Русский
Русский
English
Статистика
Реклама

Коптер

Как реверс-инжиниринг чужой инерциальной навигационной системы перерос в свою собственную разработку

19.03.2021 10:13:30 | Автор: admin

Сегодня, благодаря MEMS-датчикам, инженеры начинают использовать инерциальные навигационные системы везде, где есть движение. В зависимости от требуемой точности как по углу, так и по координатам, применяют МЕМS-датчики разного уровня цены и интегрированности: от "все датчики в одной микросхеме" до "один датчик - одна микросхема". А сама инерциальная навигация, как часть инженерных систем, впервые появилась в торпедах, кораблях, ракетах и самолетах.

Вступление

Итак, как заметил Виктор Олегович Пелевин, различные беспилотные летательные аппараты действительно стали распространены во всем мире. И не только для военных целей, но и в быту. А что способствовало распространению их для гражданского применения?

- Прежде всего, снижение стоимости микропроцессоров и микроконтроллеров, а также рост их вычислительной мощности;

- Появление и распространение аккумуляторов с удельной энергоемкостью 150250 Вт*ч/кг, литий-ионных и литий-полимерных;

- Широкое распространение вентильных (бесколлекторных) электродвигателей, скоростью вращения которых можно управлять в широком диапазоне от нуля до нескольких тысяч оборотов в минуту без применения механических редукторов;

- Появление большого разнообразия миниатюрных приемников спутникового радионавигационного сигнала различной сложности и ценовой категории;

- Широкое распространение инерциальных систем, построенных на микроэлектромеханических (МЭМС) сенсорах: датчиках угловой скорости (ДУС), акселерометрах, магнитометрах и датчиках давления. Про инерциальные навигационные системы мы и поговорим.

Толчком для появления первых гироскопических приборов стало развитие судостроения на основе металлических конструкций и походы этих судов на полюса Земли, а потом, уже благодаря авиации, такие приборы стали распространяться все более и более.

Механическая конструкция с кардановым подвесом была известна еще в Византии и в Китае. А использование ее для навигации было предложено французским ученым Фуко, он же придумал название гироскоп.

Главное свойство карданова подвеса состоит в том, что если в него закрепить вращающееся тело, то оно будет сохранять направление оси вращения независимо от ориентации самого подвеса. Таким образом, передвигающийся объект, на котором закреплен гироскоп, может постоянно наблюдать свое первоначальное угловое положение в пространстве.

Прототип карданова подвесаПрототип карданова подвеса

Первые серийные навигационные приборы, основанные на гироскопах, появились в самом конце 19-го века на морских судах, подлодках и торпедах. На судах это были гирокомпасы, позволяющие определять направление на север вне зависимости от текущей широты, в отличие от магнитных компасов, которые в высоких широтах (близких к полюсам Земли) не работают из-за больших возмущений магнитного поля Земли.

В авиации навигация - еще более насущный вопрос, поэтому приборы на основе гироскопов стали применять и там. Например, на русском самолете Илья Муромец (1917 год) использовался гироскопический указатель поворотов, что позволяло сохранять направление при пилотировании вслепую в облаках. Первый известный автопилот с более масштабным использованием гироскопов стоял на ракете Фау-2, где применены гировертикаль (ракета с вертикальным стартом с земли), гирогоризонт и измеритель скоростей. С увеличением времени и дальности полета ракет и самолетов совершенствовались и системы навигации с непременным использованием гироскопов.

В настоящее время в задачу навигации входит: определение координат местоположения и других параметров поступательного движения объекта (скорости и ускорения) как материальной точки, и ориентация определение углового положения и других параметров вращательного движения объекта вокруг его центра масс.

Любая ИНС имеет в своём составе датчики линейного кажущегося ускорения (акселерометры) и гироскопы (или ДУС). С помощью интегрирования их данных определяется отклонение связанной с корпусом объекта системы координат относительно системы координат, связанной с Землёй, выражаемое в углах ориентации: курсе, тангаже и крене, также определяются отклонения координат (широта, долгота и высота) относительно референц-эллипсоида Земли при условии задания исходных координат перед началом счисления. Получается, что алгоритмически ИНС состоит из курсовертикали и системы определения координат, но тем не менее эти подсистемы не независимы.

Изначально инерциальные навигационные системы были только платформенными (далее ПИНС). Что такое гиростабилизированная платформа? Для стабилизации датчиков в пространстве используется такая гироплатформа, которая физически реализует опорную систему координат на движущемся объекте. Гироплатформа имеет минимум 3 вращательные степени свободы относительно объекта, которые обеспечивают сохранение платформе неизменного углового положения в пространстве при угловых эволюциях. Гироплатформы бывают 2 типов:

- с тремя гироскопами, которые имеют 2 степени свободы каждый;

- с двумя гироскопами, которые имеют 3 степени свободы каждый.

Гироплатформа с тремя гироскопами: на платформе установлены два гироскопа с вертикальными осями прецессии и один с горизонтальной осью, здесь же установлены 3 акселерометраГироплатформа с тремя гироскопами: на платформе установлены два гироскопа с вертикальными осями прецессии и один с горизонтальной осью, здесь же установлены 3 акселерометра

В советских классических учебниках по инерциальной навигации платформенные системы разделяются на 3 типа: полуаналитического типа, аналитического типа и геометрического типа.

В ПИНС геометрического типа координаты местоположения объекта определяются углами, которые образует физически реализованная ось местной вертикали с материализованными гироплатформой, осями и плоскостями навигационной системы координат. Эти углы измеряются соответствующими датчиками. Т.е. в наличии две платформы одна материализует навигационную систему, другая горизонтированную систему координат.

В ПИНС аналитического типа гироплатформа материализует (при околоземной навигации) навигационную систему координат с обеспечением учета вращения Земли, местная вертикаль определяется аналитически. Координаты объекта получаются в вычислителе, в котором обрабатываются сигналы, снимаемые с акселерометров и устройств, определяющих поворот самого объекта относительно гироскопов и акселерометров.

Полуаналитическая система имеет платформу, которая непрерывно стабилизируется по местному горизонту, т.е. одна ось трехгранника платформы постоянно направлена вдоль местной вертикали. На платформе установлены гироскопы и акселерометры, сигналы которых и управляют платформой.

А вот в бесплатформенной ИНС акселерометры и гироскопы (или ДУС) жестко связаны с корпусом прибора. Гироплатформа отсутствует, что сразу снижает массу и объем такой ИНС. Все системы координат существуют только в вычислителе, без механической материализации.

Если раньше любая инерциальная навигационная система (ИНС) занимала не менее 10 литров и имела соответствующую массу, то сейчас набор датчиков для такой ИНС может заключаться в одной-единственной микросхеме (3 гироскопа, 3 акселерометра и может быть также встроен трехосевой магнитометр) размером с человеческий ноготь.

Пример старого свободного гироскопа с индукционным датчиком углаПример старого свободного гироскопа с индукционным датчиком угла

Такие инерциальные MEMS-модули очень привлекательны для применения в разных устройствах (не только в коптерах): цена не превышает 1000 руб. в рознице, интерфейс взаимодействия I2C или SPI, в микросхему встроен датчик температуры, можно на ходу менять максимальный измеряемый размах угловой скорости и кажущегося ускорения. Для более серьезных применений набор MEMS-датчиков с вычислителем заключены в модуль объемом 0,1..0,3 литра, где каждый гироскоп и акселерометр выполнен в отдельной микросхеме.

Однако по точности измерения угловой скорости инерциальные модули общего применения на основе MEMS-датчиков сильно проигрывают подавляющему большинству тех старых инерциальных систем. Наиболее важный показатель, влияющий на погрешность определения координат в БИНС (ошибка по координате, обусловленная им, растет быстрее, чем в третьей степени от времени) это исходное смещение ноля и зависимость этого смещения от температуры для датчика угловых скоростей (ДУС).

В таблице приведены интересующие нас параметры для характерных современных устройств.

MPU-9250, BMI0556, ICM-20689 и другие подобные микросхемы фирм Bosch, Invensense или STMicroelectronics используются в современных полетных контроллерах для любительских беспилотных коптеров и самолетов. Это, например, контроллеры PixHawk, Naza и другие, чуть более высокого или низкого класса по функциональным и ценовым характеристикам. Все они применяются на беспилотниках класса для хобби или околопрофессионального полетов для наблюдений с помощью камеры на небольшие расстояния и время. Работа полетных контроллеров с подобными ИНС без постоянного комплексирования с данными от приемника GPS\ГЛОНАСС в таких режимах как зависание на точке, возврат на точку старта или автоматический полет по координатным точкам немыслима. Кроме этого, у них есть и другие особенности, которые иногда могут затруднять их использование, а иногда и приводить к авариям: ухудшение стабильности на температурах ниже 510 C, влияние вибраций от работы винтов на отработку углов горизонта, нестабильность определения истинного курса, возникновение toilet bowling (унитазинг, самопроизвольные круговые движения коптера по возрастающему радиусу).

Однако все это недопустимо при применении в коммерческих целях, при массе БПЛА до 30 кг, и более. Кстати, 30 кг это, по измененным законам РФ, максимальная масса беспилотного воздушного судна, которое можно эксплуатировать без согласования с диспетчерскими службами использования воздушного пространства, с некоторыми дополнительными ограничениями.

В общем, если говорить о промышленных или сельскохозяйственных дронах, таких как DJI Agras T20 или DJI серии Matrice c временем полета до 40-50 минут и стоимостью в районе одного миллиона рублей, то здесь требуются более надежные и точные ИНС. Тем более, что при таких массах остро стоит вопрос безаварийности не только в смысле сохранения дрона, но и, что куда важнее, в смысле безопасности окружающих людей. Да и потом, не следует забывать про развитие и распространение всяких приборов и устройств, подавляющих радиосигналы, используемые дроном для управления и навигации. А эти приборы впоследствии могут использовать не только госслужбы.

На снимке захват подразделением силовиков дрона DJI Mavic 2 Pro в Москве на митинге 10 августа 2019 году с помощью электромагнитной пушкиНа снимке захват подразделением силовиков дрона DJI Mavic 2 Pro в Москве на митинге 10 августа 2019 году с помощью электромагнитной пушки

Когда в Миландре появилась необходимость использовать инерциальную навигационную систему в собственной разработке, то выбор такой системы проходил по принципу максимальной точности при достаточной миниатюрности. По сути, выбирался инерциальный модуль на основе MEMS c наилучшими характеристиками. Вопрос цены не стоял остро, так как предполагалось первичное применение в прототипе устройства. Выбор пал на модуль ADIS16480 от Аnalog Devices, на тот момент это был лучший вариант среди имеющихся в свободной продаже. Данный модуль является курсовертикалью, в состав которой входят: ДУСы, акселерометры, трехосевой магнитометр и датчик давления (бародатчик). Выходные данные угловые скорости, кажущиеся ускорения, углы Эйлера относительно горизонта и истинный курс (магнитный курс с учетом заданного склонения), а также соответствующий этим углам кватернион (или, взамен углов и кватерниона матрица ориентации). Для коррекции углов используется калмановская фильтрация с применением данных от акселерометров и магнитометра. Также в модуле присутствует возможность подвергать цифровой фильтрации сырые данные угловых скоростей и кажущихся ускорений.

Однако, начиная с некоторого момента, из-за введенных санкций правительства США данный модуль перестал быть доступным в продаже в России. И было принято решение разработать собственный аналог.

Реверс-инжиниринг ADIS16480

По результатам вскрытия

ADIS16480 со снятой крышкойADIS16480 со снятой крышкой

выявлен состав данного модуля и некоторые его схемотехнические особенности. Модуль выполнен в виде гибко-жесткой платы, на основе процессора Blackfin ADSP-BF512, также в нем есть 4 АЦП AD7689BCPZ, датчик давления MS560702BA03-00, магнитометр HMC1043, 6 двухосевых акселерометров AD22037Z и по несколько ДУС в каждой из 3 осей.

Наше устройство по набору датчиков похоже на устройство Analog Devices и выполнено на собственном цифровом сигнальном процессоре К1986ВН04BG. Однако функционально мы его расширили.

Бесплатформенная инерциальная навигационная система МиландрБесплатформенная инерциальная навигационная система Миландр

Прежде всего, это уже не только курсовертикаль, но целая бесплатформенная инерциальная навигационная система (БИНС). В режиме БИНС дополнительно к информации, выдаваемой в режиме курсовертикали, выдаются следующие данные:

- текущие географические координаты объекта (широта, долгота и высота над референц-эллипсоидом) в системе координат ПЗ-90.02;

- вектор скорости объекта относительно Земли в проекциях на северную, восточную и вертикальную оси.

Для того, чтобы модуль работал в режиме БИНС, необходимо при включении передать в него начальные координаты относительно Земли: широту, долготу и высоту над референц-эллипсоидом. С этого момента начинается интегрирование показаний датчиков и счисление координат, скоростей и углов ориентации. Кроме того, знание текущих координат позволяет включить в алгоритм курсовертикали учёт вращения Земли. Таким образом, в отличие от ADIS16480, наш инерциальный навигационный модуль может работать не только в режиме курсовертикали, но и как полноценная инерциальная навигационная система. Курсовертикаль обеспечивает счисление ориентации, точность которой непосредственно влияет на точность счисления координат так, часто характеристикой точности инерциальных систем для самолётов является погрешность в формате ухода координат миль в час.

Также, в отличие от ADIS16480, в нашу БИНС добавлена возможность записи телеметрической информации на microSD-карту, которая оперативно снимается и устанавливается без вскрытия корпуса. Можно сказать, что в наш модуль введена функция черного ящика.

Разработка алгоритмов и математики, а также математическое моделирование

Алгоритм ориентации основан на использовании кватернионов и матриц ориентации, с предварительным интегрированием сырых данных ДУС и акселерометров. В расчетах используются константы Параметров Земли 1990 года (ПЗ-90.02).

В алгоритмах фильтрации и комплексирования вместо N-мерного фильтра Калмана используется система алгоритмов субоптимальной фильтрации, основанных на линейных моделях ошибок датчиков ДУС, акселерометров, магнитометров и бародатчика: инклинометрический, бароинерциальный и гиромагнитный фильтры. Все фильтры собственной разработки, использующие известные математические модели, основанные на решении линейных дифференциальных уравнений.

Иклинометрические фильтры необходимы для начальной выставки углов в горизонте, определения и коррекции дрейфов и углов тангажа и крена при малой возмущенности объекта движения. Принцип их работы заключается в оценке ошибок величин углов тангажа и крена, счисленных по данным ДУСов, и оценке величин дрейфов самих ДУСов, путем обработки данных от акселерометров.

Бароинерциальный фильтр используется для коррекции текущей высоты и вертикальной скорости БИНС по данным бародатчика. Также основан на линейном дифференциальном уравнении.

Гиромагнитный фильтр в процессе работы оценивает ошибку счисления инерциального угла и величину дрейфа истинного курса, используя в качестве объективного значения этого угла величину, выработанную магнитным указателем курса.

Все эти фильтры являются устойчивыми вне зависимости от условий их применения и не требуют от пользователя специальных настроек и проведения анализа модели движения.

В оригинальном приборе используется адаптивный расширенный фильтр Калмана. Этот фильтр оценивает угловую ориентацию, используя комбинацию информации ДУС, акселерометров и магнитометров. Акселерометры обеспечивают угловые измерения по отношению к гравитации Земли. Магнитометры обеспечивают угловые измерения, основываясь на измерениях магнитного поля Земли. В мануале от Analog Devices есть отдельные рекомендации для настройки точности в статике и отдельно для динамики, эти настройки задаются записью в память ADIS16480 данных по ковариации акселерометров и магнитометра, а также уровня шума и дрейфа ДУС. В общем случае эти настройки требуют дополнительного анализа модели движения объекта, на котором устанавливается курсовертикаль, а также специального испытательного оборудования. При использовании ADIS16480 c заводскими настройками при совместных испытаниях с нашим модулем он показал неудовлетворительные результаты, однако эти настройки позволяли сохранять устойчивость работы фильтра даже при сильных вибрациях.

Прежде чем использовать математику и алгоритмы в железе, все это было проверено при помощи математического моделирования. В математическую модель, кроме математики и алгоритмов навигации, были заведены: достаточно простая модель ошибок датчиков (в том числе ненули, гауссовский шум, размах измерения, разрядность АЦП и др.), параметры объекта движения (масса, коэффициент лобового сопротивления, площадь лобовой проекции). Траекторией для моделирования являлось движение по замкнутой линии типа коробочка, т.е., по сути, по квадрату, где координаты начала движения и его окончания совпадают. Сначала моделирование проводилось на чистом (невозмущенном) движении, а потом и при воздействии вибрации:

- синусоидального сигнала в канале ДУС частотой 10 Гц и амплитудой 5 гр/с.;

- синусоидального сигнала в канале ДУС частотой 50 Гц и амплитудой 4 гр/с.;

- синусоидального сигнала в канале ДУС частотой 500 Гц и амплитудой 3 гр/с.;

- синусоидального сигнала в канале ДУС частотой 1000 Гц и амплитудой 2 гр/с.

Отдельным любопытным экспериментом было моделирование работы наших алгоритмов при подаче на их вход реальных сырых данных датчиков ADIS16480, которые были записаны в телеметрию в ходе полетов БПЛА.

В целом, моделирование показало работоспособность и устойчивость наших алгоритмов как на данных модельных траекторий, так и на данных телеметрии реальных полетов.

Разработка и отладка программно-математического обеспечения в среде CM-Lynx и ОСРВ MACS

Разработка и отладка ПМО велась в проприетарной среде Миландра CM-Lynx. Все ПМО написано на C/C++ с редкими вкраплениями ассемблера.

В алгоритмически сложной, насыщенной взаимодействиями с разнородной аппаратурой программной системе реального времени нельзя, разумеется, обойтись без использования соответствующей операционной системы. В нашем модуле применена ОСРВ MACS. В частности, работа ПО модуля существенно опирается на такие ее функциональные возможности, как:

- Вытесняющий алгоритм планирования на основе приоритетов;

- Стандартные средства синхронизации потоков:

Мьютексы,

Семафоры,

События,

- Средства для организации межпоточного информационного обмена (очереди сообщений).

Нужно признаться, что в данном случае, при применении нашего же ЦСП K1967ВН04BG выбора не было ни в среде, ни в ОСРВ. Не без некоторых трудностей, но проект был завершен, отлажен и стал живым организмом.

Отдельно стоит сказать про процессор. Вообще, применение цифровых сигнальных процессоров в системах навигации и управления подвижных объектов до сих является экзотикой, особенно в России. Не будем углубляться в причины такой ситуации, но можно только сказать, что ЦСП являются не столь распространенными по сравнению с процессорами общего пользования. В нашем же проекте применение ЦСП оправдало себя полностью.

ЦСП 1967ВН04BG работает с тактовой частотой 200 МГц (при максимально возможной 230). Ядро процессора содержит два вычислительных устройства, называемых вычислительными модулями. Каждый вычислительный модуль содержит регистровый файл и четыре независимых вычислительных блока: ALU, CLU, умножитель и сдвиговое устройство. Вычислительные блоки способны обрабатывать данные в нескольких форматах представления с фиксированной и плавающей точкой. Форматы данных с плавающей точкой: 32-битное обычное слово (float); 64-битное двойное слово (double); 40-битное расширенное слово. Операции с плавающей точкой выполняются с одинарной, двойной и расширенной точностью, и все эти возможности реализованы аппаратно. Кроме того, у процессора развитая периферия: 3 канала интерфейса SPI, 2 канала UART, 2 резервированных канала магистрального интерфейса ГОСТ52070-2003 (МКИО), интерфейс ARINC, содержащий в своем составе восемь приемников и четыре передатчика по ГОСТ 18977-79 и некоторые другие интерфейсы, а также множество каналов DMA.

Испытания

Испытания проводились в основном на квадрокоптере.

Установка 2-х инерциальных систем на квадрокоптере при проведении сравнительных испытанийУстановка 2-х инерциальных систем на квадрокоптере при проведении сравнительных испытаний

В каждом испытании два модуля (наш и ADIS16480) были жестко закреплены друг относительно друга, и их соответствующие измерительные оси были коллинеарны c допуском 34 угловых градуса. Все испытательные включения происходили также одновременно, при этом в качестве эталона использовались данные географических координат и скоростей, получаемые от приемника спутникового навигационного сигнала. Еще одной опорой для анализа являлось то, что начальные и конечные координаты и угловые положения аппарата совпадают с визуальной точностью. На основе данных о географических скоростях от приемника спутникового навигационного сигнала (при достаточно интенсивном движении) мы получали данные об истинном курсе на траектории движения без учета так называемого угла сноса. Была специально выбрана траектория движения коробочка, где направление движения каждого участка этой коробочки максимально совпадало с направлением на одну из сторон света: север, юг, восток или запад, путевая скорость составляла при этом 36 км/ч. Наш модуль производил счисления координат и углов в чисто автономном режиме (без поддержки от приемника сигнала GPS/ГЛОНАСС).

Результаты испытаний одного из лётных дней в декабре 2020-го годаРезультаты испытаний одного из лётных дней в декабре 2020-го года

Здесь первые три верхних графика углы, счисленные ADIS16480, три нижних счисленные нашим БИНС. На участках прямолинейного движения заметно, как накапливается ошибка углов тангажа и крена ADIS16480, либо наоборот, они как бы медленно приближаются к истинному. Т.е. характеристики этих углов ADIS 16480 не в полной мере соответствуют физике полета квадрокоптера. При этом те же углы БИНС адекватно соответствуют этой физике.

Частота обсчета углов и координат - 1000 Гц. Температура воздуха -8 С. Приведенные в таблице максимальные ускорения, полученные по данным нашего модуля, во всех осях достаточно велики, при этом зарегистрированные по данным ADIS16480 максимальные ускорения не превышали 45 м/с2 по оси Y, а по остальным осям составляли менее 25 м/с2. Это объясняется расположением испытуемого нашего модуля БИНС, который имел приличное отстояние от центра масс коптера, когда как расположение ADIS16480 практически совпадало с этим центром масс. То же можно сказать и об угловых скоростях максимальная угловая скорость у ADIS16480 по сути не превышает 100 гр/с.

Заключение

Проект по разработке собственной бесплатформенной инерциальной навигационной системы можно считать удачным. Мы пошли дальше простого повторения курсовертикали на замену ADIS16480. В данный момент изготавливаются несколько таких модулей в вариантах исполнения с диапазонами измерения ДУС: 450 и 250 гр/с.; и с диапазонами измерения по акселерометрам: 2, 5 и 10g. Предполагается испытать их не только на квадрокоптере, но и на других беспилотниках, и на самолете Як-12. Есть версия для автомобиля, с урезанным количеством датчиков и диапазоном их измерения. Также в плане разработка собственного полетного контроллера для БПЛА ответственного применения коптеров и конвертопланов.

Подробнее..

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером

19.08.2020 18:13:30 | Автор: admin
У нас было десять разбитых дронов за год, тестовые полеты два раза в день, три кандидата технических наук в команде, прототип из палочек для суши и желание найти способ больше не бить дроны.

Очень спорно, очень необычно, очень странно, но работает! На стыке архитектуры, коллаборативной робототехники и беспилотных летательных аппаратов. Представляем: Tensodrone.



Tensodrone (Тенсодрон) беспилотный летательный аппарат (БПЛА) мультироторного типа новой конструкции с защитой от столкновений, сделанный по принципу тенсегрити. Такой подход позволяет повысить устойчивость к ударам при меньшей массе, совместив защитную клетку и конструкцию несущей рамы.

Проект является ярким примером взаимодействия различных команд Центра компетенций НТИ по направлению Технологии компонентов робототехники и мехатроники на базе Университета Иннополис.

Дроны падают



Источник

Просто потому что летают. Системы управления, моторы, датчики, автопилоты, бортовые компьютеры и софт все это разработчики стараются делать как можно надежнее, но риск разбить коптер остается. А если это опытный образец, то сразу нужно изготавливать несколько (штук или десятков?) для отладки. Кроме внутренних факторов, очевидно, остаются и внешние: ветер, пассивные препятствия, активное воздействие.

Вряд ли кто-то будет спорить, дроны падают, сталкиваются, переворачиваются.
Можно стараться этого избегать, можно к этому подготовиться. Что лучше? Решать разработчику, пользователю и законодателю.

Я за совместное применение обоих подходов. Но в этой статье сконцентрируемся на том, как избежать последствий падения или столкновения БПЛА.

Защитные конструкции


Наиболее прямолинейный подход избежать последствий падения или столкновения БПЛА защитная клетка и прочие защитные конструкции. Здесь две задачи защищать дрон от повреждений и защищать среду, где работает дрон, и людей в ней от дрона.

Базовый вариант конструкции, относящейся скорее к защите людей от дрона, защита пропеллера.


Дрон AR.Drone 2.0 с защитой пропеллеров. Источник

Есть еще забавные решения, вдохновленные оригами, со складными гибкими конструкциями защиты пропеллеров (и даже конструкции рамы), развитие которым дала группа профессора Дарио Флореано в EPFL.

Превалирующей конструкцией защиты самого дрона (а вместе с тем и людей от него) является защитная клетка. Сам квадрокоптер находится внутри клетки.


Дрон Clover от российской COEX

Российская компания COEX делает дроны для учебных целей, которые по умолчанию имеют защиту пропеллеров, а опционально защитную клетку.


Дрон Flyability ELIOS

Швейцарская (Швейцария столица дроностроения?) компания Flyability выпускает, пожалуй, самый коммерчески успешный коптер ELIOS с защитной клеткой для выполнения инспекций внутри помещений. Оригинальность конструкции состоит в креплении защитной клетки к раме коптера на подвижном подвесе с возможностью стабилизации.


Дрон Dronistics

Стартап Dronistics из EPFL (опять Швейцария, это выходцы из группы Dario Floreano) предлагает дрон со складной клеткой для безопасной доставки грузов.

Все-таки разбиваются


Недостатком таких дронов является увеличение массы конструкции нужно носить с собой защитную клетку и элементы крепления к БПЛА. Стремление снизить массу защитной конструкции приводит к снижению ее прочности.

Дроны с изменяемой геометрией


Другое направление, связанное с идеей защищенного дрона (и не только), складные дроны и дроны с изменяемой геометрией (foldable и morphing). Имеется ввиду способность дрона изменять свою геометрию в полете. Складные конструкции делают для того, чтобы избежать повреждений дрона (например, дрон может съежиться перед ударом), а также дрон может, например, сложиться до компактного размера для пролета в узкие окна.

Возможно, вы видели крутой ролик с дроном с изменяемой геометрией из Швейцарии (да-да, снова ETH + EPFL + UZH). Нам эта идея тоже интересна и близка, дальше расскажу почему.


Дрон с изменяемой геометрией

Тенсегрити



Тенсегрити-стол. Источник

Тенсегрити способность каркасных конструкций использовать взаимодействия работающих на сжатие цельных элементов с работающими на растяжение составными элементами для того, чтобы каждый элемент действовал с максимальной эффективностью и экономичностью (Вики). Термин относительно новый, появился в 1960-х годах. Стол на картинке выше стоит (или висит) не имея ножек как раз за счет принципа тенсегрити.

Известно множество современных применений такого подхода в архитектуре, откуда он и появился, прежде всего при проектировании мостов.


Самый большой в мире мост, выполненный в стиле тенсегрити, Австралия. Источник

Альтернативные применения :)

Тенсегрити в робототехнике


Одно из старейших направлений робототехники промышленные манипуляторы сейчас переживает новую стадию своего развития, связанную с т.н. коллаборативной робототехникой. В речи специалистов в этой области можно с большой частотой услышать два термина stiffness и compliance.

В промышленной робототехнике термин compliance относится к гибкости и податливости. Неподатливый (non-compliant), жесткий (stiff) робот это устройство, которое работает независимо от того, какие внешние силы на него воздействуют. Энд-эффектор робота будет каждый раз следовать точно по одной и той же траектории. С другой стороны, энд-эффектор податливого робота может двигаться по различным траекториям для выполнения задачи и прилагать различные усилия к объекту. Например, робот может схватить яйцо, не раздавив его. Управляемая жесткость лежит в основе коллаборативной робототехники.

Идеи применения тенсегрити в робототехнике идут как раз из коллаборативной и мягкой (soft) робототехники. Тенсегрити структуры легкие, ударопрочные и дают возможность контролировать их жесткость (податливость) и конфигурацию (форму).

Наиболее известным примером применения тенсегрити в робототехнике является складной наземный робот NASA Super Ball Bot, который планировали использовать для исследования поверхностей планет. Благодаря сфероподобной структуре из кабелей и тросов робот может выдержать падение с большой высоты, когда его сбрасывают на планету с космического корабля. Оказавшись на поверхности, робот может перекатываться в любом направлении за счет управления длинами стержней.


Видео IEEE Spectrum о NASA SUPERball v2

Тенсегрити-роботы в Университете Иннополис


В УИ мы разрабатываем математический аппарат для моделирования, проектирования и управления робототехническими системами с напряженно-связанными структурами с переменной жесткостью (это и есть тенсегрити). Это фундаментальная работа, применение которой можно найти в самых разных роботах, например, тенсегрити-манипуляторах или шагающих роботах.


Тенсегрити-манипулятор и научный сотрудник и аспирант УИ Олег Балахнов

Олег первым у нас начал прототипировать тенсегрити-роботов сначала из деревянных палочек и резинок. Фото конструкции из палочек для суши, пожалуй, тоже еще хранит история чатов.

Тенсегрити-виброробот

Тенсегрити-виброробот

Синергетический эффект



Вы, наверное, уже поняли
I have a drone, I have tensegrity. Ugh! (Tensodrone)

Проходил я как-то в нашем гараже мимо привлекающей глаз странной конструкции:



Спросил: Что это такое? Мне сказали: неубиваемая конструкция роняй, а она не ломается.

Я сломал (на самом деле просто скукожил изменил форму, потому что резинки были плохо закреплены и сместились). Но такая конструкция нам для дронов нужна! И мы начали авантюрный эксперимент.


Видео с тестом тенсегрити на выживаемость

Более жесткий тест

Squishy robotics стартап, который делает тенсегрити-роботов для спасательных операций в случае стихийных бедствий, дистанционного мониторинга и космических исследований, и сбрасывает их с коптера


Авантюра



Сергей одобряет авантюрный эксперимент. Джефф Безос тоже

Сергей Савин старший научный сотрудник, доцент, серьезный ученый с кандидатской в 25 лет и множеством рейтинговых публикаций. Он один из отцов-основателей тенсегрити-робототехники в УИ, получил несколько грантов на развитие тенсегрити в робототехнике.

Игорь обдумывает идею


Дмитрий, Олег и Хэни собирают первого тенcодрона (что-то напоминает). Дмитрий Девитт GigaFlopsis научный сотрудник и аспирант Университета и тот, кто применил самые современные технологии карбоновые трубки и кевларовые нити, 3D-печать карбоном и мягким пластиком, все реализовал и заставил летать.


Процесс работы по сборке тенсодрона


Ура. получилось!

Летает!


Еще Дмитрий первый актер после тенсодрона в эпичных роликах его полетов. Оцените:


Игра двух актеров в ролях самих себя. Video by DeluuusiOn

Подробнее про конструкцию прототипа


Конструкция первого прототипа дрона получилась такая:


Конструкция прототипа тенсодрона Университета Иннополис

Использована базовая шестистержневая конструкция тенсегрити. В отличие от квадрокоптеров с жесткой рамой у нас две пары двигателей с винтами установлены на различных балках. Также ни один из них не соединен жестко с автопилотом, который расположен на нижней балке.

Бортовая электроника и электромеханические компоненты прототипа дрона включают в себя:

  • Автопилот CUAV Pixhawk v5 mini;
  • Аккумулятор 3s 1400 мАч;
  • Регулятор Racerstar REV35 35A BLheliS 3-6S ESC;
  • Моторы Racerstar Racing Edition BR2205 2300KV;
  • IMU сенсоры MPU9250.

Тросы сделаны из кевларового волокна с изготовленными на заказ пружинами. Стержни изготовлены из карбоновых трубок. Торцевые колпачки и другие мелкие детали напечатаны на 3D-принтере.

Проблемы управления


Основная проблема управления по сравнению с обычным жестким дроном вибрации, которые, во-первых, больше по амплитуде, во-вторых, разные для контроллера и различных двигателей, т.к. они установлены на различных балках (хотя это же может быть и плюсом виброразвязка).


Ранние тесты тенсодрона на подвесе: вибрации (извините за вертикальное видео)


Ранние тесты тенсодрона в полете: вибрации

Мы не одиноки
Оказывается, у нас был конкурент.

Еще в начале (почти год назад), когда мы делали прототип, мы нашли это видео от ребят из Imperial College London:


Авторы пришли к той же идее, что и мы: применение тенсегрити для дронов это интересно.
Т.к. никаких подробностей по конструкции и, тем более, прототипа представлено не было, свои работы мы продолжили.
Уже потом, когда у нас был летающий образец, мы получили отчет той же группы:


Отчет Hayden Cotgrove, Christopher Turner, Zachary Yamaoka Tensegrity Drones. Ссылка уже не работает

Во-первых, прототип у них не полетел. Во-вторых, их конструкция это жесткий дрон внутри тенсегрити-клетки, у нас же элементы дрона встроены в тенсегрити-структуру, которая тем самым является и фреймом и клеткой одновременно. Таким образом, здесь как концептуальные проблемы, так и проблемы качественной реализации.

Возвращаемся к проблемам управления и вибрации. Вот, что написано в отчете Hayden Cotgrove, Christopher Turner, Zachary Yamaoka:

Results
The drone was able to hover for short periods, thus proving that it is possible for tensegrity drones to fly. However, the propellers struggled to lift the drone for a couple of reasons:

  • The tensegrity structure was much heavier than the corresponding rigid structure as it made mostly from thick MDF, rather than thin carbon-fibre
  • The tensegrity structure vibrated a lot as the outside structure was not stiff enough, despite the motors being held on one rigid plane
  • The payload also vibrated too much, occasionally colliding the propellers


Данные проблемы мы решаем с двух сторон улучшением конструкции для уменьшения вибраций при полете и разработкой алгоритмов управления и оценивания состояния с целью подавления вибраций и более качественного управления, в том числе с учетом дополнительных данных от IMU датчиков на балках и динамической модели тенсегрити-структуры.


Падение на пол с последующим взлетом, в помещении (без монтажа)

Еще несколько видео испытаний
Вот еще несколько видео наших испытаний, когда вибрации уже на приемлемом уровне, для заинтересованных. Поместил в спойлер, т.к. уж очень их много.


Падение на ступеньки (и все ок)


Тест автоматического полета по миссии на улице


Демо полета в помещении с ударом об стену


Что дальше?


Ресерч


Впереди еще много интересного: подача заявки на патент, написание научной статьи с подробными исследованиями, апробирование новых вариантов конструкции (ох, их у нас придумано много).

Применение


Сейчас эта штука летает сама по заданной миссии (в том числе по GPS на улице, а в помещении будем использовать визуальную одометрию). Для нас очевидно дальнейшее применение для инспекции помещений.

За исключением управления низкого уровня и формы, тенсодрон это обычный дрон, мы интегрируем в него наши алгоритмы планирования движения для автономного обследования и картографирования помещений (exploration) с обходом препятствий.


Пример выполнения автоматической инспекции. Магистерский проект Виктора (Victor Massague), нашего выпускника и в ближайшем будущем, надеюсь, сотрудника из Барселоны

И снова ресерч


Потенциал конструкции тенсегрити-дрона гораздо больше простого дрона.
Помните Foldable Drone из видео выше? А SUPERball?

Так вот, если активно изменять длины стержней или натяжения тросов тенсегрити-дрона, можно управлять его конфигурацией (или, проще говоря, формой)!

Получается Foldable Morphing Tensodrone. Активно ведем исследования в этой области.


Тенсодрон с изменяемой в полете геометрией Университета Иннополис (концепт)



Применение тенсегрити для летательного аппарата открывает новые исследовательские задачи. Прототип конструкции уже сейчас показывает, что идея работает и её можно применять для защиты БПЛА.
Подробнее..

Перевод Как найти мелкие потерявшиеся квадрокоптеры

22.05.2021 22:20:06 | Автор: admin


Обычно у дронов есть GPS-датчик, и они могут сообщить пилоту о том, где упали. Но что, если ваш квадрик весит 25 грамм с батареей, и у него просто нет GPS? У любителей этого хобби есть множество способов отыскать свою любимую игрушку. Вот список таких методов и разных советов.

Подавайте питание при помощи дистанционного пульта краткими импульсами. Это облегчит задачу поиска шума. Только включайте питание ненадолго, поскольку некоторые лопасти наверняка застряли где-нибудь в траве или листьях. Если включать заблокированный мотор надолго, он сгорит. Всё зависит от квадрика, но обычно нужно оставлять пульт д/у включённым после аварии. Некоторые типы дронов не дают восстановить связь после отключения пульта.

Делайте шасси и пропеллеры яркими, используйте цвета, не часто встречающиеся в природе, и хорошо видимые для глаза: белый, оранжевый, красный. А такие цвета, как фиолетовый, синий и голубой, хотя и кажутся на первый взгляд яркими, но теряются в густой растительности. Кроме того, в человеческом глазе ближе к центру расположено совсем немного колбочек, распознающих синий цвет, поэтому издалека его увидеть сложно. Жёлтый и зелёный слишком часто встречаются в природе (при этом цвета для светодиодов для ночных полётов лучше выбирать белый, оранжевый и красный). Если вы хотите сделать неяркую ночную подсветку для квадрика, выбирайте сине-зелёный светодиод с длиной волны порядка 498 нм к этому диапазону наиболее чувствительны палочки. Также можно обмотать батарейки оранжевой плёнкой, а на антенне сделать небольшой флажок на случай, если эти детали отвалятся при падении.

Записывайте видео полёта и имейте возможность быстро его воспроизвести в очках или на экране. Тщательно изучив последние карты, вы серьёзно сужаете круг поисков. Определяйте приметные точки, используйте триангуляцию и параллакс. Учтите, что дрон мог пролететь ещё несколько десятков метров после записи последнего кадра.

Используйте очки в качестве гониометра. Один из простейших вариантов использования очков проверка силы сигнала. Чем сильнее сигнал, тем вы ближе. Но очки также дают и направление. Прислоните их к животу и медленно поворачивайтесь. Когда сигнал окажется на минимуме, квадрик будет у вас за спиной. Когда сигнал на 100%, а вы не видите дрон значит, он застрял где-то над землёй, где антенну ничто не заслоняет. Чувствительность очков можно уменьшить, вывинтив антенны. Наоборот, когда сигнал слабый, прикрутите направленную антенную и водите ею из стороны в сторону. Учтите, что сигнал через несколько минут пропадёт, вам нужно действовать быстро.

Наклейте на дрон флуоресцентную ленту. Можно будет вернуться ночью и посветить везде ультрафиолетовым фонариком. Наклейка будет видна с нескольких десятков метров.



Некоторые рекомендуют использовать светоотражающую плёнку вместо флуоресцентной. Если вы будете держать фонарик рядом с головой на уровне глаз, вы увидите отражённый свет издалека. Также можно использовать светоотражающие стеклянные шарики.

Полезно знать места, где вы летаете. Там, где я часто запускаю дрон, иногда я могу понять, где он упал, просто посмотрев на фотографию листьев или камней.

Используйте пищалку. Её можно поставить уже на дрон весом 50 гр. Её можно подсоединить к пульту, но можно поставить и независимо, главное подключить к батарее. Когда батарея сядет, пищалка при помощи встроенного аккумулятора начнёт издавать звуки каждые 10 секунд, и будет делать так несколько часов. На квадрике весом 25 гр я припаял микропищалку к выходу для питания светодиода, и немного хакнул код. После этого её можно включить несколькими кнопками на пульте. Однако в таком варианте она будет пищать, только пока в батарее дрона будет заряд. Некоторые квадрокоптеры умеют пищать пропеллерами.



Один из пользователей предложил повесить на коптер пищалку для поиска ключей. Можно снять её пластиковый корпус, и примотать ниткой к квадрику, заодно закрепив аккумулятор. Если дрон упадёт не очень далеко от вас, это может помочь. Также один из вариантов пищалка для ключей на Bluetooth. Их нужно привязывать к смартфону. Когда она попадает в радиус действия, со смартфона можно подать команду на писк. Некоторые приложения даже измеряют силу сигнала, чтобы помочь навестись на брелок. Но даже если смартфон не привязан к нему, на телефоне можно посмотреть список ближайших Bluetooth-устройств и силу их сигнала. ID брелока нужно записать заранее он выглядит как-то так: 14:BB:6E:61:0A:6F.

Обращайте внимания на животных редко, но это может помочь. Если кошка или лиса уставилась в одном направлении, возможно, именно там упал дрон, а животное раздумывает, не похоже ли это на раненую птицу, которой можно поживиться.

Носите с собой удочку. Ей удобно доставать коптер с веток деревьев и кустов, однако ей можно придумать и более хитроумное применение. Предположим, что дрон упал в разросшиеся кусты ежевики, с нескольких метров его не видно, но видео он всё ещё передаёт. Пошерудите удочкой в кустах. Как только вы увидите её на видео, вы узнаете, где ваш коптер. На конец удочки можно закрепить неодимовый магнит, чтобы цеплять коптер за мотор. На фото ниже магнит закреплён на удочку полиэтиленовой ниткой (её используют для ловли акул и производства пуленепробиваемых жилетов). Вокруг удочки намотан металлический провод, чтобы магнит к нему примагничивался.



Ищите сначала там, где легче искать. Подходите к вопросу рационально. Используйте мозги, тщательно прочёсывайте территорию. Если ничего не нашли тогда приступайте к менее вероятным местам.

Если коптер упал в воду, сразу выньте батарею (некоторые пользователи утверждают, что её нужно отсоединять, пока он ещё в воде). Полейте квадрик чем-то, что у вас есть, что больше всего напоминает дистиллированную воду. Вытрясите из него влагу. Не пытайтесь её выдувать дыхание вредит электронике и оптике (из-за органической материи, исходящей из лёгких). Высушите коптер и батарею в хорошо проветриваемом помещении в течение как минимум суток. Я обычно вешаю их на решётку вентилятора.

Найдя, сразу проверьте на отсутствие компонентов. Пропеллеры, антенны, батарея, линзы. Если что-то отвалилось, скорее всего, оно где-то рядом с местом падения.

Одолжите у знакомого собаку. Гуляя с другом, я как-то раз полчаса искал крохотную линзу, и когда уже отчаялся, его собака вдруг активизировалась, и секунд за 10 сунула нос именно туда, где она лежала. Один пользователь предложил опрыскать коптер духами, чтобы собаке было легче его найти. Если у вас есть такая собака, это имеет смысл. Некоторым собакам очень нравятся коптеры, поэтому они с удовольствием вам помогут.

Один пользователь использует металлоискатель, чтобы искать коптер в высокой траве. Эти аппараты нуждаются в настройке, поэтому сначала используйте другой коптер, положив его в траву и подстроив прибор. Или подстройте его заранее.

Планируйте полёт. Над сложными участками летайте вначале, когда у коптера полно энергии. Когда батарея начнёт садиться, и коптер готов будет упасть, летите над такими местами, где его легче будет найти.

Уподобьтесь Макгайверу, и носите с собой клейкую ленту. Я использую узкую ленту 3M 550 Scotch. Её, например, можно использовать, удлинив удочку при помощи веток. Швейцарский нож Макгайвера тоже обязательно нужно носить с собой чтобы не возбуждать полицию, я ношу самый мелкий.

Бывают очень прочные деревья, которые невозможно потрясти. Используйте верёвку, протянув её посередине высоты дерева или посередине ветки. Тогда вы сможете тянуть верёвку с земли и трясти часть дерева. Чтобы закинуть туда верёвку, сначала закиньте туда камень с привязанной леской, за которую потом затяните верёвку. Однажды я с помощью коптера H8 Mini поднял леску наверх, обогнул ветку, и дал ему упасть.

Прикрепите к нижней части коптера резинку в идеале оранжевую, для упаковки подарков. Двух метров будет достаточно. Такую резинку сможет поднять даже Cheerson CX-10. Если дрон упадёт в высокую траву или застрянет в кустах, резинка будет видна с большого расстояния. Проблема только в том, что коптер может упасть из-за резинки. Если вы исполняете сложные фигуры, или день ветреный, резинка может попасть в пропеллер поэтому этот совет подходит только новичкам. Также резинку можно использовать для демонстрации: когда коптер летает невысоко над землёй, таща за собой резинку, он становится похож на змею.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru