Русский
Русский
English
Статистика
Реклама

Элементы питания

Представлена вечная батарейка на радиоактивных элементах

26.08.2020 16:11:24 | Автор: admin


Американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Это не теория, сейчас разработку переводят на коммерческую основу. Несколько недель назад разработчик завершил тестирование, убедившись в работоспособности системы. Первые батареи такого типа появятся в продаже в конце этого года. Инвестором разработчиков выступил стартап-инкубатор Volkswagen Future Mobility.

Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы недолговечность обычных элементов питания и переработки радиоактивных отходов.



В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды. В процессе испытаний радиационный фон оставался в норме. А алмазная оболочка (дешевые искусственные алмазы) успешно защищала корпус от возможных повреждений. Еще один положительный момент работающая батарейка не выделяет углекислый газ.

Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Конкуренты прототипа батареи NDB демонстрировали 15% эффективности при производстве энергии. А у разработки калифорнийского стартапа благодаря синтетической алмазной структуре, которая выступает одновременно полупроводником и теплоотводом, эффективность достигла 40%. Внутренний стержень фонит до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены.

Nano Diamond Battery предлагает бета-гальванические батареи в разных форм-факторах, включая привычные АА, AAA, 18650, CR2032 и других. Теоретически они могут работать совместно с литий-ионными батареями, установленными на большинстве современных устройств. При работе алмазная батарейка будет передавать излишки электричества литиевому аккумулятору.



Представьте себе iPhone. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии, рассказал о разработке NDB сотрудник стартапа Нил Найкер.



Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям. Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции. Названия первых клиентов пока держат в секрете.
Подробнее..

Вечный двигатель?

11.09.2020 16:15:38 | Автор: admin

Про "супер-долгую" атомную батарейку с повышенной в 10 раз мощностью

Это история про инновационный автономный источник питания компактную атомную батарейку, которая может работать до 20 лет. За счет оригинальной 3D-структуры бетавольтаического элемента ее размеры уменьшились втрое, удельная мощность повысилась на порядок, а себестоимость снизилась на 50%. Да, вот такое чудо техники. Российское - суровое и оригинальное. За подробностями сюда...

Ученые НИТУ МИСиС под руководством профессора кафедры полупроводниковой электроники и физики полупроводников Виктора Мурашова представили инновационный автономный источник питания компактную атомную батарейку, которая может работать десятилетиями. За счет оригинальной 3D-структуры бетавольтаического элемента ее размеры уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%. Результаты опубликованы в международном научном журнале Applied Radiation and Isotopes.

Соавторы - доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ МИСиС, к.т.н. Сергей Леготин, аспирант Андрей КрасновСоавторы - доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ МИСиС, к.т.н. Сергей Леготин, аспирант Андрей Краснов

В конструкции устройства используется оригинальная, запатентованная микроканальная 3D-структура никелевого бетавольтаического элемента. Ее особенность в том, что радиоактивный элемент наносится с двух сторон планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который крадет мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

Выходные электрические параметры предложенной конструкции составили: ток короткого замыкания IКЗ 230нА/см2 (вобычной планарной 24нА), итоговая мощность 31нВт/см2, (впланарной 3нВт). Конструкция позволяет напорядок повысить эффективность преобразования энергии, выделяющейся при распаде -источника, вэлектроэнергию, что вперспективе снизит себестоимость источника примерно на50% засчет рационального расходования дорогостоящего радиоизотопа,рассказывает один изразработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники ифизики полупроводников НИТУ МИСиС.

Определены оптимальные параметры конструкции преобразователя и рассчитаны его основные характеристики. На основании проведенных расчетов можно сделать вывод, что 3D-структура позволит увеличить площадь активной поверхности в 14 раз (при глубине микроканалов 80 мкм), а также вероятность проникновения бета-частиц в p-n переход по сравнению с планарной структурой преобразователя. И, как следствие, растет плотность неравновесных носителей заряда и выходная мощность устройства. Выходные электрические параметры предложенной конструкции при удельной активности Ni-63 2,7 мКи составили:

  • ток короткого замыкания IКЗ = 276 мкА/см2 (в планарной - 24 нА);

  • напряжение холостого хода UХХ = 149 мВ (125 мВ на планарный);

  • мощность P = 23,7 мкВт/см2;

  • КПД: = 1,4 %. 3D бетавольтаического элемента с двусторонним преобразованием., - поясняет Сергей Леготин.

При этом разработка позволит на порядок увеличить удельную мощность, за счет чего в три раза снизятся массогабаритные показатели элементов питания батарей на их основе с сохранением требуемого уровня выходной мощности.

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

Уникальные свойства источника питания - в рекордно высокой удельной энергоемкости, надежности, способности работать без обслуживания и беспрецедентно большом сроке службы. Бетавольтаические преобразователи станут незаменимы в ситуациях, где химические элементы питания не могут обеспечить длительной и стабильной работы, например, в задачах, связанных с освоением космоса или с электропитанием приборов в условиях критически низких температур в Арктике и Заполярье

В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами. В частности, в обзоре международного агентства маркетинговых исследований Research and Markets НИТУ МИСиС назван одним из ключевых участников мирового рынка бетавольтаических батарей. Университет вошел в один ряд с такими компаниями, как City Labs, BetaBatt, Qynergy Corp и Widetronix.

В обзоре указано, что разработка ученых НИТУ МИСиС батарейка на основе бетавольтаических элементов (БВЭ) имеет большой потенциал, так как потребности в надежных элементах питания с длительным сроком службы растут во всех отраслях промышленности. С учетом уникальных характеристик небольшого размера и безопасности разработка НИТУ МИСиС, сможет занять существенную долю рынка источников питания.

Подробнее..

Электрические батареи, цифровизация и инструменты проектирования

21.09.2020 18:14:10 | Автор: admin
Итак, батареи, батарейки, аккумуляторы С ними мы сталкиваемся повсюду в автомобиле, в смартфоне, в часах и карманных фонариках, да и в любом компьютере. И, конечно, они применяются не только в быту, но и в самых разных отраслях от авиации и космонавтики до медицины. Но почему именно сегодня такой хайп вокруг этой отнюдь не новой технологии?

Электрические батареи разного типа и формата уже давно стали неотъемлемой частью жизни современных людей. Считается, что первая батарея была создана около 2000 лет назад. Она состояла из глиняной банки, заполненной уксусом, железного стержня и медного цилиндра. С тех пор в технологии изготовления этих источников энергии многое изменилось. Современные батареи развиваются и совершнствуются более двух столетий. Батарею, подобие которой используется в наше время, в 1798 году создал Алессандро Вольта. Помимо собственных знаний Вольта использовал результаты опытов Луиджи Гальвани.

image

Эта технология продолжает улучшаться, развиваться, снижается стоимость ее внедрения. Сегодня нас окружают электрифицированные приборы. Более того, многие устройства и системы просто невозможны без автономного источника питания электрической батареи. Начиная от смартфона и портативных наушников и заканчивая электрическими автомобилями, беспилотными летательными аппаратами, медицинскими устройствами и автономными энергоустановками жизнеобеспечения жилых помещений и больниц. При этом количество электрифицированных устройств, систем с автономным электрическим источником питания в современном мире стремительно растет. Батареи находят применение в самых разных устройствах: бытовых, транспортных, инфраструктурных, медицинских.

Все цифровые устройства, такие как плееры, смартфоны и другие носимые гаджеты, а также электромобили все более совершенствуются в своих возможностях, а определяются эти возможности главным образом запасаемой в аккумуляторах энергией.

Технология электрических батарей известна давно, но полноценное их применение началось в 20-ом веке, шел непрерывный процесс усовершенствования технологии: повышение эффективности, снижение стоимости производства батарей, уменьшение веса и многое другое.

В последние годы рост востребованности батарей и аккумуляторов на мировом рынке запустил множество инновационных разработок. Некоторые из них сейчас активно тестируются. Исследуются сверхлёгкие литий-металлические, литий-титанатные аккумуляторы, гибкие аккумуляторы для носимых устройств, алюминий-воздушные аккумуляторы, углеродные с очень высокой скоростью зарядки, недорогие в производстве органические и многие другие. Усовершенствованные батареи должны быстрее заряжаться, хранить в разы больше энергии и выдерживать большее количество циклов зарядки-разрядки.

Инструмент для инженера


С помощью каких инструментов инженеры могут проектировать высокоэффективные, сложные электрические системы? В контексте методологии системного инжиниринга компания Dassault Systemes создала специальный инструмент для разработки электрических батарей библиотеку BATTERY LIBRARY в системе имитационного математического моделирования поведения систем DYMOLA. Это библиотека математического моделирования поведения, работы электрической батареи и ее вспомогательных систем.

image

Она основывается на языке Modelica, применяется для интеграции электрических аккумуляторных батарей в сложные электрические системы с независимым, автономным энергоснабжением. Имеется математическая модель ячейки: химическая, термодинамическая, электрическая, модель старения химических элементов, а также готовый шаблон реализации требований стандартов ISO.

Особенность данного инструмента сниженный порог вхождения в технологии. Специалисту, разрабатывающему электрифицированную систему, не требуется профильное образование и какой-то огромный опыт в данной области. Весь мировой, инженерный опыт в этой сфере заключен в математических уравнениях данной библиотеки. Разработчик может быть уверен, что с ее помощью он создаст эффективную, современную, отвечающую всем мировым стандартам электрическую батарею и её вспомогательные системы. По сути, это кладезь инженерного опыта. Такой инструмент значительно упрощает создание конкурентоспособного изделия.

Электрофикация всей страны


Тренд электрофикации сегодня наблюдается во многих отраслях. Например, в аэрокосмической отрасли можно выделить два основных направления: замену механических и части гидравлических систем управления летательным аппаратом на электрические и, тем самым повышение автономности, компактности, упрощение эксплуатации. Это стало возможным благодаря возросшей надёжности и технологичности электрических систем и в частности аккумуляторных батарей.

Батареи незаменимы там, где важен критерии автономности. Например, в Сколково разработали экзоскелет, который применяется при реабилитации опорно-двигательного аппарата пациентов. Другое его применение -снижение физической нагрузки на предприятиях. Система экзоскелета была бы невозможна без автономного источника питания, без батареи. Только если она будет отвечать всем современным требованиям, продукт может быть востребованным и конкурентоспособным.

Один из последних трендов в авиации это стремление снизить воздействие на окружающую среду. Электрические силовые установки, которые, как известно, ничего не выбрасывают в атмосферу, требуют развития и применения буквально всех типов электробатарей литий-йонных, водородных, гибридных.

Если же говорить про космос, то тут и без внешних факторов всё очевидно: все применяемые источники электроэнергии, по сути батареи: солнечные, химические (литий-йонные, литий-кадмиевые, водородные и т.д.), а также радиоизотопные (РИТЭГ). Единственная альтернатива им ядерный реактор.

Электрические батареи используются в резервных системах автономного питания (центрах обработки данных, больницах и других критических объектах), электропоездах, электромобилях, дронах, в тяжёлом машиностроении (экскаваторы, погрузчики), судостроении (гидроциклы).

В конце сентября концерн BASF начинает серийное производство новых батарей без лития. Пока такие технологии дороги, но запрет на классические дизели и даже на двигатели внутреннего сгорания подстегнет развитие электротранспорта. Например, в Швеции новые автомобили с дизельными или бензиновыми двигателями не будут продаваться после 2030 года, Норвегия планирует ввести запрет на продажу автомобилей с ДВС с 2025 года, а Дания, как и Швеция с 2030 года. Среди государств, принявших аналогичные нормы, есть и такие крупные экономики, как Великобритания и Франция. Последние склоняются к запрету ДВС к 2040 году.

В современных реалиях разработчик той или иной системы с автономным источником электрического питания уделяет ей огромное внимание, т.к. от этой подсистемы во многом зависит, насколько будет успешным разрабатываемый им продукт.

Одно из наиболее перспективных направлений водородные топливные элементы.

Водородные топливные элементы


Одним из инженерных трендов в области новых источников питания для силовых установок различных автономных систем являются водородные топливные элементы. Первый водородный топливный элемент сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Была продемонстрирована возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита. NASA использовало обновленный топливные элементы на космических аппаратах Аполлон в качестве главного источника энергии.

image

Водородный топливный элемент технология, которая при должном развитии в будущем может вытеснить углеводородное топливо. Главное преимущество водородных элементов экологичность. Уже сконструированы системы топливных элементов, которые питают компьютерные системы, освещение небольших дворов и даже легковые автомобили и автобусы. Планируется даже запуск самолетов на водородных топливных элементах.

На сегодня существует уже немало реализованных проектов: легковые автомобили, военные автономные источники бесперебойного питания, беспилотные летательные аппараты, а в середине прошлого года Билл Гейтс заказал себе яхту на водородных топливных элементах.

В РФ данная технология хорошо известна, есть передовые разработки. Они применяются в летающих беспилотниках, создан поезд на водороде: группа Трансмашхолдинг вместе с Росатомом планируют выпускать в России поезда на водородном топливе, а РЖД рассматривают остров Сахалин как пилотный полигон для их запуска.

За рубежом BMW и Toyota разработали водородную трансмиссию для экологичных автомобилей. Трансмиссия на водородных топливных элементах ляжет в основу автомобиля Hydrogen Next от BMW. Компания Mercedes-Benz представила свой первый серийный автомобиль на водородных топливных элементах GLC F-Cell.

image

У водородных топливных элементов высокий КПД 60%. И по этому параметру водородная энергетика является наиболее привлекательным источником энергии. Данная технология в сравнении с электрическими батареями дает также ряд других преимуществ, таких как увеличенное время автономности изделия, более высокая энергоотдача.

Не требуется время для зарядки водородных топливных элементов, просто необходимо заправить их водородом. В частности, преимущества и особенности водородных топливных элементов востребованы в авиации. Например, беспилотники для мониторинга удалённых нефтегазовых или иных объектов должны обладать существенным запасом хода 4-5 часов. Обеспечить такие показатели не просто, и ВТЭ один из удачных способов. Сегодня в мире существует несколько перспективных проектов пассажирских самолётов на электрической тяге. Водородные батареи вполне могут стать ключевым элементом этих систем.

Основное применение на текущий момент высокотехнологичные проекты. Это общемировой тренд, и в будущем, при снижении стоимости реализации проектов, стоимости данной технологии она найдет широкое применение. И у Dassault Systemes имеется ряд успешно реализованных проектов в данной области.

Между тем, в настоящее время сложность и стоимость водородной технологии в процессе проектирования и производства останавливает многие инженерные сообщества, затрудняет ее применение. Поэтому важна компиляция инженерных данных покупая такие данные, не надо будет начинать с базовых вещей.

В помощь разработчикам


У компании Dassault Systemes имеется специальный инструмент для разработки систем на водородных топливных элементах библиотека Hydrogen Library в пакете имитационного математического моделирования поведения систем DYMOLA. Библиотека написана на языке Modelica, содержит ключевые компоненты систем на водородных топливных элементах PEM для интеграции в различные энергетические системы и силовые установки.

image

Создана детализированная модель стеков топливных элементов, модель зависимости температуры и давления различных газов: кислорода, водорода и водяного пара и многое другое. Разработчик может спроектировать эффективную, современную, отвечающую мировым стандартам систему на водородных топливных элементах и её вспомогательные подсистемы.

Dassault Systemes участвует во многих проектах как методологический консультант и поставщик ПО для моделирования, анализа, сравнения и интеграции данных.

image

Стандарт FMI


На помощь инженерам и разработчикам также приходит FMI (Functional Mock-up Interface) стандартизованный интерфейс, используемый в компьютерной симуляции при создании сложных кибер-физических систем. FMI открытый стандарт, разработанный для переноса моделей динамических систем между разными мультивендорными средами моделирования, а также для проведения совместных вычислительных экспериментов. Он позволяет решить одну из наиболее болезненных проблем в области системного проектирования обеспечить возможность переноса моделей между инструментами. На сегодняшний день стандарт FMI поддерживается о многих системах моделирования.

image

На сегодня стандарт FMI интерфейс для переноса и совместного использования моделей в различных средах моделирования стандарт, который становится всё более популярным.

Экспорт моделей в формате Functional Mock-up Unit (FMU) имеет разные приложения. Прежде всего, FMU может использоваться в разных средах и языках программирования. FMU также защищает интеллектуальную собственность, компилируя код модели в двоичный файл, что может быть полезно при обмене моделями с клиентами и коллегами.

image

FMI поддерживается многими инструментами разработки и используется во многих машиностроительных отраслях по всей Европе, Азии и Северной Америке. Он стал де-факто отраслевым стандартом для обмена имитационными математическими моделями.

Если в конце 20-го века в инженерном сообществе стандартом при разработке твердотельного макета изделия был формат STEP, STL или любой другой формат, то следующей вехой в развитии инструментов обмена инженерными данным становится формат FMI. Он описывает не только геометрические зависимости будущего изделия, твердотельную модель, но и его поведение, то есть как функционирует изделие в том или ином режиме работы.

Еще в 2008 году по техническому заданию Daimler AG компания Dassault Systemes создала европейский консорциум под названием MODELISAR, который после ряда технологических исследований и определил спецификацию будущей технологии и стандарта FMI. Его задачей было определить характеристики FMI, провести технологические исследования, доказывающие концепции FMI через разработанные сценарии использования.

Основная концепция при создании FMI состояла в том, чтобы поддержать определенный подход. Она основывается на том, что реальный продукт состоит из широкого спектра систем, подсистем и компонентов, которые взаимодействуют между собой сложным образом: контролируются, управляются многочисленными законами физики, описывающими работу, поведение той или иной подсистемы или компонента.

Было предложено следующее: дать возможность создать виртуальный продукт, куда можно собрать набор моделей систем и подсистем, каждая из которых модель физических законов. А также включить туда модель систем управления (с использованием элементов микроэлектроники и программного обеспечения). Все это собрано в единую цифровую имитационную математическую модель в виде FMI.

Наиболее широкое применение данная технология нашла в автомобильной промышленности. Например, головной разработчик транспортного средства создает математическую модель на верхнем уровне, генерирует файл и передает своим подрядчикам. Подрядчик получает файл в виде ТЗ и разрабатывает свою подсистему или какой-то компонент.

Затем головной разработчик собирает математические модели всех компонентов и подсистем, проводит комплексную сертификацию, валидацию, верификацию тех или иных инженерных решений, что, в свою очередь, улучшает коммуникации между разными инженерными предприятиями и организациями с подрядчиками. Для головного предприятия это также снижает риски: можно в любой момент поменять подрядчика, относительно быстро переключиться на другого. Кроме того, сокращаются сроки и циклы разработки новых систем.

Данный подход уже больше 10 лет находит применение и в других отраслях: авиации, приборостроении, судостроении, в разработке медицинского оборудования и многих других сферах.

Dassault активно работает над внедрением FMI. Математическое моделирование, как таковое, и формат FMI, в частности, стали неотъемлемой частью современного процесса проектирования.

В продолжение нашей статьи предлагаем вам посмотреть 3 видеоподкаста Dassault Systemes, раскрывающие темы Электрические батареи, Водородные топливные элементы и Functional Mock-up Interface FMI




Подписывайтесь на новости Dassault Systmes и всегда будьте в курсе инноваций и современных технологий.

Dassault Systmes официальная страница

Facebook
Vkontakte
Linkedin
3DS Blog WordPress
3DS Blog on Render
3DS Blog on Habr
Подробнее..

Энергия откуда не ждали графен и броуновское движение

07.10.2020 10:05:19 | Автор: admin


Некто когда-то сказал, что прогресс науки это результат бесконечного спора между учеными, которые регулярно пытаются опровергнуть или перепроверить теории друг друга. Безусловно, в этом есть смысл, ибо теория одного человека, какой бы идеальной она ни была на первый взгляд, остается умозаключением лишь одного человека. Следовательно, в споре рождается истина. Сегодня мы рассмотрим исследование, в котором ученые из университета Арканзаса предложили собирать энергию из Броуновского движения атомов графена. Загвоздка в том, что небезызвестный физик Ричард Фейнман уже давно говорил, что подобное невозможно. Как ученым удалось оспорить это высказывание, что для этого потребовалось, и насколько эффективен разработанный графеновый генератор энергии? Ответы на эти вопросы мы узнаем из доклада ученых. Поехали.

Основа исследования


Отдельно стоящие двумерные (2D) кристаллические мембраны демонстрируют уникальное внеплоскостное движение. В расслабленном состоянии листы отдельно стоящего графена имеют волнистую морфологию, в которой соседние области чередуются между вогнутой и выпуклой кривизной. Происхождение этой ряби нанометрового размера остается неизвестным.

Теоретические исследования утверждают, что источником этого является электрон-фононная связь, поскольку она подавляет жесткость длинноволнового изгиба и усиливает внеплоскостные флуктуации. Для состояния теплового равновесия была выведена система уравнений высоты графеновой мембраны, включая вспомогательные поля напряжений и кривизны. В рамках этой пертурбативной формулировки квантовой статистической механики круглые графеновые мембраны спонтанно изгибаются ниже критической температуры и выше критического радиуса. В этом же русле были проведены и численные исследования статической ряби в мембране, связанной с фермионами Дирака*. Они показали наличие фазового перехода от плоской к волнистой морфологии.
Фермион Дирака* фермион (частица с полуцелым спином), который не является античастицей.
Однако, как заявляют ученые, ранее не проводилось никаких исследований динамических флуктуаций с использованием гамильтониана*, включающего электроны Дирака, упругость и электрон-фононное взаимодействие.
Гамильтониан* оператор* полной энергии системы, куда входит и кинетическая, и потенциальная энергии.

Оператор* линейное отображение, действующее на волновую функцию, которая является комплекснозначной функцией, наиболее полно описывающей состояния системы.
Ранние феноменологические исследования моделировали электрон-фононное взаимодействие путем связывания точечных частиц в узлах гексагональной решетки со спинами Изинга*, которые претерпевают глауберовскую динамику*.
Модель Изинга*: каждая из вершин кристаллической решетки обозначается числом (спином), равным либо +1, либо -1. У спина имеется 2N (N число атомов решетки) возможных вариантов расположения, каждому из которых приписывается энергия, получаемая из попарного взаимодействия спинов соседних атомов.
Глауберовская динамика* метод моделирования модели Изинга на компьютере. Является разновидностью алгоритма Монте-Карло с марковскими цепями.
Спины обмениваются энергией с тепловым резервуаром*, их динамика демонстрирует рябь, а их взаимодействие с мембраной приводит всю систему в состояние равновесия.
Тепловой резервуар* термодинамическая система с достаточно большой теплоемкостью, позволяющей сохранять свою температуру на стабильном уровне даже при контакте с другими системами и/или окружающей средой.
Относительно недавнее исследование (Anomalous Dynamical Behavior of Freestanding Graphene Membranes) позволило измерить движение атомов вне плоскости в отдельно стоящем графене с помощью сканирующей туннельной микроскопии (СТМ). Результаты этих измерений показали, что отдельные атомы в мембране испытывают броуновское движение* со спорадическими (редкими / одиночными) большими скачками.
Броуновское движение* беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа.
Редкие скачки высоты атомов графена соответствуют когерентным инверсиям кривизны ряби, на которой сидят атомы. Это согласуется как с молекулярной динамикой, так и с глауберовской динамикой спиновых мембран.

Для рассматриваемого нами сегодня исследования графен был выращен на Ni и перенесен на сверхтонкую медную сетку с решеткой из квадратных отверстий (ширина 7.5 мкм) и стержневых опор (ширина 5 мкм). РЭМ (растровая электронная микроскопия) исследование подтвердило, что 90% сетки было успешно покрыто графеном.

В работе использовался сканирующий туннельный микроскоп в условиях сверхвысокого вакуума (базовое давление 10-10 мбар) при комнатной температуре. Графеновая пленка была прикреплена к пластине для образцов на специальных стойках, позволяя наконечнику СТМ проходить через отверстия сетки. Также использовалась система шумоподавления и виброизоляции. Питание системы осуществлялось посредством аккумуляторной батареи с изолированным заземлением для достижения исключительно низкого механического и электрического шума.


Изображение 1

Точка контакта СТМ-иглы (зонда) и образца была включена в электрическую цепь (). Образец был изолирован от земли и подключен к двум диодам. Точка контакта в цепи выполняет роль переменного конденсатора. Туннельный ток, ток диода 1 (D1C) и ток диода 2 (D2C) контролировались одновременно. Такая диодная схема используется для сбора энергии, но в данном случае она использовалась, чтобы изолировать индуцированный графеном ток от тока батареи. При расстоянии между зондом и образцом менее 2 нм туннельные электроны преобладают в токе, а в случае больших расстояний преобладает ток смещения.

На 1b показан волнистый графен и изменения формы, вызванные напряжением. Когда напряжение смещения увеличивается, графен растягивается, и СТМ-игла перемещается вместе с графеном. На показано типичное измерение высоты мембраны во времени в точечном режиме с постоянным током. Важно отметить, что в ходе данного эксперимента игла микроскопа передвигалась исключительно вертикально.

График 1d показывает туннельный ток в зависимости от времени как для неподвижного графена (т.е. графена на меди), так и для отдельно стоящего графена. Для отдельно стоящего образца средний ток такой же, как у неподвижного образца, но колебания в 100 раз больше (10 пА против 0.1 пА). Важно и то, что результаты, показанные на 1d, не зависит от приложенного напряжения смещения (до 3 В) и настройки усиления обратной связи.

По мере увеличения уставки* тока (SPC от setpoint current) стандартное отклонение также увеличивается (1e), что может быть связано с нагревом образца.
Уставка* желаемое или целевое значение важной переменной или процесса в системе.
При экстраполяции к нулевому туннельному току флуктуации по-прежнему вносят вклад в ток смещения в размере 20 пА.

Чтобы измерить ток смещения при нулевом туннельном токе, иглу СТМ постепенно отклоняли от образца, пока расстояние не стало слишком большим для туннелирования электронов через вакуумный барьер. В этом положении SPC находится на уровне 50 нА, тем самым используя цепь обратной связи, чтобы игла СТМ оставалась неподвижной.

После этого было приложено напряжение смещения постоянного тока и отслеживание D2C во времени ().


Изображение 2

При одном вольте ток не индуцируется, но при 15 В и 45 В систематически наблюдались резкие и зависящие от времени пики D2C.

На 2b показаны вольт-амперные характеристики (ВАХ) диода при низком значении тока. Далее были проведены расчеты мощности, рассеиваемой в диоде 2 (2c), которая достигает 40 пВт.

На 2d собраны данные по средней мощности для большого количества отдельно стоящих и неподвижных образцов. Отсутствие тока для неподвижного образца подтверждает, что загрязнение и эмиссия электронного поля не являются источниками D2C.

Эти данные предполагают, что электрическая работа* совершается на D2 движением графена, даже если он поддерживается при одной температуре (т.е. при комнатной температуре).
Электрическая работа* работа, совершаемая над заряженной частицей электрическим полем.
Ученые уверены, что работа может выполняться, находясь в термодинамическом равновесии, и более глубокое понимание этого прольет свет на потенциальные методы получения неравновесной энергии. Для этого была создана модель ().


Изображение 3

Атом углерода, ближайший к игле СТМ, находится над волнистостью, которая колеблется между выпуклой и вогнутой кривизной. Данная ситуация моделируется как броуновская частица в двухъямном потенциале, контактирующая с тепловым резервуаром при температуре T.

Игла СТМ и образец действуют как конденсатор переменной емкости C(x) = C0 / (1 + x/d), где d + x(t) мгновенное расстояние между иглой СТМ и образцом, x(t) (x d) вертикальное положение атома углерода, измеренное по отношению к плоской конфигурации графеновой мембраны.

Если мгновенный заряд и падение напряжения конденсатора игла-образец равны q(t) и u(t), то электростатическая сила, действующая на частицу будет равна qu / [2(d + x)] = q2 / (2C0d).

Формула заряда q(t) следует из правил Кирхгофа (соотношение между токами и напряжениями на участках электрической цепи). Следовательно, связанные системы частиц и цепи удовлетворяют уравнениям Ланжевена-Ито (описывает броуновское движение):



где U(x) = x4 2x2 это двухъямный потенциал;
C0V2/2d это постоянное напряжение из-за растяжения графена;
R = R + RE это полное сопротивление;
1/RE = 2I0/uD sinh uD/Te это эквивалентное сопротивление диодов;
uD падение напряжения на диодах, Te = T/e;
/q(T/R) это коррекция дрейфа, вызванного шумом;
v и q это независимый и одинаково распределенный белый шум с дельта-корреляциями i(t)j(t) = ij(t t) i,j = v, p.

Уравнение цепи имеет шум Найквиста (тепловой шум*) при температуре T, которая установлена на том же уровне, что и пульсация графена.
Тепловой шум* равновесный шум, вызванный тепловым движением носителей заряда в проводнике, в результате чего на концах проводника возникает флуктуирующая разность потенциалов.
Член /q(T/R) гарантирует детальное равновесие* и факт того, что вся система достигает теплового равновесия при температуре T.
Принцип детального равновесия* заключается в равенстве вероятностей прямого (n m) и обратного (m n) переходов между дискретными состояниями системы m и n.
Чтобы убедиться в правдивости данного утверждения, необходимо было сформулировать уравнение для плотности вероятности электронов со скоростями переходов, подчиняющимися детальному равновесию. Вероятность перехода была представлена как T(iD1 + iD2)/(e2uD) = T/(e2R), что согласуется с правилом Кирхгофа для токов.

Гамильтониан системы () был равен:



А равновесная плотность вероятности равна e-H/T/Z, где Z константа нормализации.

С точки зрения графеновой ряби, представленной частицей в формуле 1 цепь представляет собой внешнюю систему, которая воздействует на рябь. В таком случае тепло, создаваемое силами трения и шума, будет равно:


где q = q(t) внешний параметр, а dQ > 0, если частица поглощает тепло.

Используя равновесную плотность вероятности для вычисления среднего и интегрирования по частям, средняя мощность, поглощаемая частицей, оказывается равной нулю. Падение напряжения такое же, как падение на эквивалентном резисторе R. Усредненная по времени мощность, рассеиваемая на резисторе, равна усредненной по времени мощности, поставляемой тепловым резервуаром.

Таким образом, с точки зрения резистора, движение графеновой ряби создает постоянный источник средней тепловой мощности (3b).

Данные выводы были подтверждены посредством численного моделирования уравнения 1, в котором использовались T = 0.5; = 1; d = 10; I0 = 0.0002 и Te = 0.1. Чтобы учесть изменение формы графена, было включено падение C0 с 5 до 1 при увеличении V от 1 до 10. Положение частицы x и заряд на конденсаторе q колеблются со временем ( и 3d).

Отдельно были определены два члена средней мощности для полупериода q > 0, в котором ток через диод 2 проходит против часовой стрелки. Даже в полупериоде два члена равны. На показана средняя мощность (генерируемая и рассеиваемая) и прогноз Найквиста.


Демонстрация принципа работы разработанной цепи.

Было обнаружено, что мощность увеличивается с увеличением напряжения смещения, что наблюдалось и в ходе экспериментов. Данные по сопротивлению и мощности из экспериментов (изображение 2) позволили оценить электрическую емкость точки контакта иглы микроскопа и графена, которая равна 1 фФ (фемтофарад).

Ученые отмечают, что точная формула тепловой мощности отличается от варианта Найквиста: мощность включает в себя вклады от броуновского движения ряби графена, а не только от электронов. В результате двухъямный потенциал вводит новую шкалу времени скорость пересечения барьера. Это приводит к возникновению колебаний очень низкой частоты. Для иллюстрации этого на 3f показана средняя спектральная плотность мощности, рассеиваемая в резисторе, построенная с использованием двух разных времен релаксации скорости 1 и 10. Общая рассеиваемая мощность такая же, а уменьшение скорости пересечения барьера перераспределяет мощность на более низкие частоты.

Для более детального рассмотрения результатов исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые провели исследование термического воздействия в отдельно стоящих графеновых мембранах с помощью точечной сканирующей туннельной микроскопии. Пульсация графена, наблюдаемая рядом с иглой микроскопа, была смоделирована как броуновская частица в двухъямном потенциале. Когда графен движется, заряд должен проходить по цепи и выполнять электрические работы.

Данная модель показывает, что непрерывная тепловая энергия может генерироваться броуновской частицей при одной температуре, находясь в термодинамическом равновесии, при условии, что такое же количество энергии постоянно рассеивается в резисторе. В таком случае подключение к цепи позволяет выполнять электрические работы на нагрузочном резисторе без нарушения второго закона термодинамики.

В условиях созданной системы графен и электрическая цепь поддерживают работу друг друга. Несмотря на то, что тепловая среда выполняет работу с нагрузочным резистором, температура графена и цепи остается одинаковой, а тепло между ними не протекает. Таким образом нет противоречий по отношению к второму закону термодинамики.

Важно и то, что относительно медленное движение графена индуцирует ток в цепи на низких частотах. Эта находка может стать очень полезной в будущем, поскольку электроника работает более эффективно именно на низких частотах.

В будущем ученые намерены продолжить свое исследование. Они хотят выяснить, можно ли хранить постоянный ток в конденсаторе для последующего использования. Для реализации этой задумки необходимо провести миниатюризацию схемы и нанесение ее на кремниевую пластину или микросхему. По словам ученых, если успешно построить кластер из миллиона таких схем размером 1х1 мм, то он смог бы заменить маломощные батарейки.

Возможно, подобные планы звучат не особо грандиозно, но любые исследования, любые свершения, изменившие мир, начинались с малого. Для достижения конечного результата нужно лишь упорство, время и терпение.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Искусственный фотосинтез. Перспективы и проблемы

12.06.2021 16:15:59 | Автор: admin

Зеленая энергетика не сходит с веб-страниц и из всевозможных заголовков. Зеленый уже давно понимается как экологически благоприятный, но здесь напрашивается две важные оговорки:

  1. Далеко не все методы зеленой энергетики так уж безвредны для окружающей среды. Например, ячейки солнечных панелей и лопасти ветряков необходимо утилизировать уже через пару десятков лет эксплуатации

  2. По-настоящему зеленую энергетику могли бы обеспечить зеленые растения, которые и являются первичными накопителями солнечной энергии.

Как ни странно, мы до сих пор не умеем в промышленных масштабах воспроизводить фотосинтез. Фотосинтез является одним из основных процессов в жизнедеятельности зеленых растений. При фотосинтезе углекислый газ и вода расщепляются в листьях, вернее, в хлоропластах клеточных органеллах, содержащих зеленый пигмент хлорофилл. По строению хлорофилл близок к гему небелковой части гемоглобина.

Хлорофилл решает две задачи, особенно важные для современной экологии: 1) расщепляет углекислый газ, помогая таким образом купировать глобальное потепление и 2) позволяет получать водород, являющийся одним из наиболее экологически чистых видов топлива.

Естественный фотосинтез, будучи продуктом биологической эволюции, не отличается эффективностью. Его КПД составляет всего 1-2%, чего вполне хватает для поддержки медленного жизненного цикла растений. Атом магния, хорошо заметный в вышеприведенной формуле, играет роль катализатора. Но растения используют в таком качестве магний, так как биологическая эволюция использует в основном легкие металлы, один из них магний (12-й элемент). Оптимизируя фотосинтез, нам следовало бы изобрести искусственные листья, а также повысить эффективность самого процесса. Для этого нужно было бы заменить магний другими катализаторами металлами, способными его заменить, а значит, схожими с магнием в соответствии с периодическим законом.

Кроме того, нам нужно было бы создать искусственные листья и искусственные хлоропласты, которые улавливали бы солнечный свет лучше естественных, а также производили бы именно энергию, а не белки и углеводы, необходимые для жизнедеятельности растений. Наконец, особенно интересно было бы использовать солнечный свет для получения более сложной органики, нежели растительных углеводов.

Давайте об этом поговорим.

Биохимия фотосинтеза

Высшие растения, бактерии и водоросли преобразуют солнечную энергию в углеводы и углеводороды. Но растения не подходят для крупномасштабного производства топлива на основе солнечной энергии, так как задействуют сложную цепочку биохимических реакций, позволяющих преобразовать CO2 в конечный продукт. КПД растений слишком низок, чтобы они могли играть роль серьезного энергетического ресурса. Эффективность растений обычно зависит не только от освещенности, но и от других экологических факторов, в том числе, от доступности CO2, воды и питательных веществ.

Фотосинтез протекает в четыре этапа:

Сбор света. На данном этапе происходит поглощение и накопление электромагнитного излучения антенными молекулами (прежде всего хлорофиллом, но также и каротином). Эти молекулы сосредоточены в виде белковых комплексов или органелл и служат для концентрации захваченной энергии в реакционных центрах.

Разделение зарядов. В реакционном центре (так называемой фотосистеме - II) происходит разделение зарядов: молекула хлорофилла испускает электрон (отрицательно заряженную частицу), на месте электрона остается положительно заряженная дырка. Таким образом, энергия солнечного света применяется для разграничения положительных и отрицательных зарядов.

Расщепление воды. На третьем этапе собирается множество положительных зарядов, которые идут на расщепление молекул воды: получаются ионы водорода и кислород. Расщепление воды происходит в отдельном отсеке клетки, а не там, где проходит этап разделения зарядов; на достаточном удалении, чтобы предотвратить потерю заряда при поступлении нового фотона, но достаточно близко, чтобы положительный заряд эффективно накапливался и затем использовался для катализа.

Синтез топлива. Электроны, полученные при разделении зарядов, подхватываются цитохромом b6f и маленькими мобильными переносчиками и транспортируются в еще один белковый комплекс, фотосистему I. В фотосистему I поступает дополнительная энергия, которую также приносят солнечные фотоны, и с ними также идет химическая реакция, в результате которой получаются углеводороды.

Немного простой химии.

Расщепление воды на кислород и водород:

Образовавшиеся протоны идут на синтез углеводов.

Реакция фотосинтеза в общем виде

Итак, для организации и последующей оптимизации фотосинтеза нам нужно превратить двухступенчатую реакцию в одноступенчатую, а также избавиться от выращивания листьев.

История

Процесс искусственного фотосинтеза in vitro, без участия листьев, был впервые осуществлен в 1972 году в Токийском университете. Кеничи Хонда и его аспирант Акира Фудзисима сообщили о том, что смогли смоделировать фотосинтез, подавая свет на электрод из диоксида титана, погруженный в воду. Электроны под действием света покидали металл, оставляя на своем месте положительно заряженные дырки, куда затем захватывались электроны из окружающей воды. Хонда и Фудзисима продемонстрировали, что таким образом получение кислорода катализировалось на фотоаноде, а свободный водород скапливался на платиновом катоде. Так впервые удалось разложить воду на составляющие при помощи светочувствительного элемента.

В 1998 году Джон Тёрнер и Оскар Хаселев из Национальной лаборатории возобновляемой энергетики из штата Колорадо разработали первый искусственный лист: интегрированное фотоэлектрическое устройство, позволяющее расщеплять воду, получая на вход в качестве энергии свет и ничего более. В результате КПД при производстве водорода достиг целых 12,4%, но материалы для поддержки реакции оказались очень дорогими: в состав устройства входил полупроводник на основе галлий-индиевого фосфида, а также платина в качестве катализатора.

Далее предпринимались усилия по удешевлению такого фотоэлектрического элемента, и в 2011 году группа Дэвида Носеры из Массачусетского технологического института представила беспроводное устройство для расщепления воды, в котором электроды изготавливались с применением сравнительно дешевых индия и олова, а вода была буферизована ионами кобальта.

Впрочем, неорганические фотосинтезирующие устройства вряд ли способны конкурировать с традиционными солнечными батареями в качестве источника энергии, а сами быстро выходят из строя по причине коррозии, связанной с резким увеличением уровня pH, возникающем при их работе. Неорганические фотосинтезирующие элементы в целом близки к пределу производительности. Устройство, разработанное в 2018 году специалистами из технического университета Ильменау и Калифорнийского технологического института, работает на основе диоксида титана. В нем предусмотрена дополнительная защита от коррозии, оно работает на протяжении 20 часов и достигает КПД 19%.

Вместо неорганических полупроводниковых сборок также пытаются синтезировать органические молекулы, для которых характерна высокая стабильность при нахождении в растворе. Кроме того, конфигурацию органической молекулы удобно целенаправленно корректировать, чтобы она улавливала свет как можно лучше. Но чисто органические молекулы такого рода плохо переносят воздействие солнечного света и быстро распадаются под воздействием лучей. По-видимому, наиболее перспективный подход встраивать молекулу хлорофилла в неорганическую катализирующую оправку.

Рубиско или как ускорить фотосинтез

За катализ биохимических процессов в клетке отвечают разнообразные ферменты. Некоторые жизненно важные реакции без участия ферментов попросту не идут. Одним из древнейших, важнейших и при этом наиболее громоздких ферментов является рибулозобисфосфаткарбоксилаза, сокращенно рубиско.

Вот такая монструозная молекула направляет реакцию фотосинтеза делая это исправно, но очень медленно. Кстати, сам рубиско использует в качестве катализатора тот самый атом магния, что входит в состав молекулы хлорофилла, показанной выше. Каждая молекула рубиско успевает обработать 1-3 молекулы углекислого газа в секунду, что, конечно же, очень медленно. Более того, рубиско потребляет на собственную работу и часть кислорода, образующегося в результате фотосинтеза, что приводит к фотодыханию.

В целом рубиско пока почти не поддается генной инженерии. Дело в том, что хлоропласты когда-то сами были простейшими, а около 3,5 миллиардов лет назад были захвачены клетками цианобактерий, где превратились сначала в симбионтов, затем в паразитов, а еще позже в обычные органеллы. Но у хлоропластов есть остаток собственного генома, и работа рубиско кодируется как генами растения, так и генами хлоропластов. Растения повышают эффективность фотосинтеза, попросту до отказа набивая свои хлоропласты рубиско. Только в прошлом году китайским ученым удалось навязать растениям более эффективный подход. В одноклеточную водоросль хлореллу внедрили специальный полимер, который активизирует в хлоропластах захват фотонов. Когда рубиско получает больше фотонов, как эффективность, так и скорость его работы улучшается примерно в полтора раза, но и это весьма скромный успех. Вполне возможно, что эти опыты попросту предвосхищают биологическую эволюцию: есть данные, что из-за повышения содержания CO2 в атмосфере фотосинтез у растений начинает идти быстрее.

На этой иллюстрации, взятой с сайта Naked Science, показано, как с повышением температуры меняется темп фиксации углерода (слева) и выделения углекислого газа (справа).

Очевидный недостаток фотосинтеза заключается в том, что хлоропласты извлекают энергию лишь из сравнительно узкой (зеленой) части спектра.

Упоминавшийся выше диоксид титана также поглощает фотоны именно в зеленой части спектра. Но фотосинтезирующие свойства фотоэлектрического элемента можно улучшить, задействовав в нем другие материалы, в частности, кремний, улавливающий свет в области спектра примерно до 1100 нм. Для максимально полного использования спектра ведутся эксперименты по включению в фотоэлектрические элементы других металлосодержащих соединений: оксида цинка ZnO, оксида железа Fe2O3, висмут-ванадиевого соединения с кислородом BiVO4, нитрида тантала Ta3N5 и некоторых других.

Фотосинтез и солнечная энергетика

Из вышеизложенного напрашиваются следующие выводы. В настоящее время фотоэлектрические элементы, действующие в водяной среде, работоспособны, но явно несовершенны. Масштабное производство ячеек для искусственного фотосинтеза, которые могли бы послужить конкурентоспособным источником возобновляемой энергии в лучшем случае дело будущего. Но искусственный фотосинтез все-таки вполне эффективен в качестве инструмента для связывания атмосферного углерода, и при этом дает стабильный поток заряженных частиц (протонов и электронов).

Таким образом, фотосинтезирующие элементы можно было бы сочетать с солнечными батареями например, уже сегодня устанавливаемыми на крышах частных домов в США. Солнечная батарея могла бы отдавать часть получаемой энергии на электролиз. В таком случае подключенные к ней фотоэлектрические элементы участвовали бы в связывании углекислого газа и расщеплении воды с получением водорода, который, в свою очередь, является экологически чистым топливом.

Развитие катализаторов для таких процессов позволило бы не ограничиваться воспроизведением обычного фотосинтеза, а синтезировать, например, белки или ферменты. Мы уже научились масштабировать солнечные батареи, поэтому могли бы вместе с ними масштабировать и фотоэлектрические элементы. Наконец, подобные технологии могли бы поспособствовать разложению токсичных отходов или пластика, давая на выходе водород и энергию.

Заключение

Изложенные возможности являются во многом гипотетическими, но вполне реализуемыми, так как основаны на модели, отточенной в зеленых растениях более чем за миллиард лет. Мне они представляются значительно более интересными, чем луддистские по сути и практически невыполнимые призывы снизить количество парниковых выбросов, отказаться от авиаперелетов или застроить прибрежные области ветрофермами. Избыток углекислого газа должен превратиться из проблемы в ресурс, а переход на водородную энергетику стать максимально безболезненным. Возможно, ключ ко всем этим решениям в освоении и доработке искусственного фотосинтеза.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru