Русский
Русский
English
Статистика
Реклама

Квантовые компьютеры

Перевод Забытый криотронный компьютер Дадли Бака

07.08.2020 18:11:02 | Автор: admin
В 1950-х годах аспирант Массачусетского технологического института убеждал инженеров создавать компьютеры с использованием сверхпроводящих магнитных переключателей вместо ламп или транзисторов.

Изобретение Бака пережило творца. Более того, оно живо и по сей день: криотрон лежит в основе проектов IBM по созданию сверхпроводящих кубитов.

Тем не менее, десятилетия работы над криотроном затерялись на страницах истории компьютеростроения. Многие современные инженеры даже не слышали об этой технологии. Давайте поговорим о работе Бака и его ныне забытом криотронном компьютере.



После Второй мировой войны перед инженерами-электронщиками стоял фундаментально важный вопрос: как нужно строить электронные цифровые компьютеры? Какой тип переключателей лучше всего подходит для логических схем? А что использовать для основной памяти?

Недолго думая, из множества вариантов они выбрали электронные лампы для использования в качестве основного логического переключателя. При этом, чтобы построить всего одну машину, требовались тысячи этих ламп. Транзисторы тогда всерьез никто не рассматривал они только-только были разработаны Bell Telephone Laboratories.

Вариантов памяти тоже было предостаточно: специальные электронно-лучевые и ртутные трубки, вращающиеся магнитные барабаны. К 1950-м появился еще один перспективный кандидат: магнитные сердечники. Одно кольцо, выполненное из ферромагнетика, могло содержать 1 бит данных в зависимости от того, в каком направлении оно было намагничено.

В середине 50-х мир первых вычислительных машин заселили ламповые мейнфреймы с памятью на магнитных сердечниках. Как известно, спустя какое-то время на смену лампам пришли транзисторы, а затем интегральные схемы, как для реализации логики, так и для памяти. Но в 1950-1960-х гг. различные группы инженеров искали принципиально новые пути для создания цифровых компьютеров.

Одним из самых примечательных радикальных ученых был Дадли Аллен Бак. Он работал в МТИ с 1950 по 1959 год вплоть до своей трагической смерти в возрасте 32 лет. Он успел сделать важный вклад в ранние исследования в области создания микросхем. Кроме того, ему принадлежит разработка криотрона сверхпроводящего переключателя. По мнению Бака, его детище должно было стать основным строительным блоком для всех цифровых компьютеров будущего. Ему поверили гиганты: GE, IBM, RCA и военные ведомства США. В конце 1950-х были развернуты крупные исследовательские проекты, посвященные криотрону. Завершились они только после того, как индустрия однозначно выбрала преемника ламп кремниевые микрочипы.


Сделано вручную: Бак создал множество прототипов, включая схему мультивибратора [крупный план, cверху], схема которого состоит из 19 отдельных криотронов [cнизу].



В 1948 году Дадли Бак получил степень бакалавра в области электротехники Вашингтонского университета. Его первым местом работы стала криптологическая организация ВМС США. Там он познакомился с первыми цифровыми компьютерами. В 1950 году он устроился в Массачусетский технологический институт и поступил в аспирантуру по электротехнике к физику Артуру фон Хиппелю. Баку довелось поучаствовать в проекте Whirlwind Массачусетского технологического института технологического монстра, предназначенного для военных целей.

Джей Ласт, аспирант Бака в МТИ, впоследствии возглавивший команду создателей первой планарной кремниевой интегральной схемы Fairchild Semiconductor, вспоминает его как великого провидца и хорошего человека до неприличия хорошего. Подтверждение впечатлению Ласта можно найти в письме Бака, написанном в 1954 году, когда ему было всего 27 лет:
У меня есть приемный сын. Из своих 17 лет 4 он прожил со мной. 6 лет я был скаутмастером, а теперь хожу в методистскую церковь. Иногда по воскресеньям я даже встаю за кафедру. Я одинаково люблю работать и с человеческими, и с инженерными ценностями.

Несмотря на богатую социальную и личную жизнь, Бак с огромной отдачей продолжал работать в МТИ. В проекте Whirlwind он подбирал материалы для изготовления магнитных сердечников. Помимо этого, он находился в постоянном поиске материалов, которые можно было применить в качестве основы для переключателей нового поколения.

А 1952 году внимание Бака привлек химический элемент висмут, известный сильным магнитным сопротивлением: его удельное электрическое сопротивление резко возрастает в ответ на магнитное поле, особенно при низких температурах. При температуре кипения жидкого гелия (4,2 кельвина) электрическое сопротивление висмута изменяется в десятки миллионов раз при приложении сильного магнитного поля. Такое поведение может быть полезно для сборки компьютеров подумал Бак. Относительно небольшой ток в контрольном проводе и создаваемое им магнитное поле могут вызвать огромное изменение удельного сопротивления висмута, внезапно запретив или позволив току проходить через него. Это будет настоящий электронный переключатель!

К 1954 году Бак обратил внимание на еще более интересное свойство электромагнетизма, обнаруженное при низких температурах жидкого гелия: сверхпроводимость. Это явление, хотя и своеобразное, уже было изучено ранее. С начала XX века физикам было известно, что при охлаждении до температур, близких к температуре кипения жидкого гелия, различные металлы полностью теряют свое электрическое сопротивление.

Сверхпроводимость также имеет магнитный аспект, известный как эффект Мейснера. На сверхпроводящий материал не действуют магнитные поля но лишь до определенного момента. Если приложить достаточно сильное магнитное поле, материал почти мгновенно переходит в резистивное состояние. Если магнитное поле убрать, материал возвращается в сверхпроводящее состояние.

Бак увидел потенциал этого явления для электронных цифровых компьютеров: можно создать сверхпроводящий переключатель с магнитным управлением. Это изобретение могло уложить и лампы, и магнитные сердечники на лопатки! Сверхпроводящий переключатель может быть очень компактным, быстрым и энергоэффективным.

Бак в духе футуризма 1950-х назвал свое изобретение криотроном смесь слов cryo (, греч. ледяной холод, мороз) и electronics. Но придумать технологию и дать ей имя было мало. Бак моментально приступил к строительству и тестированию десятков прототипов.

Первые криотроны Бака были до умопомрачения просты. Состояли они из отрезка танталовой проволоки в тугой медной обмотке. К концам медной и танталовой проволоки были подключены электрические выводы, и криотрон погружался в контейнер с жидким гелием.

По медной обмотке шел ток, что создавало магнитное поле. Бак мог сделать танталовую проволоку как сверхпроводимой, так и вернуть ей сопротивление. Прототипы оказались рабочими. Совсем небольшой ток в обмотке позволял управлять гораздо большим током в танталовой проволоке. Криотрон Бака функционировал как логический переключатель цифрового компьютера не хуже ламп и транзисторов.

Бак был захвачен перспективой создания нового устройства. В своей магистерской диссертации он предполагал создание целых массивов криотронов. Бак считал, что даже из его простых прототипов можно построить цифровой компьютер, где криотроны будут использоваться и для логики, и для памяти. Однако существовала одна проблема: скорость переключения криотрона была лишь ненамного выше, чем у электромеханического реле.

В поисках лучшего Бак перепробовал огромное количество различных материалов. Комбинация свинцовой обмотки с ниобием, например, давала время переключения 5 микросекунд. Неплохо, но все же намного медленнее, чем у самых быстрых транзисторов того времени они переключались в 100 раз быстрее. По мнению Бака, уменьшив физический размер криотрона, можно было достичь производительности не ниже, чем у самых быстрых транзисторов.

Соединив вместе несколько прототипов криотрона, Бак успешно изготовил логический вентиль, триггер и усилитель с разветвителем. Выходит, что с помощью одних только криотронов можно собрать все основные схемы для цифровой компьютерной памяти и логики. Криотронный сверхпроводящий компьютер перестал быть идиллической мечтой.


Whirlwind: Бак надеялся, что однажды инженеры смогут уместить компьютер такой же мощности в корпус размером с хлебницу

На этом этапе исследовательская программа Бака всерьез расширилась. Он считал, что, используя методы микроминиатюризации, сможет создать компьютер, содержащий десятки тысяч криотронов. Машина Бака будет обладать вычислительной мощностью, сопоставимой с Whirlwind, одним из самых передовых цифровых компьютеров в мире. Но Whirlwind занимал несколько комнат и потреблял 150 киловатт электроэнергии.



28-летний инженер, по сути, предложил уменьшить Whirlwind до размеров радиоприемника, погрузить его в ванну с жидким гелием и запустить. По его словам, компьютер будет потреблять столько же, сколько обыкновенная лампочка на рождественской елке. Заявление смелое, однако энтузиазм молодого ученого и крепкая аргументация убедили коллег дать его проекту зеленый свет.

Исследования криотронов официально закрепили за Баком в лаборатории Линкольна Массачусетского технологического института. Продолжая работать над компактными, более быстрыми и энергоэффективными криотронами, он одновременно начал проект по созданию большой компьютерной памяти, для которой низкая скорость переключения уже существующих криотронов не имела бы значения.

Для памяти с адресацией по содержанию (позднейшее название) Бак предложил схему из 75 000 криотронов. Сам Бак назвал её recognition unit, так как каждая ячейка памяти проверялась на наличие в ней желаемой информации.

Такой вид памяти был полезен для криптоанализа, в котором важна идентификация шаблонов. Полностью собранный криотронный блок распознавания должен был быть не больше портфеля и при этом иметь сопоставимый с Whirlwind объем памяти 3,2 килобайта.

Когда в середине 1955 года Бак готовил патентную заявку на криотрон, слух о его работе по созданию адресуемой по содержанию памяти просочился в криптологические и компьютерные круги США, вызвав немалый ажиотаж. В июле того же года Джон Макферсон, вице-президент IBM и ведущий специалист в области электронных вычислений, написал Баку, что Уильям Фридман, главный криптолог АНБ, очень заинтересован в сверхпроводящих компонентах компьютера Бака. Спустя всего несколько дней криотрон (Magnetically Controlled Gating Element) был запатентован. В заявке содержался широкий список возможностей криотрона и вариантов применения его в компьютерах.

К этому моменту исследования Бака по криотрону вышли за пределы Массачусетского технологического института. Он подписал консалтинговое соглашение по технологии криотронов с исследовательской фирмой Arthur D. Little. Компания находилась в двух шагах от кампуса МТИ и в 1950-х годах была ведущим производителем криостатов для производства жидкого гелия. При спонсорской поддержке АНБ Бак и сотрудники из A.D. Little начали разработку криотронной памяти. Их первым совместным проектом был небольшой массив памяти для проверки концепции.

В 1955 году Бак сосредоточился на создании миниатюрных криотронов и интегрированных матриц с использованием тонких напыленных пленок. Вместо того, чтобы наматывать маленькие провода друг на друга, он хотел испарять металл через маску, похожую на трафарет, на подложку и создавать тонкий узор из сверхпроводящего материала. Поверх этой пленки напылялся второй, контролирующий слой. Это было нужно, чтобы печатать целые массивы криотронов.

В ходе подготовки Бак испытал множество материалов: сплавы свинца, висмута, стронция, индия и других элементов. В итоге ему удалось создать пленку из сплава свинец-висмут-стронций толщиной 100 нанометров. Она могла переключаться между сверхпроводящим и резистивным состояниями за 0,1 микросекунды, что было в десять раз меньше скорости самого быстрого транзистора того времени. Кроме этого, Бак разработал множество двоичных схем, которые можно было построить исключительно из криотронов триггеры, вентили, мультивибраторы, сумматоры и аккумуляторы.

После регистрации патента и завершения исследований Бак был готов объявить миру о криотроне. В ноябре 1955 года он представил доклад под названием Криотрон сверхпроводящий компьютерный компонент в Институт радиоинженеров, одну из организаций-предшественников IEEE. В статье Бак подробно описал криотрон с проволочной обмоткой и ряд основных цифровых схем, которые можно собрать с его помощью, подчеркивая значение этого сверхпроводящего устройства в вычислениях. Криотрон в его текущем состоянии может использоваться в качестве активного элемента в логических схемах, писал Бак. Не смог он удержаться и от смелого заявления о том, что в ближайшем будущем большой цифровой компьютер будет занимать всего один кубический фут и ему будет достаточно половины ватта мощности.

О скоростях криотронов Бак, напротив, писал весьма скромно: В настоящее время устройство работает несколько быстрее, чем электромеханические реле, но намного медленнее, чем электронные лампы и транзисторы. Мы работаем над увеличением скорости. Несмотря на то, что тонкопленочные криотроны, сопоставимые с транзисторами, уже были испытаны, Бак не торопился делиться этой информацией с общественностью.


Сравним размеры: Бак держит на ладони прототип криотрона, электровакуумную лампу и транзистор.

К моменту публикации статьи в Proceedings of the IRE (апрель 1956 г.) тонкопленочные криотроны уже проходили испытания. Под руководством Бака инженер АНБ Альберт Слэйд начал собственные исследования криотронных схем.

Примерно в это же время Бак представил фон Хиппелю тему для докторской диссертации исследование тонких пленок из сверхпроводящих материалов и способы управления их толщиной и геометрией для создания криотронов с быстрым переключением. Фон Хиппель одобрил тему и назвал её крайне многообещающей.

Вплоть до своей смерти в 1959 году Бак активно занимался разработкой интегрированных криотронных микросхем. Альберт Слейд перевелся из АНБ в Arthur D. Little специально, чтобы работать над криотронной памятью. Другой специалист АНБ, Гораций Тарп Манн, при поддержке Бака занялся изучением тонкопленочных криотронов. В 1957 году IBM и RCA запустили собственные программы, финансируемые АНБ, по разработке высокоскоростного тонкопленочного криотрона. GE тоже не осталась в стороне, начав внутренние исследования. Бак, все еще бывший аспирантом МТИ, впервые столкнулся с жесткой конкуренцией.

В свойственной ему манере Бак решил поставить перед собой еще более высокую цель. Он привлек к работе Кеннета Р. Шоулдерса, сотрудника лаборатории фон Хиппеля. Шоулдерс в то время занимался другой инновационной технологией: использованием электронных лучей для микромашиностроения, травления чрезвычайно маленьких микросхем. Эта технология, позднее названная электронно-лучевой литографией, использовалась при создании кремниевых микрочипов. В середине 1950-х Шоулдерс пытался создать электронное устройство меньше 100 нм даже мельче вируса и всего, что когда-либо делал человек. Амбиции Шоулдерса идеально совпадали с желанием Бака увеличить скорость криотронов за счет миниатюризации и создать из них крупномасштабные интегрированные массивы.

Они проработали вместе до середины 1958 года. Бак получил докторскую степень и должность доцента на кафедре электротехники МТИ, а Шоулдерс перешел в Стэнфордский исследовательский институт в Менло-Парке.

Подводя итог своему сотрудничеству, Бак и Шоулдерс представили доклад под названием Подход к микроминиатюрным печатным системам. Приближается тот день, когда цифровые компьютеры больше не будут производиться путем сборки тысяч индивидуально изготовленных деталей, писали они. Вместо этого весь компьютер или очень большая его часть, вероятно, будет изготавливаться единовременно.

Спустя всего пять месяцев после представления доклада Бак скоропостижно скончался. Последняя запись в его лабораторной записной книжке, датированная 18 мая 1959 года, описывает его попытку создать напыление из бора. 21 мая Бак умер от дыхательной недостаточности ему только-только исполнилось 32 года.

Современники склонялись к тому, что причиной смерти стала вирусная пневмония. Однако вполне вероятно, что виной всему его эксперименты с напылением. Как раз-таки 18 мая он работал с элементами, требующими особой осторожности. В качестве источника бора он использовал газообразный трихлорид бора. В процессе осаждения пленки образовался газообразный хлористый водород. Воздействие любого газа, не говоря уже смеси нескольких, может вызвать отек легких с симптомами, похожими на пневмонию. Если не считать общую программу университета, Бак не был профессиональным химиком и, возможно, не осознавал опасность. Или просто не имел достаточного стендового опыта, чтобы обращаться с этими газами безопасно. Так или иначе, для коллег смерть Бака стала трагедией.


Фрагмент доклада Бака 1956 года.

Исследования криотрона со смертью Бака не закончились. Активные работы продолжались до 1960-х годов. Манн, который работал над тонкопленочными криотронами в АНБ, устроился в лабораторию космических технологий TRW в Лос-Анджелесе. Там вплоть до 1966 года он занимался электронно-лучевой литографией для создания тонкопленочных криотронов. Сотрудники A.D. Little также продолжали разрабатывать криотронную память, пытаясь воплотить идею Бака.

GE, IBM и RCA в начале 1960-х годов разрабатывали микросхемы тонкопленочных криотронов, в частности, для создания памяти. К 1961 году исследователи GE построили рабочий интегрированный сдвиговый регистр из тонкопленочных криотронов. В сложности он не уступал кремниевым интегральным схемам того времени. А через два года криотронная микросхема GE превзошла кремниевые микрочипы по уровню интеграции. Ученые изготовили даже экспериментальный рабочий компьютер из трех массивов интегрированных криотронов.

Несмотря на все эти исследования, быстрое развитие кремниевых микрочипов в частности, их удешевление в 1960-х годах перекрыло прогресс в изучении криотронов. Новые компьютеры строились на кремниевых логических схемах с памятью на магнитных сердечниках. К середине 1960-х большинство исследователей криотронов окончательно переключили свое внимание на кремний.

Тем не менее, кто-то остался верен криотрону. Особый интерес для ученых представляли криотроны, в которых наблюдалось квантово-механическое явление, называемое эффектом Джозефсона. В начале 1970-х исследователи IBM создали модифицированные криотроны, известные как джозефсоновские переходы. Исследования по ним продолжались до 1980-х годов. А джозефсоновские переходы до сих пор являются краеугольным камнем современных исследований IBM и других компаний в области квантовых вычислений.

Криотрон никуда не исчез. Он все еще живет в разных обличиях и под разными именами в длинной тени кремниевого микрочипа. И кто знает, чего бы добился Бак, проживи он дольше.


Это была история о том, как инженер, проживший совсем короткую жизнь, проложил путь к будущему. Да, изобретенная им технология не нашла повсеместного применения. Но исследования в области сверхпроводящих материалов продолжаются и по сей день. Полвека спустя человечеству удалось не только построить квантовые компьютеры, но и дать доступ к вычислениям на них как исследователям, так и любителям благодаря облачным технологиям.

Например, Amazon Braket открывает доступ к квантовым вычислениям на трех суперкомпьютерах компаний Rigetti Computing, IonQ и D-Wave Systems. Microsoft запустила Azure Quantum, облачную экосистему с доступом к разнообразным квантовым ресурсам, включая аппаратные системы. Не стоит забывать и про IBM Quantum Experience, облачную платформу, которая позволяет подключиться к квантовому процессору IBM из любой точки мира.
Подробнее..

Из песочницы Вводная по квантовым компьютерам (перевод с сайта Explaining Computers)

07.11.2020 20:18:47 | Автор: admin
Привет, Хабр! Представляю вашему вниманию перевод статьи Quantum Computing автора Christopher Barnatt.

Квантовые вычисления


Квантовые вычисления быстро развивающаяся область компьютерных исследований, коммерческое применение которой ожидается в ближайшее время. К этому времени квантовые компьютеры превзойдут традиционные компьютеры в определённых задачах, к которым относятся молекулярное и материальное моделирование, оптимизация логистики, финансовое моделирование, криптография и обучение искусственного интеллекта.

Основы квантовых вычислений


Традиционные компьютеры построены из кремниевых микросхем, содержащих миллионы или миллиарды миниатюрных транзисторов. Каждый из них может быть включен в понимании машины это состояние 0 или 1. Впоследствии компьютер хранит и обрабатывают данные, используя двоичные числа или биты.

Квантовые компьютеры работают с квантовыми битами или кубитами. Они могут поддерживаться аппаратно разными способами например, с помощью квантово-механических свойств сверхпроводящих электрических цепей или отдельных захваченных ионов.

Кубиты могут существовать более чем в одном состоянии или суперпозиции в один и тот же момент времени. Что позволяет кубиту принимать значение 1, 0 или оба значения одновременно. Это позволяет квантовому компьютеру обрабатывать гораздо большее количество данных, чем классический компьютер, и выполнять массовую параллельную обработку. Это также означает, что каждый кубит, добавленный в квантовый компьютер, экспоненциально увеличивает его мощность.

Большинство людей теряется, когда слышит про свойства кубита. Подброшенная монета не может выпадать одновременно орлом и решкой. И всё же, квантовому состоянию кубита под силу что-то подобное. Поэтому неудивительно, что известный физик-ядерщик Нильс Бор однажды заявил: Всякий, кого не шокирует квантовая теория, просто её не понимает!

Помимо суперпозиций, кубиты могут запутываться. Запутанность ещё одно ключевое квантово-механическое свойство, означающее, что состояние одного кубита может зависеть от состояния другого. Это означает, что наблюдение за одним кубитом может выявить состояние его ненаблюдаемой пары.

Создавать кубиты и управлять ими очень сложно. Многие из сегодняшних экспериментальных квантовых процессоров используют квантовые явления, возникающие в сверхпроводящих материалах, и, следовательно, нуждаются в охлаждении почти до абсолютного нуля (около минус 272 градусов Цельсия). Также требуется защита от фонового шума, и даже в этом случае выполнение вычислений с использованием кубитов потребуют исправления ошибок. Основной задачей квантовых вычислений является создание отказоустойчивой машины.

Квантовые первопроходцы


image

К компаниям, которые в настоящее время разрабатывают оборудование для квантовых компьютеров, относятся: IBM, Alibaba, Microsoft, Google, Intel, D-Wave Systems, Quantum Circuits, IonQ, Honeywell, Xanadu и Rigetti. Многие из них работают совместно с исследовательскими группами крупных университетов, и все они продолжают добиваться значительных успехов. Дальше приводится обзор работы каждой из этих компаний.

IBM


IBM работает над созданием квантового компьютера уже более 35 лет. Она добилась значительного прогресса с несколькими работающими машинами. Согласно веб-сайту IBM-Q: Сегодня квантовые вычисления это игровая площадка для исследователей, но через пять лет они станут мейнстримом. Через пять лет эффект квантовых вычислений выйдет за рамки исследовательской лаборатории. Он будет широко использоваться новыми категориями профессионалов и разработчиков, которые используют этот новый метод вычислений для решения проблем, которые когда-то считались неразрешимыми.

В 2016 году IBM запустила сайт под названием IBM Q Experience, который показал 5-кубитный квантовый компьютер всему интернету. С этого времени, к нему присоединились вторая машина на 5 кубитов и машина на 16 кубитов, обе из которых доступны для экспериментов. Чтобы помочь тем, кто хочет узнать о квантовых вычислениях и принять участие в их разработке, IBM предлагает программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit.

В ноябре 2017 года IBM объявила, что к её квантовому облаку добавляются две 20-кубитные машины. Их могут использовать клиенты, которые являются зарегистрированными членами IBM Q Network. IBM описывает это как всемирное сообщество ведущих компаний, стартапов, академических институтов и национальных исследовательских лабораторий из списка Fortune 500, работающих с IBM над продвижением квантовых вычислений и изучением практических приложений для бизнеса и науки.

Также в ноябре 2017 года IBM объявила что сконструировала квантовый процессор на 50 кубитов, который на тот момент считался самым мощным квантовым оборудованием.

image
50-кубитный квантовый компьютер IBM

В январе 2019 года IBM объявила о выпуске своей IBM Q System One как первой в мире интегрированной универсальной системы приближенных квантовых вычислений, разработанной для научного и коммерческого использования. Эта модульная и относительно компактная система предназначена для использования вне лабораторных условий. Вы можете узнать больше о IBM Q System One в этом пресс-релизе.

Google


Ещё один технологический гигант, который усердно работает над тем, чтобы квантовые вычисления стали реальностью, это Google, у которой есть лаборатория квантового ИИ. В марте 2017 года инженеры Масуд Мохсени, Питер Рид и Хартмут Невен, которые работают на этом объекте, опубликовали статью в Nature. В ней они рассказали, что квантовые вычисления возможны на относительно небольших устройствах, которые появятся в течение следующих пяти лет. Это подтверждает взгляды IBM на сроки появления коммерческих квантовых вычислений.

На раннем этапе развития квантовых вычислений компания Google использовала машину от канадской компании D-Wave Systems. Однако сейчас компания активно разрабатывает собственное оборудование, а в марте 2018 года анонсировала новый 72-кубитный квантовый процессор под названием Bristlecone.

В июне 2019 года директор лаборатории квантового искусственного интеллекта Google Хартмут Невен отчитался, что мощность их квантовых процессоров в настоящее время растет вдвое экспоненциально. Это было названо законом Невана и предполагает, что мы можем достичь точки квантового превосходства, когда квантовый компьютер может превзойти любой классический компьютер к концу 2019 года.

В октябре 2019 года команда инженеров Google опубликовала в Nature статью, в которой утверждала, что достигла квантового превосходства. В частности, учёные Google использовали квантовый процессор под названием Sycamore для выборки выходного сигнала псевдослучайной квантовой схемы. Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Для сравнения, команда Google подсчитала, что классическому суперкомпьютеру потребуется около 10 000 лет для выполнения тех же вычислений. Далее команда пришла к выводу: Квантовые процессоры на основе сверхпроводящих кубитов теперь могут выполнять вычисления за пределами досягаемости самых быстрых классических суперкомпьютеров, доступных сегодня. Этот эксперимент знаменует собой первое вычисление, которое может быть выполнено только на квантовом процессоре. Таким образом, квантовые процессоры достигли режима квантового превосходства.

Это откровение инженеров Google было большой новостью, но вскоре вызвало споры. IBM опубликовала сообщение в блоге, сказав, что вычисления в эксперименте Google могут быть выполнены на классическом компьютере за два с половиной дня, а не за 10 000 лет. И по утверждению IBM: Поскольку первоначальное значение термина квантовое превосходство, предложенное Джоном Прескиллом в 2012 году, заключалось в описании точки, в которой квантовые компьютеры могут делать то, что не могут классические компьютеры эта граница ещё не преодолена.

Alibaba


В Китае главным интернет-гигантом является Alibaba, а не Google. А в июле 2015 года они объединилась с Китайской Академией Наук, чтобы сформировать Лабораторию квантовых вычислений CAS Alibaba. Как пояснил профессор Цзянвэй Пан, их цель состоит в том, чтобы провести передовые исследования систем, которые кажутся наиболее многообещающими для реализации практических приложений квантовых вычислений, а также разрушить узкие места закона Мура и классических вычислений. Вы можете посетить сайт лаборатории здесь.

Как и IBM, Alibaba сделала экспериментальный квантовый компьютер доступным в Интернете. В частности, в марте 2018 года китайский гигант электронного бизнеса запустил своё сверхпроводящее облако квантовых вычислений, чтобы обеспечить доступ к 11-кубитному квантовому компьютеру. Он был разработан с Китайской Академией Наук и позволяет пользователям запускать квантовые программы и загружать результаты.

Microsoft


Как и следовало ожидать, Microsoft тоже заинтересована в квантовых вычислениях и работает с некоторыми ведущими учёными и университетами мира. С этой целью Microsoft создала несколько лабораторий Station Q, например лабораторию в Калифорнийском университете. В феврале 2019 года компания также анонсировала Microsoft Quantum Network, чтобы объединить вместе все партнёрские коалиции.

Ключевым элементом стратегии Microsoft является разработка квантовых компьютеров на основе топологических кубитов, которые, по мнению компании, будут менее подвержены ошибкам (следовательно, для исправления ошибок потребуется меньшее количество системных ресурсов). Microsoft также считает, что топологические кубиты будет легче масштабировать для коммерческого применения. Согласно статье в Computer Weekly за май 2018 года, вице-президент Microsoft, отвечающий за квантовые вычисления, считает, что коммерческие квантовые компьютеры могут появиться на их облачной платформе Azure всего через пять лет.

Что касается программного обеспечения, то в декабре 2017 года Microsoft выпустила предварительную версию своего инструмента разработчика вычислительной техники. Его можно загрузить бесплатно, он включает язык программирования под названием Q# и симулятор квантовых вычислений. В мае 2019 года Microsoft сообщила, что собирается открыть исходный код инструмента разработчика. А в мае 2020 года компания анонсировала свой сервис облачных вычислений Azure Quantum.

Intel


Intel, как ведущий производитель микропроцессоров в мире, тоже работает над созданием микросхем для квантовых вычислений. Компания применяет два различных подхода. Одно из этих направлений проводится совместно с ведущим голландским пионером квантовых вычислений QuTech. 17 ноября 2017 года Intel объявила о поставке своему партнеру в Нидерландах тестового чипа на 17 кубитов. Затем, в январе 2018 года на выставке CES, компания объявила о поставке тестового квантового процессора на 49 кубитов под названием Tangle Lake.

Второе направление исследований Intel в области квантовых вычислений проводится исключительно внутри компании и включает в себя создание процессоров на основе технологии, называемой спиновой кубит. Это важное нововведение, поскольку чипы спиновых кубитов производятся с использованием традиционных методов изготовления кремния Intel. В июне 2018 года Intel сообщила, что начала тестирование 26-спинового кубитного чипа.

image

Спиновые кубиты Intel имеют диаметр всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это означает, что, возможно, через десять лет Intel сможет производить крошечные квантовые процессоры, содержащие тысячи или миллионы кубитов. В отличие от обычных процессоров, их нужно охлаждать почти до абсолютного нуля. Но потенциал поистине захватывающий. Согласно разделу сайта Intel, посвященному квантовым вычислениям, компания нацелена на производство квантовых процессоров в течение десяти лет и ожидает, что технология начнет входить в свою коммерческую фазу примерно в 2025 году.

D-Wave Systems


D-Wave Systems пионер квантовых вычислений, базирующийся в Канаде, и ещё в 2007 году продемонстрировавший 16-кубитный квантовый компьютер. В 2011 году компания продала 128-кубитную машину D-Wave One за 10 миллионов долларов американской военно-промышленной корпорации Lockheed Martin. В 2013 году 512-кубитные D-Wave Two ведомству NASA и компании Google. К 2015 году D-Wave преодолела барьер в 1000 кубитов со своим D-Wave 2X, а в январе 2017 года продала свою первую 2000-кубитную машину D-Wave 2000Q фирме, специализирующейся в кибербезопасности, Temporal Defense Systems.

Читая этот список достижений, вы, возможно, пришли к выводу, что D-Wave должен быть ведущим производителем квантовых компьютеров в мире. В конце концов, это единственная компания, которая торгует такими машинами. Тем не менее, работа компании остаётся спорной. Это потому, что их оборудование основано на адиабатическом процессе, называемом квантовый отжиг, который другие пионеры отвергли как ограничительный и тупиковый. IBM, например, использует подход к квантовым вычислениям на основе затвора, который позволяет ей управлять кубитами аналогично тому, как транзистор управляет потоком электронов в обычном микропроцессоре. Но в системе D-Wave такого контроля нет.

Вместо этого квантовый компьютер D-Wave использует факт того, что все физические системы стремятся к состояниям с минимальной энергией. Так, например, если вы заварите чашку чая и отлучитесь по делам когда вы вернетесь, она будет холодной, потому что содержимое стремится к минимальному энергетическому состоянию. Кубиты в системе D-Wave также этому подвержены, и поэтому компания использует своё оборудование для решения проблем оптимизации, которые могут быть выражены как проблемы минимизации энергии. Это ограничивает в возможностях, но всё же позволяет аппаратному обеспечению выполнять определенные алгоритмы намного быстрее, чем классический компьютер. Вы можете ознакомиться с видео, в котором D-Wave объясняет свой подход к квантовым вычислениям.

В августе 2016 года в статье Physical Review X сообщалось, что некоторые алгоритмы работают до 100 миллионов раз быстрее на D-Wave 2X, чем на одноядерном классическом процессоре. Одним из авторов этого исследования оказался технический директор Google. Всё это говорит о том, что мнение о ценности работы D-Wave для развития квантовых вычислений остаётся спорным.

Компания продолжает продвигать свои квантовые компьютеры. В октябре 2018 года D-Wave запустила облачную квантовую среду приложений под названием Leap. Она обеспечивает доступ в реальном времени к квантовому компьютеру D-Wave 2000Q, а в марте 2019 года доступ был расширен, чтобы предоставить такую возможность Японии и всей Европе.

Rigetti



image

Ещё один игрок в области квантовых вычислений это стартап под названием Rigetti. В компании уже работает более 120 сотрудников, и они собрали 19-кубитный квантовый компьютер доступный онлайн через свою среду разработки под названием Forest.

Quantum Circuits


image

Другой стартап Quantum Circuits, основанный ведущим профессором квантовых вычислений Робертом Шёлкопфом и другими коллегами из Йельского университета. Компания привлекла 18 миллионов долларов венчурного капитала и планирует победить гигантов компьютерной индустрии в гонке за создание жизнеспособного квантового компьютера.

IonQ


IonQ специализируется в области квантовых вычислений с захваченными ионами. Компания утверждает, что её технология сочетает в себе непревзойденную физическую производительность, идеальную репликацию кубитов, возможность подключения к оптическим сетям и высокооптимизированные алгоритмы, чтобы создать квантовый компьютер, который является столь же масштабируемым, сколь и мощным и который будет поддерживать широкий спектр приложений в самых разных отраслях. Если вы хотите узнать больше о квантовых вычислениях, на сайте IonQ есть отличное учебное пособие.

Xanadu


Xanadu разрабатывает фотонные квантовые вычисления, интегрируя квантовые кремниевые фотонные чипы в существующее оборудование для создания полнофункциональных квантовых вычислений. Как отмечает компания, по сравнению с другими технологиями кубитов, фотоны очень стабильны и почти не подвержены влиянию случайного шума от тепла. Мы используем фотонные чипы для генерации, управления и измерения фотонов способами, обеспечивающими чрезвычайно быстрые вычисления.

Honeywell


image

Еще одна компания, которая применяет способ квантовых вычислений с захваченными ионами, является Honeywell. У компании огромный опыт в области бизнес-вычислений. В июне 2020 года Honeywell объявила о создании самого высокопроизводительного квантового компьютера в мире. Остальные компании отнеслись к этому скептически. Но, тем не менее, это ещё одна важная разработка особенно потому, что как стало известно, американский финансовый холдинг JPMorgan Chase уже экспериментирует со этой системой для разработки приложений финансовых услуг, включая обнаружение мошенничества и торговлю под управлением ИИ.

Amazon


Amazon не объявила о разработке аппаратного или программного обеспечения для квантовых вычислений. Однако, 2 декабря 2019 года гигант запустил ряд квантовых сервисов Amazon Web Services. К ним относится Amazon Bracket, который позволяет учёным, исследователям и разработчикам начинать эксперименты с квантовыми компьютерами от нескольких поставщиков оборудования. В частности, клиенты могут получить доступ к оборудованию от Rigetti, Ion-Q и D-Wave Systems, что означает, что они могут экспериментировать с системами, основанными на трёх различных технологиях кубитов.

Помимо Bracket, Amazon также запустила лабораторию Amazon Quantum Solutions Lab. Она предназначена, чтобы помочь компаниям подготовиться к квантовым вычислениям, позволяя им работать с ведущими экспертами. Таким образом, ключевая вещь, которую Amazon делает со своими предложениями по квантовым вычислениям, это действовать в качестве облачного брокера. То есть стать посредником между производителями квантовых компьютеров и теми, кто захочет воспользоваться их мощностями.

Разработчики программного обеспечения для квантовых компьютеров


Даже лучшее всего оборудованный квантовый компьютер не сможет использоваться без соответствующего программного обеспечения, и многие из производителей этих машин разрабатывают собственное. Тем не менее, количество стороннего ПО под квантовые компьютеры постоянно растет.

1QBit


1QBit сотрудничает с крупными компаниями и ведущими поставщиками оборудования для решения отраслевых задач в области оптимизации, моделирования и машинного обучения. Компания разрабатывает программное обеспечение как для классических, так и для квантовых процессоров.

CQC


Cambridge Quantum Computing разрабатывает ПО для квантовых компьютеров под решения самых интригующих задач в таких областях, как квантовая химия, квантовое машинное обучение и квантовая кибербезопасность. В число клиентов входят компании, входящие в некоторые из крупнейших в мире химических, энергетических, финансовых и материаловедческих организаций, которые пробуют использовать возможности квантовых вычислений.

QC Ware


QC Ware разрабатывает корпоративное программное обеспечение и услуги для квантовых вычислений с клиентами, включая Airbus, BMW и Goldman Sachs, и партнерами по оборудованию, включая AWS, D-Wave Systems, Google, IBM, Microsoft и Rigetti.

QSimulate


QSimulate разрабатывает ПО, чтобы использовать возможности количественного моделирования для решения насущных проблем в фармацевтической и химической областях.

Rahko


Rahko создаёт ПО, которое предназначено для использования квантового машинного обучения (квантового ИИ) под решения задач квантовой химии.

Zapata


Zapata работает со своими клиентами над разработкой ПО для квантовых компьютеров под решения сложных вычислительных задач в таких областях, как химия, финансы, логистика, фармацевтика, машиностроение и материалы.

Пользователи приложений квантовых компьютеров


Приложения для квантовых компьютеров включают молекулярное моделирование (также известное как квантовая химия), оптимизацию логистики, финансовое моделирование, криптографию и обучение искусственного интеллекта. Некоторые крупные предприятия уже активно изучают что именно квантовые машины смогут сделать для их исследований и разработок, продуктов и услуг, а также их чистой прибыли. Я приведу несколько примеров.

image

Daimler работает как с IBM, так и с Google, чтобы исследовать, как квантовые компьютеры могут использоваться в логистике, чтобы оптимизировать маршруты доставки автомобилей или поток запчастей через фабрики. Компания также изучает, как квантовые компьютеры можно использовать для моделирования химических структур и реакций внутри батарей, чтобы помочь в усовершенствовании электромобилей.

Другой автомобильный гигант Volkswagen работает с Google и с D-Wave Systems, чтобы применить квантовые компьютеры в решении проблем оптимизации транспортного потока и в разработке лучших аккумуляторов.

В финансовом секторе, JPMorgan работает с IBM, чтобы изучить, как квантовые компьютеры смогут помочь в разработке торговых стратегий, оптимизации портфеля, ценообразования на активы и анализа рисков. Другой финансовый конгломерат Barclays участвует в сети IBM Q Network, чтобы выяснить, можно ли использовать квантовые компьютеры для оптимизации расчётов по крупным пакетам финансовых транзакций.

В 2011 году аэрокосмический гигант Lockheed Martin стал первым покупателем квантового компьютера, произведенного D-Wave Systems, и продолжил изучение возможности использования этой технологии для приложений, включая управление воздушным движением и проверку системы. Airbus аналогичным образом исследует, как квантовые компьютеры могут ускорить его исследовательскую деятельность, и вложил средства в компанию QC Ware, производящую программное обеспечение для квантовых машин.

Тем временем Accenture Labs и биотехнологическая компания Biogen сотрудничают с 1QBit, исследуя, как можно ускорить открытие лекарств, применив квантовые компьютеры для молекулярных сравнений. В сентябре 2017 года IBM использовала своё 7-кубитное оборудование для моделирования структуры трёхатомной молекулы гидрида бериллия. В октябре 2017 года Google и Rigetti также анонсировали OpenFermion, программу для моделирования химических процессов на квантовом компьютере.

Квантовое будущее


image

Я надеюсь, что эта статья продемонстрировала вам, как квантовые вычисления довольно быстро превращаются из фантазий в реальность. Разумно предположить, что в 20-х годах из облака будут доступны квантовые суперкомпьютеры, которым найдут практичное применение и это будет стоить недорого. Вполне возможно, что через десять лет основные службы интернет-поиска и облачного ИИ будут использовать возможности квантовых машин, а большинство пользователей этого и не осознают.

Для тех, кто хочет узнать больше, приведу несколько избранных источников для получения дополнительной информации:


В книге Digital Genesis Кристофера Барнатта автора этой статьи и сайта explainingcomputers.com, вы сможете прочитать о квантовых вычислениях и многом другом, связанном с будущими вычислительными разработками, например органическими компьютерами.

image
Подробнее..

Перевод Новый квантовый алгоритм, наконец, нашёл подход к нелинейным уравнениям

02.02.2021 16:10:30 | Автор: admin

Две команды исследователей нашли разные способы обсчёта нелинейных систем на квантовых компьютерах посредством их маскировки под линейные




Иногда компьютерам просто предсказать будущее. Простой процесс, типа течения сока растения по древесному стволу, довольно просто реализовать в несколько строк кода при помощи того, что математики называют линейными дифференциальными уравнениями. Однако в нелинейных системах взаимодействия влияют сами на себя: воздух, обтекающий крылья самолёта, влияет на взаимодействие молекул, которое влияет на поток воздуха, и так далее. Петля обратной связи порождает хаос, при котором малое изменение начальных условий приводит к радикальному изменению поведения впоследствии, из-за чего предсказать поведение системы практически невозможно какой бы мощный компьютер вы бы ни использовали.

В частности, поэтому сложно предсказывать погоду или изучать сложные течения жидкости, сказал Эндрю Чайлдс, исследователь в области квантовой информации из Мэрилендского университета. Можно было бы решать очень сложные вычислительные задачи, если бы получилось разобраться в этой нелинейной динамике.

Возможно, вскоре это получится. В ноябре 2020 года две команды независимо опубликовали свои исследования (одна под руководством Чайлдса, вторая из MIT), описывающие мощные инструменты, которые должны улучшить качество моделирования нелинейных динамических процессах на квантовых компьютерах.

Квантовые компьютеры пользуются квантовыми явлениями, выполняя некоторые типы вычислений эффективнее классических компьютеров. Благодаря этому они уже научились экспоненциально быстрее решать сложные линейные дифференциальные уравнения. И исследователи давно надеялись, что им удастся при помощи хитроумных квантовых алгоритмов сходным образом укротить и нелинейные проблемы.

Новые подходы скрывают нелинейность уравнений под маской более удобоваримого набора из линейных аппроксимаций. При этом подходы между собой серьёзно различаются. В итоге, у исследователей теперь есть два разных способа подступиться к нелинейным задачам при помощи квантовых компьютеров.

Интересно, что две эти работы обнаружили подход, в котором, с учётом некоторых предположений, можно придумать эффективный алгоритм, сказала Мария Киферова, исследователь квантовых вычислений из Сиднейского технологического университета, не связанная с этими работами. Это очень интересно, и обе команды используют очень клёвые техники.

Цена хаоса


Исследователи квантовой информации пытались использовать линейные уравнения для решения НДУ уже более десяти лет. Один из прорывов случился в 2010-м, когда Доминик Берри, ныне работающий в Сиднейском университете Макуэри, создал первый алгоритм для решения линейных дифференциальных уравнений, работающий на квантовых компьютерах экспоненциально быстрее, чем на классических. Вскоре Бери переключился на нелинейные дифференциальные уравнения.

Мы работали с этим раньше, сказал Берри. Но это был очень, очень неэффективный подход.


Эндрю Чайлдс

Проблема в том, что физическая основа самих квантовых компьютеров фундаментально линейная. Это всё равно, что учить машину летать, сказал Бобак Киани, соавтор исследования из MIT.

Хитрость в том, чтобы придумать, как математически превратить нелинейную систему в линейную. Нам нужна какая-то линейная система, поскольку с ней смогут работать те инструменты, которые есть в нашем распоряжении, сказал Чайлдс. Группы учёных подошли к этому вопросу двумя разными способами.

Команда Чайлдса использовала линеаризацию Карлемана, старомодную математическую технику, придуманную в 1930-х, чтобы превратить нелинейные задачи в массив из линейных уравнений.

К сожалению, такой список уравнений получается бесконечным. Исследователям нужно понять, в каком месте его можно отрезать, чтобы получить достаточно хорошее приближение. Остановиться на 10-м уравнении? 20-м? сказал Нуно Лурейро, специалист по физике плазмы из MIT, соавтор исследования из Мэрилендского университета. Команда доказала, что для определённого диапазона нелинейности этот метод позволяет обрезать бесконечный список и решить уравнения.

Команда из MIT использовала другой подход. Она моделировала нелинейные задачи как конденсат Бозе-Эйнштейна. Это особое состояние материи, в котором взаимодействия в группе чрезвычайно охлаждённых частиц заставляют все частицы вести себя одинаково. Поскольку все частицы связаны, поведение каждой из них влияет на все остальные, что вносит свой вклад в петлю обратной связи, характерную для нелинейных процессов.

Алгоритм из MIT имитирует это нелинейное явление на квантовом компьютере при помощи математики, предназначенной для конденсата Бозе-Эйнштейна, чтобы связать нелинейность с линейностью. Представляя каждую нелинейную задачу в виде обсчёта конденсата, специально подготовленного для каждого конкретного случая, алгоритм выводит полезную линейную аппроксимацию. Дайте мне ваше любимое нелинейное дифференциальное уравнение, и я построю для его симуляции конденсат Бозе-Эйнштейна, сказал Тобиас Осборн, специалист по квантовой информации из института им. Лейбница в Ганновере, не участвовавший в упомянутых работах. Эта идея мне очень понравилась.


Алгоритм команды из MIT моделировал каждую нелинейную задачу как конденсат Бозе-Эйнштейна

Берри считает, что обе работы важны, причём каждая по-своему (он не участвовал ни в одной). Но главная их важность они показали, что этими методами можно воспользоваться, чтобы получить нелинейное поведение, сказал он.

Знай свои пределы


Хотя эти шаги важны, это всё же лишь первые этапы попыток взлома нелинейных систем. Исследователи наверняка будут анализировать и улучшать каждый из методов, ещё до того, как появятся реальные квантовые компьютеры, способные реализовать эти алгоритмы. Оба алгоритма нацелены на будущее, сказала Киферова. Чтобы использовать их для решения практических нелинейных задач, потребуются квантовые компьютеры с тысячами кубитов, минимизирующих ошибки и шум. Такие компьютеры находятся далеко за пределами наших сегодняшних возможностей.

И, честно говоря, оба алгоритма способны работать только с не очень сложными нелинейными задачами. Мэрилендское исследование количественно определяет максимальную нелинейность при помощи параметра R. Это отношение нелинейности задачи к её линейности, то есть, степень склонности к хаотичности.

Математически исследование Чайлдса весьма строгое. Он чётко заявляет, когда его подход сработает, а когда нет, сказал Осборн. Думаю, это очень, очень интересно. Это один из важных вкладов в тему.

В исследовании от MIT не приводится строгих доказательств теорем, как говорит Киани. Однако команда планирует определить ограничения алгоритма, проведя простые испытания на квантовых компьютерах, перед тем, как переходить к более сложным проблемам.

Самым большим недостатком обеих техник служит то, что квантовые решения фундаментально отличаются от классических. Квантовые состояния соответствуют вероятностям, а не абсолютным величинам, поэтому, например, вместо визуализации потока воздуха рядом с каждым сегментом фюзеляжа самолёта, вы получаете средние скорости, или находите участки неподвижного воздуха. Из-за квантового выхода алгоритмов нужно ещё проделать много всяких операций, чтобы состояние системы можно было анализировать, сказал Киани.

Осборн говорит, что важно не преувеличивать возможности квантовых компьютеров. Однако в следующие 5-10 лет исследователи обязательно будут проверять множество подобных успешных квантовых алгоритмов. Мы будем пробовать всякое, сказал он. А если всё время думать об ограничениях, это может ограничить наше творчество.
Подробнее..

Перевод Измерение прогресса в эпоху зашумлённых квантовых вычислений

03.11.2020 16:17:49 | Автор: admin

Концепция квантового объёма от IBM предлагает вынести измерение прогресса в квантовых вычислениях за пределы простого подсчёта кубитов



В IBM придумали термин квантовый объём для измерения прогресса в квантовых вычислениях, пока квантовые технологии ещё далеки от идеала

Измерение прогресса квантовых компьютеров в эпоху зашумлённых квантовых вычислений может оказаться сложной задачей. Некоторые компании, в частности, IBM и Honeywell, остановились на такой мере прогресса, как квантовый объём. Однако не все компании и исследователи соглашаются с полезностью этой меры в мире квантовых вычислений.

В идеальном мире исследователи могли бы измерять прогресс квантовых вычислений на основе количества квантовых битов (кубитов) в каждом из компьютеров. Однако шум от теплового движения или электромагнитных источников постоянно угрожает разрушительным вмешательством в вычисления, проводимые хрупкими кубитами. В результате очень сложно надёжно оценить возможности квантовых компьютеров на основании одного лишь общего количества кубитов. Поэтому исследователи из IBM предложили ввести концепцию квантового объёма как более надёжную меру, применимую на данном этапе развития пока не идеальной технологии квантовых вычислений.

Можно представить себе квантовый объём как среднее количество цепей квантового компьютера, работающих в наихудших условиях, говорит Джей Гамбетта, научный сотрудник и вице-президент по квантовым вычислениям в IBM. Результат означает, что если это наихудшее условие возможно, то квантовый объём будет мерой качества цепей. Чем выше качество, тем более сложные цепи смогут работать на квантовых компьютерах.

Если точнее, то команда IBM определяет квантовый объём как два в степени, соответствующей размеру самой крупной цепи с одинаковой шириной и глубиной, способной пройти определённые испытания на надёжность. В испытаниях проверяются случайные двухкубитовые шлюзы, говорит Дэниел Лидар, директор центра квантово-информационных наук и технологий при Южно-Калифорнийском университете в Лос-Анджелесе. Размер цепи определяется либо по ширине, на основе количества кубитов, либо по глубине на основе количества шлюзов. При этом ширина и глубина количественно совпадают.

Это означает, что у квантовой вычислительной системы из 6 кубитов квантовый объём будет равен 2 в степени 6, или 64 но только если её кубиты будут относительно мало зависеть от шума, не выдавая связанных с ним ошибок. Поэтому для определения квантового объёма важен выбор конкретного испытания на надёжность.

Лидар, не участвовавший в создании концепции квантового объёма, считает её полезной мерой для сегодняшних квантовых компьютеров. Их технологию называют зашумлённой квантовой технологией среднего масштаба (Noisy Intermediate-Scale Quantum, NISQ). Такая метрика прекрасно описывает быстродействие квантовых компьютеров эпохи NISQ. Эта эра характерна тем, что шум всё ещё выступает одним из главных факторов, ограничивающих глубину надёжно работающих цепей.

Поскольку IBM начала активно использовать этот термин с конца 2019 года, квантовый объём уже довольно часто встречается в работах по квантовым вычислениям и пресс-релизах от IBM и других компаний, в частности, Honeywell. Однако по крайней мере один директор технокомпании уже высказал идею о том, что полезность термина скоро будет исчерпана.

Обсуждая последние разработки в области квантовых компьютеров компании IonQ в интервью, Питер Чапмен рассказал, как уменьшение шума может позволить сделать высокоточную 32-кубитную систему с квантовым объёмом порядка 4 млн. Он предположил, что всего через 18 месяцев значения квантового объёма вырастут так сильно, что исследователям придётся поменять определение, чтобы оно могло оставаться полезным.

Однако Лидар не согласен с тем, что термин " квантовый объём" довольно быстро уйдёт в небытие. Он указывает на тот факт, что квантовый объём будет расти так быстро только из-за той части определения, в которой двойку возводят в степень. Он добавил, что IBM даже не использовала это возведение в степень в первой своей работе на эту тему, опубликованной в 2017 году. Это просто недостаток самого определения, говорит Лидар.

Лидар говорит, что проще всего было бы определить квантовый объём в соответствии с самым большим количеством кубитов или шлюзов, и не использовать возведение в степень.

Не все считают квантовый объём таким важным или необходимым мерилом для оценки прогресса квантовых вычислений. Непонятно, нужно ли вообще сводить прогресс квантовых компьютеров к единственной мерке, говорит Скотт Ааронсон, специалист по информатике и директор квантового информационного центра в Техасском университете в Остине. Этот и другие вопросы по теме он осветил в своей статье "Прикрутите квантовый объём" [volume объём, а также громкость / прим. перев.].

Это просто ещё один из возможных обобщённых потребительских индексов крутизны квантовых компьютеров, среди бесчисленного множества альтернатив, говорит Ааронсон.

С практической точки зрения квантовым объёмом озабочены только крупные игроки в этой индустрии такие, как IBM. Так считает Джавад Шабани, адъюнкт-профессор физики и председатель лаборатории Шабани в Нью-Йоркском университете. У него и у других исследователей обычно нет доступа к таким крупным квантовым системам, даже учитывая то, что всё больше компаний предоставляет облачный доступ к подобным системам для программистов.

И всё же Шабани считает квантовый объём полезной концепцией, более осмысленно определяющей прогресс в квантовых вычислениях, чем простой подсчёт кубитов. Он, как и Лидар, предлагает оставить квантовый объём в деле, пока шум является ограничивающим фактором будь то ближайшие пять лет, или десять.

Если у вас получится создать логический кубит, не подверженный шуму, тогда эта концепция квантового объёма медленно исчезнет естественным путём , говорит Шабани.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru