Русский
Русский
English
Статистика
Реклама

Открытия

Эмми Нётер. Эту женщину Эйнштейн считал одним из величайших творческих гениев математики

18.04.2021 00:07:30 | Автор: admin

Читать про представительниц прекрасного пола всегда приятно, особенно когда это касается непревзойденных гениев и истинных мастеров в своих областях. Имя Эмми Нётер навсегда внесено в золотой зал славы математики, ведь даже Альберт Эйнштейн причислял её к величайшим математикам 20 века. Чем же эта женщина заслужила такое признание?

Будущая королева абстрактной алгебры родилась в баварском городе Эрланген в 1882 году в состоятельной семье, главой которой был Макс Нётер, получивший ранее докторскую степень за свои нетривиальные исследования в области алгебраической геометрии - сложном направлении, изучающем геометрические объекты, заданные как множества решений систем алгебраических уравнений. Эмми, вопреки традициям гениев, с детства не проявляла необычных математических способностей, но была очаровательным и умным ребенком, играла на фортепьяно и любила танцевать.

Легче всего Эмми давались иностранные языки. В 18 лет она уже прекрасно владела французским и немецким, что позволило успешно сдать экзамены и претендовать на должность преподавателя в школах для девушек. Однако, вопреки здравому смыслу, Эмми решила продолжить обучение в Эрлангенском университете в качестве вольного слушателя, т.к. девушкам учиться официально было запрещено.

Поворотной точкой в жизни Эмми Нётер справедливо можно назвать зиму 1903-1904 года, когда она провела семестр в знаменитом Гёттингенском университете, где слушала лекции непревзойденных немецких маэстро, таких как Герман Минковский, Феликс Клейн и Давид Гильберт, во многом определивших ход развития не только математики, но и физики 20-го столетия. Вернувшись на малую родину в конце 1904 года, Эмми всё-таки официально поступила в университет, т.к. ограничения для женщин были к тому времени сняты.

Изъявив желание заниматься исключительно математикой, Нётер взялась за дело с присущим ей упорством и прозорливостью: уже через 4 года она внесла значительный вклад в теорию инвариантов, успешно защитив диссертацию под руководством Пауля Гордана.

Простейший инвариант - это длина отрезка на плоскости. Если начать его вращать в любом направлении, параллельно переносить, отражать и т.д., то длина от этого не изменится. Значит, длина - это инвариант. Конечно, Эмми изучала куда более сложные вещи. Простейший инвариант - это длина отрезка на плоскости. Если начать его вращать в любом направлении, параллельно переносить, отражать и т.д., то длина от этого не изменится. Значит, длина - это инвариант. Конечно, Эмми изучала куда более сложные вещи.

Однако через годы Эмми назвала свои первоначальные исследования "хламом". Что, может быть, и так, ведь великие свершения были еще впереди. В 1910 году научный руководитель Эмми ушел в отставку, а его место занял Эрнст Фишер, через которого она уже лично познакомилась с Давидом Гильбертом, очень живо заинтересовавшимся исследованиями девушки в области абстрактной алгебры. В 1915 году интерес превратился в приглашение Нётер для преподавания в Геттинген, однако даже Гильберту (!!!) не удалось переломить предрассудки университетского совета и пробить ей постоянно оплачиваемую должность.

Говорят, Гильберт сказал своим коллегам, что не понимает, как пол может быть препятствием к занятию ученой должности, ведь университет - всё же не мужская баня.

Однако, несмотря на все трудности, в 1918 году Эмми Нётер внесла гигантский вклад... в теоретическую физику! В 36 лет она доказала теорему, названную её именем, которая связывает законы симметрии физических систем и законы сохранения энергии. На основе одной из наиболее абстрактных областей математики - теории бесконечных непрерывных групп, называемых группами Ли,- Нётер сделала важные выводы об однородности времени и пространства, которые неоднократно будут использоваться для построения физической картины мира.

Согласно теореме Нётер, если система инвариантна относительно непрерывной группы симметрии, то в ней автоматически действует закон сохранения той или иной величины. Например, для группы пространственного поворота действует закон сохранения момента импульса, пространственного переноса - сохранения импульса, а для временного - закон сохранения энергии. Чувствуете, как пахнет фундаментальностью? И это я еще не упоминаю про специальные унитарные группы, которые определяют симметрии в электродинамике и в квантовом мире.

Первая страница прорывной работы Нётер. Первая страница прорывной работы Нётер.

Если написать уравнение, которое кратко излагает все, что мы знаем о теоретической физике, то на одном его конце были бы имена Фейнмана, Шрёдингера, Максвелла и Дирака, а на другом - Эмми Нётер. Продолжив работу в Геттингене, Эмми защитила докторскую диссертацию, а в 1922 году всё-таки получила оплачиваемую должность "лектора по алгебре". Еще бы, ведь годом ранее Нётер опубликовала революционную работу, посвященную коммутативным кольцам и идеалам, заложив фундамент общей алгебры.

Эмми Нётер (в центре) с коллегами.Эмми Нётер (в центре) с коллегами.

За 11 лет последующих лет Нётер внесла вклад в развитие теории Галуа, теории инвариантов конечных групп, топологии, некоммутативной алгебры и теории представлений, выполнила большую работу в области гиперкомплексных чисел. И пусть многие из этих разделов математики абстрактны и не тревожат ум обычного человека, тем не менее все они важны в целом для научно-технического прогресса и процветания человечества.

Самые известные из комплексных чисел - кватернионы. В отличие от обычных комплексных чисел, у кватернионов сразу три мнимые единицы: q = a+bi + cj+dk. Зачем так много? Дело в том, что эти отпрыски из четырехмерного мира позволяют очень просто описывать оптимальные траектории тел в пространстве. Если нужно подробнее - лучшее видео на эту тему.

Вообще, умение мыслить максимально абстрактно было козырем Эмми Нётер. Голландский математик Бартель Ван дер Варден писал об этом так:

"Максима, которой следовала Эмми Нётер на протяжении её работы, может быть сформулирована следующим образом: любая взаимосвязь между числами, функциями и операциями становится прозрачной, поддающейся обобщению и продуктивной только после того, как она оказывается отделена от каких-либо конкретных объектов и сведена к общезначимым понятиям"

В 1933 году мир изменился. В Германии к власти пришли фашисты, которые не могли терпеть, чтобы в колыбели цивилизации белокурым арийцам преподавала математику женщина-еврейка. Эмми поддерживала тесные контакты с советскими математиками, поэтому одним из вариантов рассматривался переезд в СССР и работа на кафедре алгебры в МГУ, однако получить на это разрешение не получилось.

Эмми пришлось эмигрировать в США, где она преподавала в женском колледже и читала лекции в Принстоне. Однако жить в более благоприятных условиях Нётер осталось недолго - через два года в возрасте 53 лет она умерла от онкологии. В течении всей жизни у Эмми Нётер не было ни мужа, ни детей. Их всех заменила математика и невероятное стремление к знаниям.

Подробнее..

Перевод После 220 лет поисков ученые наконец-то нашли глобальные волны Лапласа

25.08.2020 14:18:31 | Автор: admin
Еще в XVIII веке великий французский физик предсказал существование симфонии из атмосферных волн, охватывающей всю планету. И вот, 220 лет спустя, ученые наконец-то сумели ее услышать.

image

Динамика атмосферы нашей планеты настолько сложна, что даже современные метеорологические алгоритмы не всегда могут ее разгадать и дать верные предсказания.

Но это не испугало французского ученого Пьер-Симона маркиза де Лапласа, который в 18 веке сумел предсказать одну простую, но важную особенность поведения атмосферы Земли. Пусть Лаплас ни разу за свою жизнь не видел глобальной карты погоды, он разработал теорию, которая предсказывала, что по нашей планете постоянно несутся волны с перепадами давления.

До конца 20го века моделирование атмосферы проводилось карандашом на бумаге и было довольно грубым, но Лапласу это удалось,рассказывает Дэвид Рэндалл (David Randall), ученый-специалист в области наук об атмосфере из Университета штата Колорадо.Это невероятно.

Идеи Лапласа спровоцировали вековую охоту на эти волны. Но осцилляции оказались не только огромными, но и очень слабыми. Даже лучшим физикам не удавалось их обнаружить.

И вот этот квест подошел к концу. В новом наборе метеорологических данных современные ученые обнаружили то, что не заметили миллионы барометров: симфонию из волн, которые окутывают всю Землю лоскутным одеялом из зон со слабым и сильным давлением.

Вот такое вот прекрасное подтверждение старой теории. Но давайте обо все по порядку.

Струны планеты


image

Лаплас в мундире канцлера Сената. Фрагмент портрет кисти Жана-Батиста Герена, 1838

Всё началось с того, что Лаплас заинтересовался влиянием притяжения Луны на атмосферу Земли. Он решил проанализировать, какие типы волн рождаются в результате этого взаимодействия.

Лаплас представлял атмосферу в виде тонкого слоя жидкости на гладкой сфере. Он пришел к выводу, что гравитация должна придавливать волны к земле, где они будут двигаться более-менее в горизонтальной плоскостикак двумерные (поверхностные) волны.

Он был первым, кому пришла в голову такая иллюстрация,объясняет Кевин Гамильтон (Kevin Hamilton), почетный профессор Гавайского университета в Маноа, соавтор нового исследования.Это было потрясающей догадкой.

Лаплас не дал этим волнам особого названия и не проработал их движение более подробно, но современные ученые-специалисты в области наук об атмосфере называют их нормальными колебаниями (или модами, normal modes).

Самый простой мод поднимает давление в одном полушарии и понижает его в другом. Более энергичные моды создают шахматный паттерн из мелких зон с низким и высоким давлением.

Они движутся вокруг планетыобычно с запада на восток или с востока на западпо скорости обгоняя большинство пассажирских самолетов.

image
(T. Sakazaki and K. Hamilton, doi:10.1175/JAS-D-200053.1)Красным окрашены зоны высокого давления, голубымзоны низкого. Четыре графика иллюстрируют четыре разных мода волн.

Хотя Лаплас и начинал свои рассуждения с Луны, на самом деле эти волны давления появляются из-за бурь, гроз и штормов самой Земли.

Ветер налетает на горные гряды, турбуленция возрастает, и часть этой энергии уходит на подпитку нормальных колебаний. Словно котенок ходит по клавишам пианино,объясняет Рэндалл.По его случайным нажатиям вы можете понять, какие струны есть у этого пианино.

Итак, Лаплас предложил идею существования подобных волн, математики дали физикам все необходимые инструменты для вычисления струн атмосферы. Но услышал ли кто-либо эти ноты?

Поиск звучания


Примерно в то же время, когда Лаплас продумывал свою модель, исследователи и натуралистысреди которых был и немецкий географ Александр фон Гумбольдтзаметили, что в тропиках атмосферное давление возрастает и падает каждые 12 часов.

Эти перепады совпадали с перепадами тепла от Солнца, но теоретикам не удавалось объяснить, почему эффект настолько сильный.

Ученые пытались разгадать эту тайну на протяжении почти что целого века, пока в 1882 году британский физик Томсон Уильям (лорд Кельвин) не заметил, что этот нагрев сочетается с одним из свободных колебаний Лапласа.

image
Portrait of William Thomson, Baron Kelvin, Smithsonian LibrariesЛорд Кельвин

Лорд Кельвин предположил, что именно Солнце дает толчок волнам, потому что их частота совпадала с частотой одной из осцилляций Лапласа. Его предположение оказалось невернымв 1960-х ученые определили, что влияние солнца усиливает другой, более сложный феноменно идея лорда Кельвина подтолкнула ученых к более тщательному анализу математической составляющей теории Лапласа.

В итоге они вычислили, какую частоту должны иметь эти нормальные колебания.

Неожиданная находка


Самые низкие ноты, совпадающие с предсказаниями, ученые нашли лишь в 1980-х годах. Сперва они появились в работе японского метеоролога Таро Мацуно (Taroh Matsuno) (DOI:10.2151/jmsj1965.58.4_281), а чуть позже в работе Кевина Гамильтона и Роландо Гарсии (Rolando Garcia) (DOI:10.1029/JD091iD11p11867).

Работа Гамильтона и Гарсии родилась из случайной находкиидеального набора данных с погодной станции в колониальной Индонезии, где ежечасно записывали атмосферное давление на протяжении 79 лет, пропустив лишь пару значений.

Дневник измерений оказался не только продолжительным, но и невероятно точнымисследователи измеряли длину ртутного столба через микроскоп с точностью до двух сотых миллиметра.

Сопоставив эти измерения с другими наборами данных, Гамильтон и Гарсия сумели засечь следы одного из самых длинных нормальных модов.

Новая база данных


А вот более короткие волны не поддавались до прошлого года, когда Европейский центр среднесрочных прогнозов погоды (European Center for Medium-Range Weather Forecasts) опубликовал базу данных ERA5. В базе содержатся данные от тысяч наземных станций, метеозондов и спутников. Пробелы заполнялись с помощью мощных компьютерных моделей.

В результате эта база отражает информацию, которую можно было бы собрать глобальной сетью метеорологических станций, расположенных через каждые 10 километров, которые бы снимали показания каждый час в период с 1979 по 2016 годы.

image
Запуск метеозонда.ABC Rural: Caddie Brain

Когда Такатоши Саказаки (Takatoshi Sakazaki), ассистент профессора из японского Университета Киото, взялся изучить базу, он искал в ней вовсе не волны Лапласа, а перепады температуры. Перепады давления были для него лишь шумом, от которого нужно было избавиться.

Но вскоре его осенило, что это могут быть те самые нормальные колебания. Когда Саказаки сопоставил данные с теоретическими предсказаниями, они почти идеально совпали.

Будучи не особо уверенным в важности находки, он отписался Гамильтону, который был тогда его научным руководителем.

До публикации своей работы в 1980-х Гамильтон провел несколько десятилетий, просматривая данные метеостанций в поиске самых низких атмосферных нот. И тут в его почтовый ящик упало письмо с доказательствами существования полной симфонии.

Саказаки и Гамильтон вместе провели анализ трехмерной структуры этих волн и опубликовали результаты своего исследования в июльском номере Journal of the Atmospheric Sciences. (DOI:10.1175/JAS-D-20-0053.1)
В работе максимально точно описывается поведение десятков волн, помимо тех, что были найдены в 1980-х. Оказалось, что некоторые из самых энергичных меняют давление с высокого на низкое по 12 раз за один проход по планете.

Все результаты совпали с предсказаниями, выведенными из уравнений Лапласа.



С Вами был телеграм канал Наука от Funscience, спасибо за внимание!
Подробнее..

Ученые создали новый тип светового датчика, вдохновившись глазами креветок-богомолов

12.03.2021 20:06:18 | Автор: admin
Источник: pcnews.ru

Камеры смартфонов значительно модернизированы с момента их появления в 1999 году. Однако несмотря на всю их новизну, они не застрахованы от ошибок. Обычно ошибки случаются при совмещении разных длин волн на одном изображении. Для обывательских изображений и селфи для соцсетей проблем нет. Во всех других случаях качество камеры и снимков должно быть гарантированно хорошим.

Ученые не первый год бились над решением этой задачи. И ответ был найден в глазах смотрящего креветки-богомола. Американские ученые, изучавшие строение глаз ракообразных, решили создать новый оптический датчик, взяв за основу это творение эволюции.

Глаза-как-прибор



Глаза самые совершенные оптические приборы, созданные природой. Но у всех живых существ они разные и устроены по-своему. Все зависит от функций.

На что способны глаза:

  • Глаза человека имеют три фоторецептора. Они различают три основных цвета: красный, зеленый и синий.
  • Глаза собак обладают двумя фоторецепторами, которые реагируют на зеленый и синий цвета.
  • Птицы, в отличие от человека и собак, имеют сразу четыре фоторецептора. Один из рецепторов способен уловить ультрафиолетовый цвет.
  • И наконец, глаза креветок-богомолов имеют от 12 до 16 отдельных фоторецепторов. Такое множество нейронов позволяет их глазам видеть как ультрафиолет, так и поляризованный свет.

Глаза креветки-богомола считают самыми сложными в животном мире. Некоторые из таких креветок могут настраивать для адаптации к среде чувствительность длинноволнового цветового зрения.

Как же устроена зрительная система креветок-богомолов? Они имеют три псевдозрачка. Эти органы расположены друг над другом. А еще у них есть десятки тысяч скоплений фоторецепторных нейронов. Клетки образуют омматидии, что делает глаза креветок-богомолов схожими по структуре с фасеточными глазами мух.

В середине глаза креветки-богомола находится шесть рядов омматидий. Каждый из рядов может обнаружить определенные световые длины. С 1 по 4 ряд настроены на восприятие ультрафиолета, а 5 и 6 ряды видят поляризационный свет благодаря крошечным волоскам.

Глаза креветки не просто смотрят на окружающий мир, они его сканируют, постоянно их перемещая.

Датчик, вдохновленный природой


Источник

Вдохновившись сложным и многоуровневым строением глаз креветок-богомолов, ученые создали крошечный датчик. Он умеет декомпозировать длины волн видимого света на более узкие полосы. И, что также важно, подобно глазам креветок-богомолов, датчик ловит поляризационный и ультрафиолетовый свет.

Датчик получил название SIMPOL, аббревиатура расшифровывается как Stomatopod Inspired Multispectral and POLarization sensitive. Вдоль вертикальной оси в датчике сложены 6 фотоэлементов здесь и идет отсылка к глазу ракообразных. В итоге датчик способен обнаружить как гиперспектральный, так и поляризационный свет.

Соавтор работы Брендан ОКоннор считает, что разработка поможет росту и развитию нового поколения органических электронных сенсорных технологий.

Чтобы убедиться в функциональности изобретения, ученые построили прототип прибора SIMPOL. С ним и провели тесты в лабораторных условиях. В результате обнаружено, что датчик умеет обрабатывать одновременно четыре спектральных сигнала и три поляризационных. Причем есть потенциал нарастить количество обрабатываемых сигналов до 15. Все это выгодно отличает прибор от традиционных CCD-камер в смартфонах, которые распознают только три источника света.

Разработчики считают, что актуально использование программами искусственного интеллекта гиперспектральных и поляризационных изображений с внушительным объемом данных. Но имеющееся в данный момент оборудование довольно громоздко. С новым датчиком удастся посмотреть в сторону компактных и удобных для пользователей агрегатов.

Подробнее..

Перевод Рост перечня чёрных дыр поднимает вопрос о радикальном исследовании космоса

10.05.2021 18:20:09 | Автор: admin
Десятки столкновений чёрных дыр, наблюдаемых детекторами гравитационных волн в LIGO и Virgo, меняют наш взгляд на Вселенную.Десятки столкновений чёрных дыр, наблюдаемых детекторами гравитационных волн в LIGO и Virgo, меняют наш взгляд на Вселенную.

Одна чёрная дыра это хорошо, но астрофизики могут выполнить гораздо больше научных исследований, если их 50. Когда в 2015 году было обнаружено первое столкновение чёрных дыр, это был переломный момент в истории астрономии. С помощью гравитационных волн астрономы наблюдали Вселенную совершенно новым образом. Но это первое событие не произвело революцию в нашем понимании чёрных дыри не могло этого сделать. Астрономы знали, что это столкновение будет первым и только после многих таких столкновений придут ответы.


Первое открытие было самым захватывающим в нашей жизни, рассказывает Вики Калогера, астрофизик из Северо-Западного университета и участник совместной работы лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO), выполнившей обнаружение в 2015 году. Однако невозможно заниматься астрофизикой по одному источнику.

Теперь физики гравитационных волн, такие как Калогера, говорят, что они вступают в новую эру астрономии чёрных дыр, движимую быстрым увеличением числа наблюдаемых чёрных дыр.

В последнем каталоге так называемых двойных слияний чёрных дыр (результата столкновения двух чёрных дыр, движущихся по спирали навстречу друг другу) в четыре раза увеличился объём данных о слияниях чёрных дыр, доступных для изучения. В настоящее время астрофизикам предстоит тщательно изучить почти 50 слияний, причём в ближайшие несколько месяцев ожидается ещё несколько десятков, а в ближайшие годы ещё сотни.

Гравитационные волны совершают революцию в астрофизике чёрных дыр, потому что эти числа так велики. И эти числа позволяют нам задавать качественно другие вопросы, рассказывает Калогера. Мы открыли сокровищницу.

На основе этих данных новые статистические исследования начинают раскрывать секреты этих загадочных объектов: как образуются чёрные дыры и почему они сливаются. Этот растущий список чёрных дыр также может предложить новый способ исследования космологической эволюции от Большого взрыва до рождения первых звёзд и роста галактик.

Я определённо не ожидала, что мы будем рассматривать эти вопросы так скоро после первого обнаружения, сказала Майя Фишбах, астрофизик из Северо-западного университета. Эта область просто взорвалось.

Откуда берутся чёрные дыры?

Прежде чем чёрные дыры можно будет использовать для изучения космоса в целом, астрофизики должны сначала выяснить, как они образуются. До сих пор в дебатах доминировали две теории.

Некоторые астрономы предполагают, что большинство чёрных дыр возникают внутри скоплений звёздобластей, которые иногда в миллион раз плотнее, чем наш собственный галактический задний двор.

Каждый раз, когда взрывается очень массивная звезда, она оставляет после себя чёрную дыру, которая опускается в середину звёздного скопления. В центре скопления становится тесно от чёрных дыр, которые вплетаются гравитацией в роковой космический танец. Астрономы называют этот процесс динамическим образованием чёрных дыр.

Другие предполагают, что двойные чёрные дыры происходят от пар звёзд в сравнительно пустынных областях галактик. После долгой и хаотичной совместной жизни они тоже взрываются, создавая пару изолированных чёрных дыр, которые продолжают вращаться друг вокруг друга.

Создаётся впечатление, что существует борьба между динамическими и изолированными моделями, сказал Дэниел Хольц, астрофизик из Чикагского университета.

Склонность многих теоретиков отстаивать только один канал образования двойных чёрных дыр частично проистекает из практики работы с очень небольшим количеством данных. Каждое событие было с любовью проанализировано, на нём зацикливались, над ним тряслись, рассказывает Хольц. Мы выполняли обнаружение, а люди попытались формулировать очень широкие абстрактные утверждения на основе выборки размером в одну или две чёрные дыры.

Действительно, астрофизики использовали первое обнаружение, чтобы аргументировать противоположные выводы. В LIGO первое слияние чёрных дыр обнаружили чрезвычайно быстро, фактически до официального начала наблюдений. Это позволило предположить, что двойные системы чёрных дыр очень распространены во Вселенной. Поскольку изолированные чёрные дыры могут образовываться в широком диапазоне астрофизических сред, теории, которые благоволят изолированным чёрным дырам, предсказывают, что мы увидим много слияний.

Другие указывали, что в первом слиянии отмечены необычно большие чёрные дыры и что существование этих гигантов подтверждает динамическую теорию. Такие большие чёрные дыры, рассуждали они, могли образоваться только в ранней Вселенной, когда, как также считалось, образовались звездные скопления.

Тем не менее с размером выборки в одну единицу такие утверждения могут быть лишь обоснованным предположением, считает Карл Родригес, астрофизик из Университета Карнеги-Меллона.

Теперь данные из последнего каталога LIGO показывают, что двойные чёрные дыры встречаются гораздо реже, чем ожидалось. Согласно статье, опубликованной Родригесом и его соавторами на сайте научных препринтов arxiv.org в январе 2021 года, фактически наблюдаемую в настоящее время частоту слияния чёрных дыр можно полностью объяснить звёздными скоплениями. (Вывод статьи более взвешен и предполагает, что важны как динамические, так и изолированные процессы.)

Кроме того, новые слияния позволили по-новому подойти к загадке происхождения чёрных дыр. Несмотря на свою неуловимую природу, чёрные дыры очень просты. Помимо массы и заряда единственная характеристика, которой может обладать чёрная дыра, спин (мера скорости вращения). Если пара чёрных дыр и звёзды, из которых они образуются, живут всю свою жизнь вместе, постоянное отталкивание и притяжение согласуют скорости их вращения. Но если сталкиваются две несвязанные чёрные дыры, их вращение будет случайным.

После измерения спина чёрных дыр в наборе данных LIGO астрономы теперь предполагают, что динамические и изолированные сценарии почти одинаково вероятны. Нет одного канала, который управлял бы ими всеми, написали астрофизик Майкл Зевин и его коллеги в препринте, описывающем множество различных путей, которые вместе могут объяснить эту новую растущую популяцию двойных чёрных дыр.

Самый простой ответ не всегда правильный, утверждает Зевин. Это более сложный ландшафт, и это, безусловно, более сложная задача. Но я также думаю, что и решать её интереснее.

Молодые чёрные дыры

LIGO и её сестринская обсерватория Virgo со временем также стали более чувствительными, т.е. теперь они могут видеть сталкивающиеся чёрные дыры, которые находятся гораздо дальше от Земли и намного дальше во времени. Мы прослушиваем действительно большую часть Вселенной, когда она была намного моложе, чем сегодня, сказала Фишбах.

В препринте Фишбах и её сотрудники указали на признаки различий в типах чёрных дыр, наблюдаемых в разные моменты истории космоса. В частности, более тяжёлые чёрные дыры, по-видимому, были более распространены в более ранние периоды истории Вселенной.

Это не стало неожиданностью для многих астрофизиков; они предполагают, что первые звезды во Вселенной образовались из огромных облаков водорода и гелия, поэтому они намного больше, чем более поздние звёзды. Чёрные дыры, созданные из этих звёзд, также должны быть огромными.

Но одно дело предсказать, что произошло в ранней Вселенной, и совсем другое наблюдать это. Вы действительно можете начать использовать [чёрные дыры] в качестве индикатора формирования звёзд во Вселенной сквозь космическое время, а также собирания галактик, образующих эти звёзды и звёздные скопления. И всё это действительно очень здорово! сказал Родригес.

Это исследование первый шаг к использованию больших наборов данных о чёрных дырах в качестве радикального инструмента изучения космоса. Астрономы создали удивительно точную модель эволюции Вселенной, известную как Лямбда-CDM. Но ни одна модель не идеальна. Гравитационные волны предлагают способ измерения Вселенной, который полностью независим от любого другого метода в истории космологии, заявил Сальваторе Витале, астрофизик из Массачусетского технологического института. Если вы получаете те же результаты, вы лучше спите по ночам. Но если результаты различны, то это указывает на потенциальное недопонимание.

В настоящее время теоретики строят модели, охватывающие несколько сценариев образования чёрных дыр, и расписывают, как каждая из них эволюционирует в истории Вселенной. Физики гравитационных волн надеются, что в ближайшие месяцы и годы они смогут с уверенностью ответить на эти вопросы.

Мы просто царапаем поверхность, говорит Калогера. Выборка всё ещё слишком мала, чтобы дать надёжный ответ, но, когда у нас будет 100 или 200 таких [слияний], я думаю, мы получим чёткие ответы. Мы уже не так далеко.

Многие космические объекты, например экзопланеты сегодня обнаруживают при помощи глубокого обучения. Если вам интересна эта сфера, обратите внимание на наш курс "Machine Learning и Deep Learning", партнёром которого является компания Nvidia. Не менее важен и анализ наблюдаемых данных, без которого современная наука, изучающая их огромные массивы, не жизнеспособна. Специалисты разного профиля необходимы и бизнесу, чтобы правильно подойти к анализу данных, поэтому, чтобы подняться выше по карьерной лестнице, приходите к нам наши менторы и специалисты высокого класса ответят на сложные вопросы.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Швейцарский нож науки как методы Computer Science используются в других дисциплинах

28.05.2021 16:10:14 | Автор: admin

Математику часто называют языком науки. Она хорошо приспособлена для количественной обработки практически любой научной информации, независимо от ее содержания. А при помощи математического формализма ученые из разных областей могут в какой-то степени понимать друг друга. Сегодня похожая ситуация складывается с Computer Science. Но если математика это язык науки, то CS её швейцарский нож. Действительно, трудно представить современные исследования без анализа и обработки огромных объемов данных, сложных вычислений, компьютерного моделирования, визуализации, применения специального ПО и алгоритмов. Разберем несколько интересных сюжетов, когда разные дисциплины используют методы CS для решения своих задач.

Биоинформатика: от чашек Петри к биологии In silico


Биоинформатику можно назвать одним из самых ярких примеров стыка CS и других дисциплин. Эта наука занимается анализом молекулярно-биологических данных при помощи компьютерных методов. Биоинформатика как отдельное научное направление появилась в начале 70-х годов прошлого века, когда впервые были опубликованы нуклеотидные последовательности малых РНК и созданы алгоритмы предсказания их вторичной структуры (пространственного расположения атомов в молекуле).

С проекта Геном человека по определению последовательности нуклеотидов в ДНК человека и идентификации генов в геноме началась новая эра биоинформатики. Стоимость секвенирования ДНК (определение последовательности нуклеотидов) упала на несколько порядков. Это привело к колоссальному увеличению числа последовательностей в публичных базах данных. На графике ниже изображен рост количества последовательностей в публичной базе данных GenBank с декабря 1982 года по февраль 2017 в полулогарифмическом масштабе. Чтобы накопленные данные стали полезными их нужно каким-то образом проанализировать.


Рост числа последовательностей в GenBank c декабря 1982 по февраль 2017. Источник: www.ncbi.nlm.nih.gov/genbank/statistics

Одним из методов анализа последовательностей в биоинформатике является их выравнивание. Суть метода заключается в том, что последовательности мономеров ДНК, РНК или белков размещаются друг под другом таким образом, чтобы увидеть сходные участки. Сходство первичных структур (то есть последовательностей) двух молекул может отразить их функциональную, структурную или эволюционную связь. Так как последовательность можно представить в виде строки с определенным алфавитом (4 нуклеотида для ДНК и 20 аминокислот для белка), то выравнивание оказывается комбинаторной задачей из CS (например, выравнивание строк также используется в обработке естественного языка NLP). Однако контекст биологии добавляет в задачу некоторую специфику.

Рассмотрим выравнивание на примере белков. Одному остатку аминокислоты в белке соответствует одна буква латинского алфавита в последовательности. Строки пишутся одна под другой, чтобы достичь наилучшего совпадения. Совпадающие элементы находятся один под другим, разрывы заменяются знаком - (гэп). Они обозначают индел, то есть место возможной вставки (внедрения в молекулу одного или нескольких нуклеотидов или аминокислот) и делеции (выпадение нуклеотида или аминокислоты).


Пример выравнивания аминокислотных последовательностей двух белков. Синим цветом выделены лейцин (L) и изолейцин (I), являющиеся изомерами такая замена в большинстве случаев не отражается на структуре белка

Однако, как определить, оптимальное ли получилось выравнивание? Первое, что приходит в голову, это оценить количество совпадений: чем больше совпадений, тем лучше. Однако в контексте биологии это не совсем так. Замены (замещения одной аминокислоты другой) неравноценны: некоторые замены (например, S и T, D и E остатки, отличающиеся по структуре ровно на один атом углерода) практически не отражаются на структуре белков. А вот замена серина на триптофан сильно изменит структуру молекулы. Для определения, является ли выравнивание лучшим из всех возможных, вводят количественный критерий (вес или счет). Для оценки замен используют так называемые матрицы замены, основанные на статистике замены аминокислот в белках с известной структурой. Чем больше число на пересечении сопоставленных букв, тем больше счет.


Периодически появляются новые матрицы замен. Здесь представлена матрица BLOSUM62

Счет также учитывает наличие делеций. Обычно штраф за открытие делеции на несколько порядков больше, чем за продолжение. Это объясняется тем, что участок из нескольких идущих подряд гэпов считается за одну мутацию, а несколько гэпов в разных местах за несколько. В примере ниже первая пара последовательностей более схожа, чем вторая, потому что в первом случае последовательности формально отделяет одно эволюционное событие:


Теперь о самих алгоритмах выравнивания. Выделяют два вида парного выравнивания (нахождение сходных участков двух последовательностей): глобальное и локальное. Глобальное выравнивание подразумевает, что последовательности гомологичны (схожи) по всей длине. В него включаются обе последовательности целиком. Однако при таком подходе не всегда хорошо определяются схожие участки, если их мало. Локальное выравнивание применяют, если последовательности содержат как гомологичные (например, из-за рекомбинации), так и неродственные участки. Но оно не всегда может попасть в интересующий участок, к тому же существует вероятность встречи случайного схожего участка. Для получения парного выравнивания используют методы динамического программирования (решение задачи путем её разбиения на несколько одинаковых подзадач, связанных рекуррентно). В программах для глобального выравнивания часто используют алгоритм Нидлмана-Вунша, а для локального алгоритм Смита-Ватермана. Подробней о них можно прочитать по ссылкам.


Пример выравнивания: вверху глобальное выравнивание, снизу локальное. В первом случае выравнивание происходит по всей длине последовательностей, во втором найдены некоторые гомологичные участки.

Как видим, биологическую задачу вполне можно свести к задаче из CS. При парном выравнивании с использованием упомянутых алгоритмов требуется порядка m*n дополнительной памяти (m, n длины последовательностей), с чем легко справятся современные домашние компьютеры. Однако в биоинформатике существуют и более нетривиальные задачи, например множественное выравнивание (выравнивание нескольких последовательностей) для реконструкции филогенетических деревьев. Даже если сравнить 10 очень маленьких белков с длиной последовательности около 100 символов, то потребуется непозволительно много дополнительной памяти (размерность массива 100^10). Поэтому в таком случае выравнивание строится на базе различных эвристик.

Моделирование крупномасштабной структуры Вселенной


В отличие от биологии, физика идет бок о бок с Computer Science со времен появления первых ЭВМ. До создания первых компьютеров словом computer (вычислитель) называлась специальная должность это были люди, выполнявшие на калькуляторах математические вычисления. Так в ходе Манхэттенского проекта физик Ричард Фейнман был управляющим целой команды вычислителей, которые обрабатывали дифференциальные уравнения на арифмометрах.


Вычислительная комната Лётно-исследовательского центра им. Армстронга. США, 1949 год

На данный момент методы CS широко применяются в различных областях физики. Например, вычислительная физика изучает численные алгоритмы решения физических задачи, для которых количественная теория уже разработана. В ситуациях, когда непосредственное наблюдение объектов затруднено (такое часто бывает в астрономии), на помощь ученым приходит компьютерное моделирование. Именно таким случаем является изучение крупномасштабной структуры Вселенной: наблюдения далеких объектов затруднены из-за поглощения электромагнитного излучения в плоскости Млечного Пути, поэтому основным методом исследования стало моделирование.


Крупномасштабная структура Вселенной напоминает систему прожилок и волокон, разделенных пустотами

Одна из задач современной космологии объяснение наблюдаемой картины многообразия галактик и их эволюции. На качественном уровне физические процессы, происходящие в галактиках, сейчас известны, поэтому усилия ученых направлены на получение количественных предсказаний. Это позволит ответить на ряд фундаментальных вопросов, например о свойствах темной материи. Но, прежде чем выделить наблюдаемые проявления темной материи, необходимо разобраться с поведением обычной материи. На огромных масштабах (несколько миллионов световых лет) обычная материя эффективно ведет себя так же, как и темная: она подвержена одной силе гравитации, про давление газа можно забыть. Это позволяет сравнительно просто моделировать эволюцию крупномасштабной структуры Вселенной (Численные методы, содержащие только темную или пылевидную материю и хорошо воспроизводящие крупномасштабную структуру распределения галактик, начали развиваться с 1980-х годов).

Моделирование темной материи происходит следующим образом. Виртуальный куб, имеющий размеры в сотни миллионов световых лет, почти равномерно заполняют пробными частицами телами. С самого начала во Вселенной присутствовали малые неоднородности, из которых и возникла вся наблюдаемая структура, поэтому заполнение почти равномерное. Затем частицы начинают жить собственной жизнью под действием силы тяготения: решается задача N тел. Вылетевшие за границу куба частицы переносятся на противоположную грань, силы тяготения также распространяется с переносом. Благодаря этому куб становится как бы бесконечным, как и Вселенная.


Приблизительные траектории трёх одинаковых тел, находившихся в вершинах неравнобедренного треугольника и обладавших нулевыми начальными скоростями

Одной из самых известных численных моделей такого типа Millenium, имеющая размер куба более 1.5 млрд световых лет и около 10 млрд частиц. В последующие годы было выполнено несколько моделей большего объема: Horizon Run с размером стороны куба в 4 раза больше, чем Millenium, и Dark Sky с размером в 16 раз больше Millenium. Эти и подобные модели сыграли ключевую роль в проектах по проверке общепризнанной сейчас модели Лямбда-CDM (Вселенная, содержащая около 70% темной энергии, 25% темной материи и 5% обычной материи).


В верхнем ряду показано распределение галактик в модели Millenium: слева моделирование для скопления галактик, где их можно увидеть по отдельности; справа для очень больших масштабов. Верхнее правое изображение представляет крупномасштабное распределение света во Вселенной. Для сравнения на изображениях в нижнем ряду приведены соответствующие распределения темной материи

При уменьшении масштабов возникают проблемы в соответствии наблюдений и численных моделей с одной темной материей. На более малых масштабах (масштабы распространения ударных волн от сверхновых) материю уже нельзя считать пылевидной. Необходимо учитывать гидродинамику, остывание и нагревание газа излучением и много чего еще. Для учета всех законов физики в моделировании делают некоторые упрощения: например, можно разбить модельный куб на решетку из ячеек (субрешёточная физика), и считать, что при достижении в ячейке некоторый плотности и температуры часть газа мгновенно превратится в звезду. К такому классу моделей относятся проекты EAGLE и illustris. Один из результатов этих проектов воспроизведение соотношения Талли-Фишера между светимостью галактики скоростью вращения диска.

Лингвистика и машинное обучение: на один шаг ближе к разгадке 4000-летней тайны


Методы CS находят применения и в более неожиданных сферах, например в изучении древних языков и систем письма. Так исследование группы ученых под руководством Раджеша П. Н. Рао, профессора Вашингтонского университета, пролило свет на тайну письменности долины Инда.

Письменность Инда, использовавшаяся между 2600-1900 года до нашей эры на территории нынешнего Восточного Пакистана и северо-западной Индии, принадлежала цивилизации не менее сложной и загадочной, чем ее месопотамские и египетские современники. От нее осталось чрезвычайно мало письменных источников: археологи обнаружили лишь около 1500 уникальных надписей на фрагментах керамики, табличек и печатей. Длина самой длинной надписи составляет всего 27 знаков.


Надписи на печатях из долины Инда

В научной среде существовали разные гипотезы насчет загадочных символов. Некоторые специалисты считали символы не более, чем просто красивыми картинками. Так в 2004 году лингвист Стив Фармер опубликовал статью, в которой утверждалось, что письменность Инда является не чем иным, как политическими и религиозными символами. Его версия, хоть и являлась спорной, но все-таки нашла своих сторонников.

Раджеша П. Н. Рао, специалист по машинному обучению, читал о письменности Инда в старшей школе. Группа ученых под его руководством решила провести статистический анализ существующих достоверных документов. В ходе исследований при помощи цепей Маркова (одна из первых дисциплин, в которой цепи Маркова нашли практическое применения, стала текстология) сравнивалась условная энтропия символов из письменности Инда с энтропией лингвистических и нелингвистических последовательностей знаков. Условная энтропия это энтропия для алфавита, для которого известны вероятности появления одной буквы после другой. Для сравнения было выбрано несколько систем. В лингвистические системы входили: шумерское логографическое письмо, старо-тамильская абугида, санскрит Риг-веды, современный английский (слова и буквы исследовались отдельно) и язык программирования Фортран. Нелингвистические системы разделили на две группы. К первой относились системы с жёстким порядком знаков (искусственный набор знаков 1), ко второй системы с гибким порядком (белки бактерий, ДНК человека, искусственный набор знаков 2). В результате выяснилось, что протоиндийская письменность оказалась умеренно упорядоченной, как письменность разговорных языков: энтропия существующих документов сходна с энтропией шумерской и тамильской письменности.


Условная энтропия для различных лингвистических и нелингвистических систем

Такой результат опроверг гипотезы об орнаментальном использовании знаков. И хотя методы CS помогли подтвердить версию о том, что символы из долины Инда скорее всего являются системой письма, до расшифровки дело пока не дошло.

Заключение


Конечно, за бортом остались многие сферы, где методы CS находят применения. В одной статье просто невозможно раскрыть то, как современная наука полагается на компьютерные технологии. Однако, надеюсь, приведенные примеры показывают, насколько разными могут быть задачи, решаемые в том числе и методами CS.



Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Физики из Германии нашли способ объединить квантовую криптографию с полупроводниковыми технологиями

19.09.2020 16:20:36 | Автор: admin

Немецкие ученые создали новый способ генерировать инфракрасные одиночные фотоны на основе кремния. Источник создает до 100 тыс. фотонов в секунду. Подход может объединить квантовую криптографию с популярными полупроводниковыми технологиями.

Квантовое распределение ключей используют для обеспечения безопасности данных. Суть способа в выработке общего секретного ключа шифрования для двух удаленных пользователей, используя только открытый канал связи. В основе метода законы квантовой механики. Третью сторону, которая пытается расшифровать ключ, всегда можно обнаружить. Собственно процесс измерения квантовой состояния приводит к аномалиям квантовому индетерменизму. При этом ключ успешно создается только в том случае, когда аномалии не превышают заданного порога.

Протоколы передачи квантовой криптографии основаны на передаче одиночных фотонов. Фотоны это кванты света в виде поперечных электромагнитных волн. Однофотонная система обеспечивает безопасность способу. Если фотонов будет несколько, то их можно перехватить и подобрать ключ таким же путем, как это делают допущенные пользователи. Но есть особенности у источников одиночных фотонов. Несмотря на достигнутый прогресс при их создании применяют слабые лазерные импульсы. И другая фундаментальная проблема шум. Оптоволокно по-разному нагревается из-за передачи отдельными фотонами, а потому может быть изогнуто. Из-за этих ограничений сейчас существуют пределы пропускной способности квантовой связи. По стандартному кабелю передается 1,26 мегабита в секунду на расстояние 50 км. И 1,16 бита в час на расстояние 404 км по специальному кабелю с ультранизкими потерями данных.

Однофотонная система. Источник
Физики из Дрезденского технического университета под руководством Михаэля Холленбаха (Michael Hollenbach) и ученые из Центра им.Гельмгольца Дрезден-Россендорф создали систему источников одиночных фотонов на основе пластин SOI из кремния. Кремниевые чипы лежат в основе всех современных устройств, включая процессоры и микроконтроллеры. Как правило, микросхемы изготавливают из монокристаллического кремния.

Схема кристаллической структуры кремния с одним G-центром
При помощи ускорителя немецкие ученые поместили в кремний атомы углерода. Два соседних атома C вместе с атомом кремния Si образовали отдельную молекулу, называемую G-центром. G-центр излучает фотоны, находясь под фокусируемым лазером длиной 1,3 микрона. Фотоны данного вида без препятствий распространяются по оптоволокну.

Прототип генератора, созданный немецкими физиками, может создавать порядка 100 тыс. одиночных фотонов. Все научные испытания проводили на пластине SOI, установленной в криостат замкнутого цикла Attocube 800, который обеспечивал базовую температуру в 4,6К.


Авторы исследования сообщают, что впервые продемонстрировали допустимость размещения в промышленных пластинах SOI однофотонных излучателей. Они также представили концепцию реализации фотонной платформы, совместимой с современными кремниевыми технологиями.

Открытие поможет внедрить квантовые процессоры и ретрансляторы в существующие системы, использующие кремниевые компоненты.

Результаты исследования опубликованы в журнале Optiсs Express.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru