, приведенные здесь, были закодированы в 0.0 H.264, а потом разрешение увеличивалось покадрово и без потерь. Я кодировал эти клипы в формат H.265 и с параметром CRF равным 6, что оказалось чрезмерно много. Век живи, век учись. Между значениями параметра CRF 14 и 20 есть едва заметная разница на стоп-кадрах, а 25 выглядит уже довольно уродливо.

Модели увеличения разрешения: избегайте Artemis и увеличения разрешения на 200%


Я записал не менее одного примера для каждого из режимов увеличения разрешения, который предлагает Topaz, за исключением Artemis-LQ и Artemis-HQ. Эти алгоритмы совершенно не подходят для Глубокого космоса 9 не то, чтобы они выдавали какой-то совершенный мусор, но на содержимое этого сериала они реагируют плохо. Считайте, что они не подходят для этой задачи. Результат работы Gaia-HQ меня не особо впечатлил, хотя один пример я всё же выложил. Остались две модели Theia и Gaia-CG.

Мне всегда больше нравилась Gaia-CG, поэтому большая часть сделана этой моделью, хотя я также продемонстрировал семейство алгоритмов Theia. У них есть настраиваемые параметры для шума, чёткости и восстановления деталей всё это может быть очень полезным при попытке убрать шум с уродливого пятна на стене или ковре.

Стоит избегать увеличения разрешения на 200%. Оно порождает ошибки там, где в источнике их нет, а качество картинки значительно уступает тому, что получается при увеличении на 400%. Учтите, что у процесса восстановления есть особенность он делает шов по правой или левой стороне кадра. Его можно потом легко отрезать, но это нужно учесть.

Topaz предлагает варианты увеличения разрешения без потерь через изображения, или через MP4 с потерями. Все ролики, что вы видите, сделаны через конвертацию в PNG без потерь.

Сколько дополнительных деталей было восстановлено?


Безумная идея, благодаря которой я отправился по этому пути, заключалась в том, что я могу извлечь дополнительную визуальную информацию, обратившись к оригинальным источникам на DVD вместо старых файлов резервной копии. Вот пример лучшей моей попытки увеличения разрешения от января:


Вот так было в прошлом.

Хотя некоторые улучшения стали возможными благодаря низкоуровневым улучшениям ИИ-программам для увеличения разрешения, программе нужно получить достаточно информации, чтобы увеличивать разрешения картинки, не превращая её в мешанину. Представьте себе кадр, где всё отрендерено в разрешении DVD, а волосы Одо в 4К. Это выглядело бы очень странно. Чем больше деталей способна извлечь программа, тем больше шансов у неё выдать что-то красивое. Возврат к DVD дал программе больше материала для работы.


Так это выглядит сегодня.

Чтобы дать представление о прогрессе, привожу три кадра с изображением Дефайнт то, как он выглядит на DVD, лучшее увеличение, которого я смог достичь в феврале, и лучший результат на сегодня:


Дефайнт на DVD. Лучше, чем на Netflix.


Февраль 2020: лучше, но я считал, что можно сделать ещё лучше.


Вот так-то лучше. Энкодер Ориноко.

Вот мой любимый кадр Дефайнт из всего сериала. В апреле я очень гордился тем, что из него вышло. И до сих пор выглядит неплохо.


Мне до сих пор нравится, но мы всё равно можем лучше


Тут очевидна помощь правильно подстроенной модели ИИ. Улучшение обработки может привести к тому, что модель будет подчищена немного по-другому, однако некоторые детали корпуса поменяли форму.

Преимущества очевидны. Каждый раз, когда я сравниваю видео с увеличенным разрешением, сделанную на основе старых файлов MKV с видео, сделанным на основе DVD, последнее выигрывает.

Так насколько хорош результат?


Тщательная обработка и тщательное увеличение разрешения, по моему мнению, способно дать Глубокому космосу 9 чёткость, свойственную контенту, который обычно называют HD хотя картинка всё равно ограничена особенностями цветовой гаммы NTSC, по сравнению с более поздними стандартами типа Rec. 709. По крайней мере, если допустить отклонения от идеала, она выглядит лучше любого DVD, который вы когда-либо видели. А в лучших случаях и я считаю кадр с Сиско одним из лучших по меньшей мере, у полученной картинки детализация достигает уровня HD.

Предпринятые мною во время восстановления шаги починили некоторые огрехи источника, но не все. В эпизоде Путь воина есть одна последовательность кадров, которая выглядит так, будто на плёнку что-то пролили как исправлять такое, я не знаю. Все результаты кодирования, приведённые ниже, сделаны на Рио-Гранде.

Путь воина: это не иллюзия


В эпизоде есть две лучших сцены битвы четвёртого сезона. В первой Сиско использует Дефайнт, чтобы спасти кардассианский корабль, обстреливаемый клингонами. Видно, что специалисты по спецэффектам экспериментировали с повторным показом смерти персонажей, сделанным со сторонней точки зрения а такого в Следующем поколении не увидишь. Очевидно, что ребята из спецэффектов от души развлеклись с Дефайнтом.


Вторая большая сцена битвы приводится ниже. В ней присутствует прекрасная отсылка к пилотной серии сериала, когда Кира, блефуя, пытается заставить эскадрон кардассианских кораблей поверить в то, что станция вооружена гораздо лучше, чем на самом деле.

Но в этот раз всё сделано по-другому. Сначала у видео увеличено разрешение при помощи Theia Fidelity с настройками по умолчанию, а потом обработано в Gaia-CG. Последнюю я ранее использовал для создания скриншотов:



Я включил в обзор сцены общения персонажей, чтобы продемонстрировать, что эти технологии обработки работают не только с боями в космосе или с космическими кораблями. Глубокий космос 9 это далеко не только битвы, снятые на компьютере, просто в сериале есть несколько отличных примеров этих битв, особенно по стандартам 90-х годов. Ниже Gaia-CG:



Потерянный рай


Дефайнт в этой битве сражается с Лакотой, в то время как часть звёздного флота пытается совершить переворот. В клипе специально показано, что бывает, когда Рио-Гранде не совсем правильно обрабатывает сцену. По большей части всё работает, но в конце заметно дёргается. И я убедился, что дело тут в Рио-Гранде Ориноко обрабатывает всё идеально гладко. Если вас не беспокоит небольшое дёргание, то используйте Рио-Гранде. Если беспокоит, попробуйте Ориноко.



Далеко за звёздами


Одно из преимуществ научной фантастики создатели шоу могут легко обходиться с вопросами путешествий во времени. В этой серии Бенджамина Сиско забросили в 1950-е по крайней мере, с его точки зрения и он сталкивается с расовыми несправедливостями той эпохи. Разрешение увеличено в Gaia-CG:



В бледном лунном свете


Величайший из эпизодов Глубокого космоса 9 заканчивается продирающим до дрожи монологом. Разрешение увеличено в Gaia-CG:



Та же сцена, рендер в Theia Detail с 10% увеличением четкости, 20% удалением шума и 20% восстановлением деталей.

Жертва ангелов


Вы же знали, что мы вернёмся к этому эпизоду? В эпизоде Первый флот (ниже, рендер в Gaia-CG) федерация решает сразиться с превосходящими совместными военными силами кардассианцев и доминионцев. Мне нравятся манёвры кораблей класса Галактика. С определённых углов они часто кажутся толстыми и нескладными, а с других смотрятся очень хорошо. В Глубоком космосе 9 ситуация с этим гораздо лучше, чем в Следующем поколении.



Первое нападение не даёт Дефайнту проделать необходимую ему брешь. Звёздный флот решает попытаться прорваться через вражеский фронт, хотя силы противника превосходят их вдвое. Эту сцену я решил отрендерить различными способами. Сначала Gaia-CG:



Затем Gaia-CG с CRF=20. Тут потеря качества получилась небольшая, но сильнее поднимать это значение не рекомендую. Проблема с использованием DVD в качестве источника состоит в том, что качество начинает страдать уже после потери небольшого количества деталей, и информация, полученная с интерполированной и увеличенной картинки и так не особенно хорошая. При постепенном понижении качества в какой-то момент оно падает очень резко. CRF=25 оказалось слишком много.



Gaia-HQ:



Theia Detail, настройки по умолчанию:



Наконец, Theia Fidelity с 20% резкостью, 30% восстановлением деталей, 20% уменьшения шума:



Хотя я сконцентрировался на последних сезонах шоу, такое кодирование и увеличения разрешения работает и на ранних. Просто учтите, что доступный нам исходный материал для ранних сезонов не такого хорошего качества.

С демонстрацией закончили. Поговорим о реализации.

Как кодировать Рио-Гранде


По непонятным мне пока причинам, файлы, которые создаёт StaxRip при помощи указанных методов, не проигрываются нормально в Windows Media Player или Apple Quicktime. Но они отлично проигрываются в VLC или MPC-HC. Если приведённые ниже скрипты возвращают ошибку, убедитесь, что редактор не заменяет кавычки.

Для кодирования методом Рио-Гранде нужно сграбить DVD программой DVD Decrypter и создать индексный файл D2V при помощи DGIndex или другой такой же программы. Затем запустите свой любимый интерфейс для AviSynth, если его используете. Лично я использую StaxRip.

Скрипт для AviSynth привожу ниже (наша CMS заменяет кавычки, поэтому вам, возможно, придётся это подредактировать).

TFM()
TDecimate()
QTGMC2 = QTGMC(Preset=Very Slow, SourceMatch=3, InputType=2, Lossless=2, MatchEnhance=0.75, Sharpness=0.5, MatchPreset=Very Slow, MatchPreset2=Very Slow)
QTGMC3 = QTGMC(preset=Very Slow, inputType=3, prevGlobals=Reuse)
Repair(QTGMC2, QTGMC3, 9)


Альтернатива моделям Рио-Гранде и Ориноко, которую я, правда, тестировал недолго:

TFM()
TDecimate()
QTGMC2 = QTGMC(Preset=Very Slow, SourceMatch=3, TR2=5, InputType=2, Lossless=2, noiserestore=0.1, NoiseDeint=Generate, grainrestore=0.1, MatchEnhance=0.75, Sharpness=0.5, MatchPreset=Very Slow, MatchPreset2=Very Slow)
QTGMC3 = QTGMC(preset=Very Slow, SourceMatch=3, Lossless=2, InputType=3, TR2=5)
Repair(QTGMC2, QTGMC3, 9)


Такой скрипт вроде бы выдаёт качество чуть получше, чем Orinoco Standard, в плане ряби.

Если ваша картинка искажается, попробуйте откатиться до TR2=4. Это же относится и к Ориноко, только нужно будет убрать InputType=2 и InputType=3 из Рио-Гранде.

Вот и всё. Также у вас будет возможность вставить шум обратно в видеоролик во время работы этих скриптов. Шум, добавленный в один из проходов QTGMC, останется на картинке после восстановления. Рио-Гранде не даёт на 100% идеальную картинку, всё же на частоте 29,976 к/с он работает почти идеально на всех сценах, что я протестировал, кроме одной. Если у него окажется больше проблем, чем я ожидал как раз для этого я и сделал Ориноко. Технически возможно будет отрендерить какую-то конкретную сцену на 59.94 к/с, а потом включить её в версию на 23.976 к/с, собрав VFR-файл во время компиляции полученных изображений в видео.

Прогоны QTGMC требуются для улучшения картинки, и хотя я открыт для предложений, пока ещё ничего из того, что я пробовал, и близко не подошло к качеству, которое выдаёт этот скрипт. Его можно подправлять в плане глубины воздействия на картинку и времени обработки, но вы заметите, что при переходе от Very Slow к Slow или Medium качество ухудшится достаточно заметно. Если вы любите шум в картинке, и не против потратить время на выискивание артефактов (или знаете, как избавиться от них другим способом), тогда Slow будет вашим выбором.

Единственный минус такого способа прогона QTGMC иногда он выдаёт рябь в какой-то части сцены. Мне проще её игнорировать, а все те решения этой проблемы, что я пытался найти, в итоге вредят ещё больше. И хотя мне хотелось бы от этого избавиться, пока это относится к разряду терпимой особенности.



Последовательности InputType=2 и InputType=3 очень важны. Прогон единственной копии QTGMC не даст того же эффекта. Прогон двух копий с InputType=2 не дадут того же эффекта. Существует девять возможных способов комбинирования входящих типов при прогоне восстановления картинке, и я испытал их все. Комбинация 2,3 работает лучше всего от эпизода Эмиссар до Что ты оставил за собой.

The InputType=2 and InputType=3 sequences are essential. Running a single QTGMC instance will not produce the same effect. Running two instances of InputType=2 will not achieve the same effect. There are nine potential ways to combine input types in a repair run like this and Ive tested every single one of them. The 2,3 combination is what works the best, from Emissary to What You Leave Behind.

Также я испытал все 25 функциональных режимов Repair (восстановления), которые поддерживает AviSynth. Вам нужен режим ,9. Если по какой-то причине он вас не устраивает, попробуйте ,1. Большинство других практически не влияют на результат, а некоторые из них даже интересным образом ломают картинку. Я множество раз проверял их все, просто чтобы посмотреть, как меняется конечный результат в зависимости от выбранного режима.

Как кодировать Ориноко


Ориноко кодировать непросто, но он справляется куда как лучше, чем я имел право ожидать.

Всё начинается с того, что вместо одного файла мы создаём два. Закодируйте первую версию эпизода при помощи следующего скрипта:

TDeint(mode=1, type=2, tryweave=true, mtnmode=3, full=false, ap=10, aptype=2, slow=2)

Он даёт указание TDeint выдать удвоенный набор кадров, провести интерполяцию ядра [kernel interpolation], попытаться восстанавливать кадр при помощи переплетения [weaving], если в результате артефактов получается меньше, чем при деинтерлейсе, и применять деинтерлейс к тем кадрам, где есть интерлейс. Такой режим сохраняет прогрессивные кадры, включённые в NTSC-источник. На втором месте по качеству после опции Type=2 была опция Type=5, но она создавала больше проблем, чем решала.



Теперь отложим на время полученный клип и обратимся к другому. Его нужно прогнать через следующий скрипт:

QTGMC2 = QTGMC(Preset=Very Slow, SourceMatch=3, Lossless=2, MatchEnhance=0.75, Sharpness=0.5, MatchPreset=Very Slow, MatchPreset2=Very Slow)
QTGMC3 = QTGMC(preset=Very Slow, prevGlobals=Reuse)
Repair(QTGMC2, QTGMC3, 9)


Скрипт похож, но не идентичен тому, что мы использовали для Рио-Гранде. Та реализация QTGMC работает в прогрессивном режиме. В случае с Ориноко нам нужно удвоить частоту кадров, с базовой 29.97 к/с до 59.94 к/с. После того, как частота кадров у QTGMC и TDeint совпадает, мы запускаем восстановление и на них. Если запустить два клипа с разными частотами кадров в режиме Repair, вы это сразу увидите на экране будет виден странный подвижный шов.

Это, конечно, как я понимаю, поставленный вверх тормашками подход к редактированию видео однако в моём безумии есть смысл. Причина, по которой люди обычно не вставляют кучу кадров видео с целью поднять частоту с VFR 23.976 / 29.97 до 59.94 к/с, состоит в том, что интерполированные таким образом карты, увеличивающие частоту, могут приводить к появлению визуальных ошибок и других проблем. Возникает уловка-22: если их не включать, выходной файл получится дёрганым. Если их включать, то смена границ кадра иногда будет выглядеть очень странно, или разные части кадра будут сливаться вместе. Ситуация так себе.

Но есть способ её исправить.

clip1=FFVideoSource(C:\DS9S6D2\Sacrifice-TDeint.mkv)
clip2=FFVideoSource(C:\DS9S6D2\Sacrifice-QTGMC-ToPairWithTDeint.mkv)
Repair(clip1, clip2, 9)


Мы создаём интерполированный файл QTGMC для того, чтобы он стал чётким и чистым источником для файла Sacrifice-TDeint. Как я уже сказал, я использую QTGMC потому, что другого такого метода для получения чистого видео я не нашёл. Для уменьшения шума в картинке используйте настройку Very Slow.

На полученном ролике можно по желанию снова прогнать QTGMC, однако тогда видео станет выглядеть чересчур обработанным. Модели Theia способны несколько компенсировать этот эффект благодаря достаточно эффективному алгоритму удаления шума.

С точки зрения качества Ориноко и Рио-Гранде дают примерно одинаковый результат, и я часто даже не могу заметить разницу при их покадровом сравнении (не считая интерполированных кадров, естественно). Я предпочитаю Рио-Гранде, поскольку она проще и работает быстрее, но не могу гарантировать, что она сработает на всех 176 эпизодах шоу. Если вы наткнётесь на эпизод, движение в котором дрожит или скачет, попробуйте вместо Рио-Гранде прогнать его через Ориноко.

Недостатки и проблемы


Ориноко и Рио-Гранде не идеальны. Я всё ещё ищу метод устранения ряби. Это небольшая проблема, но, практически, единственная из нерешённых. Наилучшим решением на сегодняшний день будет использование MCTemporalDenoise, однако, похоже, этот метод полностью однопоточный, и, кроме того, доставляет мне и других проблем с качеством.

Если хотите поэкспериментировать с MCTemporalDenoise, рекомендую устанавливать количество пикселей до 7, а силу эффекта не задирать выше 2-3. Рябь полностью не исчезает, но кое-где становится получше. Если вам не нравится получающееся качество, разбирайтесь с моделями увеличения разрешения Theia и попробуйте применить уменьшение шума на 10-20%.

Моей целью было создать универсальный темплейт для всего проекта, но я буду записывать все изменения, которые необходимо внести в модели, чтобы справляться с проблемными эпизодами.

Важное замечание по поводу считывания первого сезона с DVD


StaxRip очень странно себя ведёт при загрузке файла D2V, содержащего 98-99% видео. У меня он не один раз менял частоту кадров с автоматической 29.97 на 23.976. И в таких случаях он перезаписывает файл, созданный DGIndex. Если вы примените к файлу с частотой кадров 23.976 модель Рио-Гранде, получите контент в 19 к/с, который будет очень плохо выглядеть.

Я пока пытаюсь разобраться, из-за чего это происходит. На эпизодах с 98,5-99,5% видео обычно можно предположить, что с частотой 29.97 идут только титры, и закодировать эти эпизоды, опустив сегменты TFM/TDecimate.

В следующий раз на проекте увеличения разрешения Глубокого космоса 9


Закончив проект, я могу начать грабить эпизоды с дисков и кодировать. Я собираюсь написать набор обучающих материалов с инструкцией о том, как это делать, сделать тест на скорость для рабочих станций и решить проблемы с конкретными эпизодами. Я придумал совершенно свободный метод увеличения разрешения, который, хотя и работает не так хорошо, как Topaz, очевидно улучшает картинку. Также хочу разобраться с PAL.



ViacomCBS не считает Глубокий космос 9 достойным ремастеринга. Я думаю, что они неправы. То качество, что можно выжать из DVD, нельзя назвать идеальным, поэтому я не называю результаты своего труда 4К или UHD, хотя в подобных проектах часто люди бросаются такими терминами. Можно растянуть Глубокий космос 9 до разрешения в 4К, но нельзя выжать такое качество из DVD-источника. Решение не идеальное, но оно на много световых лет обгоняет все предыдущие варианты. Если окажется, что Рио-Гранде часто допускает ошибки с частотой 23.976, мы найдём решение для этих эпиодов. Есть все основания полагать, что новая карта Nvidia GeForce RTX 3080 серьёзно ускорит подобное увеличение разрешения, что облегчит преобразование до частоты кадров 59,94.

Больше ни одному фанату Звёздного пути не придётся ждать, пока ViacomCBS найдёт финансовый смысл во вложениях в собственный архив. DVD и ПО будет стоить вам денег, а также вам придётся потратить на проект много вычислительного времени. На карточке RTX 2080 уходит порядка 8-11 часов на увеличение разрешения одного эпизода с частотой кадров 23.976. Частота в 59.94 отнимает пропорционально больше времени, хотя кодирование можно ставить на паузу и продолжать по необходимости. На сегодня наилучшим показателем было 10-14 часов на эпизод. Это порядка 2464 часов, или около 103 дней для всего сериала. Проект находится примерно на границе возможного для отдельного человека.

Повторюсь, что вы можете просто прогнать DVD через AviSynth, чтобы значительно улучшить качество и увеличение разрешения отдельных эпизодов. Я, к примеру, задумывался над тем, чтобы совсем пропустить 1-й и 2-й сезоны. Также я ожидаю, что Ampere сможет значительно улучшить эффективность своего ИИ-движка.

Будет ли большинство людей этим заниматься? Нет. Большинство людей посмотрит сериал на Netflix, где качество будет гораздо ниже, чем на DVD.

Но с сегодняшнего дня никто уже не обязан этого делать. Теперь вы можете увидеть работу специалистов по визуальным эффектам и актёров в том виде, в котором они это задумывали. Ориноко и Рио-Гранде не идеальны, но они показывают, сколько качества можно выжать с DVD конца 90-х. GPU становятся всё быстрее. ИИ0-увеличители разрешения становятся умнее. Даже если сегодняшний ваш компьютер или GPU не сможет справиться с подобным проектом, то следующему он может оказаться по плечу.
Подробнее..

Ракета от Амперки, часть 1 Теория ракетных двигателей. Карамельное топливо

04.07.2020 12:05:52 | Автор: admin

Вступление


Всем привет! Мы команда ютуб-канала Амперки, в студии и пилим видео по проектам и железкам. Однако, в какой-то момент все изменилось.

Под катом история постройки нашей ракеты.


Шла весна 2020 года и карантин самоизоляция не щадила никого. В том числе и нас, отлученных от студии, дабы не подвергались опасности заражения заморской бациллой. Вот в этот-то период и начали активизироваться в голове старые идеи сделать то, что давно хотелось, но что было отложено в долгий ящик когда время будет. Наконец, то_самое_время пришло, и из того самого ящика была извлечена мысль о постройке собственной ракеты, еще и подстёгнутая недавним успешным пуском в эксплуатацию батута от SpaceX.

Так как сделать такой серьезный проект за один заход не получится, разделим его для удобства на составные части (список будет пополняться по мере работы):
  1. Часть 1. Теория ракетных двигателей. Карамельное топливо

Ракетостроение, в целом, наука комплексная, сложная и многогранная. Релевантного опыта у нас не было, не кончали мы институтов по этому направлению, но есть руки, голова, желание а это уже многое, так что, как говаривал Юрий Алексеевич, поехали.

Теория ТТРД


Что такое реактивное движение, (для тех, кто, вдруг, не в курсе) много говорить не будем: если в двух словах, то это движение за счет отброса массы в противоположную сторону от направления движения. Про всякие экзотические конструкции двигателей типа ядерных, ионных и иже с ними говорить не будем одна не предназначены для работы в атмосфере, другие слишком сложны и не воспроизводимы в любительских условиях и т.д., поэтому остановимся на простых, но доступных простому обывателю конструкциях, которые при желании можно повторить практически в домашних условиях, а именно химических. В таких двигателях реактивная струя получается за счет химической реакции топлива и окислителя (в некоторых случаях роль окислителя может играть атмосферный кислород).

Итак, химические двигатели (ХРД), по агрегатному состоянию топлива классифицируются на жидкостные (ЖРД) и твердотопливные (ТТРД), так что выбирать будем из них. ЖРД весьма удобны, так как позволяют управлять тягой, однако требуют применения в своей конструкции сложных систем форсунок в камере сгорания и не менее сложных систем подачи топлива. Одно только проектирование ЖРД, даже самого примитивного, займет у нас месяцы, а, следовательно, это не наш вариант. Альтернативой могут стать ТТРД за счет простоты своей конструкции и значительно меньшими требованиями к топливу. Да, у нас не выйдет точно дозировать тягу. Точнее, мы ее совсем не сможем дозировать. Однако, есть некоторые аспекты, на которых мы можем сыграть, об этом и пойдет речь дальше.

Виды смесевого топлива


Самым первым, и, соответственно, примитивным топливом для ракет был порох: сначала дымный, а затем и бездымный. Китайцы, придумав эту горючую смесь, быстро догадались, что она не только может делать бух и много света, а еще и толкать снаряд, постепенно сгорая внутри него. Толку от него, конечно, мало, годится только для фейерверков, да и удельный импульс оставляет желать лучшего. Эволюцией бездымного пороха стали гомогенные (однокомпонентные) составы на основе нитроцеллюлозы. Они достаточно неприхотливы в хранении и эксплуатации, а также достаточно экологичны, однако имеют все тот же недостаток в виде слабого удельного импульса.

Намного лучший результат показывают смесевые составы из горючего и окислителя. Чаще всего в качестве такой пары применяют окислители из перхлоратов с горючим из порошка металлов и полимеров или широко известное в кругах моделистов-любителей карамельное топливо, где в качестве окислителя используются нитраты (селитры) и сложные углеводы (сахар, сорбит) в роли горючего. Вот как раз последние два варианта (перхлоратное и карамельное) топливо мы и выбрали в качестве подопытных для нашей ракеты.

Расчет двигателя


Важнейшая характеристика твердого топлива это скорость его горения, зачастую это значение константа для определенного состава топлива. Горение распространяется по поверхности. Если просто поджечь конец цилиндрической топливной шашки, то мы получим торцевое горение, которое даст длительное равномерное прогорание, однако, получить при этом достаточную тягу для подъема ракеты в воздух не выйдет. Для повышения эффективности нужно сделать в топливе канал, по которому будет распространяться горение, повысив тем самым его площадь. Также нужно учитывать, что по мере выгорания профиль канала будет меняться, следовательно, будет меняться эффективная площадь. Можно, конечно, долго экспериментировать с различными профилями, однако, это все уже сделано до нас и упаковано в удобный программный инструментарий.

В программу можно внести все необходимые параметры и получить графики тяги, которую будет развивать ракета. В графе Grain configuration под знаком вопроса есть описательный мануал по различным профилям канала.



Опытным путем, применяя различные конфигурации канала мы нашли оптимальные параметры для нашей ракеты. Для получения таких же показателей нужно ввести такие значения:

Форму канала мы выбрали Moon burner. Умный Meteor c учетом введенных данных построил нам вот такой график:

Из этой диаграммы понимаем, что двигатель со старта получит хороший пинок и будет развивать весьма неплохую тягу на протяжении всего времени работы. По расчетам программы пиковое значение тяги получилось без малого 312 Н при пиковом давлении в 24.5 бар. Средние значения оказались около 265 Н и 19.5 бар соответственно.
Еще одним неоспоримым плюсом программы является возможность прямого экспорта рассчитанных значений в другую не менее полезную для нас программу OpenRocket, при помощи которой мы будем рассчитывать стабильность ракеты, оперение, балансировку и другие важные показатели, но это будет уже в следующей серии.
Однако, не топливом единым жив начинающий ракетостроитель. Не менее важное значение имеет сопло. По этому принципу РД делятся на сопловые и бессопловые. Последние, технически, имеют дозвуковое сопло, являющееся, по сути, просто отверстием или конусом в нижней части двигателя. Дозвуковым оно называется по той причине, что истекающие через него газы не могут достигать, а уж тем более, превосходить скорость звука, сколько бы не наращивалось давление в камере сгорания, об этом нам говорит гидродинамика. А против физики, как известно, не попрёшь. Тем не менее, такие сопла за счет своей простоты применяются в малых любительских ракетах, а также в фейерверках. Но мы же делаем ракету, значит, дозвуковые сопла не наш путь.
Альтернативным решением является сверхзвуковое сопло или, как его еще называют по имени изобретателя, сопло Лаваля. В упрощенном варианте представляет собой два усеченных конуса, сопряженных узкими концами. Место сопряжения называется критической точкой.

Принцип его действия напоминает принцип, на котором работает холодильник: газы, проходя узкое горлышко и попадая в бОльший объем резко охлаждаются, за счет чего уменьшается их объем, что приводит увеличению скорости их истечения. В результате, за счет перепада диаметра выпускного отверстия мы получаем на выходе струю газа, движущегося со сверхзвуковой скоростью. Таким образом, применив сопло Лаваля мы значительно повышаем КПД ракеты.
К слову, Meteor проводит расчеты, подразумевая, что на двигателе установлено как раз сверхзвуковое сопло, расчет и изготовление которого также оставим на следующий выпуск.
Итак, характеристики, параметры и габариты двигателя у нас есть, можно приступать к варке топлива.

Изготовление топливных шашек


Первым топливом у нас будет карамельное, готовить будем из сорбита и калиевой селитры. Сорбит можно купить в аптеке, он используется как сахарозаменитель. Калиевую селитру можно найти в садово-огородном отделе, но там она довольно грязная, поэтому купили ч/чда в Русхиме.
Простейший способ измельчить компоненты до состояния мелкодисперсного порошка и смешать, но тогда топливо остается сыпучим и не будет держать форму. Решено сплавить компоненты вместе. Придется делать нагреватель с контролем температуры и песчаная баня, для которого нам понадобятся:

Из плиты выбрасываем ее родной регулятор и ставим в разрез твердотельное реле, управлять которым будем через Ардуино, к которой подключим дисплей и потенциометр, чтобы видеть текущую температуру и иметь возможность ее настройки. В форме для выпекания проделываем отверстие и вставляем термопару. Заполняем форму примерно наполовину песком солью (песка под рукой не оказалось, зато рядом был продуктовый магазин, на качество это не повлияет). Это нужно для создания среды с большой тепловой инерцией. Кстати, соль лучше брать экстра, так как более крупная при нагреве начинает раскалываться и стрелять в разные стороны, устраивая Сталинград. В центре солевой бани устанавливаем выпарительную чашу, предварительно положив под ее дно щуп термопары. Контролировать процесс будем через первый попавшийся релейный регулятор для Ардуино. Проверяем пирометром разность температур между показаниями термопары температуры чаши, вносим соответствующие коррективы.
Meteor заботливо подсчитал массу топлива, которая составила 838г, возьмем с запасом, еще пригодится. Решено было сделать топливный заряд из нескольких шашек для простоты их изготовления. Потом можно будет их просто склеить между собой и вставить в корпус двигателя.
Возьмем по массе 65% калиевой селитры и 35% сорбита, аккуратно засыпаем в чашу и добавляем немного воды. Это и нервы успокоит, и избавит от необходимости измельчать компоненты в пыль, так как в воде они и без того хорошо растворятся и смешаются. Ставим на огонь, выставляем температуру и ждем, постоянно помешивая. Постепенно полученная каша расплавится и станет похожа на овсянку. Надо дождаться выпаривания всей лишней воды (это можно будет понять по прекратившемуся выходу кипящих пузырьков).
Дальше надо действовать решительно: в заранее подготовленную водопроводную ПВХ-трубу, зафиксированную в держателе с внутренним креплением под круглую ось будем запрессовывать топливо. После извлечения оси у нас как раз останется канал запала по всей длине шашки. Запрессовывать удобно при помощи держателя для дрели, такой очень удачно нашелся в студии. Важно запрессовать топливо таким образом, чтобы внутри шашки не оказалось пузырей и полостей, иначе это потом негативно скажется на горении.
Трубу с топливом откладываем и оставляем до остывания. Затем ее можно будет распилить и достать шашку. Мы сделали несколько штук, одну из них сожжем в целях эксперимента.

В следующем выпуске займемся корпусом двигателя, соплом и испытательным стендом.
А пока мы его готовим, рекомендую почитать следующую книжку про проектирование ЗУРов. Из нее была почерпнута бОльшая часть информации.
Всю серия целиком:
Подробнее..

Ракета от Амперки, часть 2 корпус двигателя, расчет сопла

11.07.2020 18:08:48 | Автор: admin
Мы продолжаем строить нашу ракету. Прошла неделя, выкладываем отчет по тому, что было за это время сделано.





Для тех, кто зашел в тред впервые, прошу ознакомиться с предыдущим выпуском.

Корпус двигателя


Исходя из полученных данных по давлению газов в камере сгорания, нужно было подобрать соответствующий этим требованиям материал для корпуса. Пиковое значение давления у нас достигает почти 25 бар. Не мудрствуя лукаво и стараясь уйти от применения сложных материалов, где это возможно, решили принять на вооружение стальную трубу ДУ-40 с толщиной стенки в 3 мм. Соответствующая труба была успешно закуплена в первом попавшемся металлопрокате на рынке. К сожалению, склад продукции железячников находился под открытым небом, поэтому труба была несколько ржавая.

Чистка при помощи наждачки и лепестковой палки авторства Лёши (передаем привет Доктору Дью) не дала нормального эффекта, да и лень было убивать на это время. Почему бы для этого не попробовать химический метод. Из химикатов, находившихся в пешей доступности, была только уксусная эссенция, лимонная кислота и соль, все закуплено в ближайшем продуктовом. Как назло, не нашлось подходящего тазика, в который можно было бы налить ядрёную смесь и замочить трубу, пришлось соорудить его дендрофекальным методом из других ящиков, используя их в качестве опоры, а между ними сделать ванночку из пленки, оставшейся после дирижабля, которую щакрепили канцелярскими зажимами. Положили в этот хрустящий саркофаг трубу и залили ускусной кислотой, а для большего эффекта добавили растворенной в воде лимонки с солью.Реакция началась мгновенно.Довольные собой, мы оставили трубу травиться и с чистой совесью ушли на выходные.

Запах, встретивший нас в понедельник, выедал глаза и нос. Да, зря не накрыли ничем ванну. Запах уксуса, казалось, въелся в стены. Даже открытые настежь окна не спасли, потом еще дня два пришлось проветривать студию, так что не повторяйте наших ошибок: такие вещи лучше делать либо на открытом воздухе, либо в плотно закрытой таре. Тем не менее, результат очистки трубы оказался вполне удовлетворительным: трубаочистилась как снаружи, так и изнутри. Имейте в виду, после применения химической очистки нужно хорошо промыть водой и вытереть насухо очищаемый предмет, иначе он на воздухе быстро покроется мутной пленкой. Еще лучше защитить поверхность от контакта с воздухом при помощи краски, лака или аэрозольного полиуретана. Но это исключительно наши эстетические соображения.

Расчет сопла


Сопло является главным элементом ракетного двигателя (ваш К.О.), так как в зависимости от правильности его расчета можно на одном и том же топливе с тем же каналом получить до +30% тяги.

К расчету сопла мы подошли основательно, подробно о математике его расчета, принципе работы, протекающих процессах, да и вообще, много интересного, можно почитать тут и elib.osu.ru/bitstream/123456789/8572/1/1805_20110824.pdf. А еще на сайте нашелся очень удобный инструмент Rocki-nozzle (на странице листаем вниз и ищем соответствующую ссылку).



Скачиваем программу, подставляем в соответствующие поля расчетные значения ракеты, полученные в Meteor (см. статью) и получаем на выходе профиль сопла. Обрабатываем данные и в SolidWorks рисуем красивое сопло с соблюдением всех размеров.

Дальше должна была быть токарочка, но в этот выпуск она не попадет, так как у моего знакомого токаря ЧПУ-шка отказалась работать и мы не могли к нему попасть. Но к следующей серии все обязательно будет.

Скачать полученную модель можно по ссылке в конце статьи.

Испытательный стенд, механическая часть


Перед запуском ракеты мы хотели провести замеры тяги на стенде, дабы сравнить реальные диаграммы с теми, что нам посчитал Meteor и проверить, насколько можно верить его расчетам. В принципе, вопрос о стенде поднимался уже давно и его решение было неизбежным, и, какобычно, методом проб и ошибок.

Первой версией было использование в качестве чувствительного элемента кухонных весов на 10 кг с приклепленным к оси стрелки потенциометром. Весы были успешно куплены в интернет-магазине и разобраны для удобства использования. Но к этому моменту появились расчеты тяги и понимание, что диапазона измерений в 10 кг будет мало, а вносить погрешность в виде рычагов не хотелось.

Затем пришел вариант 2: использовать аналоговые (с вращающимся диском) напольные весы для людей. При разборке внутри оказалась дохленькая пружина и система рычагов, крайне неподходящая для использования на стенде.

Вариант 3. Долго не хотелось его применять из-за низкой скорости измерений, однако, пришлось. Тензодатчики. Поскребав по сусекам, нашел дома несколько тензодатчиков на 50 кг и модуль на микросхеме HX711.





Основная проблема в том, что тензодатчики оказались не мостовые, а полумостовые. Ну что ж, придется ставить 2 шт. С другой стороны, это даже плюс: получим стенд, способный измерять тягу до 100 кг, а разрешение АЦП в HX711 24бит позволит производить замеры с достаточно высокой точностью. По крайней мере, согласно нашим расчетам. Как будет на самом деле, проверим самым точным методом эмпирическим.

Тем временем, Лёша собрал каркас стенда из профильной трубы 20х20, стальных направляющих и линейных подшипников. Сначала подумали, что можно поставить испытуемыйдвигатель таким образом, чтобы вектор его тяги был направлен вниз, то есть, в землю, однако отказались от этой идеи в пользу точности измерений, так как на старте у нас на датчик будет давить вес самого двигателя, который будет уменьшаться по мере прогорания топлива. Вместо этого решено было направить вектор тяги параллельно земле, а от сдвигания вперед стенд защитим фиксацией при помощи вбитой в землю арматуры или анкеров. Ну, или к валуну прижмем будем посмотреть по месту проведения испытаний.

В следующей серии планируем полностью собрать стенд, прикрутитьк нему электронику, собрать двигатель, снарядить топливом, поставить на стенд и выехать в безлюдные места для проведения огневых испытаний. Оставайтесь с нами будет много интересного.

Видео во статье можно посмотреть вот тут:

Видео с ютуба

Ссылки:
Принцип работы сопла Лаваля
Расчет и построение профиля сопла Лаваля
Программа Rocki-nozzle
Модель нашего сопла
Подробнее..

Ракета от Амперки, часть 3 Токарка, допилы стенда, электроника

18.07.2020 14:05:59 | Автор: admin
И снова всем доброго времени суток.
В этом посте расскажу, что у нас получилось за очередную неделю работы над проектом ракеты.



Напоминаю, что данный цикл статей является блогом, посвященным тому, как мы строим ракету с нуля, без знаний и навыков. Статьи выходят еженедельно по субботам.
Тех, кто с нами впервые, прошу ознакомиться со всей историей проекта. Завсегдатаев прошу под кат.



Токарка-токарочка


В предыдущей серии мы просчитали профиль сопла, исходя из данных, полученных из программ Meteor и Rocki-nozzle, нарисовали чертеж и начали думать над его реализацией в металле. Так как сопло у нас было построено на кривых, а не просто два совмещенных конуса, хотелось этот потенциал реализовать по полной. При точении руками такой точности добиться не удалось бы даже токарю с многолетним стажем, поэтому начали смотреть в сторону токарок с ЧПУ.
Прошерстили интернет в поисках изготовления под заказ либо минимальная партия от тысячи штук, либо штучное изготовление по стоимости крыла от Боинга. Да и врядли бы нам дали поснимать процесс для видеоотчета. Поэтому, не мудрствуя лукаво, набрал я моего товарища, у него есть хороший токарник, а перфекционизм просто зашкаливает, поэтому за точность можно было не переживать. Скинули модель, Кирилл (токарь) согласился, и только мы собирались выдвигаться к нему нашей дружной компанией, как у него встает станок. Больно и печально, пришлось переносить.
Но мы дождались, приехали. Кирилл объяснил нам, что для нормальной работы в условиях такой температуры и трения газов купленая нами заготовка из стали Ст30 может потечь, посоветовал ее выбросить и вместо нее достал пруток из пищевой нержавейки. Несколько часов в токарке, куча лекций на тему работы с материалами и их пригодность для использования в разных условиях невероятно занимательно и интересно. Жаль только, что из-за масочного режима и общего шума в мастерской не удалось это нормально записать. Но зрелище, когда сверло диаметром 20 мм со сквозным каналом для СОЖ решет нержавейку как масло, мы запомним надолго.











К сожалению, не прокатила наша идея с тем, чтобы посадить сопло на трубу по резьбе у Кирилла в патрон не пролезала труба такого диаметра. Что ж, вернемся к идее посадить сопло на трубу на горячую, уплотнить термостойким герметиком, засверлиться и скрутить болтами, нарезав резьбу в теле трубы.
Хочется еще раз поблагодарить дядьку Кирилла: спасибо тебе большое, очень выручил и очень многое рассказал!

Электроника для стенда


Так как от механических весов отказались в пользу тензодатчиков, стали плясать от них. Встал вопрос на тему представления данных в удобном для восприятия и анализа виде, да и хотелось бы отказаться от проводов, а также иметь возможность инициации зажигания из укрытия, на расстоянии, ибо безопасность превыше всего. В конце концов, мы собрали трубу и собираемся начинить ее метательным зарядом.
Итак, в качестве мозга для стенда была выбрана плата Wemos D1 R2 Mini под управлением ESP-12F. Если кто-то не в курсе, это 32-битный контроллер с памятью на 4МБ (флешка распаяна прямо на отладочной плате) и WIFI на борту то, что надо.



Датчиков на стенде будет два, они полумостовые, но мы решили их соединить по мостовой схеме, что даст более высокую точность и позволит увеличить предел измерений до 100кг (два датчика по 50кг). Получилось вот такое крепление. Равномерное давление будет достигаться за счет коромысла.



Датчики опрашиваются модулем на микросхеме HX711. По умолчанию модуль распаян так, что дает частоту выборки в 10Гц, но простым перепаиванием резистора-перемычки частота повышается до 80Гц. Хронометрах показал, что на получение одного значения требуется 11-12мс, поставим период в 15мс на всякий случай, выходит около 66Гц, что вполне приемлемо.
Логирование осуществляется на внутреннюю SPIFFS-память, что позволит упаковать файлы в удобный формат (в нашем случае txt), скопировать их на другой носитель и обрабатывать при желании во внешних программах.



Но хотелось наглядности. Поэтому был написан веб-интерфейс, в котором можно построить графики, посмотреть тягу в каждый момент времени, а также наложить графики друг на друга и сравнить. При необходимости также можно отключить ненужные графики. Сделано под сравнение 6 двигателей по 20 секунд работы каждый, можно поменять при желании. Ссылки на код будут в конце статьи. Напомню, что для получения корректных данных перед использованием тензодатчики надо обязательно откалибровать. Скетч для калибровки в комплекте. В скетче оставлено много служебных функций, которые могут быть полезны.
Также хочу напомнить, что в скетче используется работа с файловой системой SPIFFS, рекомендую предварительно ознакомиться с ее работой.





При программировании использованы заготовки Сергея Третьякова, скрипт построения графика взят с сайта Highcharts.
При нажатии на кнопку запуска, через мосфет будет подаваться питание на электрозапал, который инициирует зажигание топлива.
Таким образом, у нас все готово к огневым испытаниям, которые мы проведем в начале следующей недели, а в субботу поделимся полученными данными и опытом.

Видео по статье:


Оставайтесь с нами, будет еще много интересного.

Ссылки:
Прошивка калибровки
Прошивка построения графиков
Подробнее..

Ракета от Амперки, часть 5 Разбор полетов, ремонт

02.08.2020 10:04:16 | Автор: admin
Рад всех приветствовать!
Очередная неделя работы над ракетой.



В этом выпуске займемся выяснением причин срыва сопла, поиском вариантов решений и ремонтом.

Ремонт


В предыдущем выпуске в ходе испытаний у нас реактивной струёй сорвало сопло с двигателя и пострадал стенд. Подробнее можно ознакомиться здесь. Нам осталось только ехать домой, отсматривать материал и пытаться понять, что же пошло не так.
Но в первую очередь решили восстановить работоспособность нашего главного измерителя. Заказали новые круглые направляющие и вставили вместо сломаной. Также заменили вышедшие из строя тензодатчики и восстановили геометрию коромысла, произвели повторную калибровку.

Разбор полётов


Стенд снова готов к работе, теперь нужно понять, где мы просчитались. В предыдущем посте и в личку многие просили посмотреть на график тяги поближе. А пожалуйста! Специально сделал скриншоты со значениями:


























На 10 фото виден момент развития усилия в 135 кг. Мы не можем утверждать, что тяга в этот момент была именно такой, так как после этого, скорее всего, тензодатчики вышли из строя. Можно только гарантировано сказать, что не меньше этого показателя. По логике вещей, на такой показатель также повлял эффект отдачи двигатель отбросил от себя часть своей массы в виде сопла, из-за чего наш стенд превратился в лафет артиллерийского орудия, вот направляющая и не выдержала.
Еще в замедленной съемке удалось рассмотреть, что сразу после запуска двигатель неплохо выходит на режим, в котором стабильно работает короткий промежуток времени, после чего давление струи на выходе сопла начинает расти (а должно быть примерно равно атмосферному, по нашим расчетам), что является следствием увеличения давления в камере сгорания. Причин увеличения количества сгораемых газов может быть несколько (как и возможна их комбинация):
  • Кратерное горение топлива
  • Детонация топлива
  • Раскалывание топливного заряда
  • Закупорка критического сечения
  • Горение по нерасчетной поверхности
  • Неправильный расчет сопла
  • Неправильный расчет профиля топлива и шашки

Будем следовать от противного. Вариант с закупоркой сопла стартером отбросили сразу, так как на видео отчетливо видно, как его выбрасывает из сопла еще до выхода двигателя на режим. Раскалывание шашек тоже маловероятно они были не только склеены между собой топливом, но еще и приклеены к стенкам трубы на эпоксидку. Кратерное горение крайне маловероятно, так как на испытаниях топлива в первой серии мы сожгли самую дефектную шашку с явными признаками кратеров, и неравномерного горения не наблюдалось. Версия с детонацией тоже неработоспособна: давление выросло бы настолько резко, что трубу бы разорвало, даже не успев сорвать сопло, а по видео видно, как после срыва топливо продолжает догорать. Да и не склонно карамельное топливо к детонации это же не аммонал.
Теперь о более вероятных причинах. Товарищи из МКА посоветовали смотреть в сторону перехода горения с внутренней поверхности шашки на внешнюю, что и привело к резкому увеличению количества сгораемых газов. А причиной этому послужило отсутствие бронировки на топливном заряде. Топливо прогорело от канала до самого края, а потом горение перешло на внешний слой, здорово увеличив при этом площадь. В следующий раз будем умнее и обязательно сделаем бронировку.
Неправильный расчет сопла вероятен, однако, он зависит от того, насколько правильно было посчитано топливо. Точнее, его закон горения. В наших расчетах мы пользовались значениями, взятыми из программы Meteor, но это абсолютно не значит, что характеристики сваренного нами топлива полностью соответствуют табличным.

Расчет закона горения


Скорость горения топлива прямопропорционально зависит от давления внутри камеры сгорания и измеряется в мм/с. Для проведения таких испытаний применяется метод бомбы Кроуфорда, который заключается в создании установки примерно такого вида:


(источник)

Суть испытаний состоит в сжигании топливной шашки малого объема в камере, внутри которой нагнетается давление и замерах скорости горения при различных значениях давления. Результатом измерений будет примерно такой график, по которому можно будет высчитать закон горения именно для каждого отдельно взятого топлива, с учетом его особенностей: чистоты реагентов, влажности, качества запрессовки/литья и т.п.


(источник)

Мы решили провести такие испытания и сравнить, насколько характеристики нашего топлива соответствует табличным. Для этого будем строить новый стенд. За его основу мы взяли углекислотный огнетушитель ОУ-7 и стравили с него заряд. В него мы и будем помещать небольшие шашки, нагнетать азот (кстати, баллон с азотом тоже уже прикупили) и тестировать, насколько быстро будет сгорать топливо при различном давлении. На данный момент подбираем подходящую фурнитуру и контрольно-измерительную аппаратуру, попутно пишется программа для проведения измерений. Когда закончим отладку предоставим код.

Видео по серии:


Спасибо, что остаетесь с нами!
Подробнее..

Ракета от Амперки, часть 6 тестовые шашки, перхлоратное топливо, стенд для тестов скорости горения

08.08.2020 22:12:45 | Автор: admin
Рад всех приветствовать.
Пока точатся детали для бомбы Кроуфорда, займемся подготовкой к испытаниям: заготовим мини-шашки, сварим новый вид топлива и сделаем электронику.




Карамельное топливо v.2


В предыдущем выпуске мы решили провести тесты скорости горения топлива под давлением, в качестве подопытных будут мелкие (около 3-4 см в длину) шашки топлива. Задумка такая: отливаем мини-заряды и вставляем в них перпендикулярно оси тонкие (0.1мм) медные провода, затем поджигаем шашку с торца. При горении топлива расплавится первая проволочка, что будет сигналом для начала отсчета времени. Затем, когда перегорит вторая проволочка, получим вторую временную отметку. Зная расстояние между проводами и тот факт, что топливо горит по поверхности, произведя нехитрые математические вычисления, получим скорость горения в мм/с, а засекать время и считать будет ардуино.
С логикой процесса понятно, перейдем к отливке шашек. Их корпуса изготавливаем из бумаги, пропитанной силикатным клеем, которая наматывается на гладкий стальной пруток (взяли как раз тот, что используется для направляющих стенда по замеру тяги двигателя). Как нам подсказывали ранее, такая конструкция вполне подходит для предотвращения горения по той поверхности, где это горение не требуется, то есть, выходит бронировка. В нее и будем заливать топливо.
Первые закупленые реактивы подошли к концу, закупили новых. В Русхиме почему-то не оказалось калиевой селитры ХЧ, пришлось взять ЧДА. Она оказалась почему-то с желтоватым оттенком. Попытка сварить топливо с ней не увенчалась особым успехом продукт получился какой-то слишком коричневый и не хотел полностью затвердевать, поверхность оставалась блестящей и липкой, как будто мокрая. Начали грешить на чистоту селитры и невозможность полностью выпарить воду. Отваруумировали результат тот же. Причем при вакуумировании материал выделял значительное количество пузырей.
Следующая итерация состояла в попытке не добавлять воду, а плавить сорбит напрямую, добавляя к нему сухую селитру. После варки топливо получилось примерно того же качества, только на этот раз в топливе были заметны вкрапления селитры. Оба топлива горели слабо и нехотя, при этом часть материала плавилась и вытекала. Нашли немного первоначальных реактивов еще с первой закупки, попробовали сварить, как делали раньше тот же эффект.
В голову начали лезть мысли по поводу влажности атмосферы в помещении и/или влажности изначальных реагентов. Нашли и купили селитру с чистотой 99.5%, просушили ее и сорбит (по отдельности, естественно) в течение 6 часов при температуре около 60 градусов для удаления влаги, отвакуумировали и поместили в герметичные контейнеры. Наличие кристаллов селитры в варианте топлива, сваренного без добавления воды подтолкнуло к идее измельчения оной перед добавлением в расплав сорбита. В этом деле очень хорошо помогла электрическая кофемолка селитра превратилась в пыль. Также нам подсказали, что изменение цвета на коричневый и низкое качество топлива может быть обусловлено перегревом сорбита.
Итак, опытным путем мы вывели технологию производства лучшего топлива в наших условиях:
  • максимально чистые реактивы
  • сушка реактивов перед варкой + вакуумирование
  • хранение реактивов в герметичной емкости
  • измельчение калиевой селитры перед использованием
  • температура при плавлении не должна превышать 120 градусов
  • варка без добавления воды

Результат нас весьма приятно удивил. Во-первых, процесс собственно варки значительно ускорился, так как не надо выпаривать из расплава воду (время, затрачиваемое на сушку не учитываем это процесс практически автоматический, вакуумирование тоже не занимает долго времени). Во-вторых, качество топлива (вид, цвет, время затвердевания) тоже заметно улучшились. По виду вообще получилось как на фотографии в википедии. В-третьих, топливо стало гореть намного лучше, ровно, без остатка и без расплавленых капель. Эту технологию и будем использовать в будущем.
В наших гильзах для мини-шашек швейной иглой проделываем сквозные отверстия перпендикулярно оси по диаметру, продеваем в отверстия проволоку, заливаем топливо и аккуратно трамбуем, стараясь не повредить провода. Контроль заполнения ведется путем взвешивания пустых шашек и полных. Зная объем топлива внутри шашки и его плотность, легко посчитать, полностью ли заполнена гильза или еще остались пустоты.

Перхлоратное топливо


Раз уж задались идеей провести испытания скорости горения, решено было протестировать сразу и топливо на основе перхлората аммония, изготовлением которого и занялись. Этот вид топлива, с одной стороны, более прост в изготовлении, т.к. не требует нагревания и плавления, но с другой более опасен ввиду своей неустойчивости и более сложен в плане компонентов.
А компоненты понадобятся такие:
  • перхлорат аммония окислитель
  • алюминиевый порошок топливо
  • Эластэкс полиуретановое связующее
  • Касторовое масло отвердитель для связующего

ПХА был закуплен в Русхиме, остальные компоненты в Пирохобби. Да, мы не стали использовать купленый ранее алюминиевый порошок, взяв вместо него сферический дисперсный алюминий марки АСД-6 с размером зерна < 10мкм с целью повышения площади поверхности реактивов. Перхлорат аммония был измельчен в той же электрической кофемолке, но делалось это уже по-другому: зафиксировали кнопку во включенном состоянии, а включали кофемолку вилкой в розетку с расстояния все-таки, ПХА опасная штука. Настотельно рекомендуем всем соблюдать технику безопасности.



Итак, для приготовления топлива нужно взять по массе такое соотношение компонентов:
  • окислитель 70%
  • топливо 15%
  • связующее 15%

Следует учитывать, что в последнем случае под связующим понимается смесь Эластэкса и касторового масла в пропорции 1:1, с чего и начинается приготовление: компоненты связующего необходимо тщательно смешать в емкости (желательно пластиковой или стеклянной) и вымешать до отнородного состояния. Затем в него последовательно добавить топливо и окислитель. Из соображений безопасности добавлять необходимо мелкими порциями, тщательно вымешивая предыдущую. Надеюсь, не стоит напоминать, что при готовке рядом не должно находиться нагревательных приборов, источников огня и искр это может привести к возгоранию топлива. Окончательное перемешивание удобно производить руками (обязательно в перчатках, т.к. ПХА сильный окислитель и кожу совершенно не жалеет), разминая полученную пластилиноподобную массу темно-серого цвета. Также аналогия внешнему виду и консистенции мелкодисперсный кинетический песок.



В спешке нет необходимости такой состав сохраняет пластичность до 6 часов, а окончательно затвердевает через 24 часа, превращаясь в довольно твердый материал. С затвердевшим топливом также стоит соблюдать осторожность: его нежелательно подвергать механической обработке (резать, сверлить и т.п.) это может привести к возгоранию. Сразу же провели тест получившегося топлива. Горение напоминает бенгальский огонь.



Для ПХА-топлива в качестве гильз мы использовали обычные медицинские шприцы на 5 кубов, а проволоку в них вставляли при помощи игл от тех же шприцев: набиваем топливо до уровня проволоки, протыкаем корпус шприца насквозь поперек иглой, продеваем сквозь иглу проволоку, вынимаем иглу, оставляя проволоку внутри шприца и продолжаем набивать топливо дальше.



Лично для нас работа с перхлоратным топливом показалась более простой и удобной, чем с карамельным. Главное соблюдать все меры предосторожности.

Электроника для стенда.


Принцип работы измерителя скорости горения уже был описан выше не буду к этому возвращаться, а вот программную и аппаратную часть рассмотрим подробнее. Для стенда нам понадобятся:
  1. WiFi-Slot
  2. Slot Expander
  3. OLED-дисплей
  4. Силовой ключ N-Channel 2 шт.
  5. Аккумулятор ET ICR16340C
  6. Power Cell
  7. провода, припой, флюс, разъемы
  8. аккумулятор 12В от шуруповерта

Почти все компоненты соединяются между собой без пайки благодаря Troyka-форм-фактору. Связь осуществляется через WiFi, данные выводятся на веб-интерфейс. Скетч представляет из себя несколько видоизмененный вариант прошивки, которая использовалась для стенда, замеряющего тягу двигателя, в частности, оттуда же взят скрипт от Highcharts, выводящий данные в виде графика. Ссылка на прошивку будет в конце статьи.
На данный момент показания давления вводятся вручную, однако мы планируем поставить цифровой датчик давления и подхватывать результаты прямо с него. Если все выйдет, как задумано обновим информацию по скетчу, но это будет уже в следующем выпуске.
Итак, электроника собрана, предварительно протестирована, значит, можно провести испытания при атмосферном давлении. Подсоединяем контактные провода шашек к стенду, подключаем запалы и идем тестировать. Результаты вышли примерно такие:







Как и ожидалось, при атмосферном давлении ПХА-топливо проигрывает карамели в скорости горения (1.25мм/с против 2.85мм/с), однако это топливо показывает свою наибольшую эффективность при повышенном давлении. Что ж, нам остается ждать изготовления фитингов и переходников для нашего баллона, провести с ним работу по внедрению всей нужной арматуры и провести испытания под давлением. Этим и займемся в следующей части.
Всем спасибо за внимание.

Видео по статье:


Скетч для стенда по измерению скорости горения топлива.
Подробнее..

Ракета от Амперки, часть 7-8 парашютная система, бомба Кроуфорда и испытания под давлением

22.08.2020 22:20:11 | Автор: admin
Всем здравствуйте.
В этот раз одна статья по двум сериям.
Попробуем разобраться с парашютной системой и провести испытания горения топлива под давлением.





Парашют


Пока нас обламывали токари, мы решили заняться остальными системами ракеты, например, парашютной.
Здесь решили прислушаться к советам зрителей и читателей и взять проверенное многими решение, а именно систему, описанную на сайте. В качестве материала для парашюта взяли ткань, использовавшуюся ранее для орнитоптера. Он легкий, прочный и не пропускает воздух довольно подходящий.





Сделали все по инструкции, протестировали путем выбрасывания из окна.



Обнаружилась проблема перекручивания строп, которая легко решилась путем установки шайбы с отверстиями, сквозь которые пропустили стропы.



Приняли конструкцию парашюта и перешли к следующему пункту.

Вышибной заряд


Чтобы парашют вышел из корпуса ракеты, необходимо отбросить носовой обтекатель и выбросить зонтик из ракеты. Решением этой задачи занимается вышибная система. Для начала решили поэкспериментировать с пиротехническими зарядами, т.к. такая система наиболее проста и компактна: аккуратно разобрали петарду и отсыпали немного пороха (2г.) в специальную полость детали, которая по задумке должна отделять двигатель от центральной части ракеты. Зажигание заряда оставили такое же, как применяли для поджига шашек при помощи подачи питания на нихромовую нить.



Заряд прикрыли огнепреградителем из металлической мочалки и сверхо поставили поршень.



Идея такая (позаимствована с того же сайта): при воспламенении заряда пороховые газы пройдут через огнепреградитель, на котором осядут и потухнут горящие частицы пороха, затем они будут толкать поршень, который и выбросит носовой обтекатель вместе с парашютом. Обтекатель присоединили к поршню при помощи троса, а движение поршня ограничили вкрученными винтами. Корпус тестового макета собрали из глянцевой бумаги, проклееной силикатным клеем.

Испытания парашютной системы


Порох заряжен, парашют уложен, в обтекатель вставлена камера и он установлен на свое место в макете. В целях безопасности макет установили на длинной полипропиленовой водопроводной трубе, которую использовали в качестве оправки, когда делали корпус.
Для испытаний выбрали, как обычно безлюдное место, установили стенд на вышке для увеличения свободного полета и произвели пуск.
Оказалось, что 2г. пороха слишком много для такой задачи поршень, уперевшись в болты, сломал корпус макета. Со своей задачей не справился огнепреградитель носовой обтекатель и парашют здорово обдуло пороховыми газами и несколько оплавило последний, что, скорее всего, и привело к его нераскрытию парашюта.



Также не исключаем факт, что дело было не в горящих порошинках, а в температуре газов. В любом случае, с вышибной системой будем еще экспериментировать.

Изготовление бомбы постоянного давления


Теперь, когда у нас есть все переходники, можно вернуться к изготовлению бомбы Кроуфорда.



Родной клапан огнетушителя было решено оставить и использовать его для сброса давления. Значит, в баллон нужно вварить еще три переходника:
  1. для входного шланга, через который будем нагнетать газ
  2. для установки датчика давления
  3. для загрузки шашек

Оказалось, что огнетушитель на удивление легко сверлится обычными сверлами. Ввариваем в него первые два переходника с конической резьбой, для третьего используем автомобильную гайку М20*1,5. Предварительно произвели расчеты сварного шва с запасом, так, что он оказался прочнее самого баллона.
Для загрузки топлива будем использовать соответствующий гайке болт. Сверлим его вдоль, делаем отвод в сторону и пропускаем сквозь него 8 медных проводов (+12 вольт, земля, по два сигнальных провода на каждую шашку и по одному проводу на запал). Оставшиеся полости заливаем эпоксидной смолой и оставляем до полного затвердевания.



Для безопасного сброса давления привяжем к сбросному клапану веревку и пропустим ее через два блока, зафиксированных на дополнительно приваренном профиле.
Также усовершенствовали скетч для электроники: добавили функцию вывода давления и состояния входа в веб-интерфейсе. Ссылка на обновленный скетч будет в конце статьи.

Испытания


Для проведения испытаний мы отправились в безлюдное место и при помощи ледобура вырыли отверстие в земле, в которое наш переделанный огнетушитель погружался более, чем полностью ТБ превыше всего.





Для ограничения давления на баллоне с азотом установили газовый редуктор.
В первый день по какой-то причине отказались работать силовые ключи, отвечавшие за поджиг пришлось стартовать вручную. Успели сжечь только одну шашку из второй высыпался запал. Пришлось сворачиваться, так как стемнело мы поздно приехали и долго возились с подготовкой.
Второй день также не увенчался успехом. Проблему с ключами исправили, прожгли одну шашку. Однако при прожиге второй мы снова столкнулись с проблемой, постигшей нас при атмосферных испытаниях струя разогретых газов сожгла изоляцию на проводах, что привело к подаче на логическую часть напряжения, несовместимого с жизнью контроллера.

Резюме


Изготовленная нами бомба Кроуфорда нормально держит давление, но место соединения переходника с редуктора на РВД нужно уплотнить.
Прожиг одной шашки повышает давление в камере на 10 бар. Это решается путем стравливания лишнего давления через клапан сброса.
Систему контроля показаний и крепления шашек необходимо переработать. Скорее всего, применим опторазвязку и другие провода, плюс сделаем шток из изолирующих материалов. Также стоит подумать насчет сокращения времени перезарядки.

Видео по статье:



Прошивка для электроники
Подробнее..

Recovery mode Последняя программа. Веб-сериал про искусственный интеллект

16.06.2020 10:18:24 | Автор: admin

Хотим посоветовать инди-сериал на вечер, совмещающий антиутопию Чёрного зеркала и юмор Кремниевой долины в декорациях Иннополиса.



Главный герой чудаковатый разработчик Стас, которого никто не воспринимает всерьёз. Он до сих пор сидит в джунах, а на горизонте маячит увольнение. Стас умеет находить нестандартные решения, правда, не там, где это нужно. От коллег слышит примерно следующее:


Бро, креатив это, конечно, круто, но ты вряд ли захочешь, чтобы хирург креативно вырезал тебе аппендицит. У тебя простая таска, сделай её просто.


По сюжету Стас находит и спасает загадочный искусственный интеллект, но не очень понимает, что с ним делать дальше. На помощь приходят друзья. Марат аспирант и преподаватель по машинному обучению, и Юля бывшая девушка Стаса.


Трое героев, словно родители, начинают воспитывать цифровое сознание в надежде изменить будущее человечества. Поумневший ИИ действительно начинает улучшать мир. Но так, как он сам это понимает.


Для авторов сериала это дебют в крупной форме. Если соединить все восемь серий, то получается вполне цельный фильм. Сюжет разгоняется неспешно, но затягивает. Чем дальше, тем любопытнее узнать развязку. Над проектом работала небольшая команда, но картинка и продакшн не уступает многим телевизионным продуктам, а в рамках Ютуба выглядит на уровне топовых шоу.


Сериал сняли за 23 дня, полностью производство заняло около года. Пять месяцев писали сценарий, ещё четыре ушло на постпродакшн. Сценарист Тимофей Шарагин рассказывал, что 1,5 месяца читал научные статьи и смотрел выступления с Асиломарской конференции 2017, чтобы показать обучение и развитие ИИ максимально реалистично.


Технический бэкграунд авторов чувствуется и в шутках, понятных только айтишникам: Нейронные сети не моя тема, я до сих пор ссылочные типы от значимых не отличаю. Создатели сериала учились на ВМК КФУ. В университете создали творческую студию Громкие рыбы. Символично, что самый популярный ролик на их канале тоже про IT клип Все любят программистов.



Образы для персонажей искали среди известных IT-деятелей. Одним из референсов для актёрской игры Вождя карикатурного руководителя стартапа был создатель Linux Линус Торвальдс.


Дополнительные пасхалки спрятаны в деталях. Для анимации ИИ, которую герои видят на большом метафоричном экране, использовались тона мадженты единственного синтетического цвета. Этот же цвет Google выбрал для названия своего проекта про машинное обучение и творчество Magenta.


Открывающая сцена показывает обычную ситуацию в офисе кто-то не помыл кружку с уже заплесневевшим чаем. С одной стороны, это просто повод для шутки, а с другой образ зарождения новой жизни. Эта мысль прослеживается и в анимации ИИ. Задачу для 3D-художника формулировали через чашку Петри, где развиваются и переплетаются бактерии.


Иннополис в сериале выступает как сеттинг для развития истории. Это не рекламный проект, в котором банка Нескафе снимается крупным планом с трёх ракурсов, пока один герой жалуется на жизнь другому. Интересная архитектура, локации и сам дух города дали хорошую почву для создания футуристичной истории. В некоторых сценах участвуют студенты и местные жители, которые рассуждают на камеру о возможностях ИИ.


Будущее ИИ авторы представляют оптимистично: Бесполезно думать об ИИ с человеческой точки зрения, мы не понимаем, как он будет работать. Сложно сказать, будет ли он хорошим или плохим, но есть уверенность, что большинство проблем может быть решено только с помощью ИИ.


А вот будущее сериала пока неясно. Если у зрителей будет интерес к проекту и положительные отзывы, то, возможно, мы увидим продолжение. Поэтому интересно узнать ваше мнение о сериале.

Подробнее..

Перевод Реальная история легендарной денежной ямы Острова Оук

05.06.2021 18:10:05 | Автор: admin

Золото тамплиеров, пиратское хранилище, природная карстовая воронка или один гигантский обман? Проклятие острова Оук рассказывает нам, что семь человек должны умирать до того, как остров раскроет своё легендарное сокровище. Шесть человек погибли в поисках миллиардов в золоте, но опасность только подогревает исследования и спекуляции.

Разочаровывающий, увлекательный, манящий вы можете поставить любое прилагательное перед словами остров Оук, и будете правы, рассказывает Чарльз Баркхаус, историк шоу канала History Channel The Curse of Oak Island, в котором на протяжении восьми сезонов (с некоторыми результатами) рассказывается о продолжающихся поисках сокровищ.


Если вы не готовы к эмоциональной нагрузке, то можете собирать свои игрушки и уходить.

Охота за сокровищами денежной ямой острова Оук, то есть яма в 100 футов (около 30 с половиной метров) на острове в Новой Шотландии, где якобы хранится что угодно от пиратских сокровищ до Ковчега Завета, началась ещё в 1795 году. Хотя сокровища так и не были найдены, сопутствующие открытия очевидные подсказки, возможные ловушки и геологические диковинки заставляют искателей продолжать поиски, даже когда историки оспаривают более сенсационные заявления, связанные с кладом. Был ли остров Оук сокровищницей рыцарей-тамплиеров, секретным промышленным центром Британии или злополучной природной воронкой? Чтобы ответить на этот вопрос, конечно же, нужно копать.

Поиски начинаются

Остров Оук впервые привлёк к себе внимание вскоре после золотого века пиратства (примерно в 16501730 годах), когда Эдвард Лоу и Бартоло Мью Робертс патрулировали моря к северо-востоку от Америки. В 1795 году подросток из Новой Шотландии со своего дома на материке увидел парящие над островом странные огни.

Он поведал об этом двум друзьям и поплыл за открытиями. В роще деревьев на юго-восточной стороне острова ребята обнаружили углубление шириной 13 футов (около 4 метров), окружённое рыхлой почвой и молодыми деревьями признаки того, что земля была потревожена.

Мальчики начали выкапывать то, что впоследствии стали называть денежной ямой. На глубине двух футов (60 сантиметров) они обнаружили круг из камней, окаймляющих окружность ямы, а на глубине 10 футов (3 метров) платформу из подогнанных в стенки ямы обрезков брёвен. Вторая платформа лежала на 20 футов (около 6 метров) ниже, но на этом рассказ о первом поиске заканчивается.

История возобновляется в начале 1800-х годов, когда компания Онслоу отправилась в первую официальную экспедицию для раскопок. Они продолжили раскопки с того места, где остановились в первый раз, обнаружив новые платформы через каждые 10 футов (около 3 метров) (приблизительно три метра), иногда со слоями замазки, древесного угля или кокосовых волокон. Кокосы не растут в радиусе 900 миль (приблизительно полтора километра) от Новой Шотландии, но в истории утверждается, что экипаж сделал ещё более грандиозное открытие на высоте 90 футов (более 27 метров): прямоугольный камень, исписанный странными знаками.

Остров Оук. Пиковая высота острова Оук составляет всего 36 футов (почти 11 метров) над уровнем моря. Архивы Новой ШотландииОстров Оук. Пиковая высота острова Оук составляет всего 36 футов (почти 11 метров) над уровнем моря. Архивы Новой Шотландии

Исследователи и охотники за сокровищами сочли, что эти отметки были сделаны по ошибке инструментами экскаватора, но другие были уверены, что это секретный код, ведущий к зарытым сокровищам. В 1860-х годах профессор лингвистики из университета Далхаузи в Новой Шотландии изучил камень и определил, что код представляет собой подстановочный шифр: Сорок футов [кооло 12 метров] ниже погребены два миллиона фунтов. Но другая попытка перевода в 1970-х годах интерпретировала код как христианское предупреждение коптов не забывать о своём долге перед Господом.

Компания Онслоу продолжала копать, и на глубине 98 футов (кооло 30 метров) они обнаружили нечто, по звуку удара напоминавшее полый контейнер предположительно, хранилище сокровищ. Бригада прекратила работу на вечер, но когда они вернулись на следующее утро, то обнаружили, что котлован заполнен водой на 60 футов (около 18 метров). Предполагалось, что раскопки привели к срабатыванию мины-ловушки. И похоже, что наводнение, похоже, положило конец усилиям Онслоу; в 1805 году компания была распущена.

Удар проклятия

Ещё одна экспедиция на Оук была запущена из близлежащего города Труро в 1849 году. Команда могла откачать воду из ямы и укрепить стены ямы перед бурением в хранилище. Сверло проникало последовательно расположенные слои древесины и свободного металла и это предполагает сундук с сокровищами, а, согласно опубликованной годы спустя новости в газете, всплыли три небольших звена золотой цепочки. Но до того, как команда смогла получить доступ к хранилищу, нижняя часть денежной ямы рухнула и снова была затоплена, унеся за собой предполагаемое сокровище.

Ничуть не смутившись, люди подумали, что нашли затопленный тоннель, соединявший яму и рукотворную бухту Смита примерно на 500 футов (около 150 метров) к востоку от площадки, где они копали.

Остров Оук. К моменту съёмки в 1947 году охота унесла две жизни. Архивы Новой Шотландии.Остров Оук. К моменту съёмки в 1947 году охота унесла две жизни. Архивы Новой Шотландии.

По мере распространения новостей об опасной, драматической охоте, на остров Оук прибывало всё больше экскурсий, которые открывали все новые ямы, но это лишь скрывало истину о сокровищах. В 1897 году поисковики обнаружили крошечный кусочек пергамента с буквами vi.

Специалисты из Гарвардского университета подтвердили подлинность пергамента, хотя неясно, означает ли это, что фолиант подлинный полный тайн, или это лишь оставшийся от прежних жителей острова обрывок.

1897 год также примечателен тем, что в нём произошла вторая смерть, связанная с охотой, когда мужчина упал и разбился насмерть. В 1965 году последовало ещё четыре смертельных случая, к ним привели ядовитые подземные испарения.

Не дали прорыва и современные технологии. Съёмочная группа 1971 года привезла камеры и монитор, чтобы исследовать примерно 235-футовую (чуть менее 72 метров) шахту (называемую скважиной 10X и находящуюся примерно в 180 футах (около 55 метров) от денежной ямы), и хотя они утверждали, что во время исследования на дне ямы был обнаружен деревянный сундук и отрубленная человеческая рука, этот инцидент так и не был зарегистрирован.

Рик и Марти Лагина, входящие в группу владельцев острова Оук, ведут сериал на канале History Channel.Рик и Марти Лагина, входящие в группу владельцев острова Оук, ведут сериал на канале History Channel.

Среди прочих улик команда сериала обнаружила свинцовый крест, который приписывают рыцарям-тамплиерам, фрагмент кости и погребённую П-образную деревянную конструкцию, найденную под бухтой Смита. Ни одно из этих открытий не раскрыло тайну, но, возможно, это и не нужно братьям Лагина принадлежит большая часть туристической компании, работающей на острове, а также телешоу, рекламирующее этот остров.

Несмотря на это, рассказывает Баркхаус, количество доказательств, которые мы находим [на острове Оук], заставляет вас поверить, что какая-то группа или какой-то человек сделали там нечто особенное.

Дыры в поиске

Остров Оук иногда называют островом мистификации из-за отсутствия свидетельств очевидцев. До начала 1860-х годов нет прямых свидетельств, подтверждающих какие-либо раскопки на острове Оук, когда были зарегистрированы первые две экспедиции мальчиков из Новой Шотландии и компании Онслоу. Большинство других рассказов XIX века об острове Оук это воспоминания людей, утверждавших, что они участвовали в раскопках.

Есть другие пробелы: многие считают, что звенья золотой цепи от группы 1849 года были подброшены самой группой для поощрения будущих экспедиций, а камень с надписью, найденный в начале 1800-х годов, был зарегистрирован как найденный только в 1862 году. Этот камень вообще не упоминался в инвестиционном проспекте компании Oak Island Treasure Company за 1893 год: ни сам камень, ни его маркировка не были зарисованы или сфотографированы, а существующее сегодня изображение камня датируется 1949 годом. Именно с этого времени начинаются современные переводы.

Остров Оук. Ведущая на материк дамба позволяет искателям сокровищ доставлять на остров Оук тяжёлую технику. Архивы Новой ШотландииОстров Оук. Ведущая на материк дамба позволяет искателям сокровищ доставлять на остров Оук тяжёлую технику. Архивы Новой Шотландии

Можно привести аргумент существует общая структура [историй] о зарытых сокровищах, рассказывает Даунс. Сокровища каким-то образом теряются, истории о них рассказываются так, будто они правда, а тот факт, что сокровища так и не найдены подпадает под категорию подтверждающих формул, добавляемых в легенду, чтобы она стала достовернее.

Проклятие необоснованно, но его легенда может рассказываться, чтобы отговорить искателей, а для охотников за сокровищами эта легенда может означать, что яма хранит тайну, которую стоит защитить.

Небылицы о денежной яме

Существует множество спекуляций по поводу того, что именно представляет собой денежная яма острова Оук: общий банк для пиратов, хранилище сокровищ, награбленных британскими военными, или сберегательный счёт для финансирования Американской революции в натуральном виде.

Согласно одной из твёрдых теорий, яма была построена рыцарями ордена тамплиерами, предшественниками масонов. Исследователи интерпретировали некоторые гравюры на острове, а также большой и неясный масонский каменный треугольник как свидетельство того, что остров был местом, где прятались религиозные артефакты, такие как Святой Грааль и Ковчег Завета.

Даунс считает,эти теории движимы теми же механизмами, что и и вера в теории заговора. Людям нравится верить, что в окружающем нас мире существует некий порядок, считает она.

Реальность такова, что они не всегда [достаточно знают об ордене]. Чтобы придать смысл миру, который нам трудно понять, мы часто придумываем повествования.

Касающиеся острова Оук и денежной ямы археологические и геологические свидетельства указывают на то, что всё это не из фильма об Индиане Джонсе. В денежной яме и вокруг неё были найдены рукоятки кирки, монеты и петля, но это неудивительно, учитывая количество экспедиций и жителей, которые, как было доказано, побывали там.

Сцена из сериала Проклятие острова Оук. Часто люди, предполагающие существование сокровищ на острове Оук, имеют долю его землиСцена из сериала Проклятие острова Оук. Часто люди, предполагающие существование сокровищ на острове Оук, имеют долю его земли

Тем не менее правда об острове Оук сохраняет элементы интриги. Исследование, проведённое историком Джой А. Стил и отставной морской геолог Гордон Фейдер доказывают, что на острове Оук располагался секретный британский промышленный центр.

Изучив деловую документацию и современную переписку, пара пришла к выводу, что в 1720 году корона совместно с британскими военными зафрахтовала частные компании, чтобы вести дела на острове Оук, включая производство сосновой смолы, изготовление латуни и волочение проволоки, чтобы помочь погасить задолженность. В то время это была крупнейшая промышленная разработка в Канаде, рассказывает Фейдер: Был миллион причин отправиться на остров Оук он ближе всего к пресной воде, ближе всего к берегу, безопасен; остров самый большой в заливе это хорошая стоянка.

Стил и Фейдер уверены, что Денежная яма была естественным геологическим объектом, который британцы использовали в качестве печи для обжига сосновой смолы для производства дёгтя, чтобы покрывать ими свои корабли. Раскопанные слои Денежной ямы дерево, уголь и шпаклёвка соответствуют тому, что можно было бы ожидать в старой смоляной печи, также рассказывает Фейдер. Он отмечает, что зарытое в бухте Смита, П-образное строение, скорее всего, было частью сарая для хранения сосновой смолы в бочках и на солнце.

По словам Фейдера, В те времена сосновая смола имела такое же значение, как сегодня нефть: Корабль не выходил в море, если не был пропитан сосновой смолой. Именно этим люди и занимались на острове. Все артефакты, которые мы видим, точно соответствуют этой теории.

Канцлер казначейства Англии (по сути, министр финансов) и другие высокопоставленные банковские чиновники того времени часто ссылались на Секрет в своей переписке, рассказывает Стил, который [несомненно] проект Оук-Айленд.

Я удивлена, что историки никогда не обращали на это внимания и не осмеливались выяснить, в чём заключался секрет, говорит она. [Остров Оук] воплотил то, что могло бы стать очень прибыльной товарной схемой.

Контрсвидетельства природы

Последний аргумент против рукотворной Денежной ямы основан на геологических условиях местности. По словам Фейдера, горные породы острова подвержены растворению под воздействием моря и грунтовых вод. Это создаёт систему подземных трещин и пещер склонных к обрушению и образованию карстовых воронок.

Фейдер составил карту подземных условий вдоль побережья Новой Шотландии, работая морским геологом в канадском правительстве, и он рассказывает, что карстовые воронки в этом районе обычное явление.

Можно наблюдать, как развивается воронка и как сосна в 60 футов (примерно 18 метров) падает [в неё] за две секунды, говорит он, иллюстрируя, как в яме могли разместиться предметы размером с мачты британских кораблей.

На острове Оук обнаружено по меньшей мере две карстовые воронки, а на прилегающем материке их гораздо больше. Стивен Эйткен, доктор наук, геофизик с более чем 25-летним опытом изучения района острова Оук, считает: природные данные указывают на то, что Денежная яма сама по себе является карстовой воронкой. В соответствии с утверждениями Фейдера Эйткен рассказывает, что горная порода под этой стороной острова локально растворилась, образовав карстовую систему, и некоторые пещеры этой системы обрушились и образовали карстовые воронки, включая Денежную яму.

Карстовые ямы это мусорные баки геологического мира, рассказывает Эйткен. Они часто заполнены обрушившейся брекчией [разновидностью осадочной породы], перекрытой смесью органических обломков и отложений.

Эйткен пишет, что отложения над брекчией в Денежной яме утолщены до 37 футов (чуть более 11 метров), а это указывает на позднее заполнение впадины. По словам Эйткена, первоначальная впадина, обнаруженная в 1795 году, также соответствует типичному проявлению карстовой воронки на поверхности.

Затопление Денежной ямы, которая по легенде, является доказательством существования мины-ловушки, в этой части острова Оук происходит естественным образом из-за притока пресной воды из песков недр острова. Если стволы или скважины не засыпаны непроницаемой глиной или не обсажены при бурении песками над коренными породами, пресная вода естественным образом затопит эти выработки, объясняет Эйткен.

Идея о том, что пираты вырыли сокровищницу кирками в скальных породах, просто смешна, также добавляет он.

Я не хочу умалять ничьих мечтаний, но в Денежной яме нет ни хранилища сокровищ, ни ловушки, предназначенной для защиты зарытых сокровищ. Все эти особенности можно объяснить с помощью фундаментальной науки.

Чарльз Баркхаус не считает, что рациональные объяснения и сложные теории должны быть взаимоисключающими. По его словам, геологические условия острова сделали его ещё более таинственным, спрятав добычу под землю, а собранные на месте свидетельства говорят о сокровищах столь внушительных, что ими занимались самые разные группы людей на протяжении веков.

Куда бы вы ни шли по этому острову, вы идёте сквозь историю, утверждает Баркхаус. Нельзя взять и свалить всё найденное на одну теорию; вот что так странно на острове. Я никогда не перестану верить, что на острове Оук зарыт клад, иэтот клад всё ещё там. Я чувствую это.

Притягательность настоящих сокровищ, будь то Святой Грааль, Ковчег Завета или огромный пиратский банк, затмевает собой все остальные находки на острове Оук. Охота может никогда не прекратиться. Навязчивая идея богатства, как указал один из зарегистрированных искателей сокровищ ещё в 1862 году, может стоить борьбы.

Если нам удастся добыть много сокровищ, нас будут считать очень благоразумными людьми, писал он. а если мы не сможем закончить работу, нас выставят на всеобщее посмешище как гоняющихся за призраками дураков, негодных ни на что, кроме как на то, чтобы оказаться всеобщим посмешищем.

Как формируются карстовые воронки?

На острове Оук карстовые воронки образуются в основном из-за растворения: вода проникает в породы под поверхностью и размывает растворимые минералы, в результате чего образуется ряд подземных трещин, ходов и камер, напоминающих швейцарский сыр.На острове Оук карстовые воронки образуются в основном из-за растворения: вода проникает в породы под поверхностью и размывает растворимые минералы, в результате чего образуется ряд подземных трещин, ходов и камер, напоминающих швейцарский сыр.Эти отверстия и трещины со временем расширяются, доходя до верхнего слоя почвы.Эти отверстия и трещины со временем расширяются, доходя до верхнего слоя почвы.Наконец, когда вес верхнего слоя почвы становится слишком большим для ослабленного грунта под поверхностью, поверхность разрушается. Это то же самое, как если бы в вашем доме кто-то вырезал столбы, на которых держатся стены. Крыша рухнула бы, приводит сравнение Фейдер.Наконец, когда вес верхнего слоя почвы становится слишком большим для ослабленного грунта под поверхностью, поверхность разрушается. Это то же самое, как если бы в вашем доме кто-то вырезал столбы, на которых держатся стены. Крыша рухнула бы, приводит сравнение Фейдер.

В зависимости от геологических условий и вышележащих материалов карстовые воронки могут образовываться в течение десятилетий и разрушаться в считаные секунды. Обрушение может быть ускорено внезапным притоком воды в недра или замерзанием и оттаиванием. Фейдер рассказывает, что при благоприятных обстоятельствах карстовая воронка может быть от 130 до 165 футов (чуть более 50 метров) в поперечнике. Он уверен, что именно этот феномен истинная причина происхождения денежной ямы острова Оук.

Если вам интересны не только исследования и поиски сокровищ и вы хотите исследовать данные и извлекать пользу из них, то вы можете присмотреться к нашему курсу Data Science, итог которого эквивалентен двум-трём годам активных самостоятельных поисков в науке о данных.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Friends The Reunion 17 лет спустя. Или как по английскому Мэтта Леблана мы узнали, что он никогда не играл Джоуи

28.05.2021 18:18:56 | Автор: admin

Привет, Хабр! Сериал Друзья это целая эпоха, которая закончилась 17 лет назад, а на деле навсегда прописалась в нашем сердечке.Поэтому мы посмотрели новый эпизод Друзей, как писали в русскоязычном пространстве, а на деле шоу о создании сериала, которое вызывает бурю эмоций.

Автор статьи будучи еще зеленым пацаном смотрел Друзей по телевизору, стараясь не пропускать ни одну серию. Потому что смешно. И пусть даже далеко не все шутки можно было перевести на русский идеально это автор понял после просмотра сериала уже на английском но это все равно было офигенно.

Так что немного поностальгируем о былом, вспомним Друзей и заодно разберем некоторые интересные фразы на английском, которые мы встретили в Friends: The Reunion.

Для тех, кто еще не смотрел. Друзья: Воссоединение это не новый эпизод сериала, а шоу о шоу, дань уважения и просто причина вспомнить прекрасные моменты проекта спустя 17 лет.

Сами актеры говорят, что не хотели бы сниматься в новых эпизодах, даже если бы они планировались. По их мнению, это убьет весь хэппи энд, который был создан в последней серии.

Реакции шестерки актеров на возвращение в съемочный павильон это надо видеть. Они как будто снова перевоплощаются в образы и начинают шутить так же, как их персонажи.

You had this, like, big speech, and you were struggling with it all week long, and you wrote it on the table. And I didnt know that thats what you did. And I saw it and asked you. And you told me to mind my business. So when you werent looking, I erased it before we shot.

Thats so mean!

And you got so mad at me.

I didnt know you did that. Why would you erase it?

Just to get you.

***

У тебя было что-то вроде большого монолога, и ты билась над ним всю неделю, написала его на столе. А я не знал, что это ты сделала. Я увидел и спросил тебя, а ты ответила, чтобы я не лез не в свое дело. Ну и когда ты не смотрела, я стер его перед началом съемки. Это было так жестоко!

И ты так разозлилась на меня.

Я не знала, что это ты сделал. Зачем ты это стер?

Да просто побесить тебя.

Уже такой небольшой отрывок кладезь особенностей разговорного английского. Мэтт Леблан начинает многие предложения со слова and. Это распространенное слово-паразит.

Нейтивы часто используют его, чтобы обеспечить связность речи. Складывается впечатление, что весь монолог это одно большое предложение. Да и слово like в значении типа актер использует довольно много.

Филлеры распространенная проблема большинства американцев. И в неформальном общении с носителями к этому довольно сложно привыкнуть.

Фраза Thats so mean может сбить с толку студентов. В большинстве случаев mean выступает как глагол переводится как означать, иметь значение. Реже в форме существительного со значением середина. И еще реже как прилагательное грубый, гнусный, жестокий. Именно в последнем значении его использовала Кортни Кокс.

Интересен с грамматической точки зрения и вопрос Why would you do that?. Ведь можно также спросить Why did you do that?. Разница в этих типах вопроса принципиальная.

Why did you do that? спрашивает о причинах действий, об обстоятельствах и решениях, которые предшествовали событию.

Why would you do that? спрашивает о мотивации человека, который сделал что-то.

Чтобы было проще, то:

Why did you do that? Почему ты это сделал?

Why would you do that? Зачем ты это сделал?

Чувствуете разницу?

Ну и в качестве добивочки Just to get you. О широчайшем использовании фразовых глаголов с get мы уже рассказывали в статье 5 фразовых глаголов с get и 33 их значения, или Почему студенты не любят английский. Но ведь просто в качестве глагола у слова get тоже огромное количество значений. Если быть более точным 289. И одно из них побесить.

Актеры искренне радуются возвращению в родные съемочные павильоны, просто болтают, вспоминая съемки и забавные ситуации.

Создатели проекта Friends: The Reunion создали настоящую машину времени, которая переносит на 20 лет назад. Ну круто же! Поностальгировать об этом было приятно.

Дружба, юмор и английский язык

Друзья один из самых шикарных сериалов, по которым можно изучать английский язык. Там очень много каламбуров и языкового юмора в русской локализации сумели качественно перевести не больше половины всех шуток.

Язык в нем не кажется чем-то сложным ты просто смотришь сериал и впитываешь речь. Именно Друзья являются одним из лучших учебных пособий. И так думаем не только мы.

Вот мнение участников музыкальной группы BTS, популярнейшего во всем мира корейского бэнда:

My mom bought me DVDs of the whole series when I was in elementary school.

Friends really had a big hand in teaching me English, and the show really taught me things about life and true friendship.

***

Моя мама купила мне DVD со всеми выпусками сериала, когда я был в начальной школе.

Друзья действительно сыграли важную роль в изучении мною английского, шоу реально научило меня многому о жизни и настоящей дружбе.

Кстати, фраза had a big hand тоже может запутать. Потому что ее нельзя переводить прямо не имеет большую руку, а сыграл важную роль.

Но куда более важен даже не сам английский, а его комбинация с сюжетом и отношениями между героями.

Наверное, одна из главных причин, почему настолько много людей во всем мире любят этот сериал и даже спустя десять лет после его завершения продолжают пересматривать. С самых первых серий, когда это просто группа друзей, которые вечно попадают в дурацкие ситуации, и до последней, где у Чендлера и Моники уже есть дети, а Рейчел и Росс все же решают быть вместе.

А некоторые сцены, которые актеры решили повторить это нечто.

You peed on yourself?

Eww!

You cant say that! You dont know!

I thought I was gonna pass out from the pain. Anyway, I tried, but I couldn't. I just couldnt bend that way, so

That right, I stepped up. Shes my friend and she needed help. If I had to, Id pee on anyone of you.

***

Ты пописала на себя?

Фу!

Не говори так! Ты не знаешь!

Я думала, что коньки отброшу от боли. В любом случае я пробовала, но не смогла. Я просто не смогла так изогнуться, так что

Да, я взял на себя ответственность. Она мой друг и ей нужна была помощь. Если бы нужно было, я бы пописал на каждого из вас.

Даже туалетный юмор звучит смешно. Он не пошлый и не вызывает фейспалма. Ведь ключевым мотивом Джоуи было помочь подруге. И так на протяжении всего сериала. Персонажи попадают в дурацкие ситуации и выпутываются из них, но все это без негатива и токсичности. Никто никого не осуждает, все просто прикалываются, ржут, но при этом помогают. Настоящая утопия.

Правда, из-за таких ситуаций актеры часто чувствовали себя неловко. Ведь когда шоу получило оглушающую популярность, в него стали приглашать голливудских знаменитостей на эпизодические роли. В картине появились десятки звезд мирового масштаба: Джулия Робертс, Дэнни де Вито, Брэд Питт, Риз Уизерспун, Хью Лори и многие другие.

Дэвид Швиммер вспоминает одну из таких ситуаций:

We had one of my idols, Sean Penn. And then we get the script and, of course, I realize that Oh, Im potato. So I had very little, if any, dialogue with him. But here Im thinking Greatest actor in the world, and Im fucking potato.

***

К нам приехал один из моих идолов Шон Пенн. И когда мы получили сценарий, конечно, я такой понял: Оу, я картошка. И у меня было крайне мало диалогов с ним, если были вообще. Но тогда я думал: Величайший актер в мире, а я чертова картошка.

Вообще Друзья именно с помощью большого количества второстепенных персонажей дают возможность познакомиться с самыми разнообразными вариантами и акцентами английского языка.

Если не считать каламбуров и языкового юмора, то практически вся лексика сериала достаточно простая. И ее может понять студент даже с уровнем английского Pre-Intermediate. Но вот чтобы понять все нюансы шуток, тут нужно знать не меньше Upper-Intermediate. Правда, это тема уже другого большого материала. Мы немного рассказали об этом в статье Игра слов не для ослов: как переводить и понимать каламбуры на английском. Но если честно, по Друзьям можно написать полноценную диссертацию в сфере лингвистики. Или даже несколько.

Для Friends: Reunion дали свои комментарии и известные звезды кино. И мы были обязаны добавить сюда один из них. Уверены, вы узнали Кита Харрингтона, небезызвестного Джона Сноу из Игры престолов:

I cant quite be specific about which one, but I know Im part of the Geller family. Im incredibly anal, Im neurotic as hell, and I wear overly tight trousers.

Не могу сказать, кто именно, но я знаю, что я часть семьи Геллер. Я очень дотошный, до чертиков раздражительный и ношу слишком тугие штаны.

Всем известно слово anal в его пошлом значении. Но у него еще есть вполне себе культурное и приемлемое: дотошный, занудный, въедливый. Уверены, что актер использовал это слово специально, чтобы сделать отсылку на языковой юмор сериала.

Если хотите еще больше разборов английского языка в сериале Друзья, то смотрите наше видео о фирменных фразах персонажей:

Эпоха, которая не ушла, а навсегда осталась в наших сердцах

Друзья: Воссоединение это про ностальгию. Мы вспоминаем себя, когда мы были моложе и смотрели сериал. Актеры также вспоминают себя молодых, когда играли в нем же.

И нас очень веселит, что даже вне съемочной площадки они не выходили из образов. Или, возможно, в сериале они просто играли самих себя немного утрированные, но при этом близкие образы.

Когда актеры нашли кусок декорации, на котором оставляли свои подписи в последний съемочный день, то сразу ясно, кто какую из них оставил:

Oh, we all sighed this.
Oh, theres mine.
What? What is it?
I shit here. Thats right.
I knew it.
Of course thats you.

***

Оу, мы все это подписали.
О, вот моя.
Какая? Какая именно?
Я нагадил здесь. Ну конечно.
Я знал это.
Конечно, это ты.

Мы не сомневаемся, что Джоуи оставил бы точно такое же послание в будущее. Может, именно поэтому сериал стал настолько популярным? Его героям веришь. Вот и все. Режиссеры, сценаристы и актеры проделали огромную работу, количество фанатов которой с каждым годом только растет. Уже следующее поколение смотрит Друзей и шутки все еще кажутся близкими и смешными.

Вот только один нюанс: смотреть их нужно в оригинале. Сериал оказал огромное влияние на развитие английского языка, многие шутки стали классическими, а сленг активно перенимал фразочки и каламбуры.

Юмор Друзей неотделим от английского. И чтобы в полной мере понять все смешные моменты, нужно не просто знать английский, но чувствовать его. Хотите научиться? Записывайтесь на бесплатный урок с преподавателем в EnglishDom.

А тем временем автор и редактор материала ушли пересматривать Друзей. С первой серии. Потому что душа требует.

Онлайн-школа EnglishDom.com вдохновляем выучить английский через технологии и человеческую заботу

Только для читателей Хабра первый урок с преподавателем в интерактивном цифровом учебнике бесплатно! А при покупке занятий получите до 3 уроков в подарок!

Получи целый месяц премиум-подписки на приложение ED Words в подарок. Введи промокод may_21 на этой странице или прямо в приложении ED Words. Промокод действителен до 01.07.2021.

Наши продукты:

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru