Русский
Русский
English
Статистика
Реклама

Наноструктуры

Оптика в ботанике структурный цвет ягод калины тинус

14.08.2020 10:06:51 | Автор: admin


С чем у вас ассоциируется лето? Для кого-то это период долгожданного отпуска, для кого-то каникул, а для кого-то жара, духота и дискомфорт. Если же рассматривать лето с точки зрения гастрономии, то это период овощей, фруктов и ягод, которые мы любим не только за их вкус и пользу, но и за внешний вид. Как мы знаем из начального курса биологии, плоды многих растений обладают теми или иными свойствами, целью которых является привлечь потенциального гурмана. Это важная составляющая тактики расширения ареала произрастания. Подавляющее большинство плодов имеют яркий и сочный цвет, оповещающий об их вкусности. Главным источником того или иного окраса у ягод являются пигменты в кожуре, однако это не единственная методика окрашивания. Ученые из Бристольского университета выяснили, что калина лавролистная (Viburnum tinus) использует липидные наноструктуры в клеточных стенках для окрашивания своих ягод, что является ранее неизведанным вариантом структурной окраски. Что такого необычного в этих липидных наноструктурах, за счет чего они придают ягодам темно-синий окрас, и какое практическое применение сего открытия? Свет на эти вопросы прольет доклад ученых. Поехали.

Результаты исследования


Главным героем данного труда является калина лавролистная (Viburnum tinus / калина тинус) вечнозеленый куст или дерево до 6 метров в высоту, произрастающее в Средиземноморском регионе.


Viburnum tinus во время цветения.

В течение года калина тинус несколько раз плодоносит темно-синими ягодами, обеспечивая пищей множество видов птиц, среди которых черноголовая славка (Sylvia atricapilla) и зарянка (Erithacus rubecula). Как и для любых других ягодных растений, птицы для калины V. tinus являются основным методом распространения семена на новые территории.


Sylvia atricapilla (слева) и Erithacus rubecula (справа).

На первый взгляд в этом растении нет ничего особенного. Красивый вечнозеленый кустарник, радующий эстетов среди людей и гурманов среди птиц. Однако детальное рассмотрение ягод говорит об обратном. Пока другие растения используют различные химические соединения для окрашивания своих плодов, калина тинус использует структурное окрашивание. Хотя ранее считалось, что синий цвет ягод V. tinus вызван присутствием антоциановых пигментов в их кожуре, что, естественно, не является истиной.

Структурные цвета достаточно распространены среди представителей фауны: крылья бабочек, панцири жуков, перья павлинов и т.д. Цвет в их случае образуется за счет наноразмерных структурных особенностей поверхности, вызывающих интерференцию видимого света.


Примеры структурных цветов в природе: А гибискус тройчатый (Hibiscus trionum); В жук тамамуси (Chrysochroa fulgidissima); С бабочка вида Morpho rhetenor; D комар обыкновенный (Culex pipiens); Е морская мышь (Aphrodita aculeata); F жук вида Pachyrhynchus argus; G бабочка вида Parides sesostris.

Особенность калины тинус, привлекшая внимание ученых, заключается в том, что она не только демонстрирует новый механизм структурного окрашивания, но и является одним из немногих растений, способных на это.


Изображение 1

Плоды V. tinus (1C) отражают свет направленно (придавая ему металлический вид) в синей и ультрафиолетовой области спектра. Поляризация отраженного света в основном сохраняется, что указывает на то, что окраска является структурной, а не пигментной, возникающей в результате отражения от высокоструктурированной клеточной стенки внешнего эпикарпа* ().
Эпикарп* внешний слой плода.
При диссекции этой ткани выделяется темно-красный антоциановый пигмент. Свет, который не отражается фотонной структурой, поглощается темно-красным пигментом под ним ( и 3C).


Изображение 2

Данное поглощение предотвращает обратное рассеяние света, увеличивая заметность синего отражения от внешней стенки клетки и, таким образом, визуально улучшая синий окрас.

Из этих наблюдений уже можно сделать вывод, что цвет плодов V. tinus является результатом комбинации физической наноструктуры, которая избирательно отражает волны синего света, и базового слоя пигментов, усиливающих синий цвет. Другими словами, сопряжение химии и физики.

Чтобы охарактеризовать наноструктуры, создающие синий цвет в плодах V. tinus, ученые использовали несколько методов электронной микроскопии.

Сканирующая электронная микроскопия свежих тканей () четко показывает наличие толстой (1030 мкм) многослойной структуры, параллельной поверхности плода и встроенной в клеточную стенку самых внешних эпикарпальных клеток. Поверхность плода покрыта восковой кутикулой (26 мкм) поверх слоистой структуры. Слоистая архитектура занимает большую часть внешней клеточной стенки в области между кутикулой и богатой на целлюлозу первичной клеточной стенкой. Слои имеют толщину от 30 до 200 нм и покрывают всю клетку.

Просвечивающая электронная микроскопия показывает, что эта архитектура состоит из множества слоев мелких пузырьков, которые отличаются от матрицы по способности рассеяния электронов и показателю преломления.


Изображение 3

Снимки, полученные в ходе сканирующей и просвечивающей микроскопии, показывают, что матрица, по-видимому, содержит ключевые компоненты типичных стенок растительных клеток, а именно целлюлозу, гемицеллюлозу и пектин. Окрашивание рутениевым красным (3D) показывает значительное содержание пектина, а электронограмма демонстрирует присутствие целлюлозы по характерным дифракционным кольцам кристалла природной целлюлозы.

Стоит отметить, что контрастные слои являются дискретными и остаются отличными друг от друга, но значительный беспорядок вносится непараллельными соседними слоями и неравномерностью их глобулярной структуры.

Томография стенки эпидермальных клеток (2E) показывает, что эти глобулярные везикулы организованы в объединенные слои, через которые матрица клеточной стенки целлюлозы остается соединенной мостиками и нитями (2B и видео ниже).


Модель глобулярной многослойной структуры (соответствует изображению 2D).

Из этого следует, что глобулярная многослойная структура эпидермиса плодов V. tinus состоит из липидов, встроенных в матрикс клеточной стенки, с использованием различных методов.

Далее ультратонкие срезы эпидермиса плодов подвергались воздействию хлороформа. Этот анализ весьма показателен, так как растворимость в неполярных органических растворителях является явным признаком присутствия липидов.

ПЭМ-снимки одного и того же участка образца до (3A) и после (3B) воздействия хлороформа показывают, что глобулярная структура была удалена обработкой. На последнем изображении контраст многослойной глобулярной фазы снижен, а пустые структуры внутри матрицы остаются видимыми. Для сравнения, воздействие воды не изменило ультраструктуру или контраст изображения глобулярного многослойного материала, указывая на то, что материал можно экстрагировать только неполярными растворителями. Кроме того, когда в процессе химической фиксации ученые использовали забуференный имидазолом тетраоксид осмия (C3H4N2/OsO4), который связывается с липидами, глобулярные слои окрашивались, что подтверждает их липидную природу.

А когда использовали рутениевый красный, который связывается с пектином, матрица клеточной стенки окрашивалась, в то время как глобулярная структура удалялась ввиду отсутствия имидазольного буфера.

Во время всех вариаций окрашивания, примененных во время исследования, наблюдались темные очертания вокруг глобул (). По мнению ученых, это может указывать на присутствие липидной мембраны, теоретически необходимой на интерфейсе между гидрофобными молекулами и гидрофильными полисахаридами вторичной клеточной стенки.

Ученые напоминают нам, что липиды состоят из разнообразных молекулярных структур, обычно классифицируемых как воски, жиры и масла, в зависимости от их температуры плавления.

На поверхности эпидермиса растений можно легко найти воски, образующие водостойкую восковую кутикулу. Воски также включают в себя множество молекулярных структур, но преобладающим компонентом остаются алканы, которые фактически не перевариваются, т.е. не имеют питательной ценности для птиц. А вот жиры и масла, напротив, являются жизненно важными пищевыми компонентом, поскольку содержат гораздо больше энергии на единицу объема, чем в крахмале или в белках. Жиры обычно можно найти в большом объеме в семенах, т.е. глубоко внутри плода.

В случае плодов V. tinus непосредственная близость глобулярной структуры как к крупным, богатым энергией семенам, так и к восковидной внешней кутикуле делает различие между воском и жирами особенно важным для понимания функционального значения и происхождение данной структуры. Следовательно, необходимо определить, являются ли липидные глобулы неперевариваемым воском или питательными жирами и маслами. Для этого была использована световая микроскопия.

Срезы тканей плода V. tinus инкубировали с нильским синим A (пигмент), который окрашивает богатую глобулами область клеточной стенки V. tinus в синий или сине-фиолетовый цвет (3C). А это говорит о том, что глобулы представляют собой свободные жирные кислоты, а не полимер кутина (компонент кутикулярной мембраны), который окрасился бы в розовый или красный цвет.

Кроме того, электронограмма многослойной глобулярной структуры показывает четкий кольцевой узор, отличающийся от диаграммы клеточной стенки целлюлозы с характерными двумя кольцами из кристаллов целлюлозы. Этот образец указывает на то, что липидные тела, вероятно, являются кристаллическими и, следовательно, являются гомогенными мономерными липидами, а не полимеризованными молекулами, такими как кутин.

Чтобы подтвердить, что наблюдаемая смешанная структура, состоящая из целлюлозной матрицы и слоистых липидных глобул, ответственна за синюю отражательную способность плодов V. tinus, ученые смоделировали ее оптический отклик. Для этого ученые исследовали две математические модели: двумерный массив сфер и усреднение по множеству одномерных двухфазных мультислоев.


Изображение 4

Алгоритм обратного проектирования был использован для моделирования структуры в двумерном пространстве в виде серии глобулярных скоплений. Схемы на 4A-4C соответствуют смежному смоделированному спектру отражения. Этот алгоритм позволяет независимо вводить различные типы беспорядка в глобулярный мультислой, настраивая размер и структуру, т.е. преобразование Фурье положения частиц.

В процессе моделирования были изучены: оптический отклик слоистых липидных глобул с разной степенью вариации диаметра глобул (4A); беспорядок в углах между соседними глобулами (параметр Sp, 4B) и беспорядок на среднем расстоянии между соседними глобулами (параметр Sk, 4C).

Введение различных типов беспорядка (4A-4C) всегда оказывало одинаковый эффект на оптический отклик глобулярного мультислоя, а именно, снижение пиковой интенсивности.

Таким образом, вместо того, чтобы рассматривать каждый элемент беспорядка по отдельности, структура и материальный состав клеточной стенки V. tinus были аппроксимированы неупорядоченными одномерными мультислоями с показателями преломления, соответствующими целлюлозе (n = 1.55) и типичному растительному липиду (n = 1.47). Распределение толщины обоих материалов показано на 4D. А отражательная способность, смоделированная с использованием средних значений по одномерным слоям, показана на рисунке 4E.

Введение беспорядка, наблюдаемого в измерениях поперечного сечения, в модель когерентного упорядоченного отражателя расширяет его спектр отражения.

Если модель позволила ученым понять, как именно ягоды V. tinus получают свой окрас, то вопрос касательно надобности такого механизма моделирование не охватывает.

Наибольшее межвидовое взаимодействие у V. tinus связано с птицами, питающими ягодами этого удивительного растения. Сравнение со спектральной чувствительностью синицы (1D) показывает, что цвет ягод находится в пределах визуально значимого для птиц данного вида диапазона.

Ягоды, естественно не парят в воздухе, а прикреплены к веточкам, на которых растут листья визуальный фон. По большей степени, фон зеленого цвета, ввиду доминирующего пигмента хлорофилла в листьях. Хлорофилл имеет широкую спектральную характеристику с пиком при 550 нм и незначительной отражательной способностью ниже 500 нм, благодаря чему цвет плодов V. tinus хроматически контрастирует с листвой. Другими словами, на фоне таких листьев ягоды выглядят еще заметнее.

Учитывая, что зрительные сигналы для птиц часто являются приоритетными, липидная структурная окраска ягод V. tinus может служить сильным визуальным сигналом для голодных птиц.

Если же учесть, что цвет пищи для птиц может быть первичным параметром съедобность, то цвет ягод V. tinus сигнализирует о том, что они съедобны и питательны.

Связь цвета плода и его питательной ценности исследовалась и ранее. По некоторым данным темные плоды растений из Бразильского региона богаты углеводами, а темные плоды растений Средиземноморья богаты липидами.

Ученые считают, что в случае V. tinus синий цвет является сигналом о том, что в ягодах много питательных липидов, которые, к слову, и создают этот окрас.

Такой метод передачи сигналов ученые называют честным или прямым, когда контекст сигнала соответствует его источнику (синий цвет из-за липидов высокое содержание липидов). Такой метод сигнализации достаточно затратен, ибо использование классической пигментации было бы проще для растения. Тем не менее, отдача, которую получает V. tinus в виде привлечения внимания птиц разных видов, судя по всему, перекрывает этот недостаток.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Цвет является важной составляющей визуальной информации, которую живые организмы получают об окружающем их мире. Многие животные используют свой окрас для маскировки, привлечения партнеров или для отпугивания неприятелей. Среди растений также присутствуют некоторые их этих тактик, но самой значимой является поддержание межвидовой связи. В случае V. tinus птицы являются основными партнерами этого растения, необходимыми для распространения семян на большие расстояния, что значительно увеличивает ареал произрастания V. tinus и, следовательно, шансы на выживание вида.

Вкусовые качества плодов многих растений зависят от того, насколько они хотят привлекать к себе внимание животных тех или иных видов. Некоторые плоды будут вкусными, например, для конкретных видов птиц, тогда как для всех остальных они будут практически несъедобны. В такой сложной системе как межвидовая связь важную роль играет степень коэволюции видов растений и животных, которые ее формируют.

Синий цвет калины лавролистной заключается в его нестандартном происхождении наноструктуры липидов, содержащиеся в стенках эпидермальных клеток ягод V. tinus. Данная методика окрашивания (структурное), особенно за счет липидов, среди растений на данный момент обнаружена только у V. tinus. Помимо этого липидное окрашивание может говорить птицам о большом содержании липидов в ягодах, как бы странно это ни звучало.

Честные сигналы, происхождение которых соответствует их контексту, достаточно редки в природе. Объяснение этой редкости достаточно простое. Представьте себе, что у вас есть булочная. Вы хотите привлечь больше покупателей, а потому раздаете флаеры. Следовательно, сигнал имеет один контекст (у нас вкусные булочки), но его происхождение другой (у меня нет булочки, а нечто получше рисунок булочки, т.е. флаер это лишь клочок бумаги). Если же вы будете раздавать булочки, то это будет честное сигнализирование, но куда более затратное.

Ранее многослойные липидные архитектуры, как у ягод V. tinus, не были замечены в биоматериале. В прошлом не было столь развитых инструментов и методик, как сейчас, потому многие детали были зафиксированы неверно или вовсе были упущены.

В будущем ученые намерены провести анализ других растений, которые теоретически могут также обладать подобными липидными наноструктурами и, следовательно, нестандартным методом окрашивания плодов. Кроме того, ученые считают, что их исследования могут способствовать созданию более безопасных пищевых красителей.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Металлическая роза репликация поверхностной структуры лепестков из частиц металла

02.09.2020 10:06:10 | Автор: admin


Что общего между велокостюмом и кожей акулы, а между лепестком розы и целлофановым пакетом? На первый взгляд, общего вроде и нет, однако все эти разнородные объекты можно объединить с точки зрения свойств их поверхностей. Многие, созданные человеком предметы, тем или иным образом повторяют свойства поверхностей, имеющихся в природе. Однако процесс изготовления такого предмета по большей степени ограничен свойствами материала, лежащего в его основе. Структурно металлы и полимеры во многом отличаются от биоматериалов, посему крайне сложно имитировать их свойства. Тем не менее ученые из университета штата Айова (США) решили использовать микроструктуру лепестка розы в качестве вдохновения для преобразования металла, сильно меняющего его свойства. Как именно был изменен металл, что для этого было сделано и как лепестки благородного цветка помогли в этом? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


В природе ничего не происходит просто так. Этот же принцип применим и к различного рода поверхностям, которые мы можем встретить в природе. Представители флоры и фауны на протяжении сотен тысяч лет претерпевали всевозможные изменения, необходимые для адаптации к условиям обитания.


Phyllocrania paradoxa, Nautilus pompilius, Cataglyphis bombycina.

Благодаря эволюции кто-то приобрел способность становиться фактически невидимым для неприятелей (мимикрия у богомола Phyllocrania paradoxa, похожего на засохший лист), кто-то обзавелся прочной броней (раковина у моллюска Nautilus pompilius), а кто-то научился выживать даже в самых неблагоприятных условиях (высокая отражательная способность тела муравьев Cataglyphis bombycina, живущих в пустыне Сахара) и т.д.

Каждый из вышеперечисленных примеров адаптации является следствием структурных особенностей и свойств поверхности. Логично, что ученые были бы рады применить в нашем мире такие уникальные характеристики, но это крайне сложно. Процесс воссоздания свойств биоматериалов называют биомимикрией, и он зачастую связан с обработкой какого-либо материала химическим или физическим образом, что позволяет в какой-то степени изменить его структуру. Например, для создания ультра- или супергидрофобных поверхностей на твердых материалах применяется травление, требующее агрессивных реагентов и дорогого оборудования, не говоря уже о подготовленных и опытных специалистах.
В последние годы большой популярностью начал пользоваться процесс переохлаждения металлических частиц. Суспендированные в растворителе полидисперсные мягкие частицы (ядро-оболочка*) переохлажденного жидкого металла (ULMCS) позволяют достичь плотной упаковки и самосортировки частиц в многомасштабные текстуры поверхности, такие как у лепестков розы (-1b).
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.

Изображение 1

После осаждения и испарения растворителя мягкие частицы имеют тенденцию образовывать структуры с беспорядочной плотной упаковкой (RCP) и застревать при коэффициенте упаковки = 0.64. Коэффициент упаковки определяется соотношением = NV0 / V, где N количество частиц; V0 объем частицы; V общий объем.

Более того, учитывая существование многомасштабных структур и каналов на поверхности розы (), эти частицы будут подвергаться процессу самофильтрации, которому способствует самосборка капилляров. После высыхания и достижения маятникового состояния частицы, в конечном итоге, будут самофиксироваться и застревать в щелях текстур поверхности (1b).

Застревание происходит, когда размеры межчастичной полости, концентрация суспензии и размеры частиц удовлетворяют следующее соотношение:



где R радиус капилляра; r радиус частицы; n количество частиц.

Данное уравнение позволяет прогнозировать размер (r) или количество (n) частиц, необходимых для застревания, для установленного размера углубления (R).

Застревание также гарантирует, что осажденные частицы ULMCS механически стабилизируются и, следовательно, могут быть спечены* в конформные сети желаемого поверхностного шаблона (1c-1d).
Спекание* процесс создания пористых и твердых материалов из мелких порошкообразных или пылевидных частиц за счет повышения температуры и/или давления.
Применение химического спекания без нагрева, а также соединение и отверждение застрявших частиц ULMCS приводит к формированию затвердевшей структуры, которую можно снять с лепестка розы (или аналогичного мягкого материала-основы), не повреждая ее. Этот процесс также совместим с синтетическими, термочувствительными и мягкими мотивами*, такими как PDMS (полидиметилсилоксан / (C2H6OSi)n) (1e).
Мотив* короткая последовательность нуклеотидов или аминокислот, которая слабо меняется в процессе эволюции.
Когда инверсные биомиметические структуры наносятся на эластомерные материалы, на которых частицы ULCMS упакованы и химически спечены, реализуется точная копия естественного рисунка (1f-1h).

Таким образом, биомиметические твердые металлические конструкции могут быть изготовлены без нагрева за счет использования автономных процессов, таких как уплотнение капилляров, нарушение кинетики (переохлаждение) и самосборки/ самосортировки частиц.

Результаты исследования


Полидисперсные частицы металла ULMCS (51% In + 32.5% Bi + 16.5% Sn) были синтезированы с помощью метода SLICE (разделение жидкостей на сложные частицы от shearing liquids into complex particles).

Процесс SLICE может производить частицы < 10 нм, но для улучшения самофильтрации и простоты определения характеристик в данном исследовании было решено использовать большие размеры (мкм) и более высокую полидисперсность. Частицы, использованные в этом исследовании, имели диаметр 2.711.58 мкм, следовательно, прогнозируемый коэффициент упаковки составлял около = 0.70.

Эти мягкие деформируемые ULMCS, как и ожидалось, образуют более плотные структуры, чем случайная плотная упаковка, наблюдаемая с твердыми сферами ( = 0.64). Вероятно уплотнение связано с изменением формы под действием капиллярного давления и автономным упорядочением размеров, которое увеличивает уплотнение. Однако эти процессы могут быть нарушены внешними напряжениями во время осаждения частиц.

Чтобы исследовать влияние процесса осаждения на плотность упаковки, ученые провели несколько циклов с различной степенью приложенного напряжения сдвига (Fs). Частицы наносились на биологические шаблоны (лепестки роз) и удалялись с помощью медной ленты, создавая биомиметическую металлическую структуру, хотя и с обратным рельефом.


Изображение 2

На изображениях , 2d и 2g схематически показаны различные методы осаждения в диапазоне от низкого значения F (нанесение кистью) до высокого F (центрифугирование) и без F (распыление). Метод распыления обеспечивает минимальное количество F, поскольку частицы осаждаются перпендикулярно поверхности лепестка.

Метод прямого осаждения щеткой () вызывает низкие значения F на суспензии частиц во время осаждения, что приводит к образованию толстых (> 10 мкм), многослойных (> 7 слоев) рисунков (2b-2c). Данный метод самый простой в реализации, но не самый подходящий, так как требует непосредственного участия человека, чего ученые хотели бы избежать.

Осаждение центрифугированием при 1000 об/мин (2d) позволяет осуществлять более контролируемый и воспроизводимый процесс, поскольку скорость осаждения, следовательно, и значение Fs, могут быть фиксированными. Однако этот метод срезает самый внешний слой осажденных частиц, в результате чего получаются несколько более тонкие пленки (< 10 мкм, ~ 4-5 слоев; 2e-2f) по сравнению с пленками, полученными путем нанесения кистью.

Удивительно, но центрифугирование обеспечивает немного лучшую самофильтрацию, как показывает автономная сортировка по размеру на верхнем слое поднятой конструкции (отмечено красным на 2c и 2f).

А вот напыление (2g) дает гораздо более тонкие пленки (~ 3 слоя) со значительными дефектами / отслоениями (2h-2i). Это может быть связано с проблемами при откачке довольно плотных металлических частиц из системы ручного распыления, которая будет иметь тенденцию к осаждению все меньшего и меньшего количества частиц. Осаждение более крупных частиц в распыляемом растворе также может способствовать низкой концентрации и селективности по размеру, следовательно, образованию более тонких пленок.

В случае гранулированного материала самофильтрация может привести к лучшей упаковке в поверхностные элементы, что приведет к более конформной упаковке в различных масштабах размера. Самофильтрация проявляется в распределении частиц по размерам в самом верхнем слое захваченных частиц.

Сравнение гранулометрического состав предварительно приготовленных частиц с теми, которые осаждаются наиболее глубоко в щелях лепестков роз (т.е. представляют собой самый верхний слой металлической структуры), наблюдается значительный сдвиг. В полидисперсной исходной суспензии наблюдается большой положительный коэффициент асимметрии, тогда как в осажденных частицах более крупные частицы отфильтрованы (2j-2m).

Подгонка гауссиана к распределению размеров частиц самого верхнего слоя показала, что при использовании кисти частицы будут самые крупные (~ 5 мкм), далее следует центрифугирование (~ 4 мкм) и напыление (~ 3 мкм).

Более глубокий анализ трех методов осаждения частиц показал, что именно центрифугирование является наиболее подходящим, несмотря на небольшую относительную асимметрию. В случае же других методов наблюдался ряд проблем: низкая капиллярная упаковка в случае напыления; хорошая упаковка, но плохая масштабируемость в случае использования кисти.

Что касается выбора метода осаждения частиц на лепесток розы (т.е. метод репликации ее микроструктур частицами металла) также необходимо было оценить степень совпадения структур оригинала и пресс-формы. Сравнение показало, что все элементы, полученные от красной розы, имели средний размер в следующем порядке: кисть > центрифугирование > напыление. Однако во всех случаях размеры структурных элементов были достаточно схожи друг с другом (20 мкм), т.е. в данном аспекте любой из методов может быть использован.


Изображение 3

Далее ученые приступили к полноценной оценке характеристик BIOMAP (BIOmimetic MetAl Patterning), т.е. биомимикрической металлической системы.

Во время практических опытов использовалось два вида близкородственных роз:

  • красная роза сорта мистер Линкольн (роза 1) с диаметром частиц поверхности a1 = 21.68 3.32 мкм ();
  • розовая роза сорта Peace (роза 2) с a2 = 26.63 4.00 мкм (3b);

Нанесение центрифугированием одной и той же исходной суспензии на аналогично приготовленные лепестки было выполнено с целью уловить различия в этих шаблонах.

В результате нанесения центрифугированием частиц на розу 1 были получены узоры с диаметром отельного элемента a1= 19.85 3.82 мкм (3b-3c), что составляет ~ 2 мкм отклонения от исходного узора. Разница в размере 10% может быть вызвана деформацией поверхностных элементов лепестков под действием капиллярного давления и/или веса осажденных частиц.

Для розы 2 средний размер элементов узора нанесенных частиц составил a2= 23.23 3.98 мкм (3e-3f), т.е. отклонение от оригинала составило порядка 3 мкм. Эти различия также фиксируются как сдвиги в средних гауссовых значениях полученных гистограмм (3g-3h).

Форма распределенных частиц лепестков и поверхностям BIOMAP очень схожи, что указывает на хорошую репликацию. Однако асимметрия и эксцесс подтверждают, что вышеописанные тонкие изменения (отклонения) являются систематическими ошибками (3i).

Естественно стоит отметить, что все полученные узоры BIOMAP (отмечены "-") являются обратными по отношению к оригиналу (лепестки роз, отмечены "+"), хоть и с высокой степенью репликации. Чтобы получить такой же узор, как и на лепестке, сначала необходимо провести репликацию посредством эластомера PDMS, а потом уже с этого оттиска сделать копию посредством BIOMAP. Грубо говоря, чтобы получить идентичные (не зеркальный) оттиски лепестка розы, нужно выполнить процедуру дважды (кто знаком с кулинарией, знает как вынуть из формы пирог, используя два блюда).


Изображение 4

Изображения выше демонстрируют степень точности BIOMAP в создании синтетического узора розы. Сначала изготавливается первичный/черновой (-) шаблон путем точного оттиска PDMS с поверхности лепестка розы (). Далее форма PDMS заполняется частицами ULMCS, которые затем спекаются с помощью CUPACT, и образцы снимаются (4b-4c). В результате получается конечный образец (+) ULMCS, хотя и с большими промежутками между поверхностными элементами по сравнению с цветком розы (3a), из-за сохранения сферичности частиц после CUPACT.

Несмотря на ограничения в создании полностью непрерывной гладкой поверхности, данный метод демонстрирует ближайший аналог поверхности розы (4b), созданный с помощью принципов физической химии и химической кинетики. Помимо новой текстуры поверхности, очевидно также и то, что металлическая (-) рельефная копия поверхности лепестка может быть использована в качестве формы для создания эластомерного аналога лепестка розы, поскольку капиллярные силы будут препятствовать проникновению вязкого несшитого эластомера через сеть пор.

Для проверки этой теории металлические (-) элементы были заполнены PDMS (4d), после чего был получен рельефный узор (+), аналогичный лепестку розы (4e-4f).

Когда для получения копии использовался металл, наблюдалось отклонения размеров полученных элементов от оригинала около 10%. Но в случае, когда металл был использован в качестве формы для создания элементов PDMS значительных изменений в размерах не наблюдалось.

Несмотря на все отличия копий от оригинала, показатели смачивания* оригинальной поверхности и реплики достаточно схожи (сравнение гидрофобности на 4g).
Смачивание* взаимодействие жидкости и поверхности твердого тела или другой жидкости.
Лепесток розы был ультрагидрофобным со средним углом смачивания 133.1 5.0, тогда как биомиметическая копия, (+) образец ULMCS (4b), давала средний угол смачивания* 138.7 14.7. PDMS реплика показала меньший угол контакта.
Угол смачивания (угол контакта)* угол между касательной, проведенной к поверхности жидкости и твердой поверхностью. Данный параметр определяет межмолекулярное взаимодействие частиц поверхности твердого тела с жидкостью.
Нетекстурированные спеченные CUPACT частицы (CAP на 4g) и PDMS частицы использовались во время анализа в качестве контрольной группы (пунктирная линия на 4g).

Капли на нетекстурированных поверхностях спеченных частиц, медленно диффундирующие в пористую поверхность, проявляют временную гидрофобность. Предположительно, это небольшая гидрофобность, наблюдаемая на слое спеченных частиц, объясняется присутствием существенного поверхностного лиганда с концевыми метильными группами, используемого для стабилизации ULCMS.

Для дальнейшего сравнения смачивания между биомиметическим и природным образцами капли, расположенные на узоре BIOMAP, были наклонены (4b), что позволяет сымитировать эффект лепестка. Как и ожидалось, капли прилипают к поверхности, хотя и с большим гистерезисом угла смачивания при увеличении угла наклона (4h и видео ниже).


Демонстрация свойств смачивания лепестка розы и металлической реплики.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые смогли изготовить биомиметический металлический узор на основе мягкого субстрата (т.е. лепестка розы). Изготовленные элементы полностью имитируют биоаналог как по структуре, так и по свойствам смачивания, хоть и с небольшими отклонениями, артефактами метода обработки BIOMAP и асимметрией в свойствах материала.

Если упростить все исследование до одного предложения, то ученые смогли сделать оттиск лепестка розы из частиц металла. Полученная реплика обладает свойствами, как и оригинал. Особое внимание стоит уделить гидрофобности разработанного материала, которая ранее достигалась куда более сложными и затратными методами.

Созданная структура обладает прочностью и долговечностью металла и гидрофобностью нежного лепестка розы. Подобная гибридизация свойств позволяет создавать различные варианты материалов, расширяя спектр их применения. По мнению ученых, их разработка может быть использована в самых разных отраслях, от медицины (репликация нанометрических структур для дальнейшей замены поврежденных частей) до авиационной промышленности (обработка крыльев самолетов для снижения степени обледенения во время полета).

Как бы то ни было, природа в очередной раз показала, что она является практически неиссякаемым источником вдохновения не только для художников, создающих живописные пейзажи, но и для ученых, изобретающих невероятные устройства и системы.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Математика палитры почему не бывает красного структурного цвета

16.09.2020 10:17:24 | Автор: admin


Многие считают, что основными инструментами художника являются кисточка, мольберт и палитра. Однако это лишь средства, позволяющие использовать истинный инструмент цвет. Наш мир полон красок всех мастей, от огненно-красного до морозно-синего. Цвет предметов и окрас живых организмов является результатом ряда физических и/или химических процессов. Учитывая разнообразие цветов, порой сложно понять разницу в механизмах из происхождения. Ученые из Кембриджского университета решили выяснить, почему структурные цвета, зависящие от наноразмерной архитектуры поверхностей, а не от химических пигментов, не бывают красных оттенков, а лишь синих или реже зеленых. В чем секрет такого цветового ограничения и как именно удалось установить истину? Пролить свет на эти вопросы нам поможет доклад ученых. Поехали.

Основа исследования



Примеры структурных цветов в природе: А гибискус тройчатый (Hibiscus trionum); В жук тамамуси (Chrysochroa fulgidissima); С бабочка вида Morpho rhetenor; D комар обыкновенный (Culex pipiens); Е морская мышь (Aphrodita aculeata); F жук вида Pachyrhynchus argus; G бабочка вида Parides sesostris

Структурный цвет является результатом интерференции света, который рассеивается наноразмерными непоглощающими элементами поверхности. Это более физический процесс, нежели химический, как в случае с пигментацией, где цвет зависит от избирательного поглощения по длине волны.

У структурных цветов имеется множество преимуществ по сравнению с пигментными:

  • не обесцвечиваются, так как цветообразование определяется архитектурой, а не составом;
  • могут быть изготовлены из экологически чистых материалов;
  • достигают нетрадиционных цветовых эффектов, от яркого металлического до изотропного оптического отклика.


Изображение 1

Учитывая положительные свойства структурных цветов, было разработано множество методик по их воссозданию, а точнее методик создания иерархических структур или структур ближнего упорядочения с независимыми от угла цветами. Результатом таких разработок стало фотонное стекло (PG от photonic glass), которое имеет биологический эквивалент в виде оперения многих птиц (изображение выше).

Нюанс в том, что в природе структурные цвета бывают лишь синих оттенков. Красные и зеленые цвета, как правило, достигаются с помощью структур с дальним упорядочением или с использованием пигментации. Конечно, существуют техники, позволяющие создать искусственный структурный красный оттенок. Однако, как заявляют авторы сего труда, оптические свойства у материала такого цвета крайне плохи.

Возникает вопрос можно ли в принципе создать полноценный структурный красный цвет? Дабы ответить на этот вопрос, ученые решили использовать численный подход, который обеспечивает прямой доступ к спектру отражения произвольной структуры и позволяет исследовать промежуточные режимы рассеяния, то есть между однократным рассеянием и диффузионным поведением.

Результаты исследования


Для начала посредством численного алгоритма были созданы варианты фотонного стекла (прямое и инверсивное) с различными свойствами рассеивания и структурной корреляцией (структурным фактором*).
Структурный фактор* математическое описание того, как материал рассеивает падающее излучение.
Следом были проведены расчеты оптических свойств сгенерированных структур с использованием метода конечных разностей во временной области. Созданная модель была намеренно ограничена двумерным пространством, так как подобные структуры чаще всего встречаются в природе (изображение выше). Концентрация внимания на двумерной структуре также позволяет расширить спектр изучаемых параметров, при этом ограничивая вычислительные затраты. Тем не менее ученые уверены, что полученные результаты можно применить и для описания трехмерных структур.

Если поглощение отсутствует, то рассеяние в фотонном стекле возникает в результате взаимодействия между характеристиками индивидуальных частиц (размер, форма и показатель преломления) или за счет взаимодействия между свойствами группы частиц (доля заполнения и структурные корреляции).


Изображение 2

В случае прямых PG в отражении преобладают резонансы Ми*, определяемые свойствами рассеивателя (). Таким образом, отраженный цвет можно изменить на видимый, изменив размеры рассеивателя.
Резонанс Ми* увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы (назван в честь Густава Ми, 1868-1957).
Однако по мере увеличения размера частиц пик резонанса Ми смещается в красную сторону, и второй пик появляется в синей части спектра, что соответствует резонансной моде более высокого порядка. А вот в рассеянии света в инверсивных PG преобладают структурные корреляции (2B). Пик отражения, положение которого хорошо соответствует предсказаниям закона Брэгга*, более выражен, чем в прямых структурах.
Дифракция Брэгга* явление сильного рассеяния волн на периодической решетке рассеивателей при определенных углах падения и длинах волн.

Формула закона Брэгга: n = 2d sin , где d период решетки; угол падения волны; длина волны излучения; n число волн.
Появление отдельного пика в видимом спектре демонстрирует, что использование инверсных PG является эффективной стратегией для минимизации форм-фактора в общем оптическом отклике системы в пользу структурных вкладов.


Зависимость изотропного структурного цвета от показателя преломления для прямого (сверху) и инверсивного (снизу) PG соответственно.

Изменение показателя преломления влияет на взаимосвязь между вкладами формы и структуры. В системах с высоким показателем преломления преобладают резонансы форм-фактора, которые не позволяют им достичь хорошей чистоты цвета в красной области спектра как для прямых, так и для инверсных PG. Для прямых систем, даже когда контраст показателя преломления низкий, резонансы форм-фактора приводят к усиленному отражению на коротковолновой стороне структурного пика. Напротив, в случае инверсивных PG видно, что структурный фактор формирует хорошо разделенный пик в видимом спектре, даже в красной области длин волн.

Из этого следует вывод, что инверсивные PG с низким показателем преломления могут превосходить прямые PG с точки зрения чистоты цвета и насыщенности.


Изображение 3

Уменьшение контраста показателя преломления между матрицей рассеяния (nm) и центрами рассеяния (np) может еще больше способствовать структурному вкладу. На видно, что увеличение np приводит к широкополосному снижению коэффициента отражения и красному смещению структурного пика. Структурный пик уменьшается по ширине и имеет более высокую интенсивность по сравнению с его фоном, что приводит к лучшей чистоте цвета.

Уменьшение контраста показателя преломления снижает роль многократного рассеяния, которое так или иначе присутствует в неупорядоченных системах. Это ограничивает изотропные структурные цвета режимом распространения света между диффузным рассеянием* и баллистическим переносом*.
Диффузное рассеяние* рассеяние, возникающее в результате любого отклонения структуры материала от структуры идеально правильной решетки.
Баллистический перенос* беспрепятственный поток носителей заряда (обычно электронов) или несущих энергию частиц на относительно большие расстояния в материале.
Многократное рассеяние становится преобладающим при увеличении толщины образца, что приводит к широкополосному ненасыщенному отклику.

Соответствующие наблюдения также можно применить и к рассеивателям со сложной геометрией. Как уточняют ученые, в их предыдущих работах была представлена идея использования частиц ядро-оболочка* для разделения вкладов форм-фактора и структурного фактора и достижения отдельного пика в длинноволновой области спектра.
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.
На изображении показано, что уменьшение размера центра рассеяния (ядра) при сохранении длины структурной корреляции приводит к увеличению интенсивности и ширины длинноволнового (структурного) пика. В то же время коротковолновый вклад резонансов Ми смещается в сторону ультрафиолета.

На показано, что пониженный контраст показателя преломления может подавить многократное рассеяние, в то время как разделение вкладов форм-фактора и структурного фактора возможно через частицы ядро-оболочка ().

Объединение обоих методов показано на . Это позволяет получить более высокие значения чистоты и насыщенности цвета за счет хорошо разделенных пиков в длинноволновой части видимого спектра.

На следующем этапе исследования ученые уделили внимание оценке насыщенности и чистоты цвета. Для количественной оценки этих параметров спектры отражения прямых, инверсивных PG и ядер-оболочек были преобразованы в цветовые оттенки. Чистоту цвета можно определить как нормализованное расстояние от белой точки на диаграмме цветности по отношению к красной точке (в случае красных цветов). Насыщенность количественно определяет, насколько интенсивность отраженного света распределяется по спектру с разными длинами волн.


Изображение 4

На 4A различные системы для оттенков красного нанесены на диаграмму цветового пространства CIE XYZ. На 4В вычислены соответствующие значения чистоты и насыщения.

Стоит отметить, что все инверсивные PG демонстрируют более высокие значения чистоты и насыщенности цвета, чем красные оттенки прямых PG. Однако включение в систему частиц ядро-оболочка не приводит к значительному улучшению по сравнению со стандартным инверсивным PG. Если же объединить оба подхода, то можно получить более высокие показатели чистоты и насыщенности. Тем не менее они будут гораздо ниже, чем у реального красного цвета (т.е. из модели КЗС красный, зеленый, синий).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученым удалось продемонстрировать, что фотонные стекла имеют внутренние ограничения в достижении насыщенных красных оттенков. Это обусловлено взаимодействием между резонансом, связанным со структурным фактором, рассеянием, связанным с форм-фактором, и фоном многократного рассеяния. Подобный фундамент позволяет легко достичь структурного цвета в УФ-синем диапазоне, но не в случае больших длин волн.

Также было доказано, что высокая чистота и насыщенность цвета для красных оттенков не могут быть достигнуты в изотропных структурах ближнего упорядочения, даже в случае сложных морфологий рассеивателя.

По словам ученых, подобные наблюдения могут свидетельствовать о том, что природа была вынуждена (образно выражаясь) создать альтернативные пути формирования красных оттенков (например, многослойные или алмазные структуры).

Объединение нескольких подходов по созданию структурного цвета красных оттенков может улучшить показатели чистоты и насыщенности, но их все же недостаточно для достижения реального красного цвета.

Также было установлено, что из-за сложного взаимодействия между однократным и многократным рассеянием, желтый и оранжевый, помимо красного, также сложно получить в аспекте структурных цветов.

Подобные исследования позволяют лучше понять структурные цвета, а также выработать новые методики по созданию материалов, способных быть основой для тех оттенков, что не встречаются в естественных структурных цветах. Помочь в этом, по мнению авторов исследования, могут новые типы наноструктур (например, сетевые или многослойные иерархические структуры).

Как бы то ни было, работа над структурными цветами будет продолжаться и дальше. Современные методики изучения наноразмерных структур и средства их воссоздания позволяют детальнее описать процессы, протекающее в материале, что, естественно, способствует достижению контроля над этими процессами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru