Русский
Русский
English
Статистика
Реклама

Солнечные панели

Солнечная станция. Тепловизионное и электролюминесцентное тестирование своими руками

19.11.2020 20:15:16 | Автор: admin

Обзор типичных проблем, возникающих с солнечными станциями, и на что стоит обратить внимание, пока не стало слишком поздно. Основано на анализе 50+ домашних солнечных станций различного возраста.

Вступление

К основным методам тестирования, которые могут показать некачественные изменения в работе, как самой солнечной станции, так и панелей, относятся тепловизионная диагностика и тестирование с использованием электролюминесценции.

К количественным измерениям можно отнести измерение вольт амперной характеристики панели (IV Curve), но про это в другой раз.

Этой весной, наконец, все работы были завершены, мои http://personeltest.ru/aways/habr.com/ru/post/465133/ станции достроены и пришло понимание, что было бы неплохо проверить, всё что нажито непосильным трудом построенное.

Наслушавшись про возможные варианты дефектов в солнечных модулях, я решил углубиться в тему, и поделиться своиминаработками.

Тепловизионное обследование солнечных станций

Как самое простое, хоть и не самое бюджетное решение, была выбрана тепловизионная съемка. Про тепловизоры много есть на Хабре да и в интернетах написано уже немало, но подчитав, в том числе и

http://personeltest.ru/aways/habr.com/ru/post/457808/

http://personeltest.ru/aways/habr.com/ru/company/lamptest/blog/402071/

мой выбор пал на FLIR ONE Pro Gen3 (Тепловое разрешение 160 120, Оптическое разрешение 1440 1080), которого оказалось более чем достаточно для моих целей. Покупал слегка в б/у состоянии, за 400$.

Забегая немного наперед скажу, что о лучшем за эти деньги я не мог и мечтать, рекомендую.

Мои станции были довольно далеко, и учитывая карантины и прочие приятности года, возможности оперативно туда поехать не было никакой, а желание затестить на чем то кроме котиков

Сфинкса видно издалекаСфинкса видно издалека

просто жгло изнутри. Был кинут клич, и предложено бесплатное тестирование станций всем желающим, что не преминуло дать свои результаты.

Халява объема не имеет Тестирование чужих станций переросло в хобби, и я проверил уже более 50 чужих станций, старшим из которых исполнилось более 5-ти лет, и в целом статистика накопилась довольно занимательная.

К сожалению, станций совсем без дефектов, было намного меньше чем полностью исправных.

Основные проблемы, которые присутствовали на станциях - это пробитые диоды Шоттки

пробитые диоды Шотткипробитые диоды Шотткипробитые диоды Шотткипробитые диоды Шотткипробитые диоды Шотткипробитые диоды Шоттки

и конечно же плохие контакты.

плохо обжатый вход в инверторплохо обжатый вход в инверторгорячий межпанельный контактгорячий межпанельный контактгреется диодная коробкагреется диодная коробкаопоздали с тестом на неделюопоздали с тестом на неделюплохо обжатые входа в инверторплохо обжатые входа в инвертор

И если плохой контакт устранить обычно довольно просто, то замена диода в современной панели выглядит совсем не тривиально. Гуглятся очень простые инструкции, по замене сгоревших диодов, да и сами диоды продаются в различных магазинах. Только вот вскрытие диодных коробок (junction box), на современных панелях, меня крайне огорчило.

современная диодная коробкасовременная диодная коробка

Всё залито компаундом и заменить диоды Шоттки совсем не так просто как раньше.

вскрытие показало, что пациент умер от вскрытиявскрытие показало, что пациент умер от вскрытия

Если диод не заменить, то он меняет характеристики панели (минус 1/3), и она потянет за собой весь стринг. В дальнейшем, диод рискует окончательно сгореть, что может привести и к пожару. Падение мощности панели на 33% является гарантийным случаем, и лучше всего обращаться сразу к поставщику. Самостоятельно вмешательство будет расценено как не гарантийный случай.

Поэтому, я настоятельно рекомендую, всем владельцам солнечных станций, хотя бы раз в год проводить инспекцию тепловизором. Можно скооперироваться и приобрести такой как у меня, можно взять в аренду, благо тепловизионное обследование домов теперь довольно развито в каждом регионе, или заказать у специализированной фирмы облет дроном (правда, он всего всё равно не покажет, зато быстро).

Нужно понимать, что из-за дефектов у Вас будут потери в генерации, которые Вам никто и никогда не компенсирует.

Ряд проблем с панелями возникал уже сразу после инсталляции, ввиду небрежного обращения с панелями, неаккуратной транспортировки или заводского брака.

каждое пятно - это повреждение панели, затенения нет, станции менее 6 месяцевкаждое пятно - это повреждение панели, затенения нет, станции менее 6 месяцевте же панели, крупный планте же панели, крупный планстанции исполнился месяцстанции исполнился месяц

Кто желает бесплатное обследование и для себя - может писать в личку или комментарии, но есть определенные ограничения по ГЕО фактору (Западная Украина), по крайней мере на данный момент. Последовательные отчеты об исследовании каждой станции выложены на форуме, внимание, Украинский язык.

По мере накопления и опубликования результатов тестирования, в меня начали лететь тапки начали поступать замечания, по поводу точности и корректности тепловизионной съемки. Теперь глаз уже наметан, и проблемы я нахожу намного быстрее. Но главный вопрос, а насколько всё было реально плохо и отвечало ли реальности - оставался открытым.

Частично найти на него ответ помогает следующий тип тестирования.

Электролюминесцентное тестирование солнечных панелей

В теории, этот метод тестирования может четко показать повреждения солнечной панели, оставалось проверить это на практике.

Электролюминесценция солнечных панелей (EL imaging solar cells), для краткости EL-тестирование, один из основных современных методов диагностики и тестирования солнечных панелей.

Метод основан на том, что кремниевые элементы начинают излучать в близком инфракрасном диапазоне (Near Infrared), при подключении их к блоку питания.

Каждая панель, которая сходит с конвейера, проходит аналогичный тест, а фото ложится в архив. В сложных случаях можно, а в целом и нужно, запросить у поставщика данное фото по серийному номеру панели, и в теории можно даже проследить развитие незамеченных на производстве трещин и т.д.

Основных проблем, которые возникают при тестировании, всего две:

Первая - это необходимость подать нужный ток/напряжение на панель или стринг. Панель потребляет ровно столько, сколько должна генерировать. Для тестов единичных панелей можно использовать лабораторные блоки питания, или заказать собственный, цена вопроса в моем случае - напряжения до 80V и ток до 10A, составила ~80$.

2 пробитых диода2 пробитых диода

Для тестирования стринга одним махом, нужны качественно иные блоки питания, до 1000В, и цена их в разы выше. Для начальных задач, вполне хватает моего блока питания, но я уже присматриваюсь к чему то более мощному.

Вторая - но отнюдь не менее важная, это фотоаппарат или камера, способная снимать в ближнем инфракрасном диапазоне (NIR).

Есть много научных работ, в которых приводятся и специализированные камеры, и даже камеры от Raspberry PI, есть и другие варианты. Если есть пару лишних тысяч и желание попонтоваться иметь профессиональный инструмент - гуглим InGaAs sensor.

Основным рабочим инструментом рекомендуют фотоаппарат с CCD матрицей. Данная матрица неплохо регистрирует волны длиной ~950 нм. Всё что нужно - это удалить инфракрасный фильтр, стоящий перед матрицей и снимать в темное время суток.

Предложенные решения не удовлетворяли меня либо по качеству картинки, либо цене, либо функционалу.

Первой жертвой была мыльница Olympus Digital 800, которая уже много лет пылилась на свалке истории полке. Жажда знаний победила хомяка, и фотоаппарат был вскрыт без малейших зазрений совести и инструкций. Результат был достигнут, но качество фото увы не впечатлило.

Тут уже началась борьба с другим животным, но был достигнут другой гармоничный компромисс, благодаря новым знаниям. Надеюсь, это облегчит и Вам творческий поиск.

CCD матрица - почти не встречается в современных фотоаппаратах, а если встречается, то ее размеры оставляют желать лучшего, как и фотоаппарата, в который ее запихнули. Можно купить профессиональный фотоаппарат из прошлого, за вполне разумные деньги, но время выдержки исчисляется 10-ками секунд, поддержки современных технологий нет от слова совсем (WIFI, pc live view, древние форматы карт и т.д.)

Копание в технологии производства матриц привело к интересному варианту - BSI-CMOS. Он обладал повышенной чувствительностью благодаря технологии производства, о которой трубили во всех обзорах того времени. Технология оказалась переходной, между CCD и CMOS, но достаточно приблизилась к сегодняшнему дню.

Осталось найти подходящего кандидата и рискнуть.

Но если ранее, любая новая матрица довольно подробно описывалась на многих технических ресурсах и каталогах товаров, то теперь почти во всех каталогах фильтр по матрицам убрали. Частично мне помог ресурс https://www.dpreview.com/products/search/cameras#!

После выбора сенсора, я смог выбрать то, что удовлетворяло по функционалу и присутствовало на вторичном рынке по разумной цене. Звезды сошлись на Samsung NX mini, с рулеткой и блекджеком BSI CMOS 1, Wi-Fi, RAW, которую удалось приобрести за символические 110$ в почти новом состоянии. Благодаря Wi-Fi я могу видеть и снимать панели дистанционно, что очень удобно в полевых условиях. По нужным параметрам находилось больше 10 камер, так что Вы сможете подобрать что то и на свой вкус и кошелек.

Также, благодаря матрице, на контрастную фотографию у меня тратится максимум 2 секунды, а начинает снимать удовлетворительно с 0,5 с. выдержкой. При определенных обстоятельствах, дефекты видно даже через электронный визир камеры.

Когда дело дошло уже до разбора камеры, поиск инструкций неожиданно привел меня к братьям по разуму - астрономам любителям, которые оказывается уже давно и плотно сидят "в теме" ближнего инфракрасного диапазона. Есть ряд сайтов, где продают знаменитую красную фотопленку уже готовые фотоаппараты, с удаленным инфракрасным фильтром, а так же много инструкций по популярным моделям, как разобрать, ну и главное собрать фотоаппарат обратно. При наличии умения держать отвертку и в некоторых, особо сложных вариантах, отпаять 2 проводка, рекомендую пройти этот путь самому.

В целом, рекомендации и рекомендуемый модельный ряд, довольно сильно совпали с моим выбором, и я был сильно опечален, что не провел эту параллель ранее, а был вынужден изобретать велосипед.

Теперь можно наглядно получить полное представление о повреждениях, полученных панелью.

испытание в домашних условияхиспытание в домашних условияхтак выглядят пробитые диодытак выглядят пробитые диодытак выглядят пробитые диодытак выглядят пробитые диоды

Фото в полевых условиях выходят не настолько качественные, но это временное явление.

повреждение ячеекповреждение ячеектак этот же участок видит тепловизортак этот же участок видит тепловизортут всё октут всё октут всё октут всё ок

Ряд проблем на станциях можно выявить невооруженным взглядом, достаточно раз в год делать внимательный осмотр и подтягивать контакты на своей станции.

"snail trails" "snail trails" отслоение подложкиотслоение подложкидо пожара оставался один шагдо пожара оставался один шаг

Для постройки домашней солнечной станции не нужны разрешения, и фантазия нарушений выходит далеко за рамки ПУЭ - построить без заземления, закопать СИП в землю, не верно подобранные сечения кабелей, построить домик Наф-Нафа и многое, многое другое.

Следующий этап развития проверок - это более глубокий анализ параметров панели, с помощью анализатора Вольт-Амперной кривой (IV Curve). Профессиональные приборы стоят от 1000$, но я нашел вариант намного бюджетнее, и не уступающее им по точности - https://www.instructables.com/IV-Swinger-2-a-50-IV-Curve-Tracer/, разработал очень адекватный и крутой инженер. Но про это будет уже в следующей части, платы пока только в пути.

К сожалению, моё увлечение встретило определенное сопротивление со стороны как производителей, так и дистрибьюторов. Буду рад всем откликнувшимся, кто сталкивался с подобными проблемами. Проблемы есть, но их уверенно и втихаря заметают "под коврик".

Всем, кому близка тема домашних солнечных станций, присоединяйтесь.

Тем, кто хочет самостоятельно погрузиться в изучение своих станций тепловизором и/или электролюминесценцию, рекомендую начать со следующих документов

https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPST13-012014ReviewofFailuresofPhotovoltaicModulesFinal.pdf

https://iea-pvps.org/wp-content/uploads/2020/01/ReviewonIRandELImagingforPVFieldApplicationsbyTask_13.pdf

Подробнее..

Прозрачная энергия превращение окон в солнечные панели

21.08.2020 10:13:31 | Автор: admin


Последнее время то и дело говорят о зеленой энергии, возобновляемых источниках оной, а также о методах ее получения, хранения и использования. И это вполне логично, ведь население планеты неустанно растет, а запасы ископаемых источников энергии стремительно иссякают. Рано или поздно может наступить такой момент, когда вся энергия, используемая людьми, будет вырабатываться солнцем, ветром и т.д. Посему многие исследователи занимаются совершенствованием существующих и созданием новых методик сбора зеленой энергии. Сегодня мы познакомимся с исследованием, в котором ученые из Мичиганского университета разработали прозрачные (точнее полупрозрачные) солнечные панели. Из чего была создана данная технология, каков принцип ее работы, и смогут ли небоскребы стать эффективными сборщиками солнечной энергии? На эти вопросы мы найдем ответы в докладе ученых. Поехали.

Основа исследования


Солнечные панели когда-то были достаточно большой редкостью, но сейчас, благо дело, их доступность и популярность сильно возросли. Недавно я проходил мимо одного жилого дома в своем городе и заметил, что его глухие стены и крыша полностью покрыты солнечными панелями. Это вызвало у меня в равной степени удивление, восхищение и море вопросов касательно эффективности, экономической выгоды и прочего. Тем не менее этот эмпирический пример отлично показывает одну особенность панели были установлены там, где они не будут мешать (т.е. не на окнах).

Конечно, существуют целые поля солнечных панелей, занимающие сотни квадратных метров (а то и больше), но в густонаселенных и, следовательно, густозастроенных городах слишком мало свободного пространства для такого метода установки. Кто-то скажет: если бы сильно хотели зеленую энергию и солнечные панели, то и место нашлось бы. Согласен, но реальность пока иная. Лишнего пространства между высотками может и не очень много, но вот чего много, так это окон, которые сами могли бы стать сборщиками солнечной энергии.

На данный момент уже существует несколько разработок в области полупрозрачных солнечных панелей, эффективность которых достигает 7%. В их разработке важную роль играют органические полупроводники. По сравнению с неорганическими полупроводниками, узкие экситонные* полосы внутри органических полупроводников открывают новые возможности в области органических фотоэлектрических элементов (далее OPV от organic photovoltaics), так как многие органические соединения избирательно поглощают свет за пределами видимого диапазона длин волн.
Экситон* электронное возбуждение в полупроводнике, диэлектрике или металле, перемещающееся по кристаллу, но не связанное с переносом электрического заряда и массы.
Эффективность полупрозрачных фотоэлектрических элементов (ST-OPV) в 7% может радовать ученых и людей, понимающих сложность достижения такого показателя у столь нестандартной технологии, но с точки зрения экономической выгоды это слишком мало. Кроме того, лишь небольшая доля из разработанных ST-OPV достигает видимой прозрачности в 50%, что критично для многих приложений.

В результате для создания ST-OPV необходимо найти баланс между эффективностью сбора энергии и достаточным уровнем прозрачности, что не есть простая задача. Ученые также добавляют, что многие уже созданные ST-OPV имеют весьма неэстетичный внешний вид (оттенок стекла), что также никак не способствует популяризации данной технологии.

На сегодняшний день эффективные ST-OPV нейтрального цвета в основном сосредоточены на использовании материалов с сильным поглощением в ближней инфракрасной области (NIR), включающих структуры многопереходных устройств для минимизации потерь на термализацию, просветляющих покрытий (ARC) или апериодических диэлектрических отражателей (ADR) для увеличения поглощения.

В рассматриваемом нами сегодня труде ученые описывают свой вариант ST-OPV, который достигает PCE = 10.8 0.6% и APT = 45.7 2.1%, что приводит к LUE = 5.0 0.3.
PCE* эффективность преобразования энергии (power conversion efficiency);
APT* средняя светопропускная способность (average photopic transmission);
LUE* эффективность использования света (light-utilization efficiency).
В устройстве используется NFA молекула NFA (нефулереновый акцептор) с высоким поглощением в ближнем ИК-диапазоне, для синтеза которой требуется всего несколько шагов. Несмотря на то, что NFA имеют частично ковалентно конденсированные кольцевые структуры (а не жесткие и полностью конденсированные), в них наблюдались сильные межмолекулярные взаимодействия и плотная упаковка молекул ().


Изображение 1

Комбинация материалов, поглощающих свет в ближнем ИК-диапазоне, выводных (выход фотонов из светодиода после генерации) структур (OC от outcoupling) на выходной поверхности и прозрачных электродов позволила достичь того самого компромисса между эффективностью, прозрачностью и эстетичностью.

Нейтральный по цвету ST-OPV с использованием прозрачного анода из оксида индия-олова (ITO от indium tin oxide) показал PCE = 8.1 0.3%, APT = 43.3 1.5% и LUE = 3.5 0.1%. Показатели света, проходящего через устройство, были таковыми: коэффициент цветопередачи (CRI) = 86; коррелированная цветовая температура (CCT) = 4143 K; хроматические координаты (0.38, 0.39).

Результаты исследования


На изображении показаны молекулярные структуры трех исследованных NFA, один из которых (а именно SBT-FIC) продемонстрировал полностью слившуюся молекулярную основу. Два других NFA (A078 и A134) с частично сплавленными ядрами являются изомерами SBT-FIC, содержащими четыре тиофена, два циклопентадиена и одно бензольное кольцо.

Одним из основных отличий между тремя NFA является сложность синтеза. На изготовление SBT-FIC требуется 10 этапов синтеза, а для создания A078 и A134 всего от 4 до 6 этапов. В дополнение к этому, A078 и A134 привлекательны еще и достаточно большим выходом, а также менее токсичными и более дешевыми материалами для синтеза.

Спектры поглощения NFA в УФ-видимом диапазоне показаны на и . Удивительно, но тонкие пленки A078 и A134 демонстрируют значительные батохромные сдвиги* ~ 135 нм по сравнению с SBT-FIC с пиком поглощения при max = 900 нм.
Батохромный сдвиг* смещение спектральной полосы в длинноволновую область под влиянием заместителей или изменений среды.
Циклическая вольтамперометрия NFA молекул показала, что у SBT-FIC энергии высшей занятой молекулярной орбитали* (ВЗМО) и низшей вакантной молекулярной орбитали (НВМО) составили EH = -5.81 ( 0.02) и EL = -4.15 ( 0.03) эВ. Для A078 показатели были: 5.58 ( 0.02) и -4.06 ( 0.03) эВ. А для A134: -5.54 ( 0.02) и -4.05 ( 0.03) эВ.
Молекулярная орбиталь* математическая функция, описывающая волновое поведение электронов в молекуле.

ВЗМО (высшая занятая молекулярная орбиталь) орбиталь, которая среди заполненных в основном состоянии имеет наибольшую энергию.

НВМО (низшая вакантная молекулярная орбиталь) полностью или частично вакантная молекулярная орбиталь с наименьшей энергией среди всех заполненных.
A078 и A134 демонстрируют более низкую ВЗМО-НВМО запрещенную зону (1.40 эВ), чем SBT-FIC (1.65 эВ), что согласуется с оптическими измерениями.

Далее NFA, смешанные с PCE-10, был использован в OPV со структурой ITO / ZnO (30 нм) / активный слой (100 нм) / MoO3 (20 нм) / Ag (100 нм).


Изображение 2

На графике показаны характеристики плотности тока и напряжения вышеописанных NFA+PCE-10.

В устройстве на базе A078 были достигнуты следующие показатели: PCE = 13.0 0.4%, VOC = 0.75 0.01 В, JSC = 24.8 0.7 мА/см2 и FF = 0.70 0.04.

Устройство OPV на основе A134 показало: PCE = 7.6 0.2% с VOC = 0.75 0.01 В, JSC = 16.7 0.5 мА/см2 и FF = 0.61 0.03.

Для устройства PCE-10: SBT-FIC показатели были такими: PCE = 7.8 0.3% с VOC = 0.70 0.01 В, JSC = 17.2 0.7 мА/см2 и FF = 0.65 0.02.

Стоит отметить, что добавка 1-фенилнаталена (PN) приводит к значительному повышению эффективности устройств A078 и A134 по сравнению с SBT-FIC, что связано с улучшенной молекулярной упаковкой A078 и A134, а также более благоприятной ориентацией молекул в смеси. Также видно, что устройство PCE-10:A134 показывает более низкий PCE по сравнению с OPV PCE-10:A078. Это связано с кристалличностью A134, что приводит к его более низкой растворимости.

График показывает спектры внешней квантовой эффективности* (EQE) различных вариантов устройства.
Квантовая эффективность* отношение числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощенных фотонов.
Значительное улучшение JSC для A078 по сравнению с SBT-FIC OPV связано с его красным смещением* поглощения на ~200 нм, которое обеспечивает охват солнечного спектра дальше в NIR.
Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
EQE A078 OPV достигает 80%, между = 700 и 900 нм, оставляя окно прозрачности между видимыми длинами волн от 400 до 650 нм.


Изображение 3

На графиках - показаны профили различных устройств на базе чистых пленок NFA и смеси PCE-10:NFA с/без добавления 1-фенилнаталена.

При добавлении 1-фенилнаталена показатель поглощения пленки PCE-10:NFA практически не меняется. А вот в смесях PCE-10:A078 и PCE-10:A134 обнаружен новый ярко выраженный пик агрегации около 900 нм. Это указывает на то, что добавка 1-фенилнаталена усиливает межмолекулярные взаимодействия на частично связанных акцепторах, а не на полимерном доноре.

Далее были изучены морфологические свойства разных вариантов устройства.

A078 демонстрирует широкий (100) пик дифракции при 0.31 1 с длиной ламеллярной когерентности Lc = 7.5 нм. В случае A134 пик дифракции был более узким и острым при 0.36 1 с более высоким значением Lc = 15 нм. Из этого следует, что у A134 более высокая упорядоченность, чем у A078, что объясняется заменой объемной боковой цепи молекулы п-гексилфенила компактными линейными алкильными цепями.

SBT-FIC в свою очередь показывает дифракционный пик при 0.34 1 с наименьшей длиной ламеллярной когерентности Lc = 3.7 нм из-за его аморфной природы.

За счет добавления 1-фенилнаталена дифракционные пики (010) PCE-10:A078 и PCE-10:A134 (3E) при 1.79 и 1.82 1 (из-за NFA) смещены и показывают увеличенную длину когерентности (24 против 52 для A078) и (30 против 63 для A134).

А вот внесение добавок в PCE-10 никак не влияет на значение когерентности. Это подтверждает, что морфологические отличия между вариантами устройства происходят от NFA, а не от донора.

Кроме того, при использовании 1-фенилнаталена была обнаружена зависимость от ориентации молекул (параллельная или перпендикулярная). Для PCE-10:A078 отношение параллельная/перпендикулярная увеличивается с 2.37 до 3.64 (3D). Ввиду того, что параллельная ориентация молекул является идеальной для переноса заряда, становится очевидным, почему именно устройство A078 обладает столь высокой эффективностью (по сравнению с другими вариантами).

Ввиду этих данных именно A078 был использован в исследуемых полупрозрачных фотоэлектрических элементах (ST-OPV), структура которых выглядела следующим образом: ITO / ZnO (30 нм) / PCE-10:A078 (95 нм) / MoO3 (20 нм) / Ag (16 нм).


Изображение 4

Полученный ST-OPV показал LUE = 2.8 0.1%, PCE = 11.0 0.7% и APT = 25.0 1.3%. Однако, несмотря на неплохой показатель PCE > 10%, применять данное устройство в архитектуре нельзя, так как там требуется, чтобы средняя светопропускная способность APT была ~ 50%.

Решить эту проблему ученые смогли за счет специально разработанной структуры для управления оптическими свойствами устройства, позволяющей достичь максимального пропускания в видимом диапазоне и максимального отражения в ближнем ИК-диапазоне.

На анод из серебра было нанесено оптическое OC-покрытие, состоящее из четырех слоев: CBP (C36H24N2; толщина слоя 35 нм, коэффициент преломления 1.90) / MgF2 (100 нм, 1.38) / CBP (70 нм) / MgF2 (45 нм). А на дистальную поверхность стеклянной подложки наносили ARC (слой просветляющего материала), состоящий из бислоя MgF2 (120 нм) и SiO2 (130 нм) с достаточно низким коэффициентом преломления 1.12.

ST-OPV с OC и ARC продемонстрировал увеличение средней светопропускной способности (APT) с 25.0 1.3% до 45.7 2.1%, что является улучшением почти на 80% по сравнению с устройством без дополнительных слоев (т.е. без OC и ARC). Значение эффективности преобразования энергии (PCE) практически не изменилось (). Наблюдалось лишь незначительное уменьшение плотности тока (JSC = 20.4 0.8 против 20.9 1.2 мА/см2). При использовании данной конфигурации устройства эффективность использования света составила LUE = 5.0 0.3%. Данный показатель, по заявлению ученых, является самым высоким среди имеющихся на данный момент ST-OPV устройств.

Основные показатели разработанного устройства многообещающие, осталось изучить его внешний вид, что было сделано посредством смоделированного солнечного света (AM1.5G).

Свет, прошедший сквозь устройство с ОС и ARC покрытием, имел хроматические координаты (0.33, 0.39) и CCT = 5585 K. Тем временем, высокая отражательная способность ультратонкого катода из серебра при > 600 нм придает устройству зеленый оттенок. В отличие от Ag, ITO имеет более высокую прозрачность с плоским спектром пропускания в видимой области. Если использовать катод и анод ITO, то в результате можно получить более нейтральный оттенок.


Изображение 5

На графиках и фото выше показаны спектральные характеристики плотности тока, напряжения и EQE устройства ST-OPV на основе ITO со следующей структурой: MgF2 (120 нм) / стекло ITO / ZnO (30 нм) / PCE-10:A078 (105 нм) / MoO3 (20 нм) / напыление ITO (140 нм) / MgF2 (145 нм) / MoO3 (60 нм) / MgF2 (190 нм) / MoO3 (105 нм).

По сравнению с ST-OPV на основе Ag, устройство на основе ITO показывает различия в FF и VOC из-за его более высокой работы выхода* и поверхностного сопротивления (~ 50 Ом/квадрат).
Работа выхода* энергия, которую должен получить электрон для его удаления из объема твердого тела.
Но самые значимые отличия наблюдались в показателях JSC и PCE. Поскольку устройство становится все более прозрачным, отражение от ITO анода в тонкую активную область уменьшается, устраняя двойной проход фотонов. Чтобы свести к минимуму потерю фотонов низкой энергии, OC покрытие было специально разработано с максимальным пропусканием в видимой области спектра и более высокой отражающей способностью на более длинных волнах. Таким образом, устройство с OC покрытием имеет на 15% более высокие значения JSC и PCE по сравнению с ITO устройством без покрытия, хотя видимая прозрачность при этом практически не меняется.

ITO устройство с ОС покрытием демонстрирует LUE = 3.5 0.1%, PCE = 8.1 0.3% и APT = 43.3 1.5%, и имеет почти нейтральный оттенок. Также анализ трестируемого устройства показал, что оно передает цвет объекта за ним (5D).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В городах полно домов (простите за очевидное), следовательно, множество окон. Использование их в качестве площадки для сбора солнечной энергии является весьма разумной, но сложной в реализации идеей. С одной стороны необходимо собирать максимум энергии, с другой суть окна в том, что оно прозрачное.

В данном труде ученые смогли продемонстрировать рабочий прототип устройства полупрозрачного фотоэлектрического элемента с PCE = 10.8 0.6%, APT = 45.7 2.1% и LUE = 5.0 0.3%. Другим словами, эффективность устройства составила 10.8%, а его прозрачность 45.8%. Основным достоинством данной разработки является баланс между этими показателями.

На данный момент эффективность использования света составляет порядка 5%, что уже хорошо, ведь предшественники могли выдать максимум 2-3%. Однако ученые намерены продолжить свой труд и достичь 7%. Еще одной задачей, которую они перед собой поставили, является продление срока службы устройства до 10 лет. Долговечные, эффективные и эстетически красивые фотоэлементы смогут превратить обычное офисное здание в своего рода солнечную электростанцию.

Хотелось бы сказать, что подобные исследования своевременны, однако это не так. Такими разработками, особенно столь массово, как сейчас, стоило заниматься намного раньше, не дожидаясь момента, когда предотвращение экологической и энергетической катастрофы превратится в разбор последствий. В любом случае подобные начинания, хоть и с опозданием, имеют огромную важность не только для будущего человечества, но и для будущего нашей планеты.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Перевод Ретро Game Boy, который работает на солнечной энергии и от нажатий кнопок

08.09.2020 12:21:09 | Автор: admin

Самодостаточную приставку разработали, чтобы протестировать пределы безбатарейной вычислительной техники.

Энергетические технологии значительно продвинулись со времен первых портативных игровых приставок, появившихся в 70-х и 80-х. Чтобы продемонстрировать эти достижения и показать, куда они могут привести нас в будущем, группа исследователей сконструировала приставку Game Boy, которая вместо батареек использует комбинированный источник питания: от солнечной энергии и от взаимодействия пользователя с устройством.

Самодостаточную игровую систему разработали ученые из Северо-Западного университета в США и Делфтского технического университета в Нидерландах, которые намеревались исследовать пределы безбатарейной вычислительной техники. Система оснащена репликой процессора, который использовался в оригинальной 8-битной ретро-приставке Nintendo Game Boy. На устройстве можно играть в игры с оригинальных картриджей консоли, что, по наблюдениям команды, требует значительных вычислительных мощностей и много энергии.

Вместо того, чтобы обеспечивать непрерывное питание при помощи батарей, команда встроила солнечные панели по краям экрана. Панели работают в тандеме с системой конденсаторов, которая добывает энергию от взаимодействия пользователя с устройством: когда тот нажимает кнопки.


Самодостаточная игровая система разработана учеными из Северо-Западного университета в США и Делфтского технического университета в Нидерландах.

Это первое интерактивное устройство, которое получает энергию от действий пользователя, говорит Джозия Хестерн из Северо-Западного университета, один из руководителей исследования. Когда вы нажимаете кнопку, то устройство конвертирует энергию, чтобы поддерживать вашу игру.

Устройство по размеру и форме повторяет оригинальный Game Boy. Оно умеет быстро переключаться между двумя источниками энергии, но игровой процесс ненадолго прерывается.



По словам разработчиков, сейчас эти перерывы длятся менее секунды в типичных условиях игрового процесса игр Тетрис или Солитер. Проблема потребует решения для более активных игр. Положительная сторона: система умеет сохранять прогресс пользователя на тот момент, когда питание исчезает, позволяя продолжить с места остановки. Даже если Марио застыл в прыжке в воздухе.

Экологичные игры станут реальностью. Мы сделали важный шаг в этом направлении, убрав батарею целиком, отмечает Пшемыслав Павелчак из Делфтского технического университета, еще один руководитель проекта. При помощи нашей платформы мы хотим заявить, что возможно сделать экологичную игровую систему, которая приносит веселье и радость пользователю.

Прослушайте рассказ Хестера ниже.


Подробнее о проекте читайте тут.

***

Послесловие переводчика



Вечная приставка Game Boy может стать прототипом неубиваемых рабочих инструментов для пожарных или туристов. Надо отметить, что для оригинального игрового устройства от Nintendo уже выходили аксессуары для зарядки от солнца. Например, Game Boy Solar Charger.


Подробнее..

Tesla запустит на Гавайях мощную электростанцию на базе аккумуляторных систем Powerwall

19.01.2021 20:18:31 | Автор: admin


На Гавайях Tesla запустит гигантскую виртуальную электростанцию (ВЭС) на базе домашних аккумуляторов Powerwall в связке с гигантскими солнечными панелями. Разработкой электростанции займется компания Swell Energy. Swell Energy специализируется на внедрении новых энергетических технологий для домохозяйств.

Что такое виртуальная электростанция? Это система, агрегирующая энергию от нескольких распределенных ресурсов: систем солнечных панелей и аккумуляторных блоков. ВЭС дает возможность предлагать потребителям выгодные тарифы.

Запуск ВЭС поможет эффективнее и рациональнее управлять имеющимися ресурсами. Также новый комплекс будет способствовать тому, что из эксплуатации выведут старые неэкологичные станции на ископаемом топливе.

Общая мощность распределенной энергосистемы на Гавайях составит 80 МВт/ 100 МВт*ч.

Концепция виртуальной электростанции стала популярной после запуска Powerwall в 2015 году на рынок в США.

Добро пожаловать на Гавайи


Swell Energy давний партнер Tesla по установке Powerwall. Компания уже реализовала несколько проектов. Сейчас Swell Energy получила одобрение от Комиссии по коммунальным предприятиям Гавайев (Hawaii Public Utilities Commission) по реализации нового масштабного проекта.


Стоимость контракта $25 млн. Hawaiian Electric развернет виртуальную электростанцию вместе с Swell Energy. Насколько можно судить, это самый масштабный проект на базе Tesla Powerwall.

Плюсы перехода к автономным источникам энергии:
  • наличие независимого источника питания;
  • контроль энергопотребление в рамках одного хозяйства;
  • электрифиция удаленных и труднодоступных территорий
  • использование экологически чистой энергии.

Один из масштабных проектов на базе аккумуляторных систем уже реализован Tesla в Австралии. Так, в сентябре 2020 года Tesla запустила третью фазу виртуальной электростанции. В ближайшее время к системе подключат 4 тыс. домов.

В планах перевод на ВЭС 50 тыс. домохозяйств Австралии. Предполагается, что на выходе ВЭС в этой стране обеспечит примерно 20% среднедневных потребностей в электроэнергии Южной Австралии.

Собственный инвертор Tesla




На днях Tesla представила собственный инвертор, который будет дополнять домашнюю солнечную систему. Назначение системы перевести солнечную энергию постоянного тока в энергию переменного тока. Владельцы таких инверторов смогут вести мониторинг энергопотреблением при помощи приложения Tesla.

Основа инвертора Powerwall 2. Эта система подключается к Wi-Fi и Ethernet. ПО инверторов можно обновлять. Она работает в диапазоне от -30 до 45 градусов Цельсия. КПД нового оборудования 97,5%, для сравнения у Delta 97%, у SolarEdge 99%.

Подробнее..

Измеряем солнце. ВАХ солнечных панелей своими руками

30.05.2021 14:10:27 | Автор: admin

Я провожу бесплатные обследования солнечных станций, в результате чего в меня летят тапки мне делают замечания, что для предъявления гарантийных претензий нужно измерять именно падение мощности солнечной панели, к которой в основном и привязана гарантия. Так я пришел к необходимости обзавестись собственным прибором по снятию ВАХ ( IV Curve ) солнечной панели. Как сделать его самому за ~100$, и что это даёт - далее

Вступление

К сожалению, тестирование солнечных панелей даже профессиональным прибором, не является достаточным условием для производителя. Для полноценного юридического статуса и возможности вести диалог на равных с производителями солнечных панелей, нужно пройти сертификацию TV SD. Ни одной сертифицированной лаборатории в Украине нет. Я писал в головной офис TV SD, но наверно что то пошло не так.

Итого - выбросить >1К$ за красивую игрушку (без сертификации) смысла не было, алгоритм построения ВАХ расписан детально, отчего бы не построить свой велосипед прибор?

Но пока я читал про алгоритмы, то набрёл на IV Swinger 2, где сделали уже мопед создание которого расписано пошагово и очень чётко. При этом создатель инструкции очень толковый и общительный человек, за что ему отдельное спасибо.

Характеристики этой модификации покрывают все современные панели, в отличии от старых версий профессиональных измерителей. Снятие ВАХ солнечной панели занимает не более пары секунд. Единственным минусом является слабая масштабируемость по напряжению, и одним махом измерить параметры всего стринга солнечных панелей им нельзя, только отдельного экземпляра. Но даже сняв параметры всего стринга, всё равно нужно найти ту самую панель, которая так повлияла на общий результат, а ведь это именно то, что мы уже умеем!

Сборка

Далее процесс простой, но растянутый во времени.

Ждем платы

и детали

паяем и тестируем.

Инструкция настолько подробная, что аж скулы сводит сборка напоминала конструктор лего.

Беда пришла откуда не ждали.

Для более точной настройки, а мне очень хотелось утереть нос владельцам приборов за 1К получить максимальную точность, есть возможности дополнительной точной калибровки. Для этого нужен блок питания на 100 В, который у меня как раз применяется для электролюминесценции.

Самое обидное, что статью http://personeltest.ru/aways/habr.com/ru/post/537612/ я читал буквально накануне, но пробежал как то по диагонали, подумав что это не про меня, спойлер - не угадал. Рекомендую прочитать её, это может быть и про Вас.

Итого накрылась материнка и свежесобранный прибор, которым я успел проверить только пару аккумуляторов. Все детали, кроме плат, я заказывал впритык, поэтому еще минус пару недель, на повторную доставку сгоревших компонентов.

Первые тесты

Желание провести первый реальный тест распирало, поэтому погодные условия не брались в расчёт.

Долгожданный первый результат. Вот так работает панель на 320 Вт зимой.

С наступлением солнечной погоды, был проведен ряд более полезных тестов, для проверки влияния того или иного типа повреждения и/или затенения на работу солнечной панели.

Естественное затенение

Снять параметры панели не успел, затенение отказывалось позировать.

Частичное жёсткое (обычно похожее дают расположенные вплотную дымоходы и прочие естественные преграды)

И наиболее часто встречающаяся в реальности тень - от проводов.

И да, это так подрос главный помощник из самой первой части, с КДПВ.

Основные проблемы, которые могут быть с солнечными панелями, и какой вид при этом должна принимать ВАХ я расписал в статье.

Натурные испытания

Опять потянулся длительный период ожидания хорошей погоды, и спустя лишь много лет пару недель я смог приступить к измерениям на своей солнечной станции.

Внимание! Высокое напряжение!

Все дальнейшие действия нужно выполнять при чётком соблюдении правил техники безопасности, во избежание встречи с праотцами 20 см дуги постоянного тока напряжением 800 В и током в 10 - 25 А.

Обесточиваем солнечную электростанцию, размыкаем стринги, проверяем. И только после этого переходим к следующему этапу.

ВАХ солнечной панели мощностью 280 Вт, эталон, не затенённый

Тень от оптоволокна

Тепловизор практически ничего не видит

ВАХ солнечной панели с тенью и без тени практически не отличается. Можно списать на разброс как в самих панелях, так и точности измерения.

Тень от проводов

Тепловизор сигнализирует о проблеме

ВАХ тоже сигнализирует о проблеме

К сожалению, стринг который у меня затеняется, отличается от остальных по к-ву панелей. Поэтому измерить точное влияние данного затенения на падение мощности всего стринга нельзя. Методом расчетов на коленке по аналогии с соседними стрингами, у меня вышло порядка 5% потерь. Инвертор умеет снимать ВАХ всего стринга, но для это нужна корпоративная лицензия, которую мне обещал представитель вендора еще с осени, в виде исключения, но как то пока не сложилось, увы.

Затенение на панелях, в моём случае, проходит после 11 часов дня, и проявляется только в осенне - весенний период.

А это я подловил выход солнца из-за долгой тучи. Панель уже успела остыть, и кратковременно показала чудеса.

Итоги:

Я использовал метод сравнительного анализа, при котором снимались данные с соседних панелей. Для абсолютных значений, нужно приобрести термометр и люксметр, и впоследствии приводить результаты к STC. В плате и программе предусмотрено их подключение. Даже на визуально чистом небе, может появляться невидимая глазу дымка, которая влияет на конечный результат.

Прибор получился довольно компактный и точный. Повторяемость результатов у меня была с точностью до 1 Вт.

К основным минусам стоит отнести трудоемкость процесса снятия показаний - станцию нужно обесточить, получить доступ к проводам от конкретной панели, что довольно часто невозможно, без полного демонтажа.

Если у Вас есть сомнения в работе своей солнечной станции, этот или аналогичный прибор считаю крайне необходимым и востребованным. Опять же, местные поставщики, подтверждают гарантию и по не сертифицированным приборам.

Наработки и результаты обследования солнечных станций я начал выкладывать в своём блоге. Для желающих углубиться в тему - есть так же живой форум по домашним солнечным электростанциям, присоединяйтесь.

Всем мира и солнечного неба над головой!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru