Русский
Русский
English
Статистика
Реклама

Интересные факты

Судьба предателя, угнавшего новейший МиГ-25 в Японию

22.02.2021 22:16:08 | Автор: admin

Сегодня в воздушном пространстве США летают около пятидесяти истребителей российского производства от устаревших МИГ-15 и до современных МИГ-29. Большая их часть приобретена на открытом рынке после распада Советского Союза и расторжения Варшавского Договора. В советское время у американцев не было шансов приобрести наши боевые машины, хотя Штаты ради этого были готовы на все.
6 сентября 1976 года произошло ЧП: во время учебного полета на одном из дальневосточных аэродромов в Приморье, старший лейтенант Виктор Беленко поднялся в воздух на суперсовременном МИГ-25, и не вернулся на базу.

МИГ-25 был не простым самолетом, а настоящей гордостью советских инженеров. Высотный истребитель-перехватчик по натовской классификации носил название Летучая лисица. На Западе этому самолету приписывались уникальные характеристики, но проверить их возможности не было: Советский Союз умел хранить свои секреты.

В побег Беленко долго не верили: надеялись, что произошла поломка, техническая ошибка или самолет попал в зону плохой видимости и мог сбиться с курса. Поиски пилота были прерваны звонком из МИД Японии. Советским военачальникам сообщили, что Беленко приземлился в аэропорту Хакодате на острове Хоккайдо, и попросил политического убежища в США.
Но что же произошло в действительности?

Юность и служба в Вооруженных Силах

Родился Виктор Беленко в Нальчике, 15 февраля 1947 года, в рабочей семье. В 1965 окончил среднюю школу с серебряной медалью. В 1967 году поступил в Армавирское высшее военное авиационное училище лётчиков, которое окончил в 1971 году. Был направлен на службу лётчиком-инструктором в Ставропольское высшее военное авиационное училище лётчиков и штурманов.
В служебных характеристиках и аттестациях на всём протяжении службы в армии характеризовался положительно. Член КПСС. Избирался членом комсомольского и партийного бюро. В 1975 году переведён на Дальний Восток (по его желанию) и получил назначение в 530-й истребительный авиационный полк 11-й отдельной армии ПВО (Чугуевский район Приморского края) на должность старшего лётчика. Летал на истребителе-перехватчике МиГ-25П.

Побег

6 сентября 1976 года в 6:45 Беленко вылетел с аэродрома Соколовка (возле села Соколовка, рядом с райцентром Чугуевка) для выполнения полётного упражнения. В 7:40 истребитель перелетел советско-японскую границу. В 9:15 японское радио передало, что самолёт МиГ-25П (бортовой номер 31), пилотируемый советским лётчиком Беленко, совершил посадку в аэропорту Хакодате (остров Хоккайдо). Впоследствии японскими властями было сделано официальное уведомление, что Беленко попросил политического убежища. 9 сентября он был вывезен в США.

После отставания от ведущего пары Беленко снизился до высоты примерно 30 метров, что позволило ему избежать обнаружения как советскими, так и японскими радарами. Углубившись в воздушное пространство Японии, Беленко поднялся на высоту около 6000 м и был засечён японскими средствами ПВО. Связаться с Беленко японцам не удалось, поскольку рация МиГ-25 была настроена на другую частоту. На перехват неизвестного нарушителя были подняты истребители, однако, к моменту их появления Беленко вновь снизился и пропал с радаров. Беленко планировал совершить посадку на авиабазе Титосе, но из-за недостатка топлива был вынужден садиться на ближайшем аэродроме, которым оказался Хакодате. Из-за недостаточной длины ВПП Хакодате МиГ-25 выкатился за пределы полосы и приблизился к границе территории аэропорта. Выбравшись из кабины, Беленко произвёл два предупредительных выстрела из пистолета автомобилисты на близлежащей автостраде фотографировали происходящее.

Реакция МИД СССР

28 сентября 1976 года в 12:05 по московскому времени ТАСС распространило пресс-релиз с текстом официальной реакции МИД СССР по поводу инцидента, где утверждалось, что, во-первых, В. И. Беленко совершил вынужденную посадку на аэродроме Хакодате, во-вторых, он был вывезен в США против своей воли, в-третьих, действия японской стороны в отношении как самолёта, так и пилота нельзя квалифицировать иначе как недружественными по отношению к СССР и противоречащими нормам международного права. Двадцатью минутами позже вышел уточняющий материал ТАСС, в котором посадка Беленко в Хакодате описывалась как сделанная при невыясненных обстоятельствах. Публикации в западной прессе о том, что перелёт Беленко был преднамеренным, а не вынужденным, назывались кампанией пропаганды, а предположения на тему, что полёт Беленко, по всей вероятности, был побегом, названы лживыми. Официальный представитель МИД СССР Л. В. Крылов заявил: Всё это ложь, от начала и до конца.

Причины побега

Всестороннее изучение личности Беленко, его поведения на службе и в быту показало, что у него неоднократно складывались острые конфликтные ситуации с командованием. Так, в период службы в Ставропольском авиационном училище он выражал настойчивое желание уйти с инструкторской работы, и в связи с этим изыскивал различные возможности для перевода в боевой полк. Однако эти попытки успеха не имели, так как командование, как правило, лётчиков-инструкторов из училища в войска не отпускало.
По этой причине он стал проявлять недовольство и резко обострил отношения с командирами. В 1975 году обратился с рапортом к начальнику училища с просьбой уволить его из Советской Армии, мотивируя тем, что не желает служить с командирами, которые постоянно злоупотребляют спиртными напитками.
В 1975 году переведён на Дальний Восток. За первые полгода службы на новом месте Беленко зарекомендовал себя с положительной стороны, успешно прошёл курс переподготовки на новом для него типе самолёта МиГ-25П, был назначен исполняющим обязанности начальника штаба эскадрильи, избран заместителем секретаря партийного бюро эскадрильи. К служебным обязанностям относился добросовестно. Недовольства своим положением или неустроенностью не высказывал.
Примерно с июля 1976 года стали замечаться странности в его поведении. Он стал нервозным, взвинченным. Болезненно переживал задержку с присвоением очередного воинского звания капитан и назначением на обещанную при переводе должность начальника штаба эскадрильи.
6 сентября, несмотря на конфликтную ситуацию, он был включён в плановые полёты и прибыл на аэродром. По иронии судьбы, документы о присвоении ему звания капитан пришли именно в тот день, когда он угнал самолет в Японию.

Действия японских властей

Советское правительство потребовало немедленно вернуть самолет. Однако японские власти заявили, что МИГ-25 нарушил государственную границу Японии, поэтому возвращен будет только после досконального осмотра. Истребитель перевезли на американскую военную базу, где разобрали по винтику. Вся секретная информация оказалась в руках американцев.

СССР пригрозил Японии далеко идущими последствиями за несвоевременный возврат самолёта. Начались переговоры между советской делегацией во главе с Министром иностранных дел СССР А. А. Громыко и Министром иностранных дел Японии Дзэнтаро Косакой. Громыко потребовал незамедлительного возврата самолёта и пилота (который к тому времени уже находился в США), на что Косака ответил, что японская сторона готова к переговорам о возвращении самолёта, для этого он попросил Посла СССР в Японии Д. С. Полянского связаться с МИД Японии. 2 октября 1976 года в порту Хитачи состоялась передача МИГ-25 советской стороне. Самолет привезли в разобранном виде в тринадцати контейнерах, в которых к тому же не хватало деталей. За нанесенный ущерб, японцам вчинили иск в размере 7 миллионов рублей. Но это было слабым утешением: убытки Советского Союза составили по меньшей мере 2 миллиарда рублей. Возвращая самолёт в СССР, Япония выставила счёт в $40 тыс. за организацию непредусмотренной стоянки иностранного самолёта в японском аэропорту, оплату услуг охраны, технического обслуживания, транспортировки и другие расходы, включая ремонт повреждений аэродромной инфраструктуры, имевших место во время приземления самолёта. Счёт советской стороной оплачен не был.

Жизнь беглеца в США

9 сентября 1976 года, менее чем через трое суток после перелёта, Беленко был вывезен в США и получил разрешение на постоянное проживание в Америке, а вскоре получил и политическое убежище.
Разрешение на предоставление гражданства подписал лично президент Джимми Картер. 14 октября 1980 года, Закон 96-62 О предоставлении Виктору Ивановичу Беленко гражданства США был принят Конгрессом США. Беленко работал инженером по аэрокосмической технике и консультировал ВВС США. Его военный билет и полётный журнал хранятся в музее ЦРУ в Вашингтоне.
С Беленко в первые месяцы его пребывания в США работали практически круглосуточно не только сотрудники ЦРУ, но также специалисты по вопросам советской авиации из Разведывательного Управления МО и РУ ВВС США, а также профессиональные доктора и психоаналитики (с целью установления его физического и психологического состояния, так как американские власти не сразу поверили в столь крупную удачу).
Попутно с этим он начал изучать английский язык по программе учащихся колледжей, и быстро достиг успехов на этом поприще. Это было необходимо для того, чтобы работавшие с ними сотрудники спецслужб могли обходиться без переводчиков.
Как охарактеризовал его один из офицеров разведки, который с ним работал, кроме предоставления американцам передового советского истребителя с массой секретного оборудования на борту, он сам по себе был золотой жилой технической, тактической и оперативной информации о советской авиации. Помимо перечисленного, разведслужбы занялись уточнением картографической информации и топографических данных дальневосточных пунктов базирования советской авиации, организации службы, ежедневных мероприятий боевой учёбы и проверки боевой готовности, почасовой и поминутный график несения службы советскими лётчиками и т. д.
Беленко большую часть времени проводил в Вашингтоне, где работал по совместительству на нескольких высокооплачиваемых должностях: консультантом федеральных правительственных структур по вопросам советской авиации и консультантом авиастроительных компаний военной промышленности, которым он помогал совершенствовать вооружение и бортовую аппаратуру американских военных самолётов для борьбы против советской авиации, снимался в рекламе для различных американских компаний, был приглашён читать лекции в американских военных учебных заведениях, нередко приглашался в качестве эксперта для телевидения и печатных средств массовой информации по различным вопросам.
В 2000 году Беленко дал интервью американскому корреспонденту на авиашоу в шт. Висконсин, США, в котором, в частности, сказал: Я встретился (в США) с космонавтом Игорем Волком. Он говорит: Ты же вроде бы умер!, я ответил: Не так быстро. КГБ распространил слухи о моем убийстве, чтобы отбить охоту у других.
На основе рукописи, написанной Беленко вскоре после натурализации в США, на английском и русском языках в нескольких нью-йоркских книжных издательствах, Макгроу-Хилл (на английском), Ридерз дайджест пресс (на английском) и через несколько лет в Эффект паблишинг (на русском), вышла книга Пилот МиГа, где описываются причины, побудившие его к перелёту за рубеж, а также подробности инцидента, описываемые с его точки зрения. В СССР книга в русскоязычном варианте была доступна только в спецхране для лиц, имеющих соответствующий допуск.

Виктор Беленко на обложке книги Пилот МиГа Виктор Беленко на обложке книги Пилот МиГа

Стратегические и внешнеэкономические последствия угона самолета

По итогам анализа самолёта, американские технические специалисты пришли к заключению, что МиГ-25 не годится для перехвата высотных разведчиков SR-71, в первую очередь уступая ему по целому ряду лётно-технических характеристик, а скоростные параметры самолёта были в большей степени пропагандистским штампом для повышения его экспортной привлекательности как второго самого быстрого самолёта на планете.
Кроме того, американцам удалось ознакомиться с системой управления вооружением самолёта и получить достоверные технические данные о его реальных боевых возможностях, что было ценным приобретением в плане доводки собственных военных летательных аппаратов до уровня, позволяющего эффективно противостоять МиГам или даже превосходить их в том или ином аспекте. В плане баланса сил и их диспозиции, побег Беленко повлиял на перераспределение авиапарка истребителей-перехватчиков в рамках вооружённых сил стран Советского блока, в то время как для нужд ВВС и истребительной авиации ПВО СССР интенсифицировалась разработка новых перехватчиков, МиГ-25 было решено спешно экспортировать в соцстраны и страны социалистической ориентации, пока он не устарел окончательно. Косвенно, побег Беленко повлиял на ход работ (в сторону интенсификации) и ускорил принятие на вооружение МиГ-31. Союзу пришлось менять всю техническую составляющую передового базирования всех ВВС СССР.
Советское руководство пыталось осуществить нажим на Японию, угрожая в случае невозврата пилота вместе с самолётом прервать в одностороннем порядке выполнение им договорных обязательств по двусторонним внешнеторговым соглашениям, в частности, закрыть доступ для японских инвестиций в советскую экономику и народно-хозяйственный комплекс, прекратить японское участие в строительстве предприятий советской деревообрабатывающей, целлюлозно-бумажной промышленности, обмене технологиями ядерной энергетики и др. Это сразу отразилось на инвестиционном климате. В долгосрочном плане экономические последствия возникшей напряжённости (и убытки СССР из-за позиции занятой советским руководством) ещё длительное время давали о себе знать в советско-японской торговле.
Для деятелей советского искусства и эстрады побег Беленко надолго закрыл дорогу в Японию. У советских музыкальных коллективов сорвались гастроли в Японии, даже у тех из них, которые уже получили советские выездные и японские въездные визы, гастроли были отменены без разъяснения причин органами управления советской эстрады.

Заключение

Виктора Беленко за измену Родине заочно приговорили к высшей мере наказания. Вероятно, из-за этого он даже не искал контактов с родными.

В Советском Союзе у него остались мать, жена и маленький сын. Но и после распада СССР Беленко так и не вышел на связь со своими близкими. Жена долгое время жила на Дальнем Востоке, потом переехала в Армавир.

Подробнее..

Recovery mode Долина смерти. Кто охраняет Вилюйские котлы

27.02.2021 18:14:43 | Автор: admin

Странные слухи ходят о знаменитой аномальной зоне на правом берегу реки Вилюй

На северо-западе Якутии, в районе Верхнего Вилюя, находится труднопроходимая местность со следами каких-то грандиозных катаклизмов: сплошные вывалы леса, которым около 800 лет, разбросанные на сотни километров каменные обломки. На этой местности, глубоко под землей, в мерзлоте, находятся непонятные металлические объекты. Их присутствие проявляется на поверхности земли только пятнами причудливой растительности.

Древнее название этой местности Елюю черкечех, что в переводе означаетДолина смерти. Вот уже много лет якуты за сто верст обходят этот глухой район, игравший и играющий в судьбе не только цивилизации, но и всей планеты особую, судьбоносную роль.

Местность, о которой пойдет речь, можно охарактеризовать как сплошные болота, которые чередуются с труднопроходимой тайгой на площади более 100 тыс. кв. км. Окружают ее и довольно любопытные слухи о рассредоточении на ней металлических объектов неизвестного происхождения.

В давние времена через Долину Смерти проходил древний эвенкский кочевой путь. Вплоть до 1936 года на нем торговал купец Саввинов. Прошло время, и престарелый купец и его внучка Зина решили переехать в Сюльдюкар. Где-то в районе междуречья Хэлдью (в переводе с местного железный дом), дед привел внучку к небольшой, слегка приплюснутой, красноватой арке, где за винтообразным проходом оказалось много металлических комнат, в которых они и заночевали.

В давние времена находились среди местных охотников смельчаки, которые ночевали в этих помещениях. Но потом они начинали сильно болеть, а те, кто ночевали несколько раз подряд, вообще стремительно умирали. Якуты говорили, что место шибко худое, топкое и зверь туда не ходит!.

О местонахождении всех этих конструкций знали только старики, которые с молодости занимались охотой, и в своё время часто посещали эти места. Они вели кочевой образ жизни, и знание особенностей местности (куда можно ходить, а куда нельзя), было продиктовано жизненной необходимостью.

После 1936 года рядом с рекойОйгулдах (место с котлом), по указке стариков, геологи наткнулись на выступающую из земли гладкую металлическую полусферу красноватого цвета, большого диаметра, с таким ровным краем, что он режет ноготь. Толщина ее стенки была около 2 см. Она выступала из земли примерно на одну пятую своего диаметра. Стояла накренясь так, что под неё можно было въехать верхом на олене. Сделанное геологами описание было отправлено в Якутск.

Якутская долина смерти на картеЯкутская долина смерти на карте

Еще в прошлом веке известный исследователь Вилюя Р. Маак, отмечал: В Сунтаре (якутском поселении) мне рассказали, что на верхнем Вилюе есть речкаАлгый тимирбить(в переводе большой котел утонул). Недалеко от ее берега, в лесу, находится гигантский котел, сделанный из меди. Величина его неизвестна, так как над землей виден только край, но в нем растет несколько деревьев...(1853 г).

Этот же факт отмечает исследователь древних культур Якутии Н.Д. Архипов:Среди населения бассейна реки Вилюй издревле бытует предание о наличии в верховьях этой реки громадных размеров бронзовых котлов олгуев. Предание это заслуживает внимания, так как к этим предполагаемым районам местонахождения мифических котлов приурочено несколько речек с якутским названием Олгуйдах, Котельная.

Также загадочные котлы в долине упоминаются в письме некоего Михаила Корецкого из Владивостока. Он рассказывает следующее: Долина смерти тянется вдоль правого притока реки Вилюй. Все три раза я был там с проводником якутом. Что касается таинственных объектов, их там, наверное, много, потому что за три сезона я видел семь таких "котлов". Все они представляются мне совершенно загадочными: во-первых, размер от 6 до 9 метров в диаметре. Во-вторых, изготовлены из непонятного металла. Металл не отламывается и не куется. Даже на стали молоток обязательно оставил бы заметные вмятины.

По его словам, растительность вокруг котлов аномальная, более пышная: крупнолистные лопухи, очень длинные лозы, странная трава выше человеческого роста в 1,5-2 раза. В одном из котлов они ночевали всей группой (6 человек).

Ничего плохого не ощущали, никто после серьезно не болел. Разве что у одного из моих знакомых через три месяца полностью выпали все волосы. А у меня на левой стороне головы (я на ней спал) появились три маленьких болячки размером со спичечную головку каждая. Лечил я их всю жизнь, но они до сегодняшнего дня так и не прошли, писал Корецкий.

В своем письме Михаил Корецкий подчеркивает:В 1933 году якут-проводник говорил ему, что 5-10 лет тому назад он обнаружил несколько котлов-шаров (они были абсолютно круглые), которые высоко (выше человека) выступали из земли. Они выглядели как новенькие. А позже охотник уже видел их расколотыми и разбросанными.

Исследователи из города Мирный А.Гутенев и Ю.Михайловский сообщили, что в 1971 году один старый охотник-эвенк, который, побывав в Долине смерти, рассказал им, что в районе междуречьяНюргун Боотур(огненный богатырь) иАтарадак(место с трехгранной острогой) из земли выглядывает как раз то, что и дало название местности Шибко большая трехгранная железная острога.

Приподнятый над землёй край загадочного котла в долине смертиПриподнятый над землёй край загадочного котла в долине смерти

А на междуречьеХэлюгир(железные люди) есть железная нора, и в ней лежат промерзшие насквозь шибко худые, черные, одноглазые люди в железных одеждах. Он сказал, что может привести туда людей. Говорил, что это недалеко, но ему никто не поверил. Сейчас его уже нет в живых...

Еще один из объектов, судя по всему, был похоронен при возведении плотины на Вилюе, немного ниже порогаЭрбийэ. По рассказу строителя Вилюйской ГЭС, когда соорудили отводной канал и осушили основное русло, в нем обнаружилась выпуклая металлическая поверхность, похожая на перевернутый котелок, но размерами более 10 метров. План сдачи объекта горел, и руководство строительства, наскоро осмотрев необычную находку, приказало продолжать работу. Впоследствии этот объект был затоплен.

Рассказов людей, случайно наткнувшихся на подобные конструкции, множество, но без конкретных примет на уныло-однообразной местности снова найти их крайне трудно.

Якутские легенды содержат много упоминаний о взрывах, огненных смерчах и взлетах пылающих шаров. И все эти явления каким-то образом связаны с таинственными металлическими конструкциями, встречающимися вДолине смерти.

Другие объекты разбросанные по разным местам металлические крышки-полусферы, прикрывающие неизвестно что. Но якутские легенды гласят, что загадочные пылающие шары порождаетизрыгающее дым и огонь жерлосхлопающей стальной крышкой.

Оттуда же вылетают и огненные смерчи, которые, по описаниям, сходны с эффектом современных ядерных взрывов. Примерно за столетие до каждого взрыва или серии взрывов, из железного жерла вылетал быстро летящий огненный шар и, не вызывая больших бедствий, взмывал вверх в виде тонкого огненного столба. На его вершине возникал очень большой огненный шар Сопровождаемый четырьмя громами подряд, он устремлялся на еще большую высоту и улетал, оставляя за собой длинный огненно-дымный след. Потом издалека доносилась канонада его взрывов.

В 50-е годы этой местностью, заинтересовались военные. Они провели на там серию ядерных взрывов. Один из взрывов произошел при весьма загадочных обстоятельствах. Зарубежные специалисты до сих пор недоумевают по этому поводу.

В 1954 году при испытании всего 10 кт ядерного устройства, взрыв по непонятным причинам превзошел расчётные параметры в 2-3 тыс. раз, т.е. достиг мощности порядка 20-30 Мгт, что и было зарегистрировано всеми сейсмическими станциями мира.

Причина столь значительного расхождения в мощности взрыва осталась неясной. ТАСС распространило заявление, что в штатном режиме была испытана компактная водородная бомба, но как в дальнейшем выяснилось, это заявление не соответствовало действительности.

Как свидетельствуют передающиеся из уст в уста легенды, местность, будто внезапно окутала непроницаемая мгла, и окрестности потряс оглушительный рев. Молнии рассекали небо во всех направлениях. Когда все стихло и мгла рассеялась, перед их потрясенными взглядами открылась невиданная картина: Посреди выжженной земли сияло на солнце высокое вертикальное сооружение, видимое с расстояния многих дней пути.

На протяжении длительного времени сооружение испускало неприятные, режущие слух звуки и постепенно уменьшалось в высоте, пока вовсе не исчезло под землей. На месте погрузившегося высотного сооружения зияло огромное вертикальное жерло. Со стороны было видно, как над жерлом появлялся иногда вращающийся остров, оказывавшийся затем его захлопывающейся крышкой. Кто из любопытства пытался проникнуть на эту территорию, назад не возвращался.

Прошло немногим более 600 лет. К тому времени сменилось много поколений кочевников. Заветы предков позабылись, и местность вновь оказалась заселенной.

И... все повторилось. Над огненным жерлом возник шар нюргун боотура, и вновь улетел за горизонт, где и взорвался. Через несколько десятилетий в небо ушел второй болид (теперь он уже назывался кюн эрбийэ сияющий воздушный вестник, гонец). Потом снова грянул опустошительный взрыв, тоже очеловеченный легендами. Он получил имя Уот Усуму Тонг Дуурай, что можно примерно перевести как преступный пришелец, продырявивший землю и укрывшийся в глубине, огненным смерчем уничтожающий все вокруг.

Самым значительным событием в легендах был вылет из подземных глубин Тонг Дуурая и его битва с Нюргун Боотуром. Происходило это примерно так: сначала из жерла вырвался змееподобный ветвящийся огненный смерч, на вершине которого возникал гигантских размеров огненный шар, после нескольких ударов грома устремлявшийся высоко в небо. Вместе с ним вылетала его свита: рой пагубно кровавых смерчей, которые творили разрушения на местности.

Вообще, картина этих событий довольно разнообразна: из жерла могли вылетать сразу несколько огненных богатырей, пролететь какое-то расстояние и взорваться в одном месте. Такое же случалось и при вылете Тонг Дуурая. Почвенные наслоения указывают, что время между взрывами не превышает 600-700 лет.

Гораздо ярче других источников эти взрывы описывают тунгусские легенды. Судя по их описаниям, это нечто худшее, чем современное ядерное оружие, во много раз. Подобные события описаны и в китайских хрониках XIV века, где есть упоминания о том, что далеко на севере поднялась над горизонтом и закрыла полнеба огромная черная туча, выстреливавшая крупными каменными осколками. Камни с неба сыпались и на Скандинавию с Германией, где загорелось несколько городов. Ученые установили, что это были вполне обычные камни и предположили: где-то произошло извержение вулкана.

Долина смертиДолина смерти

Может быть, причиной этих бедствий и был Тонг Дуурай, вылетавший из жерла на протяжении многих веков? Если Нюргун Боотур при своем появлении загораживал полнеба, то Тонг Дуурай значительно превосходил его в размерах и, уходя в высоту, совершенно исчезал из виду. Отметим, что в Долине смерти в определенные промежутки времени фиксируется повышенный радиационный фон, объяснения которому специалисты не находят.

Но чем же могут быть сами котлы

Открытие озаряет мозг, словно молния ночное небо. Котлы могут оказаться прикрывающими шахту ракетной установки сверху, считает исследователь Юрий Михайловский.

Кто знает, может, от древних цивилизаций нам досталась их военная мощь? По легендам, в Долине находили древние жерла, идущие строго вниз, и непонятные сооружения. Одни из них большие круглые железные дома, у которых нет ни окон, ни дверей, зато есть просторный лаз с уходящим вниз винтообразным проходом.

НЛО, которые часто наблюдают в долине охотники, взлетают вертикально. Не из этих ли шахт?

Одно свидетельство меня особенно впечатлило. Старый кочевник рассказывал, что в междуречье Хэдигир он нашел куполообразный холм с отверстием. Он туда спустился и попал в огромную шахту пространство, напоминающее огромный космический корабль с лестницами внутри. Испугавшись, он ушел от греха подальше. Кстати, еще Екатерина II искала в Якутии древнюю цивилизацию, послав туда экспедицию, но ученые не нашли ее следов.

Рассматривая снимки и карты заброшенных ракетных шахт из других мест России, отчетливо видны люки-полусферы, лабиринты подземных ходов. Очень похоже на то, что есть в Якутии, в Долине Смерти, то, о чём рассказывали охотники. Неужели наша цивилизация повторяет путь, который прошли дальние предки землян? Ведь в эпосе многих народов Земли есть упоминания о событиях, очень похожих на ядерную катастрофу ...

Научный подход

Легенда о гигантских котлах до сих пор пользуется огромной популярностью. Кто-то считает, что это бывшая база инопланетян, кто-то считает котлы произведениями рук человека. Некоторые полагают, что это купола огромных подземных сооружений, и даже приводят рассказы об охотниках, которые якобы туда спускались. Самые продвинутые объясняют эти странные образования и губительное воздействие местности сбросом отработанных ступеней ракет и подземными атомными взрывами.

Все эти загадки могут иметь вполне земное происхождение. Дело в том, что нечто подобное регулярно наблюдается и в Горном Алтае, и в калмыцких Черных Землях. И там есть поляны, где громоздятся загадочные металлические конструкции то искореженные, поросшие мхом, а то и совсем новенькие. Но при этом на странных металлических обломках отчетливо читаются штампы российских и украинских заводов. Там тоже пересказываются истории о пастухах и охотниках, которые находили, например, небольшие серебристые цилиндры, не остывающие месяцами. Потом якобы эти люди умирали.

Государственный комитет по геологии и недропользованию РС(Я): Данная территория богата газовыми месторождениями. Возможно, что в результате выброса газа у людей возникали галлюцинации, они могли переночевать в пещере, в которой скапливался газ, например, метан, отравление которым может привести к летальному исходу.

Таинственный кург в болоте неподалёку от реки ВилюйТаинственный кург в болоте неподалёку от реки Вилюй

В качестве таинственных котлов вполне могли выступить фрагменты космических ракет, потерпевших крушение при запуске, или отделяемые ступени, а сохранившаяся в них повышенная радиоактивность логично объясняла бы смертоносность странных объектов. При этом Якутия вполне официально является одной из зон, где должны падать обломки носителей.

Но дело в том, что некоторые приведенные рассказы относятся ко времени, когда никаких ракет еще не было в помине, как и ядерных бомб или атомных реакторов.

Подробнее..

Лучший в своем классе история появления стандарта шифрования AES

05.08.2020 22:05:40 | Автор: admin


C мая 2020 года в России стартовали официальные продажи внешних винчестеров WD My Book, поддерживающих аппаратное шифрование AES с 256-битным ключом. В силу законодательных ограничений, ранее подобные устройства можно было приобрести лишь в зарубежных интернет-магазинах электроники либо на сером рынке, однако теперь обзавестись защищенным накопителем с фирменной 3-летней гарантией от Western Digital может любой желающий. В честь этого знаменательного события мы решили сделать небольшой экскурс в историю и разобраться, как появился Advanced Encryption Standard и чем же он так хорош по сравнению с конкурирующими решениями.

Долгое время официальным стандартом симметричного шифрования в США являлся DES (Data Encryption Standard стандарт шифрования данных), разработанный компанией IBM и внесенный в перечень Федеральных стандартов обработки информации в 1977 году (FIPS 46-3). В основу алгоритма легли наработки, полученные в ходе исследовательского проекта под кодовым названием Lucifer. Когда 15 мая 1973 года Национальное бюро стандартов США объявило о проведении конкурса, целью которого стало создание стандарта шифрования для госучреждений, американская корпорация включилась в криптографическую гонку с третьей версией Люцифера, использовавшей обновленную сеть Фейстеля. И наряду с другими конкурсантами потерпела фиаско: ни один из алгоритмов, представленных на первый конкурс, не соответствовал строгим требованиям, сформулированным экспертами НБС.



Разумеется, в IBM не могли просто так смириться с поражением: когда 27 августа 1974 года конкурс был перезапущен, американская корпорация вновь подала заявку, представив улучшенную версию Lucifer. На сей раз у жюри не оказалось ровным счетом ни одной претензии: проведя грамотную работу над ошибками, IBM успешно устранила все недочеты, так что придраться оказалось не к чему. Одержав убедительную победу, Люцифер сменил имя на DES и уже 17 марта 1975 года был издан в Федеральном реестре.

Однако в ходе открытых симпозиумов, организованных в 1976 году с целью обсуждения нового криптографического стандарта, DES подвергся жесткой критике со стороны экспертного сообщества. Причиной этого стали изменения, внесенные в алгоритм специалистами АНБ: в частности, была уменьшена длина ключа до 56 бит (изначально Lucifer поддерживал работу с 64- и 128-битными ключами), а также изменена логика работы блоков перестановки. По мнению криптографов, улучшения не имели смысла и единственное, к чему стремилось Агентство национальной безопасности, внедряя модификации, получить возможность беспрепятственно просматривать зашифрованные документы.

В связи с перечисленными обвинениями, при Сенате США была создана специальная комиссия, целью работы которой стала проверка обоснованности действий АНБ. В 1978 году по итогам расследования был опубликован доклад, в котором сообщалось следующее:

  • представители АНБ участвовали в доработке DES лишь косвенно, при этом их вклад касался только изменения работы блоков перестановки;
  • окончательная версия DES оказалась более устойчивой к взлому и криптографическому анализу, чем предыдущая, так что внесенные изменения были обоснованы;
  • длины ключа 56 бит более чем достаточно для подавляющего большинства приложений, ведь для взлома такого шифра потребуется суперкомпьютер стоимостью как минимум несколько десятков миллионов долларов, а поскольку у обычных злоумышленников и даже профессиональных хакеров подобных ресурсов нет, то и беспокоиться не о чем.

Выводы комиссии частично подтвердились в 1990 году, когда израильские криптографы Эли Бихам и Ади Шамир, работая над концепцией дифференциального криптоанализа, провели большое исследование блочных алгоритмов, в числе которых оказался и DES. Ученые пришли к выводу, что новая модель перестановок оказалась намного более устойчивой к атакам, чем изначальная, а значит, АНБ действительно помогло ликвидировать несколько дыр в алгоритме.


Ади Шамир

В то же время ограничение на длину ключа оказалось проблемой, и притом весьма серьезной, что в 1998 году убедительно доказала общественная организация Electronic Frontier Foundation (EFF) в рамках эксперимента DES Challenge II, проведенного под эгидой RSA Laboratory. Специально для взлома DES был построен суперкомпьютер, получивший кодовое название EFF DES Cracker, над созданием которого трудились Джон Гилмор, сооснователь EFF и руководитель проекта DES Challenge, и Пол Кочер, основатель компании Cryptography Research.


Процессор EFF DES Cracker

Разработанная ими система смогла успешно подобрать ключ к зашифрованному образцу методом простого перебора всего за 56 часов, то есть менее чем за трое суток. Для этого DES Cracker потребовалось проверить около четверти всех возможных комбинаций, а это значит, что даже при самом неблагоприятном стечении обстоятельств на взлом уйдет около 224 часов, то есть не более 10 суток. При этом стоимость суперкомпьютера, с учетом затраченных на его проектирование средств, составила всего 250 тысяч долларов. Нетрудно догадаться, что сегодня взломать подобный шифр еще проще и дешевле: мало того, что железо стало куда мощнее, так еще и благодаря развитию интернет-технологий хакеру вовсе не обязательно покупать или арендовать необходимое оборудование вполне достаточно создать ботнет из зараженных вирусом ПК.

Данный эксперимент наглядно продемонстрировал, насколько DES морально устарел. А поскольку на тот момент алгоритм использовался в составе практически 50% решений в области шифрования данных (по оценке все той же EFF), вопрос о поиске альтернативы встал как никогда остро.

Новые вызовы новый конкурс




Справедливости ради стоит сказать, что поиски замены для Data Encryption Standard начались практически одновременно с подготовкой EFF DES Cracker: Национальный институт стандартов и технологий (NIST) США еще в 1997 году объявил о запуске конкурса алгоритмов шифрования, призванного выявить новый золотой стандарт криптобезопасности. И если в былые времена аналогичное мероприятие проводилось исключительно для своих, то, памятуя о неудачном опыте 30-летней давности, в NIST решили сделать конкурс полностью открытым: в нем могли принять участие любая компания и любое частное лицо, независимо от места дислокации или гражданства.

Такой подход оправдал себя еще на этапе отбора претендентов: среди авторов, подавших заявку на участие в конкурсе Advanced Encryption Standard, оказались и всемирно известные криптологи (Росс Андерсон, Эли Бихам, Ларс Кнудсен), и небольшие IT-компании, специализирующиеся на кибербезопасности (Counterpane), и крупные корпорации (немецкая Deutsche Telekom), и образовательные учреждения (Лёвенский католический университет, Бельгия), а также стартапы и небольшие фирмы, о которых мало кто слышал за пределами их стран (например, Tecnologia Apropriada Internacional из Коста-Рики).

Интересно, что в этот раз в NIST утвердили всего два основных требования к алгоритмам-участникам:

  • блок данных должен иметь фиксированный размер 128 бит;
  • алгоритм должен поддерживать как минимум три размера ключей: 128, 192 и 256 бит.

Добиться такого результата было сравнительно просто, но, как говорится, дьявол кроется в деталях: вторичных требований оказалось куда больше, а соответствовать им было куда сложней. Между тем именно на их основе рецензенты NIST и проводили отбор конкурсантов. Вот каким критериям должны были соответствовать претенденты на победу:

  1. способность противостоять любым криптоаналитическим атакам, известным на момент проведения конкурса, включая атаки по сторонним каналам;
  2. отсутствие слабых и эквивалентных ключей шифрования (под эквивалентными подразумеваются такие ключи, которые, хотя и имеют значительные отличия друг от друга, приводят к получению идентичных шифров);
  3. скорость шифрования стабильна и примерно одинакова на всех актуальных платформах (от 8- до 64-битных);
  4. оптимизация под многопроцессорные системы, поддержка распараллеливания операций;
  5. минимальные требования к объему оперативной памяти;
  6. отсутствие ограничений для использования в стандартных сценариях (в качестве основы для построения хэш-функций, ГПСЧ и т. д.);
  7. структура алгоритма должна быть обоснованной и простой для понимания.

Последний пункт может показаться странным, однако, если поразмыслить, он не лишен смысла, ведь хорошо структурированный алгоритм гораздо проще анализировать, к тому же в нем куда сложнее спрятать закладку, с помощью которой разработчик мог бы получить неограниченный доступ к зашифрованным данным.

Прием заявок на конкурс Advanced Encryption Standard продлился полтора года. Всего в нем приняли участие 15 алгоритмов:

  1. CAST-256, разработанный канадской компанией Entrust Technologies на базе CAST-128, созданного Карлайлом Адамсом и Стаффордом Таваресом;
  2. Crypton, созданный криптологом Че Хун Лим из южнокорейской компании Future Systems, занятой в сфере кибербезопасности;
  3. DEAL, концепт которого изначально предложил датский математик Ларс Кнудсен, а впоследствии его идеи развил Ричард Аутербридж, который и подал заявку на участие в конкурсе;
  4. DFC, совместный проект Парижской высшей педагогической школы, Национального центра научных исследований Франции (CNRS) и телекоммуникационной корпорации France Telecom;
  5. E2, разработанный под эгидой крупнейшей телекоммуникационной компании Японии Nippon Telegraph and Telephone;
  6. FROG, детище коста-риканской компании Tecnologia Apropriada Internacional;
  7. HPC, придуманный американским криптологом и математиком Ричардом Шреппелем из Университета Аризоны;
  8. LOKI97, созданный австралийскими криптографами Лоуренсом Брауном и Дженнифер Себерри;
  9. Magenta, разработанный Майклом Якобсоном и Клаусом Хубером для немецкой телекоммуникационной компании Deutsche Telekom AG;
  10. MARS от компании IBM, в создании которого принимал участие Дон Копперсмит один из авторов Lucifer;
  11. RC6, написанный Роном Ривестом, Мэттом Робшау и Рэем Сиднеем специально для конкурса AES;
  12. Rijndael, созданный Винсентом Рэйменом и Джоан Даймон из Лёвенского католического университета;
  13. SAFER+, разработанный калифорнийской корпорацией Cylink совместно с Национальной академией наук Республики Армения;
  14. Serpent, созданный Россом Андерсоном, Эли Бихамом и Ларсом Кнудсеном;
  15. Twofish, разработанный исследовательской группой Брюса Шнайера на базе криптографического алгоритма Blowfish, предложенного Брюсом еще в 1993 году.

По итогам первого тура были определены 5 финалистов, среди которых оказались Serpent, Twofish, MARS, RC6 и Rijndael. Члены жюри нашли изъяны практически у каждого из перечисленных алгоритмов, кроме одного. Кто же оказался победителем? Немного продлим интригу и для начала рассмотрим основные достоинства и недостатки каждого из перечисленных решений.

MARS


В случае с богом войны эксперты отметили идентичность процедуры шифрования и дешифровки данных, однако этим его преимущества и ограничились. Алгоритм IBM вышел на удивление прожорливым, что делало его неподходящим для работы в условиях ограниченных ресурсов. Наблюдались проблемы и с распараллеливанием вычислений. Для эффективной работы MARS нуждался в аппаратной поддержке 32-битного умножения и вращения на переменное число бит, что опять же накладывало ограничения на перечень поддерживаемых платформ.

MARS также оказался достаточно уязвим к атакам по времени и энергопотреблению, имел проблемы с расширением ключей на лету, а его чрезмерная сложность затрудняла анализ архитектуры и создавала дополнительные проблемы на этапе практической реализации. Одним словом, на фоне других финалистов MARS выглядел настоящим аутсайдером.

RC6


Алгоритм унаследовал часть преобразований от своего предшественника, RC5, тщательно исследованного ранее, что в сочетании с простой и наглядной структурой делало его полностью прозрачным для экспертов и исключало наличие закладок. К тому же RC6 демонстрировал рекордные скорости обработки данных на 32-битных платформах, а процедуры шифрования и дешифровки были реализованы в нем абсолютно идентично.

Однако алгоритм имел те же проблемы, что и упомянутый выше MARS: тут и уязвимость к атакам по сторонним каналам, и зависимость производительности от поддержки 32-битных операций, а также проблемы с параллельными вычислениями, расширением ключей и требовательность к аппаратным ресурсам. В связи с этим на роль победителя он никак не годился.

Twofish


Twofish оказался довольно шустрым и хорошо оптимизированным для работы на маломощных устройствах, отлично справлялся с расширением ключей и предполагал несколько вариантов реализации, что позволяло тонко адаптировать его под конкретные задачи. В то же время две рыбки оказались уязвимы к атакам по сторонним каналам (в частности, по времени и потребляемой мощности), не особо дружили с многопроцессорными системами и отличались чрезмерной сложностью, что, кстати, сказалось и на скорости расширения ключа.

Serpent


Алгоритм имел простую и понятную структуру, что существенно упрощало его аудит, был не особо требователен к мощностям аппаратной платформы, имел поддержку расширения ключей на лету и сравнительно легко поддавался модификации, чем выгодно отличался от своих оппонентов. Несмотря на это, Serpent был в принципе самым медленным из финалистов, к тому же процедуры шифровки и дешифровки информации в нем кардинально отличались и требовали принципиально разных подходов к реализации.

Rijndael


Rijndael оказался чрезвычайно близок к идеалу: алгоритм в полной мере удовлетворял требованиям NIST, при этом не уступая, а по совокупности характеристик заметно превосходя конкурентов. Слабых мест у Рейндала было лишь два: уязвимость к атакам по энергопотреблению на процедуру расширения ключа, что является весьма специфичным сценарием, и определенные проблемы с расширением ключа на лету (данный механизм работал без ограничений лишь у двух конкурсантов Serpent и Twofish). Кроме того, по оценкам экспертов, Рейндал имел несколько меньший запас криптостойкости, чем Serpent, Twofish и MARS, что, впрочем, с лихвой компенсировалось устойчивостью к подавляющему большинству разновидностей атак по сторонним каналам и широким спектром вариантов реализации.

Категория


Serpent


Twofish


MARS


RC6


Rijndael


Криптостойкость


+


+


+


+


+


Запас криптостойкости


++


++


++


+


+


Скорость шифрования при программной реализации


-




+


+


Скорость расширения ключа при программной реализации



-




+


Смарт-карты с большим объемом ресурсов


+


+


-



++


Смарт-карты с ограниченным объемом ресурсов



+


-



++


Аппаратная реализация (ПЛИС)


+


+


-



+


Аппаратная реализация (специализированная микросхема)


+



-


-


+


Защита от атак по времени выполнения и потребляемой мощности


+



-


-


+


Защита от атак по потребляемой мощности на процедуру расширения ключа






-


Защита от атак по потребляемой мощности на реализации в смарт-картах



+


-



+


Возможность расширения ключа на лету


+


+





Наличие вариантов реализации (без потерь в совместимости)


+


+




+


Возможность параллельных вычислений






+



По совокупности характеристик Рейндал на голову опережал конкурентов, так что результат финального голосования оказался вполне закономерен: алгоритм одержал уверенную победу, получив 86 голосов за и лишь 10 против. Serpent занял почетное второе место с 59 голосами, тогда как Twofish расположился на третьей позиции: за него вступился 31 член жюри. Вслед за ними следовал RC6, завоевав 23 голоса, а MARS закономерно оказался на последней строчке, получив лишь 13 голосов за и 83 против.

2 октября 2000 года Rijndael был объявлен победителем конкурса AES, по традиции сменив название на Advanced Encryption Standard, под которым он и известен в настоящее время. Процедура стандартизации продлилась около года: 26 ноября 2001 года AES был внесен в перечень Федеральных стандартов обработки информации, получив индекс FIPS 197. Новый алгоритм высоко оценили и в АНБ, а с июня 2003 года Агентство национальной безопасности США даже признало AES с 256-битным ключом шифрования достаточно надежным для обеспечения безопасности документов категории совершенно секретно.

Внешние накопители WD My Book с поддержкой аппаратного шифрования AES-256


Благодаря сочетанию высокой надежности и производительности, Advanced Encryption Standard быстро обрел мировое признание, став одним из самых популярных в мире алгоритмов симметричного шифрования и войдя в состав множества криптографических библиотек (OpenSSL, GnuTLS, Linux's Crypto API и др.). В настоящее время AES широко используется в приложениях корпоративного и пользовательского уровня, а его поддержка реализована во множестве разнообразных устройств. В частности, именно аппаратное шифрование AES-256 применяется во внешних накопителях Western Digital семейства My Book для обеспечения защиты сохраненных данных. Давайте познакомимся с этими девайсами поближе.



Линейка настольных жестких дисков WD My Book включает шесть моделей различной емкости: на 4, 6, 8, 10, 12 и 14 терабайт, что позволяет подобрать устройство, оптимально подходящее под ваши потребности. По умолчанию внешние HDD используют файловую систему exFAT, что обеспечивает совместимость с широким спектром операционных систем, включая Microsoft Windows 7, 8, 8.1 и 10, а также Apple macOS версии 10.13 (High Sierra) и выше. Пользователи ОС Linux имеют возможность смонтировать винчестер с помощью драйвера exfat-nofuse.

Подключение My Book к компьютеру осуществляется с помощью высокоскоростного интерфейса USB 3.0, обратно совместимого с USB 2.0. С одной стороны, это позволяет передавать файлы на максимально возможной скорости, ведь пропускная способность USB SuperSpeed составляет 5 Гбит/с (то есть 640 МБ/с), чего оказывается более чем достаточно. В то же время функция обратной совместимости обеспечивает поддержку практически любых устройств, выпущенных за последние 10 лет.



Хотя My Book и не требует установки дополнительного программного обеспечения благодаря технологии автоматического определения и конфигурирования периферических устройств Plug and Play, мы все же рекомендуем воспользоваться фирменным программным пакетом WD Discovery, который поставляется в комплекте с каждым устройством.



В состав набора вошли следующие приложения:

WD Drive Utilities


Программа позволяет получить актуальную информацию о текущем состоянии накопителя на основе данных S.M.A.R.T. и проверить жесткий диск на наличие битых секторов. Помимо этого, с помощью Drive Utilities можно оперативно уничтожить все сохраненные на вашем My Book данные: при этом файлы будут не просто стерты, но и полностью перезаписаны несколько раз, так что восстановить их по завершении процедуры уже не удастся.

WD Backup


Используя эту утилиту, можно настроить резервное копирование по заданному расписанию. Стоит сказать, что WD Backup поддерживает работу с Google Drive и Dropbox, при этом позволяя выбирать при создании бэкапа любые возможные сочетания источник-цель. Таким образом, вы можете настроить автоматический перенос данных с My Book в облако либо импортировать нужные файлы и папки из перечисленных сервисов как на внешний винчестер, так и на локальную машину. Помимо этого, предусмотрена возможность синхронизации с аккаунтом в социальной сети Facebook, что позволяет автоматически создавать резервные копии фотографий и видеозаписей из вашего профиля.

WD Security


Именно с помощью этой утилиты можно ограничить доступ к накопителю паролем и управлять шифрованием данных. Все, что для этого потребуется, указать пароль (его максимальная длина может достигать 25 символов), после чего вся информация на диске будет зашифрована, а доступ к сохраненным файлам сможет получить лишь тот, кто знает кодовую фразу. Для большего удобства WD Security позволяет создать список доверенных устройств, при подключении к которым My Book будет разблокироваться автоматически.

Подчеркнем, что WD Security лишь предоставляет удобный визуальный интерфейс для управления криптографической защитой, тогда как шифрование данных осуществляется самим внешним накопителем на аппаратном уровне. Такой подход обеспечивает целый ряд важных преимуществ, а именно:

  • за создание ключей шифрования отвечает аппаратный генератор случайных чисел, а не ГПСЧ, что помогает добиться высокой степени энтропии и повысить их криптографическую стойкость;
  • в ходе процедуры шифрования и дешифровки криптографические ключи не выгружаются в оперативную память компьютера, равно как и не создаются временные копии обрабатываемых файлов в скрытых папках системного диска, что помогает свести к минимуму вероятность их перехвата;
  • скорость обработки файлов никак не зависит от производительности клиентского устройства;
  • после активации защиты шифрование файлов будет осуществляться автоматически, на лету, не требуя дополнительных действий со стороны пользователя.

Все вышеперечисленное гарантирует безопасность данных и позволяет практически полностью исключить вероятность хищения конфиденциальной информации. С учетом дополнительных возможностей накопителя это делает My Book одним из лучших защищенных хранилищ среди доступных на российском рынке.
Подробнее..

История изобретения флешки в лицах и занимательных фактах

21.09.2020 22:05:33 | Автор: admin

Случаи, когда изобретатель создает сложное электротехническое устройство с нуля, полагаясь при этом исключительно на собственные изыскания, чрезвычайно редки. Как правило, те или иные девайсы рождаются на стыке сразу нескольких технологий и стандартов, созданных разными людьми в разное время. Для примера возьмем банальную флешку. Это портативный носитель данных, выполненный на базе энергонезависимой памяти NAND и оснащенный встроенным USB-портом, который используется для подключения накопителя к клиентскому устройству. Таким образом, чтобы понять, как подобный девайс в принципе мог появиться на рынке, необходимо проследить историю изобретения не только самих чипов памяти, но и соответствующего интерфейса, без которого привычных нам флешек попросту бы не существовало. Давайте же попробуем это сделать.

Полупроводниковые запоминающие устройства, поддерживающие стирание записанных данных, появились почти полвека назад: первое EPROM было создано израильским инженером Довом Фроманом еще в 1971 году.


Дов Фроман, разработчик EPROM

Инновационные для своего времени ПЗУ достаточно успешно применялись в ходе производства микроконтроллеров (например, Intel 8048 или Freescale 68HC11), однако оказались решительно непригодны для создания портативных накопителей. Главной проблемой EPROM была слишком сложная процедура стирания информации: для этого интегральную схему необходимо было облучить в ультрафиолетовом спектре. Работало это следующим образом: фотоны УФ-излучения придавали избыточным электронам энергию, достаточную для рассеивания заряда на плавающем затворе.


В чипах EPROM были предусмотрены специальные окошки для стирания данных, закрытые кварцевыми пластинами

Это добавляло два существенных неудобства. Во-первых, стереть данные на таком чипе в адекватные сроки можно было лишь с помощью достаточно мощной ртутной лампы, и даже в этом случае процесс занимал несколько минут. Для сравнения: обычная люминесцентная лампа удаляла бы информацию в течение нескольких лет, а если оставить такую микросхему под прямыми солнечными лучами, то на ее полную очистку потребовались бы недели. Во-вторых, даже если бы этот процесс удалось хоть как-то оптимизировать, избирательное удаление конкретного файла было все равно невозможным: информация на EPROM стиралась целиком.

Перечисленные проблемы были решены в следующем поколении чипов. В 1977 году Элай Харари (кстати, впоследствии основавший SanDisk, вошедшую в число крупнейших мировых производителей носителей данных, выполненных на базе флеш-памяти), используя технологию автоэлектронной эмиссии, создал первый прототип EEPROM ПЗУ, в котором стирание данных, как и программирование, осуществлялось сугубо электрически.


Элай Харари, основатель SanDisk, держащий в руках одну из первых SD-карт

Принцип действия EEPROM был практически идентичен таковому у современной NAND-памяти: в качестве носителя заряда использовался плавающий затвор, а перенос электронов сквозь слои диэлектрика осуществлялся благодаря туннельному эффекту. Сама организация ячеек памяти представляла собой двумерный массив, что уже позволяло записывать и удалять данные адресно. Кроме того, EEPROM обладал весьма неплохим запасом прочности: каждая ячейка могла быть перезаписана вплоть до 1 миллиона раз.

Но и здесь все оказалось отнюдь не так радужно. Чтобы получить возможность стирать данные электрически, в каждую ячейку памяти пришлось внедрить дополнительный транзистор, управляющий процессом записи и стирания. Теперь на каждый элемент массива приходилось 3 проводника (1 проводник столбцов и 2 проводника строк), из-за чего усложнялась разводка компонентов матрицы и возникали серьезные проблемы с масштабированием. А значит, о создании миниатюрных и емких устройств не могло быть и речи.

Поскольку готовая модель полупроводниковой ПЗУ уже существовала, дальнейшие научные изыскания продолжились с прицелом на создание микросхем, способных обеспечить более плотное хранение данных. И таковые увенчались успехом в 1984 году, когда Фудзио Масуока, работавший в корпорации Toshiba, представил прототип энергонезависимой флеш-памяти на международной конференции International Electron Devices Meeting, проходившей в стенах Института инженеров электротехники и электроники (IEEE).


Фудзио Масуока, отец флеш-памяти

Кстати, само название придумал вовсе не Фудзио, а один из его коллег, Сёдзи Ариидзуми, которому процесс стирания данных напомнил сияющую вспышку молнии (от английского flash вспышка). В отличие от EEPROM, флеш-память была основана на МОП-транзисторах с дополнительным плавающим затвором, расположенным между p-слоем и управляющим затвором, что позволило отказаться от лишних элементов и создавать действительно миниатюрные чипы.

Первыми коммерческими образцами флеш-памяти стали микросхемы Intel, выполненные по технологии NOR (Not-Or), производство которых было запущено в 1988 году. Как и в случае с EEPROM, их матрицы представляли собой двумерный массив, в котором каждая ячейка памяти находилась на пересечении строки и столбца (соответствующие проводники подключались к разным затворам транзистора, а исток к общей подложке). Однако уже в 1989 году Toshiba представила собственную версию флеш-памяти, получившую название NAND. Массив имел аналогичную структуру, но в каждом его узле вместо одной ячейки теперь располагалось несколько последовательно включенных. Кроме того, в каждой линии использовалось два МОП-транзистора: управляющий, расположенный между разрядной линией и столбцом ячеек, и транзистор заземления.

Более высокая плотность компоновки помогла увеличить емкость чипа, однако при этом усложнился и алгоритм чтения/записи, что не могло не отразиться на скорости передачи информации. По этой причине новая архитектура так и не смогла полностью вытеснить NOR, нашедшую применение в создании встраиваемых ПЗУ. В то же время именно NAND оказалась идеально подходящей для производства портативных накопителей данных SD-карт и, разумеется, флешек.

К слову, появление последних стало возможным лишь в 2000 году, когда стоимость флеш-памяти достаточно снизилась и выпуск подобных устройств для розничного рынка мог окупиться. Первым в мире USB-накопителем стало детище израильской компании M-Systems: компактную флешку DiskOnKey (что можно перевести, как диск-на-брелке, поскольку на корпусе устройства было предусмотрено металлическое кольцо, позволявшее носить флешку вместе со связкой ключей) разработали инженеры Амир Баном, Дов Моран и Оран Огдан. За миниатюрный девайс, способный вместить 8 МБ информации и заменявший собой пяток 3,5-дюймовых дискет, в то время просили $50.


DiskOnKey первая в мире флешка от израильской компании M-Systems

Интересный факт: на территории США у DiskOnKey был официальный издатель, в роли которого выступала IBM. Локализованные флешки ничем не отличались от оригинальных, за исключением логотипа на лицевой части, из-за чего многие ошибочно приписывают создание первого USB-накопителя именно американской корпорации.


DiskOnKey, IBM Edition

Вслед за оригинальной моделью буквально через пару месяцев свет увидели более вместительные модификации DiskOnKey на 16 и 32 МБ, за которые просили уже $100 и $150 соответственно. Несмотря на дороговизну, сочетание компактных размеров, вместительности и высокой скорости чтения/записи (которая оказалась примерно в 10 раз выше, чему у стандартных дискет) пришлось по вкусу множеству покупателей. И с этого момента флешки начали свое триумфальное шествие по планете.

Один в поле воин: битва за USB


Впрочем, флешка не была бы флешкой, не появись пятью годами ранее спецификация Universal Serial Bus именно так расшифровывается привычная нам аббревиатура USB. И историю зарождения данного стандарта можно назвать чуть ли не более интересной, чем изобретение самой флеш-памяти.

Как правило, новые интерфейсы и стандарты в IT являются плодом тесного сотрудничества крупных предприятий, зачастую даже конкурирующих между собой, но вынужденных объединить усилия ради создания унифицированного решения, которое позволило бы существенно упростить разработку новых продуктов. Так произошло, например, с картами памяти формата SD: первая версия Secure Digital Memory Card была создана в 1999 году при участии SanDisk, Toshiba и Panasonic, причем новый стандарт оказался настолько удачным, что удостоился титула отраслевого спустя всего год. Сегодня же SD Card Association насчитывает свыше 1000 компаний-участников, инженеры которых занимаются разработкой новых и развитием существующих спецификаций, описывающих разнообразные параметры флеш-карт.



И с первого взгляда история USB полностью идентична тому, что происходило со стандартом Secure Digital. Чтобы сделать персональные компьютеры более дружелюбными по отношению к рядовому пользователю, производителям железа требовался, помимо прочего, универсальный интерфейс для работы с периферией, поддерживающий горячее подключение и не нуждающийся в дополнительной настройке. Кроме того, создание унифицированного стандарта позволило бы избавиться от зоопарка портов (COM, LPT, PS/2, MIDI-port, RS-232 и т. д.), что в перспективе помогло бы существенно упростить и удешевить разработку нового оборудования, а также внедрение поддержки тех или иных устройств.

На фоне перечисленных предпосылок ряд компаний-разработчиков компьютерных комплектующих, периферии и софта, крупнейшими из которых были Intel, Microsoft, Philips и US Robotics, объединились в попытке найти тот самый общий знаменатель, который бы устроил всех действующих игроков, каковым в итоге и стал USB. Популяризации же нового стандарта во многом поспособствовала Microsoft, добавившая поддержку интерфейса еще в Windows 95 (соответствующий патч входил в состав Service Release 2), а затем внедрившая необходимый драйвер в релизную версию Windows 98. В то же время на железном фронте подмога пришла, откуда не ждали: в 1998 году свет увидел iMac G3 первый компьютер все в одном от Apple, в котором для подключения устройств ввода и другой периферии (за исключением микрофона и наушников) использовались исключительно USB-порты. Во многом такой разворот на 180 градусов (ведь в то время Apple делала ставку на FireWire) был обусловлен возвращением Стива Джобса на пост СЕО компании, состоявшимся годом ранее.


Оригинальный iMac G3 первый USB-компьютер

На самом же деле рождение универсальной последовательной шины проходило куда более мучительно, а само по себе появление USB во многом является заслугой отнюдь не мегакорпораций и даже не одного научно-исследовательского отдела, действующего в составе той или иной компании, а вполне конкретного человека инженера Intel индийского происхождения по имени Аджай Бхатт.


Аджай Бхатт, главный идеолог и создатель интерфейса USB

Еще в 1992 году Аджай задумался о том, что персональный компьютер не особо оправдывает собственное название. Даже такая простая с первого взгляда задача, как подключение принтера и печать документа, требовала от пользователя определенной квалификации (хотя, казалось бы, зачем офисному работнику, от которого требуется создать отчет или ведомость, разбираться в мудреных технологиях?) либо вынуждала обращаться к профильным специалистам. И если все оставить как есть, ПК никогда не станет массовым продуктом, а значит, и о том, чтобы выйти за пределы цифры в 10 миллионов пользователей по всему миру, не стоит и мечтать.

Понимание необходимости некоей стандартизации на тот момент было и у Intel, и у Microsoft. В частности, изыскания в этой области привели к появлению шины PCI и концепции Plug&Play, а значит, инициатива Бхатта, который решил сосредоточить усилия именно в сфере поиска универсального решения для подключения периферии, должна была быть воспринята положительно. Но не тут-то было: непосредственный начальник Аджая, выслушав инженера, заявил, что эта задача настолько сложна, что на нее не стоит тратить время.

Тогда Аджай стал искать поддержку в параллельных группах и нашел таковую в лице одного из заслуженных исследователей Intel (Intel Fellow) Фреда Поллака, известного на тот момент благодаря работе в качестве ведущего инженера Intel iAPX 432 и ведущего архитектора Intel i960, который и дал проекту зеленый свет. Однако это было лишь начало: реализация столь масштабной задумки стала бы невозможна без участия других игроков рынка. С этого момента начались подлинные хождения по мукам, ведь Аджаю предстояло не только убедить участников рабочих групп Intel в перспективности данной идеи, но и заручиться поддержкой других производителей железа.


На многочисленные обсуждения, согласования и мозговые штурмы ушло почти полтора года. За это время к Аджаю присоединились Бала Кадамби, руководивший командой, ответственной за разработку PCI и Plug&Play, а позже занявший пост директора Intel по технологическим стандартам интерфейсов ввода/вывода, и Джим Паппас, эксперт по системам ввода/вывода. Летом 1994 года наконец-то удалось сформировать рабочую группу и приступить к более плотному взаимодействию с другими компаниями.

В течение последующего года Аджай и его команда встретились с представителями более 50 фирм, среди которых были как небольшие, узкоспециализированные предприятия, так и гиганты вроде Compaq, DEC, IBM и NEC. Работа кипела буквально в режиме 24/7: с раннего утра троица отправлялась на многочисленные совещания, а ночью встречалась в ближайшей закусочной, чтобы обсудить план действий на следующий день.

Возможно, кому-то такой стиль работы может показаться пустой тратой времени. Тем не менее все это принесло свои плоды: в результате было сформировано несколько многоплановых команд, куда входили инженеры из IBM и Compaq, специализирующиеся на создании компьютерных комплектующих, люди, занимавшиеся разработкой чипов из самой Intel и NEC, программисты, работавшие над созданием приложений, драйверов и операционных систем (в том числе из Microsoft), и множество других специалистов. Именно одновременная работа по нескольким фронтам помогла в итоге создать по-настоящему гибкий и универсальный стандарт.


Аджай Бхатт и Бала Кадамби на церемонии вручения Европейской премии изобретателя

Хотя команде Аджая удалось блестяще решить проблемы политического (добившись взаимодействия разнообразных компаний, в том числе являвшихся прямыми конкурентами) и технического (собрав под одной крышей множество экспертов в различных областях) характера, оставался еще один аспект, требующий пристального внимания, экономическая сторона вопроса. И здесь пришлось идти на существенные компромиссы. Так, например, именно стремление снизить себестоимость провода привело к тому, что привычный нам USB Type-A, который мы используем и по сей день, стал односторонним. Ведь для создания действительно универсального кабеля требовалось бы не просто изменить конструкцию коннектора, сделав его симметричным, но и вдвое увеличить количество токопроводящих жил, что привело бы и к удвоению стоимости провода. Зато теперь у нас есть нестареющий мем о квантовой природе USB.


На снижении стоимости настаивали и другие участники проекта. Джим Паппас в связи с этим любит вспоминать о звонке от Бетси Таннер из Microsoft, заявившей в один прекрасный день, что, к сожалению, компания намерена отказаться от использования интерфейса USB при производстве компьютерных мышек. Все дело в том, что пропускная способность 5 Мбит/с (именно такая скорость передачи данных планировалась изначально) была излишне высокой, и инженеры опасались, что не смогут уложиться в спецификации по электромагнитной интерференции, а значит, такая турбомышь может помешать нормальному функционированию как самого ПК, так и других периферических устройств.

На резонный довод об экранировании Бэтси ответила, что дополнительная изоляция приведет к удорожанию кабеля: по 4 цента сверху на каждый фут, или 24 цента на стандартный провод 1,8 метра (6 футов), что делает всю затею бессмысленной. Кроме того, кабель мышки должен оставаться достаточно гибким, чтобы не стеснять движения руки. Чтобы решить эту проблему, было принято решение добавить разделение на высокоскоростной (12 Мбит/с) и низкоскоростной (1,5 Мбит/с) режимы. Запас в 12 Мбит/с позволял использовать разветвители и хабы для одновременного подключения нескольких устройств на одном порту, а 1,5 МБит/с оптимально подходил для подключения к ПК мышек, клавиатур и других аналогичных девайсов.

Сам Джим считает эту историю камнем преткновения, который в конечном счете и обеспечил успех всего проекта. Ведь без поддержки Microsoft продвигать новый стандарт на рынке было бы на порядок труднее. К тому же найденный компромисс помог сделать USB значительно дешевле, а значит, и привлекательнее в глазах производителей периферического оборудования.

Что в имени тебе моем, или Безумный ребрендинг


И раз уж сегодня мы с вами обсуждаем USB-накопители, давайте заодно проясним ситуацию с версиями и скоростными характеристиками данного стандарта. Здесь все совсем не так просто, как может показаться на первый взгляд, ведь с 2013 года организация USB Implementers Forum приложила максимум усилий для того, чтобы окончательно запутать не только рядовых потребителей, но и профессионалов из мира IT.

Раньше все было достаточно просто и логично: у нас есть медленный USB 2.0 с максимальной пропускной способностью 480 Мбит/с (60 МБ/с) и в 10 раз более быстрый USB 3.0, у которого предельная скорость передачи данных достигает уже 5 Гбит/с (640 МБ/с). За счет обратной совместимости накопитель с USB 3.0 можно подключить в порт USB 2.0 (или наоборот), однако при этом скорость чтения и записи файлов будет ограничена 60 МБ/с, так как более медленное устройство будет выступать в роли бутылочного горлышка.

31 июля 2013 года USB-IF внесла в эту стройную систему изрядную путаницу: именно в этот день было объявлено о принятии новой спецификации USB 3.1. И нет, дело вовсе не в дробной нумерации версий, что встречалось и раньше (хотя справедливости ради стоит отметить, что USB 1.1 была доработанной версией 1.0, а не чем-то качественно новым), а в том, что USB Implementers Forum зачем-то решила переименовать и старый стандарт. Следите за руками:

  • USB 3.0 превратился в USB 3.1 Gen 1. Это чистой воды переименование: никаких улучшений произведено не было, да и максимальная скорость осталась все той же 5 Гбит/с и не битом больше.
  • По-настоящему новым стандартом стал USB 3.1 Gen 2: переход на кодирование 128b/132b (ранее использовалось 8b/10b) в режиме full-duplex позволил удвоить пропускную способность интерфейса и добиться впечатляющих 10 Гбит/с, или 1280 МБ/с.

Но этого ребятам из USB-IF показалось мало, так что они решили добавить и пару альтернативных названий: USB 3.1 Gen 1 стал SuperSpeed, а USB 3.1 Gen 2 SuperSpeed+. И как раз этот шаг вполне оправдан: розничному покупателю, далекому от мира компьютерной техники, куда проще запомнить броское название, нежели последовательность букв и цифр. А здесь все интуитивно: у нас есть сверхскоростной интерфейс, который, как можно заключить из названия, очень быстрый, и есть сверхскоростной+ интерфейс, который еще быстрее. Но зачем при этом было проводить столь специфический ребрендинг индексов поколений решительно непонятно.

Впрочем, нет предела несовершенству: 22 сентября 2017 года с публикацией стандарта USB 3.2 ситуация еще более усугубилась. Начнем с хорошего: двусторонний разъем USB Type-C, спецификации которого были разработаны еще для прошлого поколения интерфейса, позволил удвоить максимальную пропускную способность шины за счет использования дублирующих выводов в качестве отдельного канала передачи данных. Так появился USB 3.2 Gen 22 (почему его нельзя было назвать USB 3.2 Gen 3, опять же загадка), работающий на скорости вплоть до 20 Гбит/с (2560 МБ/с), который, в частности, нашел применение при производстве внешних твердотельных накопителей (именно таким портом оснащены высокоскоростные WD_BLACK P50, ориентированные на геймеров).


И все бы ничего, но, помимо введения нового стандарта, не заставило себя ждать и переименование предыдущих: USB 3.1 Gen 1 превратился в USB 3.2 Gen 1, а USB 3.1 Gen 2 в USB 3.2 Gen 2. Претерпели изменения даже маркетинговые названия, причем USB-IF отошли от ранее принятой концепции интуитивно понятно и никаких цифр: вместо того, чтобы обозначить USB 3.2 Gen 22 как, например, SuperSpeed++ или UltraSpeed, они решили добавить прямое указание на максимальную скорость передачи данных:

  • USB 3.2 Gen 1 стал SuperSpeed USB 5Gbps,
  • USB 3.2 Gen 2 SuperSpeed USB 10Gbps,
  • USB 3.2 Gen 22 SuperSpeed USB 20Gbps.

И как же разобраться с зоопарком стандартов USB? Чтобы облегчить вам жизнь, мы составили сводную табличку-памятку, с помощью которой сопоставить разные версии интерфейсов не составит особого труда.

Версия стандарта


Маркетинговое название


Скорость, Гбит/с


USB 3.0


USB 3.1


USB 3.2


Версия USB 3.1


Версия USB 3.2


USB 3.0


USB 3.1 Gen 1


USB 3.2 Gen 1


SuperSpeed


SuperSpeed USB 5Gbps


5



USB 3.1 Gen 2


USB 3.2 Gen 2


SuperSpeed+


SuperSpeed USB 10Gbps


10




USB 3.2 Gen 22



SuperSpeed USB 20Gbps


20



Многообразие USB-накопителей на примере продукции SanDisk


Но давайте вернемся непосредственно к предмету сегодняшнего обсуждения. Флешки стали неотъемлемой частью нашей с вами жизни, получив множество модификаций, иногда весьма причудливых. Наиболее полное представление о возможностях современных USB-накопителей позволяет получить портфолио компании SanDisk.

Все актуальные модели флеш-накопителей SanDisk поддерживают стандарт передачи данных USB 3.0 (он же USB 3.1 Gen 1, он же USB 3.2 Gen 1, он же SuperSpeed практически как в фильме Москва слезам не верит). Среди них можно найти как вполне классические флешки, так и более специализированные устройства. Например, если вы хотите обзавестись компактным универсальным накопителем, имеет смысл обратить внимание на линейку SanDisk Ultra.


SanDisk Ultra

Наличие шести модификаций различной емкости (от 16 до 512 ГБ) помогает подобрать наиболее оптимальный вариант в зависимости от ваших потребностей и не переплачивать за лишние гигабайты. Скорость передачи данных вплоть до 130 МБ/с позволяет достаточно быстро скачивать даже объемные файлы, а удобный раздвижной корпус надежно защищает коннектор от повреждений.

Поклонникам элегантных форм мы рекомендуем линейку USB-накопителей SanDisk Ultra Flair и SanDisk Luxe.


SanDisk Ultra Flair

Технически эти флешки полностью идентичны: обе серии характеризуются скоростью передачи данных до 150 МБ/с, а каждая из них включает в себя 6 моделей емкостью от 16 до 512 ГБ. Отличия кроются лишь в дизайне: Ultra Flair получил дополнительный конструктивный элемент из прочного пластика, тогда как корпус версии Luxe полностью выполнен из алюминиевого сплава.


SanDisk Luxe

Помимо эффектного дизайна и высокой скорости передачи данных, перечисленные накопители имеют и еще одну весьма интересную особенность: их USB-коннекторы являются прямым продолжением монолитного корпуса. Такой подход обеспечивает высочайший уровень защищенности флешки: случайно сломать подобный коннектор попросту невозможно.

Помимо полноразмерных накопителей, в коллекции SanDisk присутствуют и решения категории подключил и забыл. Речь идет, конечно же, о сверхкомпактных SanDisk Ultra Fit, размеры которых составляют всего 29,8 14,3 5,0 мм.


SanDisk Ultra Fit

Такой малыш едва выступает над поверхностью USB-разъема, что делает его идеальным решением для расширения хранилища клиентского устройства, будь то ультрабук, автомобильная аудиосистема, Smart-телевизор, игровая приставка или одноплатный компьютер.


Самыми же интересными в коллекции SanDisk можно назвать USB-накопители Dual Drive и iXpand. Оба семейства, несмотря на конструктивные различия, объединяет единая концепция: эти флешки получили по два порта разных типов, что позволяет использовать их для переноса данных между ПК или ноутбуком и мобильными гаджетами без дополнительных кабелей и переходников.

Накопители семейства Dual Drive предназначены для использования со смартфонами и планшетами, работающими под управлением операционной системы Android и поддерживающими технологию OTG. Сюда входят три линейки флешек.

Миниатюрные SanDisk Dual Drive m3.0, помимо USB Type-A, оснащены коннектором microUSB, что обеспечивает совместимость с девайсами прошлых лет, а также смартфонами начального уровня.


SanDisk Dual Drive m3.0

SanDisk Ultra Dual Type-C, как нетрудно догадаться по названию, обзавелись более современным двусторонним коннектором. Сама же флешка стала крупнее и массивнее, однако такая конструкция корпуса обеспечивает лучшую защиту, да и потерять устройство стало куда сложнее.


SanDisk Ultra Dual Type-C

Если же вы ищете нечто более элегантное, рекомендуем обратить внимание на SanDisk Ultra Dual Drive Go. В этих накопителях реализован тот же принцип, что и в упомянутых ранее SanDisk Luxe: полноразмерный USB Type-A является частью корпуса флешки, что исключает его поломку даже при неосторожном обращении. Коннектор USB Type-C, в свою очередь, хорошо защищен поворотным колпачком, на котором также предусмотрена проушина под брелок. Такая компоновка позволила сделать флешку по-настоящему стильной, компактной и надежной.


SanDisk Ultra Dual Drive Go

Серия iXpand полностью аналогична Dual Drive, за исключением того факта, что место USB Type-C занял фирменный коннектор Apple Lightning. Самым необычным устройством в серии можно назвать SanDisk iXpand: данная флешка имеет оригинальный дизайн в виде петли.


SanDisk iXpand

Смотрится эффектно, к тому же в получившуюся проушину можно продеть ремешок и носить накопитель, к примеру, на шее. Да и использовать такую флешку вместе с iPhone куда удобнее, нежели традиционную: при подключении большая часть корпуса оказывается позади смартфона, упираясь в его заднюю крышку, что помогает свести к минимуму вероятность повреждения разъема.


Если же подобный дизайн по тем или иным причинам вас не устраивает, имеет смысл посмотреть в сторону SanDisk iXpand Mini. Технически перед нами все тот же iXpand: модельный ряд также включает четыре накопителя на 32, 64, 128 или 256 ГБ, а максимальная скорость передачи данных достигает 90 МБ/с, чего вполне достаточно даже для просмотра 4K видео непосредственно с флешки. Разница заключается лишь в дизайне: петля исчезла, зато появился защитный колпачок для коннектора Lightning.


SanDisk iXpand Mini

Третий представитель славного семейства, SanDisk iXpand Go, является братом-близнецом Dual Drive Go: их размеры практически идентичны, к тому же оба накопителя получили поворотный колпачок, пусть и немного отличающийся по дизайну. Данная линейка включает в себя 3 модели: на 64, 128 и 256 ГБ.


SanDisk iXpand Go

Перечень продукции, выпускаемой под брендом SanDisk, отнюдь не ограничивается перечисленными USB-накопителями. Познакомиться с другими девайсами именитой марки вы можете на официальном портале Western Digital.
Подробнее..

Технологии противоударной защиты жестких дисков

15.02.2021 22:09:28 | Автор: admin


Поскольку жесткий диск является не просто электронным, а электромеханическим устройством, его главными врагами были и остаются сильная вибрация и удары. Но если вибрационное воздействие приводит к снижению производительности винчестера, что объясняется отклонением блока головок от заданной траектории и повторной инициализацией процедуры позиционирования, то даже достаточно сильный толчок (не говоря уже о падении) может спровоцировать полный выход накопителя из строя. Почему HDD такие нежные и на какие меры идут производители винчестеров для повышения их надежности? Попробуем разобраться.

Удары судьбы: почему жесткие диски такие хрупкие?


Прежде всего давайте вспомним, как устроен жесткий диск. Внутри HDD находится набор тонких металлических пластин (в просторечии блинов), покрытых слоем ферромагнетика вещества, способного сохранять намагниченность в течение длительного времени даже при отсутствии воздействия внешнего магнитного поля. Эти пластины вращаются с огромной скоростью от 5400 оборотов в минуту и более, перемещаясь относительно блока головок, состоящего из нескольких штанг, приводимых в движение так называемыми звуковыми катушками.

На острие каждой штанги расположены пишущие головки и считывающие сенсоры. Пишущие головки призваны менять направление векторов намагниченности дискретных участков ферромагнитного покрытия (магнитных доменов) в соответствии с командами, поступающими от контроллера HDD. При этом каждый домен кодирует один бит информации, принимая логическое значение 0 или 1 в зависимости от направления вектора намагниченности.



В основе работы считывающих модулей современных жестких дисков лежит гигантский магниторезистивный эффект: электрическое сопротивление сенсора меняется под действием магнитного поля доменов ферромагнитного слоя, что и фиксируется контроллером HDD, который, в свою очередь, интерпретирует увеличение или уменьшение сопротивления относительно заданного уровня как логический ноль или единицу.

Чтобы добиться высокой плотности записи, магнитные головки пришлось сделать чрезвычайно маленькими, ведь именно от их габаритов зависит ширина треков на магнитной пластине. Размер пишущего модуля в современных винчестерах не превышает 120 нанометров, а считывающего 70 нанометров.

Сопоставление размеров пищущей и считывающей головок жесткого диска и ребра 10-центовой монеты

Именно благодаря такой миниатюризации плотность записи данных удалось довести до впечатляющего показателя 1 Тбит/дюйм2, и это с помощью традиционного метода CMR. Однако у такого подхода существует и побочный эффект. Поскольку размеры магнитных головок существенно сократились, снизилась и сила создаваемого ими магнитного поля, что вынудило инженеров значительно уменьшить расстояние между головками и поверхностью магнитных пластин.

Когда HDD функционирует, магнитные головки парят над поверхностью блинов на высоте всего около 1215 нанометров, причем достигается это за счет экранного эффекта: под каждой штангой, словно под крылом взлетающего самолета, образуется воздушная подушка, обеспечивающая необходимую подъемную силу. Нетрудно догадаться, что сами по себе магнитные пластины должны быть идеально гладкими и не иметь каких-либо неровностей. Это и правда так: перепад высот на поверхности каждой пластины не превышает 0,6 нанометра. Немыслимая точность!



Однако подобная конструкция имеет один весьма существенный недостаток: жесткий диск оказывается чрезвычайно уязвимым к ударным воздействиям во время работы. Ударостойкость современных накопителей потребительского и корпоративного класса достигает 300350G за 2 мс в покое и лишь 3050G за 2 мс в режиме чтения/записи.

Столь высокий разброс значений объясняется тем, что пока диск отключен от питания, блок головок остается припаркованным. Рассмотрим фотографию ниже: каждый кронштейн получает дополнительную точку фиксации, опираясь на пластиковые пилоны в парковочной зоне, причем сами головки не касаются пластика, а нависают над ним. В таком состоянии им не страшны ни сильная вибрации, ни даже удары.



В рабочем же состоянии актуатор HDD лишен дополнительной опоры, поэтому удар достаточной силы, вектор которого будет направлен перпендикулярно к плоскости диска (или под незначительным углом к перпендикулярной оси), неизбежно приведет к соприкосновению головок и магнитных пластин. Схематично этот процесс можно изобразить так.



Выше приведен самый удачный сценарий развития событий: из-за миниатюрных размеров головок и огромной скорости вращения магнитных пластин пишущий и считывающий модули с большой долей вероятности попросту оторвутся от кронштейна и жесткий диск моментально придет в негодность. Если же вам все-таки повезло и дело ограничилось лишь появлением царапин на ферромагнитном слое, не стоит думать, что в этом случае удастся отделаться некоторым количеством битых кластеров. Увы, жесткий диск начнет медленно, но верно умирать, а количество ошибок чтения/записи множиться с каждым днем. И вот почему.

Проблема 1: частицы ферромагнетика остаются на поверхности магнитных пластин


Хотя блины винчестера и вращаются с огромной скоростью, осколки ферромагнитного слоя никуда не денутся: они слишком маленькие и легкие, так что величины магнитного поля доменов будет вполне достаточно, для того чтобы противостоять центробежной силе и удерживать мельчайшие частицы. Само по себе их присутствие на поверхности магнитных пластин чревато ошибками чтения/записи даже в том случае, если они не будут непосредственно соприкасаться с самими головками.

Проблема 2: частицы ферромагнетика играют роль абразива


Поскольку расстояние между поверхностью магнитных пластин и головок чрезвычайно мало, микроскопические частицы ферромагнетика будут неизбежно их задевать, постепенно стачивая подобно наждачной бумаге. Да и сама поверхность блинов станет все больше и больше царапаться, что будет выражаться в постепенном увеличении количества битых кластеров.

Проблема 3: считывающий сенсор будет нагреваться под действием силы трения


Когда частицы ферромагнетика, движущиеся на огромной скорости, задевают сенсор, последний, в силу микроскопических размеров, мгновенно разогревается, из-за чего сопротивление в датчике резко повышается и данные со считывающей головки интерпретируются неверно. Это приводит к многочисленным ошибкам чтения даже на том этапе, когда считывающая головка еще исправна.

Повреждение блока головок отнюдь не единственное (хотя и наиболее тяжелое) последствие ударного воздействия на жесткий диск. В зоне риска также находятся подшипники магнитных пластин. Сильный удар шарика по обойме подшипника может привести к ее деформации, повреждению самого шарика или дорожки качения (иногда ко всему перечисленному сразу). Хотя HDD продолжит работать, поврежденный подшипник будет сильно вибрировать, что негативно скажется на производительности винчестера и повлечет за собой преждевременный износ мотора шпинделя.



И наконец, самое меньшее из зол проскальзывание магнитных пластин в пакете, когда один или несколько блинов, получив дополнительное ускорение, проворачивается относительно своих собратьев. При этом именно данная проблема встречается значительно реже всех, перечисленных выше, и оказывает минимальное влияние на работоспособность HDD.

Ключевые подходы к защите HDD от ударных воздействий


Хотя история жестких дисков насчитывает более 64 лет, производители винчестеров всерьез озаботились их противоударной защитой лишь в 1997 году. Такое отношение выглядит легкомысленным, но на самом деле объяснить промедление достаточно просто.

В конце 90-х мода на компактные внешние HDD лишь начинала набирать обороты. Отправной точкой можно назвать появление IBM Microdrive, выпущенных в 1999 году, о которых мы уже писали ранее в материале, посвященном внешним накопителям данных. А между тем именно портативные накопители наиболее уязвимы.

Вскрытый IBM Microdrive в сравнении с монетой достоинством 50 евроцентов

Представить ситуацию, когда внутренний жесткий диск, будучи уже установленным в ПК, может выйти из строя от удара, довольно сложно (разве что вы специально станете бить кувалдой по его корпусу). Массивный каркас Full Tower вполне способен обеспечить адекватную защиту установленных внутри винчестеров, эффективно поглощая кинетическую энергию. Если вы, к примеру, случайно заденете компьютер ногой, воздействие на жесткий диск будет гораздо слабее 30G за 2 мс (и даже меньше 10G за 2 мс именно столько могли выдерживать HDD, выпущенные на рубеже XXXXI веков), так что здесь предпринимать какие-то особые меры не имеет практического смысла.

Корпуса лэптопов тех времен тоже были не чета современным сверхтонким моделям: ноутбуки 90-х годов обеспечивали вполне достойную защиту установленных в них винчестеров, пусть и не такую надежную, как стационарные компьютеры.

Старые ноутбуки были куда прочнее. На фото Siemens Nixdorf PCD-5ND

Напротив, в портативных накопителях данных HDD отделяет от внешнего мира лишь тонкий пластиковый корпус, неспособный поглотить всю энергию удара. Каким же образом в этом случае винчестер можно защитить от повреждения?

Первопроходцем в сфере разработки систем противоударной защиты стала сама IBM. Именно инженеры американской корпорации создали технологию с незамысловатым названием Ramp Load/Unload, которая сегодня используется повсеместно в каждом жестком диске независимо от ценовой категории. Речь идет об упомянутой выше парковочной зоне и системе пластиковых пилонов, фиксирующих штанги блока головок, пока HDD отключен от питания. Для своего времени такое решение стало по-настоящему инновационным, позволив увеличить ударостойкость винчестеров в покое в несколько раз.

В старых моделях жестких дисков система парковки блока головок в принципе отсутствовала

Среди таких же простых, но достаточно эффективных мер необходимо упомянуть и технологию Samsung ShockSkinBumper (SSB). Как нетрудно догадаться по названию, суть инновации заключается в наличии встроенного в корпус накопителя бампера, представленного тонким силиконовым ободком, облегающим металлическую крышку гермозоны винчестера.

Если присмотреться, то можно заметить кромку Samsung ShockSkinBumper

Согласно данным Samsung, бампер оказался чрезвычайно эффективен и помог снизить втрое перегрузки, воздействующие на внутренние узлы винчестера при ударе или падении, значительно повысив его ударостойкость в состоянии покоя.

Что касается проблемы повреждения подшипников, то изначально производители винчестеров экспериментировали с формой обоймы и размерами тел качения, стремясь найти оптимальный баланс между величиной площади соприкосновения шариков с дорожками (чем она больше, тем лучше подшипник переносит ударные воздействия) и сопротивлением, возникающим при трении их поверхностей друг о друга. В дальнейшем на смену обычным подшипникам качения пришли более совершенные гидродинамические подшипники скольжения, в которых вращение вала шпинделя происходит в слое жидкости, удерживающейся внутри втулки за счет создающейся при работе двигателя разницы давлений. Такой подход помог не только повысить ударостойкость жестких дисков, но и снизить уровень вибрации и шума, создаваемых ими во время работы, а заодно повысить их отказоустойчивость.

Нет шариков нет проблем

Однако главное, чего стремились добиться все без исключения производители винчестеров, максимально защитить от ударных воздействий блок головок. Пионером на этом поприще стала компания Quantum, представившая еще в 1998 году собственную систему защиты жестких дисков Quantum Shock Protection System (SPS), первая практическая реализация которой увидела свет в составе винчестеров Fireball EL.

Жесткий диск с улучшенной ударостойкостью Fireball EL от компании Quantum на 2,5 гигабайта

В общей сложности пакет улучшений SPS включал в себя 14 технологических нововведений, направленных на поглощение и компенсацию ударного воздействия на актуатор. Уже в 1999 году свет увидела доработанная система SPS II, а первым диском с поддержкой обновленной противоударной технологии закономерно стал Fireball Ict.

Параллельно с Quantum изыскания в области защиты винчестеров от ударов и падений вел и их прямой конкурент Maxtor Corporation. Результатом усилий инженеров компании стала технология ShockBlock, нашедшая применение в накопителях алмазной линейки DiamondMax.

Жесткий диск Maxtor DiamondMax Plus 21

Усовершенствованием блока головок активно занимался и Samsung: запатентованная технология корейской корпорации, получившая название Impact Guard, включала в себя ряд усовершенствований конструкции несущих кронштейнов, подвески и системы стабилизации. Не отставала и Western Digital: набор улучшений Shock Guard, специально разработанный для жестких дисков марки Caviar, помог довести ударостойкость жестких дисков, выпускаемых компанией, до значений, сопоставимых с показателями современных HDD.

Досконально описывать каждую из перечисленных технологий не имеет смысла: конструктивные решения, призванные повысить ударостойкость жестких дисков, так или иначе повторяли друг друга, хотя и имели различия в способах реализации. Перечислим основные приемы, которые брали на вооружение производители HDD, чтобы повысить их ударостойкость:

  • поглощение кинетической энергии конструкционными элементами корпуса;
  • уменьшение хлесткости кронштейнов за счет повышения их жесткости;
  • установка амортизирующей подвески головок, позволяющей минимизировать повреждения модулей чтения/записи и ферромагнитного слоя при контакте между ними.

Последний пункт требует дополнительных пояснений. В ходе испытаний было установлено, что степень разрушения ферромагнитного покрытия, равно как и вероятность отрыва магнитных головок, зависит не столько от силы удара, сколько от того, как именно модули чтения и записи соприкасаются с поверхностью блинов. Самые обширные повреждения закономерно наблюдаются в том случае, если головка задевает пластину краем или углом.

Усовершенствованный механизм подвески позволил добиться того, чтобы магнитные головки соприкасались с пластинами плашмя, всей своей поверхностью, как это показано на приведенной ниже схеме.



Поскольку их поверхности практически идеально гладкие, вероятность образования сколов (и тем более полного отрыва магнитных головок) заметно снижается, а при самом благоприятном стечении обстоятельств и ферромагнитное покрытие, и сами модули остаются невредимыми.

Неубиваемые накопители для спорта и активного отдыха


Хотя перечисленные меры помогли значительно повысить надежность жестких дисков, чуда так и не произошло. Как ни крути, но с физикой не поспоришь, и если тот же Maxtor в свое время смог довести ударостойкость винчестеров в состоянии покоя до впечатляющих 1000G за 2 мс, пусть и на тестовых образцах, то обеспечить сопоставимый уровень защиты блока головок во время работы HDD оказалось практически невозможно.

Однако с удешевлением флеш-памяти ситуация на рынке в корне изменилась, а потребность в противоударных внешних жестких дисках практически исчезла, ведь им на смену пришли твердотельные накопители. В силу технологических особенностей, SSD оказываются в значительно более выгодном положении: они не содержат подвижных компонентов, а значит, все, чего необходимо добиться, чтобы получить на выходе устройство, устойчивое к ударам, создать достаточно прочный корпус, способный обеспечить должный уровень защиты печатной платы, что гораздо проще по сравнению с разработкой динамических систем компенсации. Впрочем, лучше один раз увидеть, чем сто раз услышать. Просто посмотрите на эту фотографию.



На туристическом карабине, пристегнутом к рюкзаку, висит SanDisk Extreme Portable SSD компактный твердотельный накопитель, ориентированный на поклонников активного отдыха. Если подобным образом обращаться с обычным HDD, то он почти наверняка придет в полную негодность уже через пару марш-бросков. Однако SSD поломка не грозит: благодаря резиновопластиковому корпусу он способен выдерживать перегрузки вплоть до 1500G за 2 мс, что в 5 раз больше, чем ударостойкость жесткого диска в покое, и практически в 30 раз больше по сравнению с ударостойкостью HDD при чтении/записи данных. При этом показатель 1500G является константой и никак не изменяется, даже когда вы работаете с твердотельным накопителем.

Помимо того, что SanDisk Extreme Portable SSD способен выдерживать значительные перегрузки, устройство превосходно защищено от воздействия пыли и влаги по стандарту IP55.



Первая цифра индекса указывает на то, что SSD имеет пылезащищенное исполнение: хотя некоторое количество мелкодисперсных частиц и может проникнуть внутрь его корпуса, это никак не скажется на работоспособности устройства. Вторая цифра говорит о том, что корпус твердотельного накопителя способен противостоять даже сильным водяным струям, падающим с любого направления.

С водонепроницаемостью связана и еще одна интересная особенность данной серии накопителей. Обратите внимание: разъем USB Type-C, расположенный на нижнем торце, не имеет резиновой заглушки, которую обычно ожидаешь увидеть на подобном устройстве.



Недоработка? Отнюдь нет. Все дело в том, что порт никак не сообщается с внутренними полостями корпуса: он полностью обособлен и герметичен, так что попавшая в него вода никак не навредит электронным компонентам SSD, хотя перед использованием разъем и придется как следует просушить. Такой подход позволил сделать твердотельный накопитель еще надежнее и долговечнее, ведь любые заглушки имеют свойство разбалтываться со временем.

Что же касается производительности, то и здесь SanDisk Extreme Portable не подкачал, демонстрируя устойчивую скорость передачи данных 550 МБ/с. Если же вам этого недостаточно, то рекомендуем обратить внимание на Pro-версию устройства.



У накопителей старшей линейки немного изменился дизайн: боковая оранжевая вставка и измененная форма проушины сделали облик SSD более спортивным и выразительным. Но главное отличие Pro-версии от обычной кроется в поддержке высокоскоростного интерфейса USB 3.2 Gen 2, благодаря чему быстродействие накопителя возросло до впечатляющих 1050 МБ/с. С такой скоростью даже на передачу 100 ГБ данных уйдет не более 2 минут.



Хотите большего? В этом году свет увидели обновленные версии отказоустойчивых накопителей SanDisk Extreme Portable V2. Как и ранее, семейство компактных SSD разделено на две линейки: стандартную и Pro. С точки зрения защиты от ударов, пыли и воды ровным счетом ничего не изменилось, однако их производительность возросла ровно в два раза.

SanDisk Extreme Portable V2 обзавелись USB 3.2 Gen 2 и теперь могут похвастаться скоростью 1050 МБ/с в операциях чтения и до 1000 МБ/с при записи файлов. В свою очередь, SanDisk Extreme Portable Pro V2 придутся по вкусу обладателям устройств с поддержкой USB 3.2 Gen 2 x 2: впечатляющие 2000 МБ/с делают этот SSD самым быстрым среди защищенных моделей, доступных на рынке, и позволяют в считанные секунды передавать даже весьма объемные файлы, что наверняка понравится любителям фото- и видеосъемки, тревел-блогерам, журналистам и другим создателям контента.



В качестве же дополнительного бонуса необходимо упомянуть встроенную поддержку аппаратного шифрования AES с 256-битным ключом, которое на сегодняшний день является одним из наиболее надежных методов криптографической защиты данных. Таким образом, с новыми SanDisk Extreme Portable вы можете быть на 100% спокойны за сохранность ценной для вас информации.
Подробнее..

Почему свернули проект ядерного самолета, и чем закончилась попытка добыть нефть с помощью ядерных взрывов

20.02.2021 16:15:19 | Автор: admin


Ядерная энергия, безусловно, совершила технологическую революцию. Но почему мирный атом не используют повсеместно? Я расскажу вам, по какой причине свернули проект ядерного самолёта и атомобиля, и чем закончилась попытка добывать нефть с помощью ядерных взрывов.

Ледоколы

В 1959 году суперзвездой мировых новостей стал Ленин первый в мире атомный ледокол вышел на испытания в море. Судно с ядерной силовой установкой на борту и сейчас выглядит впечатляюще, а в 1959 люди были потрясены: вертолётная площадка, кинозал, музыкальный салон, настоящий плавучий город. Атомный ледокол сконструировали для обслуживания Северного морского пути и экспедиционного плавания в Арктике. В сутки он расходовал примерно сорок пять грамм радиоактивного топлива.

Советский атомный ледокол ЛенинСоветский атомный ледокол Ленин

Раньше ледоколы были дизель-электрические или даже паровые, например Красин, стоящий на вечной стоянке в Санкт-Петербурге. Стране нужен был более мощный корабль. И не просто более мощный, но и способный ходить несколько месяцев без дозаправки топливом, поскольку заправляться на Северном морском пути, по сути, было негде.

Военные эксперты опасались, что в открытом море на ядерном реакторе произойдет авария. Но за тридцать лет службы никаких форс-мажорных ситуаций не случилось. Самый сложный ремонт ледокол Ленин перенес в 1967 году. Это была целая операция по замене атомной установки, для проведения которой пришлось взрывать днище. Саму же идею строить суда на ядерном топливе признали крайне удачной. Так в СССР появился единственный в мире атомный ледокольный флот.

Затем в советское время стали интенсивно строиться серии ледоколов. И эта флотилия ледоколов работала до Карских ворот и дальше. Последний атомный ледокол 50 лет Победы был уже построен при Новейшей России. Сейчас он единственный, который находится в строю.

50 лет Победы не просто самый большой ледокол в мире, он ещё и круизный лайнер. Коммерческие туры помогли уцелеть атомному флоту в 90-е годы прошлого века. Сейчас этот ледокол прокладывает путь для других судов и катает туристов. Стоимость билета на Северный полюс начинается от двух миллионов рублей. Цена зависит от класса каюты.

Российский атомный ледокол 50 лет ПобедыРоссийский атомный ледокол 50 лет Победы

Атомные автомобили

В середине прошлого века мир охватила ядерная эйфория. Казалось, человечество нашло неограниченный источник энергии. Пытались создать даже автомобили на атомной тяге. Nucleon первый и самый известный проект такого типа.

По расчетам инженеров, машина с фантастическим дизайном могла проехать восемь тысяч километров. Конструкторы автоконцерна продумали всё от бампера до последнего винтика. Но партнеры компания по производству реакторов для подводных лодок не смогли создать автомобильный вариант атомного двигателя. Амбициозный проект остался в виде макета.

Nucleon первый проект атомобиляNucleon первый проект атомобиля

Саму идею поставить ядерный реактор на колеса специалисты оценивают скептически. Они считают, что это крайне опасно, потому что в случае поломки реактора придется эвакуировать всё население в радиусе тридцати-сорока километров.

Век без дозаправки!, с таким громким лозунгом несколько лет назад американская компания представила проект автомобиля на ториевом реакторе. Причём по конструкции он напоминает старый Nucleon: кабина тоже убрана подальше от атомного двигателя. Хотя торий не такой опасный и радиоактивный, как плутоний или уран (для создания ядерной бомбы он не годится), тем не менее без защиты для пассажиров и водителя в таком автомобиле не обойтись.

Проект Кадиллака на ториевом двигателеПроект Кадиллака на ториевом двигателе

Советский атомолёт

После Второй мировой войны супердержавы по разные стороны океана разрабатывали проект ядерного самолёта. Идея создать бомбардировщик с практически неограниченным радиусом полета была очень заманчивой. В СССР испытательную лабораторию сделали на базе ТУ-95.

Советский атомолет Ту-95 ЛАЛСоветский атомолет Ту-95 ЛАЛ

В США экспериментальный реактор установили на модифицированную версию стратегического бомбардировщика B-36. Атомная установка и система защиты экипажа составляли блок массой шестнадцать тонн, то есть полезной нагрузки было очень мало. Для какого-либо запаса бомб места практически не было.

Атомный стратегический бомбардировщик В-36Атомный стратегический бомбардировщик В-36

Испытания показали, что самолёт оставляет за собой радиоактивный след. Проект свернули, а опытный образец разобрали со всеми мерами предосторожности. В Советском Союзе от идеи создать атомолет тоже отказались. Сегодня военные самолеты могут пролететь больше десяти тысяч километров с помощью дозаправки в воздухе.

Бредовая идея канадских ученых

В Канаде в 50-х годах всерьёз обсуждали возможность добывать нефть с помощью ядерных взрывов. Запасы черного золота там огромные, но почти все они заключены в нефтеносных песках, поэтому традиционные способы добычи неэффективны. По расчетам специалистов, энергия ядерного взрыва должна была освободить нефть, после чего её легко можно было бы выкачивать.

В Канаде собирались добывать нефть с помощью ядерных взрывовВ Канаде собирались добывать нефть с помощью ядерных взрывов

Для испытания подобрали место в провинции Альберта. Но такие новости вызвали панику среди местных жителей. Серия подземных ядерных взрывов в СССР и США показала, что подобные опыты опасны для окружающей среды. Так что одобренный правительством проект резко свернули.

Заключение

Давняя мечта фантастов и ученых создать эффективный термоядерный реактор. Топливо для него (дейтерий или водород) можно добывать из морской воды. Ядра этих элементов при слиянии выделяют огромное количество тепла. Сама реакция абсолютно безопасна, но пока создать установку, которая производит больше энергии, чем потребляет, не удалось.

Экспериментальные реакторы строят в США, Великобритании, Китае и во Франции. Вполне возможно, что в XXI веке вместо ядерной гонки начнется термоядерная.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru