Русский
Русский
English
Статистика
Реклама

Печатные платы

Точечная сварка под микроскопом

01.08.2020 22:22:07 | Автор: admin
Хомяки приветствуют вас друзья!

Сегодняшний пост будет посвящен аппарату для точечной контактной сварки аккумуляторов типа 18650 и прочих. В ходе соберем такое устройство, разберем основные принципы его работы и детально изучим сваренные места под микроскопом. Аккумуляторам сегодня придётся нелегко. Казалось бы сварочный аппарат, который в буквальном смысле состоит из одного трансформатора и контроллера, что тут может пойти не так?!



Представьте себе, что одним прекрасным утром у вас сдох шуруповёрт. Крутить шурупы отверткой не царское дело, потому нужно решать проблему. Виновниками этого происшествия стали никелевые аккумуляторы, которые преждевременно отправились в Вальхаллу пить вино и сражаться на мечах. На смену им пришли компактные, высокотоковые литий-ионные аккумуляторы, которые по характеристикам в разы превосходят своих предшественников.

По технологии такие банки соединяются точечной контактной сваркой, которая приваривает токопроводящую ленту к телу аккумулятора. Использовать паяльник тут не рекомендуют из-за возможного перегрева внутренностей батареи, что может привести к преждевременному выходу ее из строя. Устанавливаем на сборку так называемую BMS плату с балансиром и собираем шуруповёрт. Теперь он работает как новенький.



На идею создания сварочного аппарата меня подтолкнул Витя. Человек который ремонтирует в буквальном смысле всё. Для перепаковки аккумуляторных батарей в различных устройствах он как раз применяет аппарат для точечной кантатной сварки. Соединение тут получается настолько прочным, что лента в буквальном смысле отрывается с потрохами. Меня впечатлил данный аппарат, и нужно было разобраться что и как в нем работает.



На самом деле тут все оказалось довольно просто. Сердцем устройства выступает трансформатор от микроволновки с перемотанной вторичной обмоткой, и контроллер который обеспечивает подключение первичной обмотки МОТ-а к питающему напряжению сети на необходимое время для формирования сварочного импульса. Так же нам понадобиться блок питания для контроллера, пару медных кабельных наконечников, сетевой провод сечением в 1.5 кв. мм. и корпус, в котором разместиться все электроника. У меня давно валялся 700 Вт МОТ с отрезанной вторичной обмоткой, как раз появился повод куда-то его пристроить.



Извлекаем магнитные шунты и аккуратно зачищаем отверстия куда будет вставляться толстый провод. Особое внимание уделяем краям, они довольно острые и легко могут повредить изоляцию кабеля.

Что касательно самого кабеля, тот тут лучше не экономить и взять вот этого товарища. РКГМ сечением 25 кв. мм. Производство Россия Рыбинсккабель. Это хитрый многожильный провод с изоляцией из кремний-органической резины повышенной твердости, в оплетке из стекловолокна пропитанного эмалью или теплостойким лаком. Он очень тонкий и гибкий. Изоляция провода абсолютно равнодушна к повышенным температурам, пламя зажигалки едва способно вызвать хоть какое-то тление. Длинна термостойкого змея 2.2 метра.

Внутренние отверстия магнитопровода смажем вазелином. Ту же процедуру проводим с кабелем. Несмотря на то, что кабель достаточно тонкий по сравнению со своими более дешевыми собратьями, в трансформатор нужно попытаться вместить 4-5 витка. Но вот незадача. 700 Вт МОТ позволяет вместить в себя только 3 витка. Не беда! На помощь приходит система рычагов и отвёрток. В общем, включив смекалку и мотаем 4 витка в такой небольшой трансформатор.



Кабельные наконечники. Хорошие, медные, на 25 квадратов. По технологии их нужно обжать специальным гидравлическим прессом. Пайка тут не рассматривается из-за возможного нагрева провода в процессе дальнейших экспериментов. Обжим провода тут проходит в 6- гранной матрице, которая равномерно обжимает медную гильзу со всех сторон, создавая качественное соединение. После опрессовки на наконечнике могут образоваться небольшие ушки, их необходимо удалить с помощью напильника. В результате у нас получаться красивые обжатые наконечники на концах провода.

Теперь их необходимо соединить к медным шинам на ручке для контактной сварки. Болт тут диаметром 8 мм и длинной 20 мм. Обязательно устанавливаем шайбу Гровера, она обеспечит надежный прижим, если соединительный узел ослабиться в процессе работы.



Самую простую ручку для контактной сварки можно заказать на алиэкспресс. Но мне приглянулся более продвинутый вариант созданный одним народным умельцем. Зовут его Генадий Збукер. Он сам собирает сварочные аппараты, дополняет их ручками которые сам проектирует и печатает на 3D принтере. Называется такая конструкция держатель электродов точечной сварки ZBU 5.1 с кнопкой и пружинами. 3D модели ранних версий, таких ручек, можно найти на сайте Thingiverse, автор позаботился чтобы при желании каждый мог собственноручно сделать подобный держатель для электродов. Это заслуживает уважения! Так же у него на сайте можно заказать расходные материалы (не реклама, а рекомендация).

Что касаемо ручки для контактной сварки. Выполнена она довольно качественно. Печать корпуса тут осуществляется ABS пластиком. Особенность версии 5.1 в том, что на борту есть два вентилятора, которые способны охлаждать медные шины в процессе непрерывной работы. Питаются они от 5 вольт через разъем micro USB. Ток потребления не более 300 мА.

Из практики скажу, что нагреть ручку за время всех экспериментов мне так и не удалось. Электроды тут подпружиненные и имеют кнопку концевик, которая при определенном усилии прижима срабатывает и дает команду на сварку. Это сжатие обеспечивает хороший электрический контакт со сварными поверхностями, гарантирует повторяемость качества сварных точек, устраняет образование искр и прожогов аккумуляторов. Именно из-за нагрева и одновременному сжатию заготовок такой способ сварки называли электрической ковкой. При желании конструкцию электродов на ручке можно изменить для двухсторонней сварки.



Электроды выполнены из жаропрочной хромовой бронзы БрХЦр. Поскольку электроды при сварке быстро изнашиваются, к ним предъявляются требования по стойкости сохранения формы при нагреве до 600 градусов и ударных усилиях сжатия до 5 кг на квадратный миллиметр. В процессе работы такие электроды особо не прилипают и не обгорают. Импульс тока сварки аккумуляторов должен быть очень коротким, иначе есть шанс прожечь дыру в корпусе, что приведет к выходу его из строя.



Задача по управлению длительности импульса лежит на довольно простом контроллере, который был взят с одного сайта. Устройство собрано на базе Arduino NANO, с применением жидкокристаллического дисплея для вывода полезной информации. Управление по меню осуществляется с помощью энкодера. Элементарно и просто подумал я, и начал собирать устройство из имеющихся в хозяйстве модулей.

Функционал контроллера довольно простой. Он выдает два последовательных импульса с паузой между ними. Первый импульс называется присадочным, а второй основным. Он приваривает метал друг к другу. Все переменные времени импульса регулируются с помощью энкодера, включая паузу между ними. Управление силовым трансформатором осуществляется c помощью довольно мощного симистора на 40 А. Он устанавливается по входу первичной обмотки. Маркировка BTA41-600.

Для удобства пользования контроллером, все его модули можно разместить на одной плате. Это позволит не путаться в куче проводов идущих от ардуины. Травим плату и смотрим как все функционирует. Лампочка мигает, значит схема собрана правильно. Вид самодельных плат на сегодняшний день постепенно уходит в закат, потому что их производство выгодней заказывать в Китае. Цена правда от размеров во многом зависит, но это уже другой вопрос.



Размещаем модули контроллера для контактной сварки согласно своим указанным местам. Вы уже наверное обратили внимание, что контакты на плате позолоченные. Интересно было посмотреть как они себя покажут в процессе пайки. Особенность позолоченных контактов заключается в том, что они не подвержены различным видам окисления на поверхности металла, что позволяет хранить платы довольно длительное время. Это актуально для больших производств. Также припой растекается по таким контактам как масло по сковороде.

После сборки устройства на плату ардуины нужно загрузить скетч. Делаем это через программу FL Prog буквально в несколько кликов. Программа за пару секунд заливается в мозг и на экране высвечивается все нужные настройки для дальнейшей сварки.



Теперь сделаем красивую панель управления. Для этого нужно разметить все необходимые окна и будущие отверстия на пластиковой панели. Окна аккуратно вырезаем бормашиной, а отверстия сверлим тем шуруповёртом, который мы отремонтировали в начале.

Размещаем внутри корпуса МОТ, импульсный блок питания на 12 вольт и запихиваем внутрь сетевой провод. Длинна его полтора метра. Распределяем все необходим провода по своим разъемам, и в принципе все. С электроникой разобрались.



В результате всех манипуляций у нас получился довольно красивый контроллер для точечной сварки. Силовые провода выводятся через отверстия в верхней крышке корпуса. Тут же разместился разъем для подключения кнопки концевика. Все эстетично и просто. Вроде как показалось мне. Все подписчики канала знают, что ничего просто так не бывает. Что-то, да должно пойти не так. И это один из тех случаев! Пора проверить аппарат в деле.



Для сварки возьмем старый аккумулятор и никелевую ленту толщиной 0.15 мм. Установим время сварки 20 мс для каждого импульса. Это соответствует одному периоду переменного напряжения из сети. Если там 50 Гц, то это одна пятидесятая. В результате испытаний оказалось, что на самых коротких выдержках времени, ленту не то чтобы варит, а прожигает насквозь. Теперь это не аккумулятор, а сплошная вентиляция

На других банках сварка проходила несколько иначе, прожиг был меньше, но зато лента между электродами разогревалась до красна. Это было довольно любопытно. При том на одних аккумуляторах лента приваривалась так, что ее практически не оторвать, а на других при том же времени сварки эффекта не было вообще. Лента в прямом смысле отлипала от корпуса, оставляя только две вмятины на металле. Разобраться в проблеме помог цифровой осциллограф, который способен записать сигнал для его дальнейшего изучения.



Причиной прожига аккумуляторов стало время работы силового трансформатора, которое не соответствует установленным значениям. Проблема тут явно программная, так как скечт разработчика неоднократно загружался на другую ардуинку, но результата это не дало. Сейчас по нашим установленным параметрам сигнал на оптопаре должен быть 10 и 60 мс. А по факту это время в несколько раз затянуто, 80 и 125 мс. Естественно этого времени хватает чтобы перегреть никелевую пластину между электродами и в некоторых аккумуляторах прожечь дно.

Если среди вас есть программисты, у меня просьба, посмотрите код и исправьте там ошибку. Это хороший с точки зрения простоты и повторения проект, но он оказался с котом в мешке. Мы пытались разобраться в дебрях данного кода, но максимум на что хватило знаний так это на визуализацию картинки при загрузке программы. В общем далекий я в этих дела, да и ладно!
Нужно выходить из ситуации.



В Китае есть готовые контроллеры для точечной сварки, заказываю и жду. Это одна из самых продвинутых версий плат. Модель NY-DO2X. Кроме того что она дает двойной импульс с паузой, так еще тут есть возможность регулировать мощность. Симистор тут установлен BTA100 рассчитанный на ток в 100 ампер. Рабочее напряжение 1200 В.

Размечаем и выпиливаем отверстия под новую панель управления. На этом этапе не торопимся чтобы не отрезать чего нибудь криво. На плате видим несколько разъемов. На первый слева подается переменное напряжение номиналом в 9 вольт. На второй подключается кнопка от держателя электродов или внешняя педаль. Второй вариант хороший, если у вас ручка без кнопки, или же вам просто нравится работать с педалями. Трансформатор для питания платы можно выковырять из какого-нибудь старого блока питания от домашнего телефона. Тока в 300 мА хватит с головой.

В общем пробуем варить ленту к аккумулятору. Нажимаем на ручку, идет импульс и что у нас тут. Проварка толком не произошла и лента прилипла к электродам. Такое чувство как будто у трансформатора на 700 Вт не хватает мощности для проварки ленты на коротких выдержках. Не вопрос, одеваюсь и еду на радиорынок за более мощными микроволновочным МОТ-ами.



Слева направо трансформаторы: 700 Вт, 800 Вт и 900 Вт. Чем больше магнитопровод, тем больше мощность. Тут видно на сколько 900 Вт вариант больше своего предшественника. Размеры: длинна 106 мм, высота 89 мм, ширина 66 мм.

Более продвинутые сварочники можно делать на софМОТах от отечественных микроволновок, но во-первых для них нужен огромный корпус, во-вторых это вес, в-третьих рука на такой редкий артефакт не у каждого поднимется. Не будем злить бога, и пустим под нож трансформатор привезенный с радиорынка. Спиливать вторичную обмотку удобней всего ножовкой по металлу. Медь довольно мягкая, потому режется довольно быстро.

Выбиваем провод из сердечника железным стержнем.В общей сложности данная операция занимает 20 минут. Медные косы не выбрасываем, а сдаем на металл и покупаем пиво. Обязательно извлекаем магнитные шунты, которые установлены для мягкой работы магнетрона и зачищаем края отверстий в магнитопроводе как это было показано ранее. В такой большой трансформатор без труда помещается 4 витка. При желании можно вместить и 5-тый, но я не стал переводить вазелин) Последовательно с мощным симистором припаиваем первичную обмотку только что перемотанного МОТ-а. Не жалеем припоя и делаем все как для себя.



Схема соединения просто элементарна. Справится даже ребенок. Пора испытать этот второй сварочный аппарат собранный в течении одного фильма. В одном из следующих выпусков будет вообще тройное фиаско политое сверху толстым слоем шоколада, там я еще на 600 баксов влетел, взяв поюзать чужую инфракрасную камеру. В общем канал это дорогое удовольствие. Впитывайте чужой опыт и чужие ошибки. В отличие от меня, вам за них платить не нужно. Все бесплатно.



Краткое руководство по использованию китайского контроллера. Зажимаем и держим красную кнопку примерно 4 секунды. Устройство при этом зайдет в режим калибровки сетевого напряжения. Его нужно выставить согласно реальным показаниям мультиметра вставленного в розетку. Зачем нужна эта функция, непонятно, но установленные цифры будут меняться пропорционально напряжению в сети.

Что означают лампочки над цифрами? Первый светодиод говорит о наличии питания. Второй светодиод горит когда нажата кнопка на ручке. Третий загорается только в момент наличия импульса. В общем первые три красные светодиода чисто информационные. Четвертая зеленая лампочка это счетчик наработки, суммирует каждое нажатие на педаль или концевик внутри сварочной кучки. Сбрасывается счетчик двойным нажатием на красную кнопку. Дальше оранжевый светодиод. Первый устанавливает длительность первого импульса. Выбирается он в периодах. Установим один что будет ровняться 20 мс. Второй светодиод задает мощность импульса. Поставим скажем 35 процентов. Минимум 30 максимум 99.9%. Зеленый светодиод между оранжевыми определяет паузу между импульсами. Так же в периодах. Поставим 2. Последние два оранжевые светодиода так же определяют длительность и мощность, но уже второго импульса. Поставим 2 периода и мощность выкрутим на 100 процентов. Собственно все, теперь можно потыкать в какую-нибудь ленту и посмотреть как происходит сварка, изучить точки, подобрать режимы на контроллере и прочее.



Краткие характеристики получившегося аппарата для точечной сварки. Вес готового устройства вышел 5.7 кг. Переменное напряжение на вторичной обмотке МОТ-а составило 3.8 вольта. Максимальный ток зафиксированный при сварке показал 450 ампер. С этим связан один интересный эффект во время работы аппарата. Магнитное поле у проводов выходит настолько большим, что их разбрасывает друг от друга сантиметров на 20. Магнитопровод при этом довольно сильно притягивает любой рядом лежащий металл, потому тут не рекомендую использовать железный корпус для устройства, при сварке он будет издавать неприятные звуки.

Если накоротко закоротить вторичную обмотку, то даже 700 Вт МОТ способен нагрузить сеть до значений свыше 4 кВт. На сколько больше мне не известно, так как ваттметр уходит в защиту при достижении такой нагрузки. Ток вторичной обмотки при этом зашкаливает за 600 А, свыше предела измерения мультиметра. На входе первичной обмотки максимальный ток зафиксирован 21 ампер, при этом напряжение в сети проседает с 230 до 217 вольт.

При непрерывной работе сердечник у МОТ-а будет нагреваться, за 4 минуты его температура достигнет примерно 52 градуса. И это на холостом ходу без нагрузки. На практике при повышении температуры трансформатор начинает сильней варить, это может привести к прожигу аккумулятора. В этом случае справедливо обдувать трансформатор с помощью вентиляторов.



Переходим исключительно к сварке. Для начала посмотрим как должен выглядеть сигнал на осциллографе. Настройки: первый импульс один период 30 процентов, 2 периода отдыхаем, второй импульс два периода, мощность на всю катушку. Делаем сварную точку и записываем сигнал. Видим каким обрезанным выглядит период мощностью в 30 процентов. После него идет металл два периода отдыха, а затем идет мощный импульс с длительностью два периода и мощностью в сто процентов.

Контроллер благодаря отслеживанию перехода фазы через ноль, открывает симистор на 100 процентах практически в нуле роста амплитуды напряжения. При этом видно что напряжение и ток идут с небольшой задержкой относительно друг друга. При 50 процентах контролер открывает симистор только на половине полупериодов сетевого напряжения. Этот метод аналогичен с Широтно-импульсной модуляцией. Такой режим используется в регуляторах освещенности диммерах. Яркость свечения лампы накаливания будет напрямую зависеть от площади обрезанной синусоидой. В нашем случае это нужно для всяких деликатных сварок.



Теперь наша задача довольно проста. Нужно приварить ленту для точечной сварки к аккумулятору. Но тут возникает пару вопросов. Какую ленту будем варить и к какому аккумулятору? Помните момент когда у нас сварочник с 700 Вт трансформатором отказывался приваривать никелевую ленту? Идентичная ситуация происходит с новым 900 Вт МОТ-ом.

В начале долго не мог понять в чем причина, но тут оказалось два важных момента. Высокотоковый аккумулятор, в отличии от обычного, имеет несколько толще стенки корпуса. Возможно и металл корпуса отличается. Никелевая лента у нас тоже довольно хитрая. В сумме всех этих факторов даже мощная сварка не способна дать желаемый результат.

Решение проблемы сменить никелевую ленту на стальную. Она сверху тоже вроде как никелированная, но дальше будем ее называть просто стальной. Сварка на тех же установках что и раньше, приварила стальную ленту просто на ура. Отодрать ее кусачками без разрушений не выходит. Собранный аппарат полностью удовлетворил поставленные задачи.



Теперь разберем основные требования при точечной сварке. Длительность и мощность импульсов нужно подбирать таким образом, чтобы свариваемые места имели как можно меньше перегрев. Он проявляется в цветах побежалости вокруг точек сварки. Это не очень хорошо, так как в этих местах частично выгорает металл, что может привести к ослаблению прочностных характеристик соединения. Идеальная сварка выглядит так. Тут нет перегрева, точки белые, лента отрывается от тела аккумулятора с кусками. Именно такого результат мы должны добиться.

Подводные камни. Их очень много, в первую очередь тут нужно понимать физику протекания тока в металле. Металл в месте соприкосновения с электродами представляет току наибольшее сопротивление и потому место будет сильно нагреваться. Наша задача разогреть металл до такой степени, чтобы создалось так называемое сварочное ядро. Нагрев в этом процессе должен происходить не под самими электродами, а между листами металла. Сварные ядра при этом необходимо делать как можно быстрей, очень мощным и коротким импульсом. Если греть место сварки медленно, тепло будет разбегаться по аккумулятору кто куда, без достижения нужного результата.



Электроды, это вообще отдельный мир. Представьте вы долго варили сборку из аккумуляторов 18650 и в один момент решили их заточить. Концы вышли острые, красивые. Но при первых же сварных точках у нас выйдет пропаленный аккумулятор, так как электроды с большой вероятностью погрузятся в корпус банки. Некоторые такие аккумуляторы стоят целое состояние, и повредить один из них это недопустимо.

Что же происходит на самом деле? Дело в том, чем острей электрод, тем меньше его площадь контакта с металлом, в результате при одном и том же токе место у нас будет разогреваться быстрей. Сварное ядро образуется настолько быстро, что это приводит к расплавлению всего металла под электродом.

Еще один очень важный момент, электроды при сварке нужно держать строго перпендикулярно аккумулятору. Они не должны входить под углом. На контакте может образоваться небольшой скос, который рано или поздно приведет к прогару из-за неравномерного протеканию тока через электроды. На этом же примере становиться понятно зачем необходим первый присадочный импульс на малой мощности.

На что влияет расстояние между электродами? В теории чем дальше они разнесены друг от друга, тем лучше. Меньше потерь будет на верхней шунтирующей заготовке. Но как показала практика тут можно играть с настройками, и какое бы расстояние не было, можно добиться хорошего качества сварных точек. Тут большую роль играет с какой шириной ленты вы работаете.

В общем настройки длительности и мощности импульсов решают все. У меня получалось приваривать 0.2 мм. ленту с такими прочностными характеристиками, что она отрывалась вместе с фрагментами корпуса аккумулятора. Все батареи в фильме были разряжены если что.

Рекомендации при выборе настроек сварки. В этом деле много факторов влияющих на конечный результат. К примеру: вы подобрали режим, который хорошо работает с одной и той же лентой и аккумуляторами. Но, если что-то одно поменяете, настройки тоже возможно придется менять. А теперь представьте что у вас кучка разношерстных аккумуляторов, как будете варить? Мощность и время сварки нужно настраивать от меньшего к большему. Поставили точку, лента оторвалась, ничего страшного, поднимаем мощность и смотрим. Теперь лента отрывается с потрохами. То что нужно. Ну что, вы все поняли?



Думаю стоит еще раз перечислить все факторы, которые могут на влиять на конечный результат точечной сварки.

Электропроводка в квартире. Специально для фильма был сделан удлинитель с сечением провода в 2.5 квадрата. Даже смотря на это, слабенький 700 Вт МОТ умудрялся просаживать сеть под нагрузкой.

Основные сварочные характеристики зависят от мощности трансформатора, от сечения силового провода, его длинны, количества витков, качества соединительных узлов с контактной ручной.

Важную роль играет материала электродов, расстояние между ними, заточка и сила прижима. Много определяет материал ленты для контактной сварки, его толщина, ширина и форма. Тип аккумулятора и толщина его стенок. Даже температуру МОТа стоит брать во внимание.

Исходя из всего вышеперечисленного, в каждом индивидуальном случае подбираются настройки для первого и второго импульса на контроллере для получения наилучших сварных ядер с наименьшими цветами побежалости.

Собранный аппарат для контактной сварки получился довольно компактным и универсальным. Он собирался только ради того, чтобы сварить аккумуляторы для шуруповёрта и паяльника с Китая, которому нужно питание 24 вольта. Часто при ремонтах не хватает портативного инструмента. Конструктор в виде ячеек под аккумуляторы 18650 мы печатали на 3D принтере, они упрощают задачу при формирования сборок с разными напряжениями и ёмкостями, позволяя складывать элементы в любой последовательности. Сборки соединяются между собой специальными пазами. Теперь самостоятельно перепаковать свой старый самокат не составит никакого труда.



Для справки. Съемка этого выпуска заняла чуть больше 2-х месяцев. Когда брался за изучение данной темы, даже подумать не мог что тут окажется так много нюансов. По стоимости бюджет фильма перевалил за предполагаемые границы, так как покупать запчастей пришлось практически на 2 сварочных аппарата. В общей сложности было израсходовано 3 метра никелевой ленты и испорчено 2 хороших аккумулятора. Пущено в расход два десятка плохих.
Ну все, видео озвучил, теперь можно идти бухать и готовится к следующему выпуску.
Как сказал Мастер Йода:
Тебя послушать так сложно все. Слышишь, что сказал я?
Ты должен чувствовать силу, она между тобой, мной и камнем, везде
Да нооо нет



Полное видео проекта на YouTube
Архив с полезностями
Наш Instagram
Подробнее..

Универсальные платы для умного дома на базе микроконтроллера ATmega128 (ATmega2561)

24.02.2021 22:18:59 | Автор: admin

Недавно я написал первый пост о том, как начал переделывать обычные светодиодные светильники в диммируемые. Многим не понравилось что свой диммер я делаю на базе микроконтроллера ATmega128. Поэтому хочу объяснить, почему используется именно этот микроконтроллер, и почему в наше время разрабатывая что-то ДЛЯ СЕБЯ, не стоит стремиться всё делать на самом слабеньком микроконтроллере, способном протянуть только лишь функционал разрабатываемого вами устройства.

Чтобы под каждое устройство умного дома не разрабатывать плату с нуля, я решил сделать универсальную плату на базе микроконтроллера ATmega128, к которой уже будут подключаться более специализированные платы для конкретных устройств.

Почему был выбран именно этот микроконтроллер? Да всё просто, потому что по цене ATmega128 всего на 20 центов дороже чем чем ATtiny2313. А ATtiny2313 стоит столько же, сколько и ATmega8. То есть уже про ATtiny2313 можно забыть как страшный сон.
Привожу пару картинок с ценами на AliExpress (а именно там я покупаю детальки) и идём дальше.

ATtiny2313:

Стоимость ATtiny2313Стоимость ATtiny2313

ATmega8:

Стоимость ATmega8Стоимость ATmega8

ATmega128:

Стоимость ATmega128Стоимость ATmega128

ATmega2561:

Стоимость ATmega2561Стоимость ATmega2561

Думаю комментарии излишни, сейчас даже для мигалки обычным светодиодиком куда выгоднее и рациональнее брать сразу ATmega128 чем 8 мегу, про тиньку и вообще молчу, забудьте про её существование как страшный сон. Да даже штук 5 транзисторов и резисторов для мигалки, уже будут стоить больше чем ATmega128. Так что забудьте про все микроконтроллеры слабее 128 меги, их использование в домашних проектах просто невыгодно и нерационально со всех сторон как ни посмотри. Да-да друзья мои, хочется вам или нет, но таковы реалии современного мира.

Следующий аргумент можно заметить если сравнить внимательно распиновку ножек ATmega128 и ATmega2561.

Сравнение между собой ATmega128 и ATmega2561Сравнение между собой ATmega128 и ATmega2561

Видим что распиновка ножек очень похожа, выводы SPI для программирования МК совпадают, так же совпадают и выводы питания, в общем почти всё совпадает, там буквально пару ножек различается которые ни на что не влияют, к чему я это веду, да к тому, что разработав плату для ATmega128, вы спокойно можете при необходимости купить и впаять в неё более производительный ATmega2561, а тут и памяти под программу больше в 2 раза и "оперативки". Например, мой главный модуль умного дома будет построен именно на ATmega2561, а остальные на ATmega128. Как итог, мне не нужно будет самому изготавливать плату для ATmega2561. Не знаю как кому, а лично мне, изготавливать в домашних условиях платы для smd микросхем тот ещё геморой. Ну не люблю я разводить такую мелюзгу, особенно ЛУТ-том (другой технологии я пока не освоил). Заказывать в Китае 10 плат ради одного модуля тоже не выгодно. А так мы разводим универсальную плату на базе ATmega128, и в одну из плат впаиваем ATmega2561 для главного модуля умного дома. Как итог, все наши платы для микроконтроллеров изготовлены на заводе в Китае, а в заводские платы даже впаивать smd микроконтроллеры проще, чем в платы собственного изготовления, во всяком случае для меня.

Ну и собственно к самой теме поста.
Схема моих универсальных плат для умного дома:

Схема платыСхема платы

Вот такие платы пришли из Китая:

Лицевая сторона платЛицевая сторона платЗадняя сторона платЗадняя сторона плат

После разрезания и впаивания компонентов платы выглядят так:

Лицевая сторона плат после впаивания компонентовЛицевая сторона плат после впаивания компонентовЗадняя сторона плат после впаивания компонентовЗадняя сторона плат после впаивания компонентов

Плата с модулем ADM488 для связывания всех модулей умного дома в единую сеть:

Плата с модулем ADM488Плата с модулем ADM488Плата с модулем ADM488Плата с модулем ADM488

Плата с модулем беспроводной связи nRF24L01+:

Плата с модулем nRF24L01+Плата с модулем nRF24L01+Плата с модулем nRF24L01+Плата с модулем nRF24L01+

Как видите, на универсальной плате есть 2 специализированных разъёма, для модуля ADM488 и для модуля nRF24L01+, вся остальная периферия подключаемая к таким универсальным платам будет подключаться шлейфами к выведенным штырькам.

Вот собственно и всё. Может кто-то подчерпнёт какие-нибудь полезные идеи и для себя.

Подробнее..

Анализ целостности сигналов в PADS Professional (36)

09.12.2020 18:14:11 | Автор: admin

Наступила новая неделя, а это означает что настало время для публикации очередного урока из серии анализа целостности сигналов средствами HyperLynx, которые входят в базовую лицензию PADS Professional.

На предыдущем уроке вы узнали как редактировать линии передачи и настраивать стек печатной платы.

Сегодня я расскажу как запускать моделирование для выбранной цепи и проводить измерения с помощью цифрового осциллографа.

Урок 3 Моделирование с помощью цифрового осциллографа


  1. В меню ПУСК выберите PADS Pro Tools VX.2.x > PADS Pro Designer VX.2.x
  2. На стартовой странице PADS Professional Designer выберите File > Open и откройте:
    C:\SI_Analysis\Lesson3\HandDrillAll.prj
  3. Повторите шаги 3-5 из первого урока для запуска PADS Professional HyperLynx LineSim
  4. Если появится это сообщение, выберите No. После этого откроется HyperLynx LineSim.

  5. Для моделирования цепи выберите Simulate SI > Run Interactive Simulation запустится Digital Oscilloscope
  6. Отрегулируйте настройки для моделирования на частоте 400 МГц. См. рисунок ниже:

  7. Нажмите Start Simulation
  8. Чтобы корректно вписать результаты в окно осциллографа, нажмите на иконку Fit View в разделе Zoom справа.


  9. Для проведения измерений, выберите форму сигнала и категорию измерения в нижней части графика. В раскрывающемся списке Waveform выберите V [P16.1 (at pin)], а в секции Measurments выберите Positive Overshoot (положительный выброс).

  10. В рабочей области осциллографа вы увидите выброс в 1.7 V для этого сигнала.
  11. На этом урок окончен. Закройте HyperLynx и сохраните результаты.

Материалы для этого и последующих уроков можете скачать ЗДЕСЬ
Вы также можете посмотреть видеоверсию этого урока:


Предыдущие уроки:
Урок 1 Назначение моделей в LineSim
Урок 2 Основы LineSim

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

Анализ целостности сигналов в PADS Professional (46)

16.12.2020 20:13:35 | Автор: admin


Продолжаем осваивать основные возможности анализа целостности сигналов встроенными инструментами PADS Professional.

В третьем уроке мы изучили как запускать моделирование для выбранной цепи и проводить измерения с помощью цифрового осциллографа.

Сегодня вы узнаете как импортировать плату в HyperLynx BoardSim для пост топологического анализа.

Урок 4 Экспорт проекта платы в BoardSim


  1. В меню ПУСК выберите PADS Pro Tools VX.2.x > PADS Pro Designer VX.2.x
  2. На стартовой странице PADS Professional Designer выберите File > Open и откройте:
    C:\SI_Analysis\Lesson4\PCB\HandDrillAll.pcb
  3. Сейчас вы откроете PADS Professional HyperLynx BoardSim инструмент для пост топологического анализа. Перейдите в меню Analysis > Export to HyperLynx SI/PI/Thermal

  4. Выберите цепь, которую вы анализировали ранее $1N1808 кликните по иконке Select Nets by Name for SI Analysis на панели инструментов.



    Примечание: Специальные символы подстановки, такие как * и %, могут быть использованы для помощи в разных полях поиска, когда вы не уверены в точном значении вашего поискового запроса. % заменяет один символ (например, U123 можно найти по U%%3). * используется для подстановки неизвестных символов (например, U123 можно найти с помощью *3).
    1. пролистайте список и найдите цепь $1N1808_Battery_Protection или введите в поле Filter значение *1808*.

    2. выберите цепь и нажмите OK, чтобы выйти из окна Net Selection. Теперь вы должны увидеть, что эта цепь выделена на плате.
  5. Вы можете назначить модели для этой цепи, как вы делали это в LineSim. Нажмите на иконку Assign Models or Edit Values for Components на панели инструментов.

  6. В секции Pins выберите P16.1: нажмите Select для назначения модели


    • Libraries: Generic_mod.ibs
    • Devices: generic
    • Signal: 74AC11X:LINE-DRV

  7. Нажмите OK для выхода из диалога Select IC Model
  8. В секции Buffer settings, выберите Output. Нажмите Close для выхода из диалога Assign Models.
  9. Для начала моделирования выберите Simulate SI > Run Interactive Simulation откроется окно Digital Oscilloscope.
  10. Установите настройки для моделирования на частоте 400 МГц.

  11. Нажмите Start Simulation
  12. Обратите внимание на форму сигнала. Выйдите из цифрового осциллографа и вернитесь к плате в BoardSim

  13. Чтобы попытаться улучшить сигнал, вы добавите терминирование. На панели инструментов выберите Add Quick Terminator

  14. Добавьте capacitor in parallel для P16.1, выбрав соответствующий переключатель. Установите значение равное 20 pF. Выберите Close и нажмите Run Interactive Simulation еще раз, для запуска Digital Oscilliscope.

  15. Обратите внимание, форма сигнала заметно улучшилась. Вы можете сравнить этот результат с предыдущими, установив флажок Previous results справа.



  16. На этом урок окончен. Закройте HyperLynx и сохраните результаты

Материалы для этого и последующих уроков можете скачать ЗДЕСЬ

Вы также можете посмотреть видеоверсию этого урока:


Предыдущие уроки:
Урок 1 Назначение моделей в LineSim
Урок 2 Основы LineSim
Урок 3 Моделирование с помощью цифрового осциллографа

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

Анализ целостности сигналов в PADS Professional (56)

23.12.2020 14:04:12 | Автор: admin


И так коллеги, мы уже на финишной прямой.
На предыдущем уроке вы узнали как импортировать плату в HyperLynx BoardSim для пост топологического анализа и улучшить качество сигнала, используя терминирование.

Сегодня мы с вами поговорим о sweep-анализе в BoardSim. Этот вид анализа применяется для оценки работоспособности системы в широком диапазоне параметров.

Урок 5 Sweep-анализ в BoardSim


  1. В меню ПУСК выберите PADS Pro Tools VX.2.x > PADS Pro Designer VX.2.x
  2. На стартовой странице PADS Professional Designer выберите File > Open и откройте:
    C:\SI_Analysis\Lesson5\PCB\HandDrillAll.pcb
  3. Запустите HyperLynx, следуя шагу 3 из четвертого урока.
  4. Убедитесь, что выбрана цепь, которую вы анализировали ранее- $1N1808. Если нет, повторите шаг 4 из четвертого урока.
  5. Сейчас вы запустите sweep-анализ, чтобы посмотреть, как ваша трассировка ведет себя при различных скоростях моделирования ИМС. Выберите в меню Simulate SI > Run Interactive Sweep

  6. На вкладке Setup, кликните на + слева от IC modeling для раскрытия списка. Кликните + рядом с IC operating parameters. В завершении кликните по Proсess corner = default для его выделения и нажмите кнопку Add Range

  7. В окне Sweeping выберите все доступные варианты. Нажмите OK для выхода.

  8. Выберите Run Sweeps в окне Sweep Manager
  9. В цифровом осциллографе настройте параметры для моделирования на частоте 400 МГц.

  10. Нажмите Start Sweeps, чтобы проанализировать поведение этой цепи для каждой скорости микросхемы.

  11. Вы можете анализировать результаты и соответствующим образом корректировать проект. Когда закончите, выйдите из цифрового осциллографа.
  12. На этом урок окончен. Закройте HyperLynx и сохраните результаты.

Материалы для этого и последующих уроков можете скачать ЗДЕСЬ

Вы также можете посмотреть видеоверсию этого урока:


Предыдущие уроки:
Урок 1 Назначение моделей в LineSim
Урок 2 Основы LineSim
Урок 3 Моделирование с помощью цифрового осциллографа
Урок 4 Экспорт проекта платы в BoardSim

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

УСКОРЕНИЕ ПРОЕКТИРОВАНИЯ РЧ-, СВЧ-УСТРОЙСТВ (25)

28.05.2021 20:23:43 | Автор: admin

Миллиарды устройств интернета вещей, которые будут окружать нас в ближайшие годы, требуют возможностей проектирования радиочастотных трактов, поддерживающих сверхбыструю скорость передачи данных 5G.

Устройства IoT работают на высоких частотах с более широкой полосой пропускания.
Прогнозируется огромный спрос на разработку РЧ-, СВЧ-устройств в различных сферах:

  • IoT
  • IoV
  • Умный дом
  • Умный город
  • Медицинские системы
  • Носимая электроника
  • Интеллектуальные системы в аграрной промышленности
  • Интеллектуальные системы в индустриальной промышленности


Урок 2 Обновление схемы и размещение РЧ-объектов на плате


В этом уроке вы добавите на схему недавно созданную антенну и разместите ее на плате.

  1. Дважды кликните по иконке PADS Pro Designer VX.2.x на рабочем столе или выберите
    Меню ПУСК > PADS Pro Tools VX.2.x > PADS Pro Designer VX.2.x.
  2. На стартовой странице PADS Professional Designer нажмите кнопку Open и откройте
    C:\RF Design\Lesson2\Lesson2.prj.
    • Если появится диалоговое окно лицензирования, убедитесь, что опция PADS Professional RF Design установлена, и нажмите OK

  3. Откройте лист Ant двойным кликом по Ant в окне Navigator.
  4. Далее добавим 4 антенны в наш проект
    • Если еще не открыт, откройте Databook
      • нажмите на иконку Databook

    • Выберите иконку Show CL View на панели Databook
    • Откройте вкладку Symbol View.
    • Напротив [Local Symbols] должно отображаться имя символа DXF_PatchAnt. Выделите его
    • Кликните по изображению символа ЛКМ и перетащите его на страницу.
  5. Далее нам нужно добавить соединения
    • Нажмите на иконку Net на панели инструментов

    • Кликните ЛКМ по пину и удерживайте, чтобы нарисовать цепь.
      Заметка: Во время удерживания ЛКМ кликните ПКМ или нажмите на
      пробел, чтобы добавить излом.
    • Для завершения отпустите ЛКМ.
    • Дважды кликните по цепи, чтобы вызвать панель свойств.
    • Для присвоения имени цепи в панели свойств кликните в поле
      Name и выберите RX1 из выпадающего списка.
  6. Нам нужно создать еще 3 копии этой маленькой схемы
    • Выделите символ вместе с цепью
    • Удерживая клавишу CTRL, перетащите в любом направлении область выделения. На курсоре появится копия выделенных объектов.
    • Разместите копию под текущей схемой и отпустите ЛКМ.
    • Повторите эти шаги еще 2 раза, чтобы у вас было в общей сложности 4 антенны с цепями.
  7. Теперь нам нужно переименовать цепи в копиях схемы
    • Дважды кликните по каждой из цепей и задайте следующие имена в следующем
      порядке: RX2, RX3, RX4. Ваша итоговая схема должна выглядеть следующим
      образом:

  8. Прежде чем мы перейдем к топологии, нам нужно создать РЧ-группу для этих 4 антенн
    • Откройте инструмент RF Group/Ungroup выбрав соотв. иконку на панели RF

  9. Создайте новую группу, нажав на cинюю иконку на панели инструментов панели RF Group/Ungroup
  10. Переименуйте созданную группу в Patch

  11. Выделите на схеме все 4 антенны с цепями, затем нажмите кнопку Add selected items to the group, которая расположена в нижней левой части панели RF Group/Ungroup.
  12. Каждый РЧ-элемент в PADS Professional содержит дополнительные данные, описывающие физические свойства каждого объекта. Для просмотра этих данных необходимо открыть панель RF Parameters
    • На панели инструментов RF нажмите на иконку RF Parameters

  13. Попробуйте выбрать различные РЧ-объекты на странице Ant и просмотреть их параметры. Если это сегмент трассы, вы увидите информацию о длине, ширине, слое, группе, типе модели и т.д. Другие объекты, такие как антенна, которую мы создали, будут иметь меньше параметров
  14. Теперь мы можем перейти к топологии и разместить эти антенны
    • Для запуска топологического редактора нажмите на иконку PADS Professional Layout на главной панели инструментов

  15. Загрузится топологический редактор в состоянии, которое соответствует состоянию сразу после создания антенны. Импортированная из DXF антенна нам больше не пригодится, поэтому давайте удалим ее из проекта
    • Выделите антенну и нажмите Delete
    • Если появится предупреждение, нажмите OK
  16. Перед началом процесса размещения нам необходимо импортировать данные об антеннах из схемы в топологию, выполнив этап синхронизации
    • Перейдите в меню Setup > Project Integration
    • Нажмите на желтый светофор Forward Annotation
    • По окончании все четыре светофора должны быть зеленого цвета.
  17. Для размещения нашего РЧ-объекта мы будем использовать Component Explorer
    • Если он еще открыт, перейдите в меню Place > Component Explorer
  18. Начнем с размещения РЧ-группы P2
    • Кликните ПКМ по P2 и выберите Auto Arranger из контекстного меню
    • Переместите курсор в рабочую область редактора и разместите объект как показано на картике
    • Перед установкой элемента, отразите его по горизонтали, кликнув ПКМ и выбрав пункт Mirror Horizontally.

  19. Для группы P1 мы будем использовать функцию копирования
    • Выделите в рабочей области схему P2
    • Нажмите CTRL-C, группа P1 скопируется и будет закреплена на курсоре.
    • Зеркально отразите этот элемент
    • Разместите элемент как показано на рисунке

  20. И в завершение, мы разместим полосковую антенну
    • Выделите и перетащите группу Patch из Component Explorer в рабочую область редактора и разместите ее как показано на картинке

    • Выделите круглую область размещения
    • Кликните ПКМ и выберите Place Part
    • Антенна закрепится на вашем курсоре
    • Разместите антенну как показано на рисунке. Повторите процедуру размещения для остальных 3 антенн

  21. На этом урок 2 завершен.


Тестовые 30-дневные лицензии можно запросить ЗДЕСЬ
Материалы для этого и последующих уроков можете скачать ЗДЕСЬ
Вы также можете посмотреть видеоверсию этого урока:


Предыдущие уроки:
Урок 1 Создание РЧ-объектов в топологии и схеме

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

Ускорение проектирования РЧ-, СВЧ-устройств (45)

11.06.2021 18:10:18 | Автор: admin

РЧ-, СВЧ-платы являются одним из самых быстрорастущих секторов в производстве печатных плат. С увеличением количества датчиков IoT, беспроводной электроники и смартфонов легко понять, почему. Но как узнать, работаете ли вы с РЧ или СВЧ-платой? Индустрия печатных плат считает, что любая плата, работающая на частоте выше 100 МГц, является РЧ-платой. Все, что приближается к 2 ГГц, является СВЧ.

Урок 4 Расширенные возможности трассировки РЧ-цепей


В этом уроке мы рассмотрим специальные возможности PADS Professional для трассировки радиочастотных каналов.

  1. Дважды кликните по иконке PADS Pro Designer VX.2.x на рабочем столе или выберите
    Меню ПУСК > PADS Pro Tools VX.2.x > PADS Pro Designer VX.2.x.
  2. На стартовой странице PADS Professional Designer нажмите кнопку Open и откройте
    C:\RF Design\Lesson4\PCB\Lesson4.pcb.
    • Если появится диалоговое окно лицензирования, убедитесь, что опция PADS Professional RF Design установлена, и нажмите OK

  3. Убедитесь, что выбрана схема отображения RF Routing. Это обеспечит видимость панели инструментов RF
  4. Доступны 2 специальных инструмента трассировки РЧ-цепей: Add Meander и Route Meander. Опции Add и Route очень похожи по функционалу. Add обеспечивает более точный контроль и поддерживает специальную опцию для тюнинга проводников. Route более прост и удобен в использовании, но в некоторых случаях его функционала может оказаться недостаточно. В этом уроке мы будем использовать оба этих инструмента:
    • Для трассировки антенны TX мы будем использовать инструмент Add Meander. Выберите Add Meander на панели инструментов RF

    • Кликните по пину TX2 усилителя в корпусе BGA, как показано на картинке:

    • По умолчанию Corner Type установлен на Miter. Измените значение на Free Radius и проложите трассу от пина до антенны. Обратите внимание на то каким образом прокладывается трасса
    • Отмените последнее действие. Выполните трассировку заново, но в этот раз установите Corner Type = Miter. Не забудьте установить контрольную точку перед соединением с самой антенной для того чтобы уменьшить длину тейпера
  5. Теперь давайте проложим трассу для TX1, одновременно согласовав ее длину с TX2 при помощи серпантина
    • Если функция не активна, снова выберите Add Meander на панели инструментов
    • Кликните по пину TX1 и начните трассировку
    • Кликните, чтобы зафиксировать трассу (установить контрольную точку) напротив входа антенны
    • Во время трассировки вернитесь в диалоговое окно Meander и измените General Mode на Serpentine
    • Вы должны увидеть серпантин (змейку) там где уже проложена трасса. Настройте параметры серпантина следующим образом:
      • Length: 150
      • Slope Height: 20
      • Gap Width: 50

    • Подключите трассу к антенне. Не забудьте установить контрольную точку непосредственно перед соединением с самой антенной, чтобы минимизировать влияние тейпера
    • Вы должны получить следующий результат:

  6. Давайте проделаем некоторые изменения с трассой
    • Выделите трассу TX2
    • Кликните ПКМ и выберите RF Parameters
    • Для настройки угловой конусности (corner taper) кликните по полю Miter % и установите значение 60
    • Нажмите Apply

  7. Теперь нужно проверить и подкорректировать добавленный серпантин. С помощью диалога RF Parameters можно проверить длину проводника для TX2 и TX1. Для изменения длины серпантина используйте функцию Edit Meander:
    • Выделите верхний сегмент серпантина
    • Кликните ПКМ и выберите Edit Meander
    • Теперь Вы можете отодвинуть верхний сегмент серпантина вверх, чтобы увеличить длину проводника. Отрегулируйте до тех пор, пока длина не будет в пределах 10 mils от ТХ2

  8. После того как мы растрассировали TX сигналы теперь можно перейти к RX. Для трассировки этих 4-х цепей мы будем использовать инструмент Route Meander:
    • Активируйте инструмент Route Meander

    • Ознакомьтесь с диалоговым окном настроек, но не вносите никаких изменений
    • Выберите одну из цепей RX и проложите трассу от пина усилителя (BGA) до порта антенны
    • Повторите этот процесс для всех 4 цепей

  9. Вы также можете использовать стандартные возможности трассировки для работы с РЧ-объектами
    • Удалите одну из проложенных трасс
      • Просто кликните ЛКМ по трассе, указанной на картинке

      • Нажмите кнопку Delete на клавиатуре
    • Нажмите F3, чтобы активировать интерактивную трассировку
      • Проложите трассу от усилителя (BGA) к порту антенны
  10. Обычный проводник может быть преобразован в РЧ-меандр, чтобы вы могли применять расширенные правила или добавлять скосы углов
    • Чтобы выделить весь проводник кликните по сегменту, показанном на рисунке
    • Кликните ПКМ и выберите Selection > Add Partially Selected Traces

    • Кликните ПКМ еще раз и выберите Convert to Meander
    • В диалоговом окне Convert Trace to Meander выберите из списка Group значение PA
    • Нажмите Convert

    • Вокруг трассы появятся области правил подобно тем проводникам, что вы уже растрассировали.
  11. На этом урок 4 завершен.

Тестовые 30-дневные лицензии можно запросить ЗДЕСЬ
Материалы для этого и последующих уроков можете скачать ЗДЕСЬ
Вы также можете посмотреть видеоверсию этого урока:


Предыдущие уроки:
Урок 3 Настройка правил проектирования для РЧ-объектов
Урок 2 Обновление схемы и размещение РЧ-объектов на плате
Урок 1 Создание РЧ-объектов в топологии и схеме

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

SamsPcbGuide, часть 15 Волновое сопротивление микрополосковой линии, Гарольд Уилер и Эрик Богатин

01.08.2020 22:22:07 | Автор: admin
Сейчас занимаюсь разработкой калькулятора для печатных плат и изучаю расчетные модели, которые стоят за табличными формулами. Добрался до волнового сопротивления микрополосковой линии и решил рассказать про модель Гарольда Уилера и то, как его Эрик Богатин недооценил, а оказалось, что у меня тут публикаций на тему волнового сопротивления вообще не было, поэтому сначала немного теории, а потом к восстановлению справедливости.

Волновое сопротивление для линии без потерь выражается всем известной формулой:

где LL и CL погонные индуктивность и ёмкость линии (то есть в расчёте на единицу длины). Думаю, будет полезно пояснить, откуда она берётся. Рассмотрим предельно малый участок длинной двухпроводной линии передачи, по которой течёт переменный ток (рис. 1). Ток переменный, поэтому мгновенные значения тока, напряжения между проводами, линейной плотности электрического заряда меняются вдоль проводов.


Закон сохранения заряда для участка провода и закон Фарадея для контура выглядят следующим образом:

Для линии без потерь (RL = 0) и с учётом L = LL i и qL = CL v получим:

Эти дифференциальные уравнения приводятся к волновой форме, для которой получаем:

где u скорость распространения волны, а коэффициент, связывающий ток в проводах и напряжение между проводами волновое сопротивление. Сразу приведем полезные соотношения (TD временная задержка линии):

Ёмкость и индуктивность зависят от частоты, поэтому и волновое сопротивление меняется с изменением частоты. Влияние скин-эффекта на индуктивность ограничивается частотами до нескольких десятков мегагерц, в верхнем диапазоне частот она меняется незначительно. На значение ёмкости оказывает зависимость диэлектрической проницаемости материала печатной платы от частоты, а для микрополосковых линий из-за несимметричности диэлектрика ещё и эффект дисперсии. Данные для стеклотекстолита FR-4 в различных источниках отличаются, однако в качестве оценки можно принять, что диэлектрическая проницаемость снижается на 0,15-0,2 каждую декаду (рис. 2). Отличие в данных объясняется тем, что FR-4 это класс материалов. Он состоит из стекловолокна и эпоксидной смолы, имеющих значительно отличающиеся диэлектрические проницаемости (рис. 3). Чем больше смолы в материале, тем меньше усреднённое по объёму значение диэлектрической проницаемости стеклотекстолита. Отсюда разные значения у разных производителей.



Взаимное расположение волокон стекловолокна и проводника также влияет на волновое сопротивление. Если проводник расположен над волокном, то его волновое сопротивление будет несколько выше по сравнению с соседним проводником, который попал в промежуток между волокнами. Если проводник направлен под углом к волокнам, то это приводит к периодическому изменению волнового сопротивления и резонансным эффектам на частотах в области десяток ГГц. Степень влияния значительно зависит от типа плетения стекловолокна (рис. 4). Именно поэтому существуют специализированные материалы для высокочастотных печатных плат, где влияние этих эффектов становится значимым. Параметры таких диэлектриков обладают лучшей стабильностью в широком диапазоне частот и гораздо лучше документированы.


Что касается потерь (рис. 5), то для большинства практических случаев применима модель с низкими потерями (англ. low-loss model), для которой на высоких частотах потерями можно пренебречь RSER L, RLEAK1C. Такое упрощение позволило разработать эффективные модели, позволяющие с высокой точностью вычислять параметры сигнальных линий при помощи стандартных функций.


Планарные сигнальные линии были изобретены в начале 50-ых годов прошлого столетия, и для полосковых линий почти сразу были разработаны точные математические модели, а на создание точный модели анализа микрополосковой линии понадобилось несколько десятилетий. Одним из первых (в 1965 году) точные решения для частных случаев дал Гарольд Уилер, которые позже (к 1977 году) были им обобщены. Причина в несимметричности диэлектрика, которая приводит к сложному распределению электрического поля, которое ещё и зависит от частоты.

Естественно, эта модель была не единственная и к 1988 году их накопилось достаточное количество, чтобы их было интересно сравнить. Это сделал великий и ужасный Эрик Богатин. Я наткнулся на эту статью, когда выбирал расчётную модель для калькулятора. Потом я добрался до публикаций Уилера, где много страниц крутой математики с конформными преобразованиями, и понял, что Богатин невнимательно его читал (или вообще не читал) и загрубил его модель, что повлияло на результаты сравнения. Потом эта ошибка перекочевала в 2007-ой год. При этом сам Богатин ссылается на монографию Microwave Transmission Line Impedance Data некоего М.А.Р. Гунстана, но я уже не стал дальше копать, откуда ноги растут, признав виновником товарища Богатина (которого я, кстати, очень уважаю, Богатин сила).

Итак, в чём суть. Богатин экспериментально измерял погонную ёмкость микрополосковых линий различной ширины (на частоте 1 кГц) и сравнивал с расчётными значениями (рис. 6).


Во всех моделях, у которых я изучал первоисточники, приводятся аналитические соотношения для волнового сопротивления. Ёмкость же рассчитывается, используя следующее соотношение:

где r диэлектрическая проницаемость, c скорость света. Несимметричность диэлектрика приводит к тому, что приходится изобретать эффективное значение диэлектрической проницаемости. Богатин пишет:

In the case of Wheeler [13], no model for the effective dielectric constant is offered. However, based on the suggestion by Gunsten [6], the plot for Wheelers model uses the effective dielectric constant from Schneiders model.

и использует гибридную модель Уилера-Шнайдера (результат в пФ/дюйм):

Модель даёт по результатам эксперимента неплохую точность и Богатин хвалит свой изобретённый велосипед:

The combination of Wheelers and Schneiders model is found to agree with previous published data and new data presented here to better than 3 percent, and is of a form suitable for use in a spread sheet. In addition to being useful for computer simulation of specific designs, this model can yield some useful insight to add to the intuition of fabrication and design engineers

А теперь обратимся к первоисточнику. Те формулы, которые использует Богатин это упрощённые формулы для случая без диэлектрика:


а полная модель выглядит так:


здесь в обозначениях Уилера R волновое сопротивление, k диэлектрическая проницаемость, R1 = R(k = 1) сопротивление без диэлектрика, w корректировка ширины, учитывающая толщину проводника, w корректировка с учётом влияния диэлектрика. Для эффективного значения диэлектрической проницаемости Уилер использует обозначение k' и приводит для него следующую формулу:

которая не так проста, конечно, как у Шнайдера, но тем не менее, она в модели есть. Я повторил расчёты Богатина, оставив самые точные модели: Шнайдера, Уилера, их гибридный вариант и добавил результаты расчёта с помощью калькулятора Saturn PCB Toolkit и модели Хаммерстэда. Для наглядности привожу и график, и табличные данные с ошибкой относительно экспериментальных данных.



С учётом погрешностей измерения и значения диэлектрической проницаемости базового материала (2,2 1%) можно сказать, что все модели хорошо коррелируют с экспериментальными данными, не зря исследователи годами формулы подгоняли. От Saturn ожидал большей точности, так как там прямо написано, что он использует не простую, а сложную формулу и точность сравнима с Sonnet 3D. К тому же там толщину можно только в унциях выбирать, а это либо oz. (18 мкм), либо 1 oz. (35 мкм), а 1 мил (25,4 мкм) не задать. Значения в таблице приведены для oz., так как они ближе к экспериментальным данным так получаются. Также очевидно, что исходная модель Уилера дала бы большую точность на этой выборке данных, поэтому мне и было за него досадно. Особенно с учётом того, что как раз-таки модель Шнайдера имеет серьёзный недостаток она не учитывает влияние толщины проводника, что почти не влияет на ёмкость, но значимо для индуктивности и поэтому самого волнового сопротивления. Богатин значения волнового сопротивления, к сожалению, не приводит, поэтому в качестве опорного значения использовал калькулятор от уважаемой фирмы Rogers. В Saturn в это раз 1 oz. несколько лучшую точность дало, не очень мне пока понятна логика его работы. На графике видно, что при снижении ширины (где влияние толщины возрастает) Шнайдер отваливается. А Rogers, видимо, как на раз модели Хаммерстэда основан. Я первоначально на Уилере сделал, но раз большинство продвинутых калькуляторов на Хаммерстэде, то зачем от них отставать.



Собственно, на этом считаю справедливость восстановленной. Уилер мощь. Даже Богатин иногда ошибается. Поэтому не доверяйте, проверяйте и перепроверяйте. Используйте расчёты для Ваших сигнальных линий.

P.S. Я в процессе работы над калькулятором и книгу дорабатываю, сейчас до бесплатной версии руки дошли добавил все улучшения и исправления, которые были до этого только в полную внесены. Всем удачи!
Подробнее..

Как правильно подготовить проект печатной платы, чтобы не пришлось его переделывать

11.08.2020 10:19:42 | Автор: admin
Новички в деле изготовления печатных плат считают, что это довольно легко: достаточно подготовить проект и техническое описание, а дальше изготовлением платы займется производство на определенном оборудовании. Но это далеко не так. Ведь только в 5% из 100% файлы, подготовленные конструктором, можно выгрузить и отправить в работу. В остальных случаях требуется процесс адаптации топологии печатной платы под производство.

Поэтому я задал нашим адаптаторам вопрос, на что стоит обратить внимание при подготовке к производству платы.

1. Проанализируйте технические требования, прописанные в конструкторской документации.
2. Проведите DFM-анализ платы то есть проектируйте печатную плату таким образом, чтобы в дальнейшем, при производстве и монтаже, возникло как можно меньше проблем. Причем здесь надо проводить проверку не только по стандартным функциям САПР, но и с учетом собственного опыта работы.


3. Проверяйте целостность цепей во время и после технологической проработки файла. В идеале, у вас должен быть исходный файл проекта, а не комплект гербер-файлов.


4. Если плата многослойная, то составьте ее стек порядок следования проводящих слоев и слоев диэлектрика. Не стоит полностью доверять конструктору, спроектировавшему плату, ведь, как показывает практика, допустить ошибку может каждый, вероятность велика и составляет более 30%. Часто встречаются следующие ошибки: в проектах используются редкие материалы, которые целесообразнее было бы заменить; отсутствует информация о технологических особенностях сборки и симметричность платы в разрезе.



5. Проверяйте слои защитной маски, чтобы избежать проблемы при монтаже изделий.
6. Обязательно проверяйте и прорабатывайте слои шелкографии. Иначе на готовой плате может быть отзеркаленный или нечитаемый текст, который может наползать на монтажные отверстия или элементы рисунка схемы, необходимые для последующего монтажа. Многие стандартные шрифты имеют особенности для русского текста появляются иероглифы или другие обозначения.
7. Проверяйте спецификацию, сборочный чертеж и посадочные места платы на соответствие тем изделиям, в которые эти платы будут монтироваться.


8. Подготавливайте слои для изготовления металлических трафаретов для поверхностного монтажа.
9. Сгенерите программы для оборудования, которые будут задействованы в производстве печатной платы и монтаже изделий, и экспортируйте их.


Помимо перечисленных выше моментов по подготовке схемы к производству платы, сейчас набирает популярность и процесс предварительной оценки проектов. В этом случае разработчики совместно с производителями производят технологическую отладку печатной платы и в итоге готовый проект практически не имеет ошибок.

На что стоит обратить внимание при проведении предварительной проверки:

1. Наличие слепых и скрытых отверстий. Иногда при анализе проекта мы понимаем, что скрытые или слепые отверстия нужны. Но чаще всего без них можно обойтись и заложить связи слоев в сквозные отверстия.


2. Свойства тех или иных отверстий.Часто бывает так, что при импорте гербер-файлов и файлов сверловки, все крепежные отверстия имеют металлизацию, и система обработки файлов ориентируется как раз на слои, в которых находятся эти отверстия.


3. Симметричность многослойной печатной платы. Очень важно следить, чтобы у многослойной печатной платы была симметричная сборка относительно центра.
<img src="

4. Расположение переходных отверстий. От того, насколько правильно расположены эти отверстия, будет зависеть качество дальнейшей пайки. Мы советуем располагать переходные отверстия не ближе, чем в 0,3 мм от контактных площадок элементов.


5. Реперные знаки. Использование таких знаков в проектах важно для автоматизации процесса поверхностного монтажа печатной платы. Реперные знаки служат для повышения точности совмещения компонента с контактными площадками и монтажным основанием.
6. Непроработанные слои маркировки в проектах. Наравне с наложением текста на места, где должна быть пайка, часто встречается и такое, что позиционные обозначения элементов располагаются на переходных отверстиях. Если переходные отверстия относительно большого размера, то текст становится нечитаемым. Поэтому мы советуем обращать внимание на расположение надписей, их свойства и единое направление текста.


Так что, прежде, чем приступать к изготовлению печатной платы, уделите особое внимание процессу подготовки и перепроверьте возможные места, где в последующем может произойти ошибка, которая повлечет за собой переделку проекта.
Подробнее..

SamsPcbCalc, часть 2 Сколько тепла может рассеять печатная плата?

12.10.2020 22:07:24 | Автор: admin
С совершенствованием элементной базы всё меньше энергии уходит в тепловую: снижается сопротивление транзисторов в открытом состоянии, растут частоты импульсных преобразователей напряжения. Но от задачи теплоотвода в рамках текущей полупроводниковой парадигмы никуда не деться, тот же рост производительности при увеличении степени интеграции уже приводит к пределу плотности тепловыделения. Для микросхем с мощностью тепловых потерь более 1 Вт тепловая задача важна не меньше, чем электрическая. Нужно ли отводить тепло на корпус? Или использовать радиатор для микросхемы? Для ответа на эти вопросы не всегда требуется моделирование тепловой задачи с помощью КЭМ. В этой статье рассматриваем достаточно гибкую модель, которая позволяет быстро получить предварительную оценку теплового сопротивления плата-среда с хорошей точностью.



О важности тепловой задачи можно судить по упрощённому эмпирическому правилу, гласящему, что каждое повышение температуры на 10 оС снижает срок наработки до отказа в 2 раза. То есть, если при 55 оС микросхема проработает 10 лет, то при 65 оС только 5. Достаточный аргумент, чтобы несколько улучшить теплоотвод от микросхемы, если не играть в запланированное устаревание. Это правило далеко не истина в последней инстанции, но качественно оно верно (подробнее можно прочитать, например, здесь).

Организация теплоотвода это почти всегда накладной процесс, который усложняет трассировку, поэтому его нужно планировать заранее. Для этого нужно понимать, сможет ли сама печатная плата справиться теплоотводом. Производители микросхем указывают в документации параметр тепловое сопротивление кристалл-среда RJA. Казалось бы:


и оценка готова. Но это грубо, очень грубо. Тепловое сопротивление сильно зависит от печатной платы. И то, что указано, было получено в эксперименте на стандартизованной печатной плате (например, как на рисунке 1), которая, скорее всего, будет сильно отличаться от той, что получится у Вас. Скажем так, можно получить гораздо лучший теплоотвод при меньшей площади.


То, на что стоит обращать внимание это тепловое сопротивление кристалл-плата RJB или RJС(bottom). Это то, что уже от разработчика не зависит и определяется корпусом и его внутренней конструкцией. Но тут чаще всего выбор корпуса определяется мощностью тепловых потерь, и основной перепад температур будет на плате. Итак, вышеуказанную формулу для случая теплоотвода через плату переписываем так:


где RBA тепловое сопротивление печатной платы с заданными параметрами. Рассчитать это сопротивление можно на основе красивой модели, которая предложена в которую можно извлечь из замечательной статьи от ON Semiconductor. Статья, на самом деле, не является пошаговой инструкцией, это своего рода набросок модели. Мне пришлось её раз 10 прочитать, чтобы прийти к модифицированной модели, которую в итоге и реализовал в калькуляторе на своей платформе. В основе расчетов лежит чёткая математическая модель (описана вот в этой публикации от тех же ON Semiconductor) тепловой задачи однородного кольца, через внутреннюю поверхность которого гонится поток тепла. Теплоотвод за счёт конвекции, то есть это не про вакуум (там тепло нужно гнать на корпус). Схема задачи на рисунке 2, а дифференциальное уравнение и интересующая нас часть его решения следующие:



Всё с этим уравнением прекрасно (кроме модифицированных функций Бесселя), и можно решать для одной поверхности с конвекцией (убрав 2 в корне), но вот только платы чаще всего без радиальной симметрии и не однородные, а ещё и тепло поступает неравномерно по внутреннему радиусу. Поэтому нужно адаптировать. Первые два вопроса решаются разбиением на кольцевые зоны с однородными свойствами с той же площадью. Для решения последнего нужно строить приближённую модель цепи тепловых сопротивлений. На рисунке 3 то, что предлагалось в оригинальной статье. Предлагается бить плату на три зоны: зону под микросхемой, зону с полигонами на внешнем слое и зону только с полигонами на внутренних слоях. Учитываются только проводники, которые непосредственно соединены с микросхемой, (условно, звонятся).

Верхний и нижний полигоны предлагается усреднить и взять среднюю площадь металлизации. С этим я не очень согласен, так как влияние на теплоотвод у этих слоёв очевидно разное, плюс они могут сильно отличаться по площади (нижний чаще будет больше по площади). Поэтому я разбил плату на верхнюю и нижнюю половины и делал расчёт для каждой части отдельно.

В статье много графиков с влиянием различных параметров, их полезно посмотреть. Свой подход к разбиению платы откалибровал на этих графиках (рисунок 4) они для корпусов QFN5X5, QFN6X6 и QFN3X3, соответственно. Когда плата очень большая, график ложится на предел, связанный с тепловым сопротивлением переходных отверстий, но их параметры не указаны. Я брал диаметр 450 мкм, толщину стенок 20 мкм, без заполнения.





Видно, что модели коррелируют, но добиваться 100% совпадения я не стал, так как всё равно нет всех входных данных. Кроме того, есть странный момент с переходными отверстиями (рисунок 5), их отсутствие практически не влияет на тепловое сопротивление, что не очень интуитивно.



Ещё на нижнем графике на рисунке 4 видно два ряда данных, где я считал двухзонную модель двумя методами: с помощью умножения матриц, как описано в статье AND8222/D, и с помощью модели, как на рисунке 3, только зона под микросхемой выброшена (она не вносит вклад в сопротивление). Видно, что график из статьи выходит на примерно ту же асимптоту, как будто отсутствует влияние переходных отверстий. Это для меня стало ещё одним фактором, что в их модели что-то не так с учётом влияния переходных отверстий (либо я чего-то не понимаю).

Калькулятор оказался полезным хотя бы в том плане, что позволил от качественных представлений о влиянии различных параметров перейти к количественным оценкам. Можно сделать вывод, что тепловое сопротивление платы можно загнать в район 10 оС/Вт даже на стационарном воздушном потоке. Для рассеивания 2-3 Вт вполне достаточно будет. Ещё полезное замечание, что значимую роль при теплоотводе играет только металл, непосредственно соединённый с микросхемой. Хотя, конечно, чем больше объёмная доля меди в плате, тем будет выше эффективный коэффициент теплопроводности. На основе этого калькулятора можно нарастить наличие радиатора на микросхеме и теплоотвод на корпус, это тоже буду делать. Если там будет что-то интересное, то поделюсь в следующих публикациях.
Подробнее..

Ускорение проектирования РЧ-, СВЧ-устройств (15)

21.05.2021 18:18:17 | Автор: admin


В современных электронных устройствах быстродействующие цифровые и аналоговые схемы часто оказываются в непосредственной близости от нескольких радиочастотных модулей на одной печатной плате. При разработке сложных системных проектов до 75% времени может уходить на радиочастотную часть, что делает необходимым поиск способов повышения эффективности этого процесса.

В этом цикле обучающих статей я познакомлю вас с основными инструментами опции PADS Professional, которая предоставляет независимым инженерам и группам разработчиков мощные возможности проектирования РЧ-, СВЧ- устройств.

Проектирование печатных РЧ-, СВЧ-плат требует соблюдения большого количества нюансов, специфичных для этой области электроники. Для того чтобы учесть все эти нюансы необходимы высоко интегрированные решения, которые помогут вам сократить время разработки и повысить ее надежность.

  1. PADS Professional Layout оптимизирован под разработку РЧ-трактов и предоставляет пользователю мощный набор инструментов для их проектирования
  2. Существует большое различие между использованием инструментов, которые просто поддерживают работу с РЧ-объектами, и использованием инструментов, которые действительно интеллектуально распознают все РЧ-, СВЧ-элементы
  3. Прямая интеграция с ведущими инструментами для РЧ-, СВЧ-проектирования как на этапе создания схемы, так и при проектировании топологии избавляет от ручной передачи данных
    • Проектируйте при помощи Keysight ADS или National Instruments AWR, затем импортируйте схему и/или топологию в PADS Pro
    • Проектируйте с помощью PADS Pro, а затем экспортируйте схему и/или топологию в Keysight ADS или National Instruments AWR для электромагнитного моделирования.
    • Для удобства использования сторонних инструментов РЧ/СВЧ разработки можно настроить единую среду проектирования для поддержки синхронизации библиотек и обмена информацией о схеме.
  4. Возможности параметрического изменения свойств РЧ-элементов и их автоматической компоновки помогают пользователю при проектировании сложных устройств
  5. Устранение ошибок благодаря динамическому обновлению базы проекта
  6. Сокращение сроков разработки благодаря параллельному проектированию радиочастотных каскадов и печатной платы
  7. Эффективное взаимодействие между разработчиками ВЧ/СВЧ и ПП
  8. Снижение стоимости продукции благодаря улучшению технологичности перед запуском в серию


Урок 1 Создание РЧ-объектов в топологии и схеме


В этом уроке вы импортируете DXF-форму полосковой антенны, преобразуете ее в РЧ-объект и создадите на его основе символ, который будет использоваться в схеме.

  1. Дважды кликните по иконке PADS Pro Layout VX.2.x на рабочем столе или выберите
    Меню ПУСК > PADS Pro Tools VX.2.x > PADS Pro Layout VX.2.x.
  2. На стартовой странице PADS Professional Layout нажмите кнопку Open и откройте
    C:\RF Design\Lesson1\PCB\Lesson1.pcb.
    • Если появится диалоговое окно лицензирования, убедитесь, что опция PADS Professional RF Design установлена, и нажмите OK

  3. Для упрощения настройки рабочего пространства активируйте схему отображения RF Routing, которая добавит панель инструментов для РЧ/СВЧ разработки
    • На главной панели инструментов раскройте список схем отображения
    • Выберите схему RF Routing

  4. Далее, нам нужно импортировать DXF полосковой антенны
    • Перейдите в меню File > Import > DXF
    • В диалоговом окне DXF Import нажмите на три точки напротив DXF Filename
    • Откройте файл C:\RF Design\Lesson1\RFDemoPatch.dxf
    • В поле DXF Cell Name введите DXF_PatchAnt
    • Введите DXF_PatchAnt в разделе DXF Layer mapping > User Layers
    • Установите галочку в DXF Layer mapping > DXF Layer Names

    • Нажмите OK. Вы увидите следующее

  5. Вы должны увидеть, что антенна появилась слева от печатной платы. Для лучшей визуализации антенны, давайте изменим ее цвет
    • Откройте панель Display Control
    • Выберите вкладку Fab
    • Пролистайте вниз до раздела User Draft Layers
    • Кликните по цветовому полю рядом с DXF_PatchAnt и выберите светлый цвет

  6. Теперь мы преобразуем этот рисованный объект в в радиочастотный объект
    • Приблизьте область с антенной и выделите ее
    • Перейдите в меню RF > Convert > Drawing Cell to RF Shape



  7. Теперь вокруг антенны появится контур, указывающий на то, что она была преобразована. Эти линии вокруг антенны показывают области правил. Перед созданием схематического символа нам нужно добавить радиочастотный порт, который будет использоваться в качестве пина
    • Включите инструмент привязки Snap, чтобы быть уверенными в том, что мы разместим порт точно на границе объекта в его средней точке
      • Кликните ПКМ и выберите Snap > Toggle Hover Snap

    • Нажмите на иконку Add Edge Node на панели RF. Это также можно сделать из меню правой кнопки мыши

    • Приблизьте левый конец антенны
    • Поместите курсор на левый край антенны и кликните ЛКМ. При этом будет выбрана только что созданная антенна
    • Кликните вблизи центра линии, когда курсор привяжется к краю средней точки
    • Появится диалоговое окно Add Edge Node. Из выпадающего списка Nets выберите RX1.
    • Нажмите Apply

  8. Теперь мы можем создать схематический символ из нашего РЧ-объекта.
    • Откройте Component Explorer
    • Под Lesson1 кликните ПКМ по DXF_PatchAnt
    • Из контекстного меню выберите Generate Library Shape

    • Нажмите OK
  9. На этом урок 1 завершен.

Тестовые 30-дневные лицензии можно запросить ЗДЕСЬ
Материалы для этого и последующих уроков можете скачать ЗДЕСЬ
Вы также можете посмотреть видеоверсию этого урока:

Присоединяйтесь к нам в соц. сетях:
Telegram-канал
Telegram-чат
YouTube

Филипов Богдан pbo, Product Manager по решениям PADS в компании Нанософт.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru