Русский
Русский
English
Статистика
Реклама

Резервное питание

Разработка контроллера резервного питания. Схемотехника

04.06.2021 10:04:57 | Автор: admin

Итак - желтый прямоугольник, ограниченный штрихпунктирной линией и есть сам контроллер резервного питания.

Контроллер работает совместно с тремя внешними модулями:

  • сетевым источником питания 220 VAC в 24 VDC

  • инвертором 24 VDC в 220 VAC

  • аккумуляторной батареей 24 В

В момент отключения сетевого напряжения или понижения ниже предельного значения контроллер переключает потребителей на питание от аккумулятора и инвертора.
Переключение 24 В происходит без провалов напряжения, переключение 220 происходит с задержкой равной времени переключения реле.

Преимущества

Такая архитектура обеспечивает гибкость, масштабируемость и оптимальную стоимость.
- Гибкость выражается в цифровом управлении и возможности выбирать источник питания, инвертер и аккумулятор из широкого ассортимента представленного на рынке без привязки к конкретным производителям и продавцам. Это довольно актуально с современной турбулентностью поставок и при мелкосерийном производстве.
- Масштабируемость определяет возможность варьировать в широких пределах мощность источника питания, инвертера и емкость аккумулятора.
- Оптимальная стоимость. На рынке можно найти предложения по созданию аналогичной архитектуры на более раздробленных дискретных модулях или вовсе на нескольких автономных UPS-ах. Но чтобы добиться встраиваемости в системы потребителей по габаритам и с полным контролем со стороны систем управления потребителей понадобится еще много дополнительных средств. Обратная связь от потребителей в данной схеме позволяет не устанавливать избыточные резервные мощности, и сэкономить на емкости аккумулятора и мощности инвертора.

Применение

Применить такой контроллер можно в промышленных и бытовых устройствах и агрегатах, подъемниках, лифтах, автоматических воротах, кранах, автоматических дверях, системах домашней автоматизации и т.д.
Контроллер способен работать и как простой зарядник аккумуляторов емкостью до 30 А*ч, как измеритель параметров электросети, измеритель КПД инвертеров, как источник питания с регулируемым напряжением, током до 10 А и защитой от перегрузок и т.д.

Принцип работы

Особенностью архитектуры данного контроллера является его тесная связь с потребителями.
Для того чтобы не превысить предельно допустимую мощность источника питания и инвертера и не спровоцировать проседания выходных напряжений контроллер получает от потребителей информацию о планируемом подключении нагрузок и сообщает потребителям о текущем состоянии сетевого напряжения. Таким образом потребители не будут пытаться получить недоступную мощность или предпринимать действия способные быстро и непрогнозируемо привести к исчерпанию аккумулятора. Связь потребителей с контроллером осуществляется через один из цифровых интерфейсов : CAN, RS485, USB.

При наличии сетевого напряжения контроллер пропускает напряжение 24 В от внешнего источника питания к потребителям через управляемый ключ 1 (см. структурную схему) и напряжение 220 В через реле Р1. Ключ 1 работает одновременно также как ограничитель входного напряжения, ограничитель тока, защита от переполюсовки и идеальный диод. Ключ 1 не дает проникать обратному току на источник питания в случае отключения сетевого напряжения. Может показаться, что это излишняя мера, но некоторые промышленные источники питания MEAN WELL не включаются, когда на их входе уже присутствует напряжение. Одновременно с подачей тока потребителям контроллер заряжает аккумулятор (если аккумулятор этого требует). При этом ток заряда аккумулятора балансируется с током уходящим потребителям так чтобы не превысить допустимый ток источника питания.
Цифровое управление и повышающее/понижающий (Buck-Boost) преобразователь зарядника позволяют точно учитывать степень заряда и разряда аккумулятора и выбирать правильные профили заряда в зависимости от состояния аккумулятора.

При отсутствии сетевого напряжения контроллер пропускает через ключ 2 напряжение 24 В потребителям от аккумулятора. Напряжение при этом может варьироваться от 27 В (полностью заряженный) до 20 В (полностью разряженный). Потребители должны быть готовы работать в таком диапазоне, что обычно не представляет проблемы. Напряжение 220 В подается через реле Р2 от внешнего инвертера. Сам инвертер питается от аккумулятора через ключ 3. Инвертер может поддерживаться как в горячем резерве так и быть отключенным (что более экономично). Однако из выключенного состояния инвертеры обычно выходят несколько секунд и это затягивает переключение.

Основные характеристики

  • максимальный коммутируемый переменный ток напряжения 200 В - 35A

  • максимальный коммутируемый постоянный ток напряжения 24 В - 15 А

  • максимальный ток на входе инвертера - 50 А

  • максимальный ток заряда аккумулятора при наличии радиатора - 10 А

  • максимальный ток заряда аккумулятора без радиатора - 4 А

  • тип аккумулятора - cвинцово-кислотная батарея 24 B

  • тип микроконтроллера - MKE18F512VLL16 (ARM Cortex-M4F, 32-Bit, 168MHz, 512KB (512K x 8) FLASH, 64 KB SRAM, -40C ~ 105C)

  • Цифровые интерфейсы: CAN гальвано-изолированный, RS485 гальвано-изолированный, USB 2.0 Full Speed VCOM

  • Два гальвано-изолированных цифровых выхода

  • Дисплей с энкодерным управлением

  • Встроенные измерители токов, напряжений, мощностей и прочего по входным и выходным линиям 220 и 24 В.

  • Утечка тока аккумулятора в отключённом состоянии не более 200 мкА

  • Все основания рассчитывать что на половине заявленных максимальных токов плата способна будет длительно работать без радиаторов при условии свободной конвекции.

Схема

Лист 1. Идеальный диод источника питания, идеальный диод цепи питания системы от аккумулятора и DC/DC преобразователь зарядника. Лист 1. Идеальный диод источника питания, идеальный диод цепи питания системы от аккумулятора и DC/DC преобразователь зарядника. Лист 2. Микроконтроллер, цифровые интерфейсы, дисплей, стабилизаторы питанияЛист 2. Микроконтроллер, цифровые интерфейсы, дисплей, стабилизаторы питанияЛист 3. Ключ питания инвертера, измерители в цепи переменного тока, коммутаторы цепи переменного токаЛист 3. Ключ питания инвертера, измерители в цепи переменного тока, коммутаторы цепи переменного тока

Структурная схема

Структурная схема с указанием номеров разъемов и точек измерения напряжений и токов. (для увеличения открыть в отдельном окне)Структурная схема с указанием номеров разъемов и точек измерения напряжений и токов. (для увеличения открыть в отдельном окне)

Особенности схемы

Зарядник аккумулятора выполнен на регулируемом DCDC преобразователе U23 серии LTC3789.
Выходное напряжение преобразователя задается микросхемой U24 DAC80501 управляемой по интерфейсу I2C. DAC80501 преобразует 16-и битный код в выходное напряжение в диапазоне от 0 до 1.25 В. Резистивный делитель на R94, R96, R100 смешивает напряжение от U24 и выходное напряжение DCDC преобразователя чтобы получить опорное напряжение VFB, для микросхемы LTC3789 оно должно равняться 0.8 В. DCDC преобразователь работает так чтобы напряжение VFB всегда оставалось равным 0.8 В, когда микросхема U24 меняет свое выходное напряжение.
Таким образом DCDC преобразователь способен регулировать свое напряжение от 1.65 В до 31.9 В.
Для расчета схем на базе LTC3789 и подобных существует специальная программа - LTpowerCAD
Вид окна программы для рассматриваемого преобразователя показан ниже:

В целом программа показывает более оптимистичные результаты чем есть в реальности, особенно на малых мощностях. В частности недооценивается влияние паразитных элементов трассировки.
Даже упрощенная модель в программе LTpowerCAD не дает однозначного ответа по оптимальному выбору компонентов, поскольку при разных режимах и комбинациях входных и выходных напряжений и токов значительно меняется вклад разных элементов в нагрев схемы. Т.е. программа не выполняет глобальной оптимизации по всему диапазону рабочих режимов. И приведенная схема была в основном оптимизирована для случая выходного напряжения в 32 В и выходного тока 10А, т.е. самого тяжелого режима при зарядке 24В аккумулятора.
На КПД преобразователя также влияет состояние сигнала DCDC_MODE. Как показала практика в состоянии лог. 0 (forced continuous mode ) катушка индуктивности L5 меньше нагревается чем когда на DCDC_MODE присутствует лог. 1 (pulse-skipping mode)
Сигнал EN_CHARGER в состоянии лог. 0 запрещает работу преобразователя. В выключенном состоянии преобразователь не пропускает напряжение с выхода на вход.

Ключ источника питания SW1. Выполнен на микросхеме U20 LTC4364. Через этот ключ проходит ток от источника питания к потребителям. Когда происходит переключение от питания от аккумулятора этот ключ выключается микроконтроллером.

Часть схемы с ключом источника питания Часть схемы с ключом источника питания

Ключ кроме непосредственно коммутации выполняет еще несколько защитных функций:
- работает как идеальный диод от входа к выходу,
- выполняет защиту от перегрузок по току,
- защищает выходную цепь от перенапряжений на входе (отключается при перенапряжении) ,
- не пропускает в систему слишком низкое напряжение от источника питания,
- ограничивает броски тока при включении,
- обеспечивает плавное нарастание выходного напряжения,
- предохраняет схему от переполюсовки на входе.
При этом о своих аварийных состояниях ключ сообщает сигналом PIDS_FAULT.
Сигналом PIDS_SHDN в высоком состоянии ключ выключается. Если схема обесточена, то при включении источника питания будет находиться в открытом состоянии.

В промышленных системах столько защит не является лишним. Особенно когда работать приходится в окружении электроники сомнительного качества и надежности.

Ключ аккумулятора SW2. Выполнен на микросхеме U21 LTC4364.

Назначение этого ключа в том чтобы пропустить ток от аккумулятора к потребителям в режиме работы резервного питания. Транзистором Q9 задается два разных уровня выходного напряжения.
При уровне 0 сигнала AIDS_FBC ключ начинает пропускать ток от аккумулятора в систему (т.е. потребителям) только если напряжение в системе упадет ниже 22.9 В (т.е. внешний источник питания не будет способен удержать свое номинальное напряжение)
При уровне 1 сигнала AIDS_FBC ключ пропустит ток если в системе напряжение будет ниже 26.3 В.
Это необходимо когда в систему включается полностью заряженный аккумулятор с напряжением до 32 В чтобы транзисторы ключа не перегрелись из-за слишком большого падения напряжения на них.
Поскольку ключ еще и выполняет функции идеального диода, то ток из системы в аккумулятор через него не проходит.
В обесточенном состоянии и подключении только аккумулятора ключ останется закрытым. Таким образом систему нельзя включить от аккумулятора не подав предварительно напряжение от внешнего источника питания.

Ключ питания инвертора SW3. Выполнен на микросхеме U14 LTC4368.

Этот ключ включает питание на инвертор. Для быстрого переключения на резервное питание инвертор желательно держать включенным. Однако инверторы потребляют значительный ток. Например инвертор MEAN WELL TS-1500-224 мощностью 1.5 КВт

на холостом ходу потребляет более 1 А. После аварийной перегрузки такой инвертер не включится вновь пока на с него не снимут напряжение ( если не пользоваться его интерфейсом управления). В таком случае ключ помогает избавиться от лишнего потребления тока и упростить восстановление после перегрузок, хотя и ценой некоторой инерционности.
Ключ защищает аккумулятор от слишком больших токов. В данной схеме защита должна срабатывать при токе превышающем 50 А, на самом деле будет меньше, тут критически важна трассировка.

Высоковольтная часть. В высоковольтной части коммутация производится с помощью реле K1 и K2 типа AHES4292. Не самый быстрый и надежный способ коммутации, но дело в том что схема предназначена для коммутации самых разнообразных нагрузок и напряжений, в частности для коммутации межфазных напряжений в 3-х фазных сетях (тогда ставятся еще вспомогательные внешние 3-х фазные контакторы). Реле относятся к типу реле безопасности и на схеме они взаимно блокированные. Принято считать что по такой схеме реле такого типа ни при каких обстоятельствах не смогут включиться одновременно, даже когда одно из них залипнет. Значит сетевое напряжение никогда не сможет проникнуть на выход инвертора и погубить его.
Залипание реле контролируется измерителями напряжения на резистивных делителях R51, R52 и R53, R54

Мониторы мощности. Реализованы на микросхемах U15 и U17 типа ACS37800KMACTR-030B3-SPI.
Микросхемы способны измерять переменный ток, напряжение, мощность, действующие их значения, средние от действующих значений за заданное время, способны измерять действующее как по переходу через ноль так и действующее значение постоянных токов. Каждая из микросхем отдельно гальвано-изолирована и может выполнять точные измерения не беспокоясь о способе реализации заземления и зануления источников напряжения и даже измерять при межфазном подключении. Микросхемы измеряют ток амплитудой до 30А.
Считывание данных производится по интерфейсу SPI. На каждую микросхему идет отдельный интерфейс SPI поскольку они не могут совместно работать на одном общем интерфейсе.

Измерители токов и напряжений. Как пример приведен фрагмент схемы ниже -

U22 и U13 здесь измеряют ток. Микросхемы INA240A1 хорошо подходят для условий измерений с большими синфазными помехами. Они двунаправленные. Средняя точка для них формируется общей для всех прецизионной мало-шумящей схемой на операционном усилителе U26 THS4281DBVR. Кроме того INA240A1 достаточно хорошо согласуются в входами АЦП микроконтроллеров.
Микросхема U27 на схеме выполняет роль дифференциального усилителя напряжения для измерения напряжения аккумулятора. Дифференциальный усилитель применен здесь для того чтобы минимизировать ток потребляемый от аккумулятора, когда система обесточена, также дифференциальный усилитель как ни странно упрощает трассировку платы в отношении топологии аналоговых и цифровых земель.

Элементы управления. Для управления платой в первую очередь предназначены коммуникационные интерфейсы, но предусмотрено также и непосредственное ручное управление и настройка. Для этого введен в схему ручной механический энкодер SW1 с двухцветной подсветкой и нажатием PEL12D-4225S-S2024.

Для отображения информации есть OLED дисплей ER-OLED015-2W. Монохромный, 128x64 точки, управляется по интерфейсу SPI. Немного усложненная схема

объясняется тем что дисплею для работы нужно повышенное напряжение 12 В. Ключ питания U34 здесь добавлен скорее для страховки ввиду неопределенности поведения в даташите на дисплей в случае пониженного уровня VCC.

Микроконтроллер MKE18F512VLL16 будет работать на частоте 120 МГц. Его внутренней RAM размером в 64 кБ должно хватить для операционной системы реального времени чтобы управлять несколькими автономными задачами: GUI, измерений, контроля, связи.

Что стоит помнить.
Как и программное обеспечение такие схемы подвергаются постоянному рефакторингу - меняются названия сигналов, заменяются микросхемы на другие, меняются дискретные компоненты, исправляются грубые ошибки и т.д. Изменения происходят постоянно и даже на этапе эксплуатации изделия. Эта схема прошла уже 3-и итерации с очень существенными изменениями.
Самый страшный враг схемотехника промышленных изделий - желание экономить на компонентах, пытаться снизить себестоимость отказываясь от тех или иных защитных средств: супрессоров, гальвано-изоляции, разделения земель, лимитеров и т.д.
Пример: можно не ставить супрессор на входе к которому подключается внешний источник питания. Казалось бы логично, ведь источник питания и так имеет многочисленную защиту на своем выходе. Но на производстве нередко включенный источник подключают к не запитанной плате. При достаточно длинных проводах и мощном источнике на входе платы в момент непосредственно коммутации и сопровождающего ее дребезга возникают резонансные явления приводящие к перенапряжениям и выходу из строя полупроводниковых ключей на плате.
Отловить такой баг уже отдав устройство в эксплуатацию можно лишь по факту массового обращения недовольных потребителей.

Далее предстоит плату страссировать, спаять, написать программу.
Трассировкой предполагается заняться в следующей статье.

Подробнее..

Разработка контроллера резервного питания. Трассировка

14.06.2021 12:13:27 | Автор: admin

В предыдущей статье http://personeltest.ru/aways/habr.com/ru/post/557242/ была описана схемотехника контроллера резервного питания. Такой контроллер может пригодится в разнообразных технических системах и устройствах. Поэтому конструктив платы был выбран максимально нейтральный с возможностью выноса элементов управления на отдельную панель.

Выбор конструкции платы и ее трассировка - это каскад компромиссов. Компромиссы возникают когда надо удовлетворить целый список желаний включающий, но не ограниченный пунктами:

  • электромагнитная совместимость удовлетворяющая стандартам

  • высокая теплоотдача и большая рассеиваемая мощность без радиаторов и вентиляторов

  • низкая цена печатной платы

  • минимальные размеры

  • возможность изменять варианты сборки

  • обеспечение электробезопасности и электрической прочности

  • ремонтопригодность с минимальной оснасткой и оборудованием

  • пригодность для коррекций ошибок трассировки и схемотехники

  • технологичность сборки и невысокая цена сборки

  • максимальная тестируемость после сборки

  • удобство монтажа в целевой системе

Естественно что весь этот список невозможно не только максимально удовлетворить, но даже держать в памяти затруднительно.
Поэтому эмпирически выбираем два-три высших приоритета с которыми работаем в первую очередь.
Низкая серийность позволяет нам сдвинуть цену вниз по приоритетам. Боль прошлого опыта заставляет нас поднять ремонтопригодность и тюнингируемость на пару уровней выше чем это принято обычно.
В верхней строчке может оказаться электробезопасность и соответствие стандартам по ЭМС.
И не только потому что без этого регуляторы просто не позволят эксплуатировать плату. Плохая ЭМС может поднять результирующую цену платы многократно, поскольку приведет к длительному циклу отладки, к повышенному проценту ремонтов, удорожанию технической поддержки и многому другому. Соответственно вердикт - плата должна иметь не менее 4-х слоев.

В 4-х слоях удастся сделать максимально большие полигоны земли и питания, а также полигоны отвода тепла.
Толщину платы выбираем из соображений жесткости и из перечня доступных вариантов у производителя плат. Внутренние слои расположены ближе к внешним чтобы иметь лучшую емкостную связь с дорожками в верхних слоях и обеспечивать лучшую ЭМС, а также для лучшей передачи тепла от SMD компонентов в стороны от них.
Шесть слоев конечно было бы лучше, но нельзя забывать что цена еще не выкинута из списка приоритетов.

Вопрос выбора программных инструментов для трассировки решается в пользу Altium Designer. Как считают его разработчики он на сегодня наиболее массово применяемый инструмент в данной области.
Цена за standalone лицензию Altium до акций могла обойтись пределах 10 тыс. евро, еще 3 тыс. евро возможно придется отдать за опцию PDN Analyzer если потребуется точнее рассчитать потери и наводки в проводниках.
К счастью есть возможность поработать с триальной версией Altium и при должной сноровке выполнить трассировку необходимой нам платы в триальный период.

Результат работы показан ниже:

Вид трассировки с отображением всех 4-х слоев Вид трассировки с отображением всех 4-х слоев Вид сверху и вид снизуВид сверху и вид снизу

Компоновка
При компоновке внимание было уделено дистанцированию высоковольтных коммутаторов от низковольтных цепей, компактности отдельных ключей для минимизации длины дорожек проводящих большие токи, распределению силовых компонентов способом обеспечивающим наилучший отвод тепла. Таким образом все силовые транзисторы оказались на нижнем слое.
При необходимости на них всех можно установить единый радиатор.

На посадочном месте дисплея находится ряд отверстий под установку разъема. Если дисплей и энкодер нужно вынести, то ставится разъем на который выходят все необходимые для выноса сигналы.

Расположение основных узлов на платеРасположение основных узлов на плате

Работа по правилам.
В Altium есть оригинальный механизм правил. Правила позволяют делать автоматическую проверку соответствия трассировки заданным технологическим нормам.

Для данной платы были созданы следующие основные правила:

Минимальные зазоры по умолчаниюМинимальные зазоры по умолчаниюМинимальная, предпочтительная и максимальная толщина проводниковМинимальная, предпочтительная и максимальная толщина проводниковМинимальные и максимальные размеры переходных отверстийМинимальные и максимальные размеры переходных отверстий

Определение зазоров.
Зазоры - это то на чем вас в первую очередь могут подловить сертифицирующие органы если вы не уделите необходимого внимания этому аспекту. Зазоры необходимо увеличивать для защиты от пробоев электрическим напряжением и всяческих неприятностей при длительной эксплуатации, но делать зазоры слишком большими тоже не вариант. Поэтому делать их надо по предельно допустимым величинам из стандартов. На каждое напряжение свой зазор, причем он разный во внешних и внутренних слоях, зависит от того открыта паяльная маска или нет и прочих условий.
Дополнительно надо помнить о двух разных понятиях: зазор (clearance) и длина пути (creepage).

Слева диалог установки зазоров, справа диалог установки минимального пути для класса цепей 220VСлева диалог установки зазоров, справа диалог установки минимального пути для класса цепей 220V

Путь (creepage) должен быть строго таким как указывают стандарты, а вот зазор может быть меньше если между площадками находится вырез в плате. Очень часто высоковольтные разъемы имеют дистанцию между выводами меньшую чем допустимо при указанном на них максимальном напряжении. В этом случае делают вырезы чтобы обеспечить необходимый creepage.

Чтобы иметь возможность разным цепям назначать разные зазоры по отношению к другим цепям на схеме задаются классы цепей. Классы назначаются с помощью специальных визуальных элементов присоединяемых к цепям, как показано на рисунке. При щелчке на элементе открывается диалог, где можно написать имя класса цепи.
Затем в редакторе печатной платы в диалоге правил каждому классу обнаруженному на схеме можно записать свое правило со значением зазора. Естественно для классов можно задать и иные категории правил, например ширину проводников, типы переходных отверстий разрешенных для класса, способы подключения к полигонам, термо-барьеры и проч. Но для данной платы это не используется.
Обратной стороной правил является то что их может стать слишком много и тогда поддерживать правила при рефакторинге станет труднее чем делать ручные операции.

Площадки и их особенности

Как и при разработке программного обеспечения так и при разработке платы не имеет смысла сразу уделять много внимания форме площадок. Для этого есть рефакторинг и в Altium этот рефакторинг делать достаточно удобно.
Но несколько советов все же дам.

Площадки со скруглениямиПлощадки со скруглениями

Во первых, все площадки скругляю (или почти все, насколько видится целесообразным) .
Это заметно повышает плотность трассировки и заполняемость полигонами. Исключение составляют только первые пины многовыводных компонентов. Их делаю прямоугольными чтобы сразу визуально отличить и понять ориентацию компонента с какой бы стороны платы мы не смотрели (если это не SMD компонент)

Посадочное место силового транзистора. Красным обозначены открытые области маски для пасты. Посадочное место силового транзистора. Красным обозначены открытые области маски для пасты.

Следующим важным моментом является маска для нанесения пасты. Все области открытой маски для пасты на поверхности платы должны быть примерно одинаковыми. Так требуют технологи контрактных сборщиков чтобы лучше контролировать количество наносимой пасты.
Поэтому под большие площади занимаемые SDM транзисторами маска пасты делается не сплошной, а перфорированной. Если ее сделать сплошной, то переизбыток пасты вызовет миграцию корпуса силового транзистора при пайке с сторону со значительным смещением (доли миллиметра). Такой миграции хватит чтобы замкнуть затвор с истоком.
Если переходные отверстия находятся на площадке, то их диаметр не более 0.3 мм и над ними закрыта маска пасты. Паста никогда не ложится на переходные. С обратной стороны платы у таких переходных всегда открыта паяльная маска. Такие меры вполне эффективно препятствуют массивному перетеканию припоя на обратную сторону и образованию дефектов вспучивания паяльной маски на обратной стороне.

Площадки измерительных шунтов.
Оба показанных ниже варианта приемлемы. Но все же первый вариант выдаст менее точное измерение. И погрешность будет выше чем заявленная погрешность номинала самого шунта.

Шелкография

Стиль шелкографии на плате достаточно скупой.
Насыщенная шелкография, где обводятся контуры каждого элемента может привести к большому объему трудозатрат по корректировки нахлёстов шелкографии на открытые площадки для пайки.
Главное что нужно от шелкографии - показать позиционные обозначения компонентов и их ориентацию.

Какие рекомендации действительно важны

В интернете на сайтах любителей да и производителей есть множество советов как и что нельзя делать при разработке печатных плат. В целом обычно верно, но часто остается непонятным насколько критичны те или иные рекомендации. Два примера ниже.

Неоднозначная рекомендация по применению термобарьеровНеоднозначная рекомендация по применению термобарьеровВажная рекомендация в отношении паяльной маски Важная рекомендация в отношении паяльной маски

Рекомендация по установке термо-барьеров. Она напрямую конфликтует с требованиями ЭМИ и теплопередачи, однако выполнение рекомендации обеспечивает исключительное удобство ремонта. Как правило если элемент не греется, не проводит большие токи, то ремонтировать его не приходится, если только не считать тюнинга.
Современные контрактные сборщики, по моему опыту, не отдают плат с дефектом надгробного камня, а исправляют его у себя, если он появляется. Они также и претензий не предъявляют в случае отсутствия термо-барьера.
Что же касается ремонта, то современные паяльники без труда справляются с отпайкой компонентов без термо-барьеров. Словом, рекомендация сомнительная.

Рекомендация для паяльной маски. Это очень важная рекомендация. Области открытой паяльной маски ни в коем случае не должны охватывать соседние площадки если они принадлежат разным цепям. Иначе практически гарантировано где-то возникнет замыкание между площадками и контрактный сборщик отдаст плату с дефектом потому что визуальный контроль его не обнаружит, так как замыкания могут быть под корпусами микросхем.

Проблемы земли
Вопрос о земле - важнейший в цифро-аналогово-силовых схемах. Малейшая неосмотрительность может привести к тяжелым финансовым последствиям либо, в лучшем случае, к значительной деградации качества работы схемы.
У Altium есть инструмент под названием PDN Analyzer для точного расчета потенциалов в проводниках с большими токами к которым относятся и полигоны земель. Однако в данном проекте этот анализатор не использовался. Все же это дорогое и трудоемкое удовольствие оправданное в более сложных проектах. Здесь подход был проще.
Были идентифицированы несколько основных доменов земли которые необходимо максимально разделить:
- цифровая земля микроконтроллера
- аналоговая земля микроконтроллера
- возвратная земля силовых ключей и DC/DC преобразователя
- чувствительная земля DC/DC преобразователя
- непосредственно заземление

Потом эти земли были обратно на схеме разделены специальными компонентами-перемычками представляющими собой просто короткие дорожки, как на рисунке ниже

После такого разделения на плате эти земли уже трассировались как отдельные не связанные между собой цепи. И конечно не забывалось о правиле минимизации петли возвратных токов, т.е. сигналы каждого домена шли поверх или рядом с полигоном земли этого домена.

Ниже показана результирующая топология каждой из земель.

На этом описание трассировки заканчивается. Насколько это возможно в формате короткой статьи я постарался отметить самые важные на мой взгляд моменты.

Следующим этапом будет программирование, наладка и тестирование платы. Но об этом позже.

Подробнее..

Серверы в дата-центре Microsoft проработали двое суток на водороде

12.08.2020 12:22:47 | Автор: admin


Microsoft объявила о первом в мире крупномасштабном эксперименте по использованию водородных топливных ячеек для энергопитания серверов в дата-центре.

Установку 250 кВт произвела компания Power Innovations. В будущем подобная 3-мегаваттная установка заменит традиционные дизель-генераторы, которые сейчас используются как резервный источник питания в ЦОД.

Водород рассматривается как экологически чистое топливо, потому что в результате его сгорания образуется только вода.

Microsoft поставила задачу полностью заменить все дизель-генераторы в своих дата-центрах к 2030 году.

Как и в других ЦОД, в дата-центры Azure дизель-генераторы используются в качестве резервных источников питания, когда пропадает электричество по основному каналу. Это оборудование простаивает 99% времени, но всё равно ЦОД поддерживает его в рабочем состоянии, чтобы оно бесперебойно работало в случае редких сбоев. На практике у той же Microsoft они проходят только ежемесячную проверку работоспособности и ежегодное нагрузочное тестирование, когда нагрузка с них реально поставляется на серверы. Сбои основного питания происходят не каждый год.

Однако специалисты Microsoft подсчитали, что последние модели топливных ячеек на водороде уже экономически выгоднее, чем дизель-генераторы.

Кроме того, сейчас для резервного питания (UPS) используются батареи, которые дают мощность в небольшой интервал (от 30 секунд до 10 минут) между отключением сети и поднятием дизель-генераторов. Последние способны работать непрерывно, пока не кончится бензин.

Топливная ячейка на водороде заменяет и UPS, и дизель-генератор. Она состоит из цистерн хранения водорода и установки электролиза, которая расщепляет молекулы воды на водород и кислород. Вот как выглядит в реальности модель Power Innovations на 250кВт:



Установка просто подключается к существующей электрической сети и не требует подвоза топлива извне, как дизель-генератор. Её можно интегрировать с солнечными панелями или ветряными станциями, что позволит сгенерировать достаточно водорода для наполнения цистерн. Таким образом, водород используется как химический аккумулятор электроэнергии для солнечных и ветровых станций.

В 2018 году исследователи из Национальной лаборатории по возобновляемой энергии в Колорадо (США) провели первый успешный эксперимент по запитыванию стойки серверов от топливных ячеек на PEM (proton exchange membrane), то есть на протонообменных мембранах.

PEM это сравнительно новая технология получения водорода. Сейчас такие установки постепенно вытесняют традиционный щелочной электролиз. Сердцем системы является электролизная ячейка. В ней имеется два электрода, катод и анод. Между ними расположен твёрдый электролит, это и есть протонообменная мембрана из высокотехнологичного полимера.



Технологически протоны стабильно протекают внутри мембраны, тогда как электроны движутся по внешнему каналу. На анод поступает деионизированная вода, где расщепляется на протоны, электроны и газообразный кислород. Протоны проходят через мембрану, а как электроны движутся через внешнюю электрическую цепь. На катоде протоны и электроны воссоединяются, образуя газообразный водород (H2).

Это исключительно высокопроизводительный, надёжный, экономически эффективный способ получения водорода непосредственно на месте его потребления. Затем при соединении водорода и кислорода образуются пары воды и генерируется электричество.

В сентябре 2019 года компания Power Innovations начала экспериментировать с 250-киловаттной топливной ячейкой, которая снабжает энергией 10 полных серверных стоек. В декабре система прошла 24-часовой тест надёжности, а в июне 2020 года 48-часовой.

Во время последнего эксперимента в автоматическом режиме работали четыре таких топливных ячейки. Зафиксированные показатели рекорда:

  • 48 часов непрерывной работы
  • Сгенерировано 10560 кВтч электричества
  • Использовано 814 кг водорода
  • Произведено 7000 л воды



Теперь компания планирует по той же технологии сконструировать топливную ячейку на 3 мегаватта. Вот уже она по мощности будет полностью соответствовать дизель-генераторам, установленным в дата-центрах Azure.

Продвижением водорода в качестве топлива занимается международная организация Hydrogen Council, которая объединяет производителей оборудования, транспортные компании и крупных клиентов Microsoft уже назначила своего представителя в этом совете. В принципе, все технологии для производства водорода и выработки электроэнергии уже доступны. Задача организации масштабировать их. Здесь ещё много работы.

Специалисты видят большое будущее за топливным ячейками типа PEM. За два последних года их стоимость снизилась примерно в четыре раза. Они отлично дополняют фотоэлектрические и ветряные станции, накапливая энергию в периоды максимальной генерации и отдавая её в сеть в моменты пиковой нагрузки.

Опять же, их можно использовать для брокериджа на энергетической бирже, когда система закупает энергию в периоды минимальных или даже отрицательных цен и отдаёт её в моменты максимальной стоимости. Такие брокерные системы могут работать автоматически, как торговые боты.



На правах рекламы


Резервные источники питания наших дата-центров работают хоть и не на водороде, но надёжность на высоте! Наши эпичные серверы это мощные VDS в Москве, которые используют современные процессоры от AMD.
О том, как мы строили кластер для данной услуги в этой статье на Хабре.

Подробнее..

Что влияет на цену литий-ионного аккумулятора?

21.03.2021 02:21:27 | Автор: admin

Сегодня на российском рынке появилось много литиевых аккумуляторов от различных производителей и поставщиков, как в виде отдельных ячеек, так и в сборках. Хотелось бы все таки разобраться, что же все таки влияет на цену литий-ионного аккумулятора?

Стоимость аккумуляторной батареи является жизненно важным фактором при выборе подходящей батареи для своих целей или проектов.

Итак, каковы факторы, влияющие на цену литий-ионного аккумулятора?

  1. Как правило, стоимость литий-ионного аккумулятора зависит от элементов / ячеек, из которых собран данный аккумулятор,

  2. BMS (Battery Management System контроллер управления работой литиевого аккумулятора) или систем PCM и PCB (модуля или платы защиты), а также

  3. корпуса батареи.

Кроме этого, на конечную стоимость батарей оказывает выбор материала, используемого в качестве перемычек, соединяющих ячейки (медно-луженые, никелевые, алюминиевые и т.д.), вид и пропускная мощность силовых клемм, наличие индикаторов параметров батареи, установка мониторов и других дополнительных элементов, стоимость и установка которых может также повлиять на процессы сборки батарей и влиять на их конечную стоимость.

Сегодня мы подробно остановимся на трех основных факторах, определяющих разницу в цене литий-ионных аккумуляторов.

1. Выбор аккумуляторной батареи по химическому составу ячеек и производителю

1.1 Различные материалы

Во-первых, это химический состав аккумуляторных элементов. В литий-ионных аккумуляторах могут использоваться различные варианты катодных материалов. Катодные материалы в основном и обеспечивают характеристики литиевого аккумулятора. В качестве таких материалов в основном используются сложные оксиды металлов (в основном на основе лития), к примеру, литий-кобальт (LCO), литий-железо-фосфат (LiFePO4), манганат лития (LiMn2O4), тройные материалы, такие как никель-кобальт-алюминий (NCA) и никель-марганец кобальта (NCM или NMC), титанат лития и другие.

Из-за различных материалов, используемых в элементах батареи, характеристики напряжения, факторов безопасности, срока службы, плотности энергии и рабочей температуры также изменятся, что в конечном итоге повлияет на стоимость литий-ионных аккумуляторов.

1.2 Аккумуляторные батареи различных производителей

Цена аккумуляторных элементов зависит от марки. Например, специальные батареи, включая низкотемпературные, высокотемпературные, высокотоковые и фасонные батареи, созданные разными производителями, будут влиять на стоимость батарей из-за различных технологий производства. Некоторые аккумуляторные элементы от мелких производителей могут иметь более низкую цену за счет низкой производительности аккумулятора. Хотя цены на литиевые аккумуляторы от крупных производителей, таких как LG-Chem (Корея), BYD, CATL, CALB, Great Power и т.д, могут быть выше по цене, но при этом ячейки / аккумуляторы имеют высокие стабильные свойства и обеспечивают хорошую и безопасную работу аккумулятора.

2. Выбор защит иBMSв литий-ионной батарее.

Выбор BMS (PCM или PSB) для литий-ионного аккумулятора еще один фактор, влияющий на общую стоимость аккумулятора. Литий-ионные батареи могут вызвать отказ батареи или даже возгорание при неправильной эксплуатации, поэтому BMS (PCM или PSB) необходим для литий-ионных батарей во избежание угроз безопасности. Дизайн BMS состоит из трех основных частей: базовая защита аккумулятора, связь и система управления аккумулятором. Давайте объясним ниже.

2.1 Базовая защита аккумулятора

Чтобы контролировать производительность батареи, каждая литий-ионная батарея имеет базовую защиту, которая защищает элементы от высокого / низкого напряжения, токов во время заряда и разряда. В соответствии с запросами клиентов, к аккумулятору может быть добавлена другая защита, например защита от перегрева, что улучшит надежность, но и увеличит стоимость всей литий-ионной аккумуляторной батареи.

2.2 Связь

Когда требуется контроль и управление батареями, всегда есть коммуникационная сеть. Для этого каждая ячейка содержит интерфейс связи для передачи данных. Протоколы связи можно разделить на I2C, RS485, RS232, CANBUS, HDQ, SMBUS и т. Д. Также имеется простой светодиодный индикатор батареи, который показывает состояние заряда аккумуляторной батареи.

2.3 BMS

BMS относится к системе контроля и управления за работой литиевыми аккумуляторами. В основном обеспечивает интеллектуальное управление и обслуживание каждого элемента / ячейки батареи. Благодаря мониторингу состояния батареи, пользователю предлагаются подробные данные, чтобы помочь предотвратить перезарядку и разрядку батареи и продлить срок ее службы при правильном использовании.

Ключевые функции BMS включают в себя мониторинг параметров батареи в реальном времени, оценку состояния батареи, онлайн-диагностику и раннее предупреждение критичных состояний, контроль заряда, разряда и начального состояния заряда, сбалансированное управление и управление температурой. Чем сложнее BMS, тем она дороже и как следствие дороже сам аккумулятор.

3. Выбор корпусов литий-ионных аккумуляторов

Литий-ионные аккумуляторные элементы / ячейки могут быть заключены в различные корпуса термоусадочную ПВХ пленку, текстолит, пластик или металл. Вариант корпуса и конструкции аккумулятора обычно зависят от конкретных требований устройств с электропитанием от аккумуляторов. Поэтому стоимость аккумуляторной батареи зависит от материала корпуса. В чем разница между этими материалами?

3.1 Термоусадочная ПВХ пленка

Термоусадочная ПВХ пленка обычно используется для небольших литий-ионных аккумуляторных батарей, в которых количество литиевых ячеек небольшое, а общий вес батареи не превышает 2 кг. Однако для таких аккумуляторных блоков весом более 1 кг перед термоусадкой ПВХ необходима установка фиксирующих кронштейнов между элементами аккумулятора и лист стекловолокна по периметру.

3.2 Стеклотекстолит

Корпуса из стеклотекстолита также используются в небольших литиевых аккумуляторах. Такой корпус надежно защищает литиевые ячейки от ударов. Преимущества таких корпусов в том, что можно собрать аккумулятор в прочном корпусе практически любой формы.

3.3 Пластик

Цена литиевого аккумулятора в пластиковом корпусе будет зависеть от сложности конструкции корпуса. Например, если корпус имеет неправильную форму, стоимость пресс-формы в конечном итоге увеличит стоимость аккумуляторной батареи. Кроме того, требования к материалу корпуса (ABS пластик, ПВХ и т.п.), являются причиной разницы в конечной цене аккумулятора.

3.4 Металл

Металлический корпус более прочный и лучше отводит тепло, чем пластиковый корпус, но является более дорогим. Точно так же стоимость во многом зависит от требований к металлическому корпусу. Водонепроницаемый металлический корпус или некоторые специальные металлические корпуса, такие как титановый корпус, будут продаваться по более высокой цене, в то время как обычный металлический аккумуляторный блок может стоить значительно дешевле.

Из-за технической сложности литиевых аккумуляторов, объема поставок и других требований, цены на батареи одной и той же емкости могут сильно отличаться. При выборе поставщика убедитесь, что специалист компании предоставит Вам конкретное предложение по аккумулятору и BMS, чтобы удовлетворить именно Ваши требования к устройству. Сэкономив ваше время на поиск правильного поставщика Вы получите удовольствие от использования высококачественного продукта.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru