Русский
Русский
English
Статистика
Реклама

Радиоактивность

Перевод Пластиковые сцинтилляторы первый успех

20.01.2021 16:09:28 | Автор: admin


Пластиковые сцинтилляторы это увлекательно. Они не особо эффективны для детекции гамма-излучения, но при этом дешевы, надежны и отлично подходят для обнаружения излучения частиц, при этом успешно различая альфа/бета/нейтронные волны и не только.Такие сцинтилляторы можно отливать в любую форму и легко обрабатывать механически, благодаря чему они успешно применяются для специализированных детекторов, счетчиков и во многих других сферах.

Принцип действия


В большинстве случаев эти устройства очень похожи на жидкие сцинтилляторы. Состоят они из матрицы (растворителя), выступающего в роли основного компонента, а также первичного сцинтиллятора и вторичного, служащего для смещения спектра излучения. Матрица поглощает радиацию и посредством нерадиоактивного процесса передает ее энергию в первичный осциллятор, который, в свою очередь, испускает свечение, как правило, в УФ-диапазоне.

Здесь есть одна сложность: большинство матриц плохо пропускают УФ-спектр, равно как большинство фотоэлектронных умножителей (ФЭУ) не особо к нему чувствительны. Решается это добавлением вторичного сцинтиллятора, который поглощает УФ, преобразуя его в излучение уже видимого спектра. Отсюда и название устройство смещения спектра излучения.

Обычно в качестве матрицы служит ароматическое соединение, поскольку оно содействует передаче энергии в первичный осциллятор. К наиболее используемым растворителям относятся бензол, толуол, ксилол и аналогичные производные. В пластиковых же сцинтилляторах используются поливинилтолуол или стирол.

Самыми распространенными первичными сцинтилляторами являются 2,5-дифенилоксазол (РРО) или паратерфенил (например, в ВС412).

Для сдвига же излучения может применяться любой компонент, поглощающий свет в области ~350 нм и повторно излучающий его в подходящей длине волны, в идеале около 420 нм для двухщелочных ФЭУ. Здесь стоит отметить 1,4-Бис (5-фенилоксазол-2-ил)бензол (POPOP, например в BC400)) и 2,5-бис (5-трет-бутил-2-бензоксазол-2-ил)тиофен (TPBD, например, в BC412).

Для хорошего времени отклика важно, чтобы и первичный, и вторичный сцинтилляторы имели короткое время затухания. Стандартная концентрация сцинтилляторов в растворителе варьируется от 0.5 до 2% для основного и от 0.01 до 0.5% для смещающего излучение.

В своих экземплярах на роль матрицы я выбрал эпоксидную смолу, потому как она дешева, доступна и легко поддается литью с последующей механической обработкой. Пока что все эксперименты я проводил со смолой Е45 на основе бисфенола-А.

Для первичного сцинтиллятора я взял п-терфенил, так как его можно недорого заказать в S3 Chemicals.

Со вторичным же вопрос до сих пор остается открытым, так как я не могу заполучить ни один из стандартных образцов. Знакомый подогнал мне для пробы лазерный краситель кумарин 102. Несмотря на то, что его спектр поглощения не точно соответствует излучению п-терфенила, он все равно работает.

Формула и обход сложностей реализации


Для получения 50 г сцинтилляционной смолы мне понадобилось:

  • 0.5 г п-терфенила (1%);
  • 50 мг кумарина 102 (0.1%);
  • 7 г ксилола;
  • 16.7 г отвердителя;
  • 33.3 г смолы.

Технически для раствора такая концентрация п-терфенила слишком велика, но с помощью некоторых уловок можно добиться прозрачности сцинтилляторов. Мои первые попытки провалились, и у меня получились молочно-белые блоки смолы, которые, естественно, не передавали формируемое ими свечение.

Решение проблемы


Я взвесил п-терфенил, кумарин и ксилол в мерном стаканчике, затем довел всю эту смесь до кипения, чтобы компоненты растворились, после чего накрыл стакан круглодонной колбой для предотвращения выкипания ксилола. Одновременно с этим подогрел смолу до 60С.
Как только раствор стал чистым, я добавил отвердитель и поддерживал высокую температуру, не допуская закипания. Затем перемешал смесь до исчезновения шлиров и тщательно вмешал в нее смолу, после чего отлил нужную форму. На время отвердения нужно поддерживать температуру ~80C, иначе часть вещества просто выпадет в осадок. При больших объемах материала выделяемого в процессе отвердения тепла может хватить, но полагаться на это не советую.


Сцинтилляторы в кипящем ксилене со слабым УФ-свечением


Растворенные сцинтилляторы и отвердитель сзади, предварительно нагретая смола спереди


Отливка сцинтилляторов в силиконовых формах

После затвердения смолы сцинтилляторы готовы!

Итог и анализ спецификации


Сцинтиллятор получился ужасный.

При облучении гамма-излучением и замере с помощью Hamamatsu R550 на выходе мы получаем около 50% свечения в сравнении со старыми советскими аналогами на основе полистирола, которые, итак, не хвалились особой светоотдачей.

Я думаю, что основная причина в смоле, которая поглощает большую часть свечения первичного сцинтиллятора до его попадания в область смещения спектра. К тому же спектр поглощения этой области сильно отличается от спектра п-терфенила.

Отмечу очевидное: эти сцинтилляторы не являются (гамма)-спектроскопическими и, вероятно, никогда таковыми не будут. На сегодня в этом отношении бесспорно лидируют неорганические детекторы, но пластиковые сцинтилляторы для этого и не предназначены.

Я нахожусь в поисках POPOP, ожидая, что с его помощью удастся улучшить результаты. Кроме этого, нужно попробовать в качестве эксперимента использовать для матрицы PMMA.

Еще одна проблема образование пузырьков в смоле. Дегазация в вакууме не помогает, так как ксилол начинает выкипать до устранения пузырьков воздуха. Это приводит к градиентам концентрации и снижению оптических свойств сцинтиллятора.

По сути, пластик представляет собой перенасыщенный раствор, фиксируемый смолой, и я не уверен в долгосрочной стабильности такого решения. В дальнейшем я еще поэкспериментирую с уменьшением свечения в кристалле и проверю реакцию на различные виды излучения.

Пока что мне удалось подтвердить, что эти сцинтилляторы реагируют на альфа-, бета- и гамма-волны. Еще нужно протестировать (быстрые) нейтроны, но мне кажется, что они будут реагировать на протон отдачи.

Несколько снимков эксперимента



Все отлитые на данный момент сцинтилляторы. Правый нижний это мой полистирольный образец


Они же под УФ-излучением


Они же, но только в УФ


Небольшой сцинтиллятор с выпадающим из раствора п-терфенилом



Сцинтилляторы, созданные в этом эксперименте



Мой способ проверить их реакцию на окружающую среду


Заключение


Будет здорово, если вы попробуете создать свои собственные сцинтилляторы, поэкспериментируете с формулой и поделитесь своими достижениями (ссылка на оригинал статьи). Я считаю эти приборы отличным подспорьем в сфере любительского обнаружения излучения и уверен, что с их помощью можно реализовать массу интересных детекторов и экспериментов.

Подробнее..

Представлена вечная батарейка на радиоактивных элементах

26.08.2020 16:11:24 | Автор: admin


Американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Это не теория, сейчас разработку переводят на коммерческую основу. Несколько недель назад разработчик завершил тестирование, убедившись в работоспособности системы. Первые батареи такого типа появятся в продаже в конце этого года. Инвестором разработчиков выступил стартап-инкубатор Volkswagen Future Mobility.

Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы недолговечность обычных элементов питания и переработки радиоактивных отходов.



В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды. В процессе испытаний радиационный фон оставался в норме. А алмазная оболочка (дешевые искусственные алмазы) успешно защищала корпус от возможных повреждений. Еще один положительный момент работающая батарейка не выделяет углекислый газ.

Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Конкуренты прототипа батареи NDB демонстрировали 15% эффективности при производстве энергии. А у разработки калифорнийского стартапа благодаря синтетической алмазной структуре, которая выступает одновременно полупроводником и теплоотводом, эффективность достигла 40%. Внутренний стержень фонит до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены.

Nano Diamond Battery предлагает бета-гальванические батареи в разных форм-факторах, включая привычные АА, AAA, 18650, CR2032 и других. Теоретически они могут работать совместно с литий-ионными батареями, установленными на большинстве современных устройств. При работе алмазная батарейка будет передавать излишки электричества литиевому аккумулятору.



Представьте себе iPhone. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии, рассказал о разработке NDB сотрудник стартапа Нил Найкер.



Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям. Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции. Названия первых клиентов пока держат в секрете.
Подробнее..

Отечественные ученые создали ядерную батарейку и эффективные термоячейки

30.08.2020 12:21:42 | Автор: admin


Несколько дней назад мы публиковали новость о том, что американский стартап Nano Diamond Battery представил работающий прототип бета-гальванической батареи, способной работать тысячи лет. Рабочие батарейки стартап обещает уже в конце этого года.

Как оказалось, похожая разработка есть и у отечественных ученых. Специалисты из НИИТУ МИСиС в начале августа этого года продемонстрировали собственный прототип батареи, конструкция которой основана на микроканальной объемной структуре никелевого бета-гальванического элемента. Срок службы его около 20 лет.



Особенность структуры в том, что радиоактивный элемент наносится с двух сторон планарного p-n перехода. Это позволяет упростить технологию изготовления элемента, плюс контролировать обратный ток. Благодаря микроканалам эффективная площадь преобразования бета-излучения увеличивается в 14 раз, а значит, увеличивается и ток.

По словам представителей университета, элемент может использоваться в нескольких режимах: аварийный источник питания или датчик температуры в девайсах, которые эксплуатируются при экстремальных температурах в труднодоступных местах, включая горы, воду или даже космос.



Не радиоактивностью единой

А еще ученые НИИТУ МИСиС разработали термохимические ячейки, которые превращают тепло в электрическую энергию. Элементы питания такого типа имеют небольшой размер. Благодаря этому их можно сделать носимыми, размещая на одежде.



Ну а вырабатываемую энергию можно будет использовать для подпитки разных мобильных устройств. По мнению ученых, термоэлектричество одно из наиболее перспективных направлений энергетики. Правда, есть проблема выходная мощность слишком низкая.

Специалисты нашли способ решить эту проблему в конструкции батареек используются оксидно-металлические электроды на основе полых никелевых микросфер и водного электролита. Это решение дает возможность повысить ток, снизив внутреннее сопротивление элемента.



Напряжение разомкнутой цепи может в этом случае достигать 0,2 В при температуре электрода до 85 градусов Цельсия. Мощность такого элемента в 10-20 раз выше по сравнению с аналогами. Ну а использование водного электролита позволяет снизить стоимость производства и увеличить безопасность системы.

Ученые заявили о том, что им удалось достигнуть рекордного для водных электролитов показателя гипотетического коэффициента термоэлектрической чувствительности в 4,5 мВ/К.

В ближайшем будущем отечественные ученые собираются увеличить выходную мощность за счет оптимизации состава электродов и улучшения общей конструкции термоячейки.
Подробнее..

Recovery mode Звездный год (365 дней 369 минут), Тропический год( 348.5 минут) и звездные сутки(1436 минут) в радиоактивном распаде

01.01.2021 00:16:35 | Автор: admin

В этой статье будет приведен очень короткий код поиска периодов тропического года, звездного года и звездных суток в данных радиоактивного распада плутония.


Вот здесь на GitHub.com можно скачать все данные и код

Всего данные по почти 19 дней одного года days.dat
И 2 дня в мае 2005 года 0505.txt
И 2 дня в мае 2006 года 0506.txt

Средняя продолжительность тропического года по весеннему равноденствию это на Января 1, 2000 365.2421897 или 365 дней, 5 часов, 48 минут, 45.19 секунд.
Звездный год это 365 дней и 369 минут
Звездные сутки 1436 минут движение Земли в течении которого планета совершает полный оборот относительно сферы неподвижных звезд.

Загружаем данные и расфасовываем по рядам по 60 значений
import mathimport randomfrom statistics import meankoeff=60;matrix = [line.strip() for line in open('/users/andrejeremcuk/downloads/0505.txt')];matrix1 = [line.strip() for line in open('/users/andrejeremcuk/downloads/0506.txt')];matrixd = [line.strip() for line in open('/users/andrejeremcuk/downloads/days.dat')];arra=[[ 0 for e in range(koeff)] for t in range(int(len(matrix)/koeff))];harra=[0 for t in range(int(len(matrix)/koeff))];arra1=[[ 0 for e in range(koeff)] for t in range(int(len(matrix)/koeff))];harra1=[0 for t in range(int(len(matrix)/koeff))];arrad=[[ 0 for e in range(koeff)] for t in range(int(len(matrixd)/koeff))];harrad=[0 for t in range(int(len(matrixd)/koeff))];for i in range(len(matrix)): matrix[i]=int(matrix[i]);matrix1[i]=int(matrix1[i]);for i in range(len(matrixd)): matrixd[i]=int(matrixd[i]);

Сортируем функцией sorted по возрастанию
z=0;for jk in range(int(len(matrix)/koeff)): #int(len(matrix)/koeff) for mk in range(koeff): arra[jk][mk]=float(matrix[z]);arra1[jk][mk]=float(matrix1[z]);z=z+1;for jk in range(int(len(matrix)/koeff)): harra[jk]=sorted(arra[jk]);harra1[jk]=sorted(arra1[jk])z=0;for jk in range(int(len(matrixd)/koeff)):  for mk in range(koeff): arrad[jk][mk]=float(matrixd[z]);z=z+1;for jk in range(int(len(matrixd)/koeff)): harrad[jk]=sorted(arrad[jk]);


Делим на среднее значение
for jk in range(int(len(matrix)/koeff)):  average=mean(harra[jk]) for mk in range(koeff): harra[jk][mk]=harra[jk][mk]/average average1=mean(harra1[jk]) for mk in range(koeff): harra1[jk][mk]=harra1[jk][mk]/average1for jk in range(int(len(matrixd)/koeff)):  averaged=mean(harrad[jk]) for mk in range(koeff): harrad[jk][mk]=harrad[jk][mk]/averaged


Далее привожу функцию сравнения:
import numpyimport numpy as npfrom numpy.fft import fft, fftfreqimport matplotlib.pyplot as pltfrom numpy import linspace, loadtxt, ones, convolvefrom numpy import array, zeros, argmin, inffrom numpy.linalg import normdef _trackeback(D):    i, j = array(D.shape) - 1    p, q = [i], [j]    while (i > 0 and j > 0):        tb = argmin((D[i-1, j-1], D[i-1, j], D[i, j-1]))        if (tb == 0):            i = i - 1            j = j - 1        elif (tb == 1):            i = i - 1        elif (tb == 2):            j = j - 1        p.insert(0, i)        q.insert(0, j)    p.insert(0, 0)    q.insert(0, 0)    return (array(p), array(q))def dtw(dr):    r, c = len(dr), len(dr[0]);    D = zeros((r + 1, c + 1));    D[0, 1:] = inf    D[1:, 0] = inf    for i in range(r):        for j in range(c):            D[i+1, j+1] = dr[i][j];    for i in range(r):        for j in range(c):            D[i+1, j+1] += min(D[i, j], D[i, j+1], D[i+1, j])    D = D[1:, 1:];    dist = D[-1, -1] / sum(D.shape);    return dist, D, _trackeback(D)


def stat(x,y):    pikk=[[float("inf") for m in range(len(y))] for t in range(len(x))];    for e in range(len(x)):     for l in range(len(y)): pikk[e][l]=(((abs(x[e]-y[l])))*(abs(e-l)+1));    dt=dtw(pikk)    p1=dt[2][0];p=dt[2][1];    res=0;uj=0;rmu=0;    for e in range(len(p)):      for l in range(len(p1)):      pl=p[l];pe=p[e];ml=p1[l];me=p1[e];        #pl=l;pe=e;ml=l;me=e;        ret=0;re=1;rea=0;red=0;ab=abs(y[pl]-y[pe]);ac=(pe-pl);rmt=abs(1-x[ml]/y[pl]);rmr=abs(1-x[me]/y[pe]);      au=abs(x[ml]-x[me]);ao=(me-ml);hip=math.sqrt(ab**2+ac**2);hipe=math.sqrt(ao**2+au**2);      if (1<ml<58)&(1<pl<58)&(1<me<58)&(1<pe<58):              rea=abs(1-abs(abs(y[pl-1]*y[pl]*y[pl+1]*y[pl+2])/y[pl]**4))+abs(1-abs((y[pe-1]*y[pe]*y[pe+1]*y[pe+2])/y[pe]**4))       rea+=abs(1-abs(abs(x[ml-1]*x[ml]*x[ml+1]*x[ml+2])/x[ml]**4))+abs(1-abs((x[me-1]*x[me]*x[me+1]*x[me+2])/x[me]**4))      else: rea=0;      if (hip!=0)and(hipe!=0):        if (math.asin(abs(au)/hipe)!=0)&(math.asin((ab)/hip)!=0):        red=0+abs(1-abs(math.asin((ab)/hip)/math.asin((au)/hipe)));        red+=abs(1-abs(math.asin((au)/hipe))/math.asin((ab)/hip));      if (x[me]!=0)and(y[pe]!=0)and(x[ml]!=0)and(y[pl]!=0):        ret=0+abs(1-abs((0.00+abs(float(y[pl])/float(y[pe])))/(0.00+abs(float(x[ml])/float(x[me])))));       ret+=abs(1-abs((float(x[ml])/float(x[me]))/(float(y[pl])/float(y[pe]))));      re=1+abs(1-abs(float(abs(pe-pl)+1))/float(abs(me-ml)+1));rme=(y[pe]+0)+(y[pl]+0)+(x[me]+0)+(x[ml]+0);rmu+=rme;      #print(rme);      #print(rea,red,ret,re,(abs(e-l)+1),rme);      if rea==0: rea=1;      res+=abs(ret*red*red*rea)*(abs(e-l)+1)*rme*re;uj=uj+1;     if uj==0: uj=1;    return res/uj#/rmu#*rmu *(abs(x[ml]-y[pe])+0.01)         *(abs(x[ml]-y[pe])+abs(x[me]-y[pl]))


Далее пример кода сравнения 1440 раз всех графиков с отступом от 0 до +1440 минут 2005 и 2006 года:

def dist(rast):    statistic=0;statis=0;    for i in range(1440):     jk=i+000;x=harra1[jk];y=harra[jk+rast];     rt=stat(x,y);     statistic+=rt;     jk=i+000;x=harra[jk];y=harra1[jk+rast];     rt=stat(x,y);     statis+=rt;    return statis,statistic;d=[];for i in range(1440):  print(i); d.append((dist(i),i)); print(d[-1]);d004=[];for i in range(len(d)): t4=int(d[i][0][0]+d[i][0][1])/2 d004.append(t4)import numpynumpy.argsort(d004)


Для данных за 2 суток я исследовал окрестности +1440 минут
>>> for i in range(len(d1)):
... print(d01[i],1440-i)
...
1529.0 1440
1499.0 1439
1510.0 1438
1530.5 1437

1439.5 1436


1534.5 1435
1516.0 1434
1473.0 1433
1503.0 1432
1486.0 1431
1514.5 1430
1507.5 1429
1525.0 1428
1460.0 1427
1558.5 1426
1562.5 1425
1495.0 1424
1511.0 1423
1527.5 1422
1507.0 1421
1506.0 1420
1498.0 1419
1517.0 1418
1471.0 1417
1478.0 1416
1588.0 1415
1513.5 1414
>>> import numpy
>>> numpy.argsort(d01)
array([ 38, 4, 78, 71, 59, 76, 13, 101, 74, 83, 41, 90, 23,
7, 24, 9, 33, 48, 100, 70, 29, 54, 44, 91, 63, 103,
93, 87, 42, 32, 16, 97, 57, 30, 21, 61, 39, 1, 64,
77, 99, 49, 52, 8, 79, 95, 66, 51, 45, 20, 40, 27,
60, 19, 11, 86, 34, 92, 2, 88, 17, 85, 26, 10, 6,
81, 22, 36, 73, 58, 56, 50, 12, 65, 69, 18, 46, 0,
68, 84, 3, 67, 96, 5, 28, 102, 31, 55, 47, 43, 75,
98, 94, 35, 89, 14, 37, 15, 72, 53, 82, 62, 25, 80])
>>> d01[38]
1419.0
>>> d01[4]
1439.5

И вот результат второй минимум выпадает на +1436 минуту d01[4] -4 значение

>>> for i in range(70):
... print(d04[340+i])
...
(1444, 340)
(1451, 341)
(1531, 342)
(1433, 343)
(1495, 344)
(1460, 345)
(1494, 346)
(1489, 347)
(1460, 348)
(1492, 349)
(1491, 350)
(1499, 351)
(1477, 352)
(1499, 353)
(1431, 354)
(1520, 355)
(1481, 356)
(1454, 357)
(1530, 358)
(1496, 359)
(1443, 360)
(1434, 361)
(1450, 362)
(1470, 363)
(1493, 364)
(1485, 365)
(1428, 366)
(1491, 367)
(1516, 368)

(1414, 369)


(1521, 370)
(1452, 371)
(1455, 372)

(1384, 373)


(1525, 374)
(1395, 375)
(1436, 376)
(1430, 377)
(1478, 378)
(1457, 379)
(1444, 380)
(1429, 381)
(1476, 382)
(1608, 383)
(1499, 384)
(1439, 385)
(1467, 386)
(1466, 387)
(1516, 388)
(1471, 389)
(1471, 390)
(1456, 391)
(1472, 392)
(1442, 393)
(1435, 394)
(1495, 395)
(1476, 396)
(1484, 397)
(1474, 398)
(1489, 399)
(1422, 400)
(1440, 401)
(1477, 402)
(1489, 403)
(1494, 404)
(1472, 405)
(1541, 406)
(1469, 407)
(1522, 408)
(1444, 409)

Далее для звездного года. Тут надо определить что алгоритм сравнивает картинки коллективного взаимодействия, поэтому гистограмный метод находит 368 как абсолютный минимум. Здесь же 373 минута третья от конца 369 минута тоже локальный минимум и 348 минута.
Всего рассчитано до +1440 минут двух дней в 2005 и 2006 годах.
>>> sor=numpy.argsort(d004)
>>> sor[:90] # всего до sor[:1440]
array([ 137, 140, 373, 583, 2, 47, 375, 266, 709, 40, 439,
29, 751, 226, 245, 433, 217, 789, 437, 524, 659, 369,
124, 919, 954, 544, 76, 256, 103, 991, 419, 106, 323,
400, 606, 626, 120, 99, 259, 321, 11, 1369, 235, 366,
158, 1258, 240, 381, 176, 118, 491, 377, 207, 354, 123,
825, 415, 167, 897, 588, 865, 46, 1129, 343, 60, 97,
842, 361, 211, 394, 628, 435, 1218, 878, 268, 376, 153,
165, 880, 494, 643, 609, 1439, 301, 85, 107, 252, 385,
173, 455])
Подробнее..

Радиация детекторы. Часть первая, газоразрядная

02.02.2021 16:10:30 | Автор: admin

Недавняя статья про опарафиненный детектор нейтронов побудила меня поднять старую тему и написать еще парочку статей на тему радиации. А именно -- про детекторы ионизирующих излучений.

Начну я с газоразрядных детекторов. Собственно, в вышеуказанной статье газоразрядный детектор и применен, причем не самый обычный. Но увы, никаких подробностей о его использовании или даже принципах действия мы не увидели, так что пробел этот нужно исправлять.

Ионизация и ионизационная камера

Еще первые опыты Рентгена, Беккереля, четы Кюри и других пионеров исследования рентгеновских лучей и излучения, испускаемого радиоактивными веществами, показали, что эти лучи способны генерировать свободные ионы в воздухе, через которые проходят. Проявлялось это в том, что воздух приобретал электропроводность, разряжая электростатически заряженные тела, что можно было легко обнаружить с помощью простейшего электроскопа. Электроскопы и электрометры стали первыми "дозиметрами" радиоактивных излучений. Опыты показали пропорциональность числа сгенерированных излучением ионных пар поглощенной воздухом энергии, что привело к появлению такого понятия, как экспозиционная доза, определяемая через число ионных пар, рожденных в воздухе при облучении.

Ионизационная камера в принципе проста. Это просто объем, заполненный каким-нибудь газом при каком-нибудь давлении, в который помещены какие-нибудь два электрода. Один электрод находится под положительным потенциалом и собирает отрицательные ионы, другой -- наоборот. Заряд, прошедший через камеру, пропорционален дозе, а ток -- мощности дозы. Геометрия ионизационной камеры (рис. 1), то есть форма ее электродов и их взаимное расположение могут быть различными, но обычно это или плоская (две пластины с зазором между ними), или коаксиальная (один электрод представляет собой трубу, а другой -- цилиндр или проволока, помещенная внутри первого электрода соосно с ним). Заполнена камера может быть самыми различными газами в зависимости от поставленной задачи. Это может быть воздух при атмосферном давлении, если нужно измерять экспозиционную дозу, тяжелые газы, если нужно повысить чувствительность к высоким энергиям, трехфтористый бор или гелий-3, когда стоит задача детектирования нейтронных потоков (бор-10 и гелий-3 легко вступают в реакции с нейтронами, продукты которых вызывают ионизацию). Давление газа тоже выбирают исходя из условий эксперимента: его увеличение способствует повышению эффективности поглощения излучения, но с его ростом снижается вероятность того, что ионы не завязнут в газе и не рекомбинируют по пути, а дойдут до электродов.

Рис.1. Плоская и коаксиальная ионизационные камеры.

Ток, проходящий через ионизационную камеру, очень мал. Допустим, мощность экспозиционной дозы равна 1 Р/ч. Это много. Но по определению единицы рентгена за час будет рождаться лишь 2,082109 пар ионов. каждая из которых заберет электрон с катода и отдаст на анод, если камера будет достаточно велика, чтобы воздух поглотил все излучение. То есть ток в цепи будет составлять 9,310-14 А! А при уровнях, соответствующих естественному радиационному фону этот ток будет ниже еще в сто тысяч раз.

Существуют два способа измерить такой ток. Первый -- это зарядить ионизационную камеру и отключить от нее все, кроме чувствительного электрометра с бесконечным входным сопротивлением. Измерив скорость падения напряжения (или перепад напряжения до и после облучения) и зная суммарную емкость ионизационной камеры и электрометра, можно определить дозу или ее мощность. Такую аппаратуру использовали Беккерель и супруги Кюри, и так устроены карманные дозиметры-накопители карандашного типа. Однако чаще нужно знать интенсивность излучения, поэтому поступают по-другому: включают в цепь ионизационной камеры очень высокоомное сопротивление, типичное сопротивление которого выбирают около 100 ГОм. Тогда падение напряжения на этом резисторе при мощности дозы 1 Р/ч составит 9,3 мВ и это значение вполне можно измерить. Правда, чтобы это удалось, входное сопротивление вольтметра должно измеряться тераомами! Раньше основой такого вольтметра почти всегда являлась специальная электрометрическая лампа со всеми вытекающими чудесами типа анодного напряжения в несколько вольт. Смысл последнего -- в том, чтобы не происходила ионизация остаточных газов

Рис. 2. Включение электрометрической лампы (из кн.: Шумиловский Н.Н., Стаховский Р.И. Масс-спектральные методы. М.: Энергия. 1966.)

Лучшие электрометрические лампы могут иметь входные (сеточные) токи на уровне 0,1 фА, что эквивалентно мощности дозы ~1,2 мР/ч и, не требуя для питания высоких напряжений и большого тока накала, хорошо вписываются в полупроводниковую электронику. Однако они очень чувствительны к внешним воздействиям и не особо долговечны. Альтернативой им является применение специальных полевых транзисторов с ультрамалыми утечками затвора (в отечественной практике для этого чаще всего брали отобранные экземпляры КП304А). Современная элементная база для измерения фемтоамперных токов -- это специальные операционные усилители, такие, как ADA4530-1. Всего за 15 американских долларов мы легко и непринужденно получаем входной ток около 1 фА. Такие ОУ обычно включают в схеме трансимпедансного усилителя, то есть огромное сопротивление R включают в цепь обратной связи (рис.3)

йй

Чтобы входной ток на уровне 1 фА был реальностью, схему можно монтировать только навесным монтажом или на плате из специального диэлектрика, тщательно соблюдая рекомендации производителя. Ориентироваться при этом имеет смысл на разводку оценочной платы ADA4530-1R-EBZ-TIA со всеми ее защитными кольцами и экранами. Разумеется, усилитель лучше расположить прямо внутри корпуса-экрана ионизационной камеры.

Применимы также схемы электрометрических усилителей на дискретных элементах, вплоть до простейших почти что однотранзисторных схем наподобие тех, что применяются в пожарных извещателях. Применение последних, впрочем, ограничено целями индикации наличия излучения. Так, известна "полониевая ручка", обнаруживающая источники альфа-излучения и рекомендуемая автором публикации всем шпионам и дипломатам. Разумеется, это шутка, но конструкция вполне работоспособна и реагирует, например, на америциевый источник из дымоизвещателя. Кажется невозможным, чтобы она работала, потому что схема усилителя (выходной сигнал которого зажигает светодиод) выполнена на двух составных биполярных транзисторах. Но она, как ни странно, работает, я проверял.

Обычно ионизационные камеры работают в токовом режиме. То есть не делается попыток различить сигналы от отдельных частиц, пересекающих объем камеры. В случае слабоионизирующих частиц это почти невозможно из-за их малости. Импульсные ионизационные камеры используют обычно для регистрации альфа-излучения и высокоэнергетических частиц из космических лучей и ускорителей.

Газовое усиление и пропорциональные счетчики

Для работы ионизационной камеры на нее подают некоторое напряжение: такое, чтобы ионы были достаточно быстро разделены электрическим полем и собраны катодом и анодом. Как будет зависеть ионизационный ток от этого напряжения?

При нулевой разности потенциалов тока не будет. Возникшие ионы и электроны через некоторое время в процессе неупорядоченного теплового движения встречают ионы противоположного знака и рекомбинируют. С ростом разности потенциалов все больше ионов будет успевать осесть на электродах, и ионизационная камера в целом ведет себя в соответствии с законом Ома. Но при достаточно большом напряжении пропорциональность нарушается, так как значительная часть ионов уже собрана электродами. При дальнейшем росте разности потенциалов мы выходим на плато: ток уже не растет.

Рис. 4. ВАХ ионизационной камерыРис. 4. ВАХ ионизационной камеры

Но до бесконечности плато продолжаться не может. В какой-то момент начинается самое интересное: ток снова начинает расти. И вот почему: ионы и электроны в электрическом поле ускоряются настолько, что, столкнувшись с нейтральными молекулами, ионизируют и их. В газе появляются дополнительные ионы и электроны, которые включаются в общий ток, и чем больше разность потенциалов, тем этот вклад становится большим.

При достаточно большой разности потенциалов мы можем наблюдать ионные лавины: первичный ион, столкнувшись с несколькими атомами, рождает дополнительные ионы, которые также генерируют еще несколько пар. Таким образом, единичная ионная пара, рожденный радиоактивным излучением, сам в свою очередь рождает множество носителей заряда и ток в цепи, зависящий от интенсивности излучения, оказывается значительно большим по сравнению с током насыщения на плато. Коэффициент такого самоусиления тока (газового усиления) может достигать тысяч и десятков тысяч.

При дальнейшем увеличении напряжения ток растет еще больше, но перестает зависеть от излучения. Возникает самостоятельный разряд: лавины нарастают неограниченно, порождают вторичные лавины, все это излучает жесткий ультрафиолет, который вместе с бомбардировкой электродов ионами производит с них эмиссию электронов и положительных ионов, и дополнительные ионы от радиоактивности уже не играют никакой роли.

Таким образом, выбрав подходящее напряжение, мы можем сильно облегчить задачу измерения ничтожно малых ионизационных токов. И главное -- когда каждый ион рождает 1000-10000 вторичных ионов, а каждый квант излучения может породить несколько сотен или тысяч ионов, становятся хорошо различимыми и измеримыми токи от отдельных частиц. Причем амплитуда этих импульсов оказывается пропорциональной количеству первичных ионов, а значит -- энергии частицы, что позволяет Однако ценой этого становится очень высокая чувствительность камеры к составу, температуре и давлению газовой среды внутри нее, напряжению, геометрии электродов.

Наиболее оптимальная конструкция пропорционального счетчика, при которой размножение ионов приобретает характер управляемого процесса -- это коаксиальная конструкция, в которой анодом является тонкая (сотые доли миллиметра) проволока, натянутая по оси цилиндрического катода. В таком случае ударная ионизация молекул газа происходит лишь рядом анодом, в области большой, до 40 кВ/см, напряженности электрического поля, никогда не захватывая всего пространства между катодом и анодом. Большое пространство, в котором напряженность поля недостаточна для развития лавин и происходит только дрейф положительных ионов к катоду, предотвращает развитие "зачатков" самостоятельного разряда -- стримеров. Дополнительно их образование подавляют, вводя в газовую смесь многоатомные органические молекулы (метан, пропан и т.п.), которые являются "ловушками" для стримера, создавая на пути его головы своего рода дымовую завесу, поглощающую жесткое УФ-излучение, испускаемое ею и играющее существенную роль в распространении стримера и последующем возникновении самостоятельного разряда.

Рис. 5. Пропорциональные счетчики СРМ-19Рис. 5. Пропорциональные счетчики СРМ-19

Типовое применение пропорционального счетчика -- это спектрометрия мягкого рентгеновского излучения с энергией ниже 20 кэВ, в частности -- для рентгенофлюоресцентного анализа. При такой энергии бессильны сцинтилляционные детекторы, а полупроводниковые до сих пор дороги и требуют для хорошего энергетического разрешения глубокого охлаждения. Для доступа рентгеновского излучения в них делают бериллиевое или майларовое окно (рис.5). Зачастую их делают в проточном исполнении, так как газовая смесь при работе постепенно теряет свои свойства из-за разложения органической добавки. Применяются газовые смеси водород-метан, аргон-метан, ксенон-метан и другие.

Рис. 6. Амплитудный спектр импульсов пропорционального счетчика нейтронов с гелиевым заполнениемРис. 6. Амплитудный спектр импульсов пропорционального счетчика нейтронов с гелиевым заполнением

Другое распространенное применение пропорциональных счетчиков, которое скорее может встретиться в радиолюбительской практике -- это счет нейтронов. Счетчики нейтронов обычно заполняют гелием-3 с небольшой добавкой инертных газов под довольно высоким (2-4 атм) давлением, ядро которого, вступив в реакцию с медленным нейтроном, превращается в разлетающиеся в разные стороны протон и ядро трития. Суммарная их энергия составляет 764 кэВ, и они оставляют по пути пролета в газе множество ионов, давая импульсы, резко отличающиеся по амплитуде от фоновых, вызванных гамма-излучением (рис. 6, узкий пик справа, соответствующий полному поглощению частиц газом). Пропорциональные детекторы нейтронов могут также быть заполнены газообразным трифторидом бора, но чаще всего их используют в другом режиме -- в режиме постоянного коронного разряда.

Рис.7. Включение пропорционального счетчика нейтроновРис.7. Включение пропорционального счетчика нейтронов

Напряжение питания пропорциональных счетчиков обычно составляет 1000..3000 В и для целей спектрометрии должно выдерживаться с высочайшей точностью. Для нейтронных счетчиков такая точность не нужна, но все же следует учитывать, что выраженного плато такие счетчики не имеют. Амплитуда импульсов невелика, единицы милливольт. Тут очень важно подобрать оптимальное время формирования импульса. Сам импульс тока довольно короткий -- примерно 0,6 мкс. Импульс этот заряжает емкость счетчика и монтажа, а также входную емкость пересчетного устройства, формируя фронт импульса напряжения. Спад же возникает в процессе разряда этой емкости на нагрузку. Постоянную времени этого спада выбирают из следующих соображений: если она будет около 0,5 мкс, амплитуда импульсов от нейтронов окажется слишком низкой, и вместе с тем низкоамплитудные импульсы от гамма-фона будут сильнее мешать регистрации. С ростом времени формирования последние как бы размазываются и сливаются друг с другом, и импульсы от нейтронов становятся более выраженными. При слишком большом времени напротив, уже импульсы от нейтронов "размазываются". В большинстве случаев время формирования выбирают в районе 3-5 мкс.

Счетчик Гейгера-Мюллера

В счетчик Гейгера-Мюллера пропорциональный счетчик превращается, если повысить напряжение между его электродами. С ростом напряжения растет и коэффициент газового усиления. Но до бесконечности он расти не может. В какой-то момент лавина, несмотря на неоднородность поля, превращается в стример. Канал стримера является проводящей средой и в его вершине высокая напряженность поля, и растущий стример несет эту область впереди себя, пробивая себе путь. Достигнув катода, стример соединяет катод и анод проводящим ионизированным каналом и возникает самостоятельный разряд. Так единственная частица переводит детектор из непроводящего состояния в проводящее и вывести из него может только снятие напряжения на время, достаточное для рекомбинации заряженных частиц внутри счетчика. Сделать это можно, например, включив в цепь счетчика очень большое сопротивление: при возникновении разряда емкость, образованная электродами счетчика разряжается и напряжение падает вплоть до погасания разряда, а после этого емкость счетчика заряжается вновь и он снова готов к регистрации следующей частицы. Правда, мертвое время -- время, в течение которого счетчик заряжается и нечувствителен пока -- слишком велико, оно может достигать миллисекунд! Что делать? Варианта два: либо, снизив сопротивление в цепи анода до разумного, при котором мертвое время приемлемо, подключить внешнюю схему, которая, зафиксировав фронт импульса, обрывает разряд, закоротив счетчик, и, выждав несколько микросекунд до деионизации, снимает закоротку (рис. 8). Либо изобрести самогасящийся счетчик.

Рис. 8. Схема принудительного гашения разряда в счетчике Гейгера.

Как сделать счетчик самогасящимся? Помните, когда шла речь о пропорциональном счетчике, я говорил о добавке органического газа? Это работает и в счетчике Гейгера. Если внутри счетчика будет компонент, который под действием разряда сделает среду между катодом и анодом непрозрачной, разряд погаснет, так как исчезнет один из факторов его поддержания -- фотоэлектронная эмиссия из катода. Обычно в газовое наполнение счетчиков Гейгера вводят или спирт, или галогены -- бром и йод. Спирт используют в высоковольтных счетчиках, он обеспечивает поддержание обширного плато с малым наклоном, но активно расходуется при каждом импульсе, так что ресурс таких детекторов невелик -- не более нескольких десятков миллионов импульсов. Чаще встречаются галогеновые счетчики с рабочим напряжением 400-900 В. Галогены превращаются в непрозрачную среду из-за диссоциации молекул на атомы, которые немедленно воссоединяются, так что гасящая присадка в галогеновых счетчиках не расходуется. Однако из-за химической активности все же происходит постепенная ее потеря из-за реакции с электродами. Так что и у этих детекторов ресурс не бесконечен, но он составляет миллиарды импульсов.

Применение самогасящего счетчика Гейгера предельно просто. Подать +400 вольт на анод через сопротивление в несколько МОм и снимать импульсы с катода, включив между ним и землей нагрузочное сопротивление. Или с анода -- через разделительный конденсатор. Амплитуда импульсов тут не милливольты, а вольты и десятки вольт, а зависимость чувствительности счетчика от напряжения имеет хорошо выраженное плато протяженностью 80-100 В. Но увы: ни амплитуда, ни форма импульсов абсолютно не несут никакой информации ни о природе частиц, ни о их энергии. Существуют, впрочем, некоторые ухищрения. Например, если поставить один за другим два плоских (типа Pancake) счетчика, можно одновременно регистрировать бета- и гамма-излучение, разделяя их на два канала. А сделав катод счетчика из меди, а окно -- из никеля, мы получим счетчик, очень чувствительный к излучению характеристической линии CuK и почти не видящий остального рентгеновского излучения в ее окрестностях.

Рис. 9. Счетчик СИ-45ФРис. 9. Счетчик СИ-45Ф

А как вы думаете, для регистрации какого излучения предназначен вот этот счетчик Гейгера-Мюллера (рис.8)?
Это детектор ультрафиолетового излучения. Причем -- солнечно-слепой. Его чувствительность к естественному и искусственному освещению практически равна нулю. Зато пламя свечи он обнаруживает на расстоянии в 2-3 метра при засветке прямым солнечным светом. Используется в качестве датчика пламени. Кстати, он несамогасящийся (схема гашения, приведенная выше -- именно для этого счетчика).

На этом я завершаю разговор о счетчике Гейгера-Мюллера, потому что писал об этом несколько лет назад в этой статье. И лишь для перехода к следующей главе спрошу читателя: а что будет, если напряжение на счетчике Гейгера повысить еще больше? И отвечу на него: счетчик "загорится". Гасящая присадка уже не сможет прекращать разряд и он станет непрерывным. В этом режиме счетчик полностью теряет всякую чувствительность к излучению.

Коронные счетчики

Но так будет только при низком давлении газа, при котором наблюдается тлеющий разряд. Если поднять давление до атмосферного, характер разряда меняется и в определенном диапазоне напряжений наблюдается коронный разряд. При нем анод "обрастает шубой" из электронно-ионных лавин, которые обрываются, не достигая катода. И в этом режиме, в отличие от режима тлеющего разряда, разряд оказывается чувствителен к сильно ионизирующим частицам.

Механизм этой чувствительности такой: частица оставляет в газе своего рода след -- канал из ионизированного газа. В отсутствии внешней ионизации лавина, возникнув на аноде в области максимальной напряженности поля, растет до тех пор, пока напряженность в его вершине не упадет ниже критической под действием поля, создаваемого соседними лавинами. Картина меняется, когда вершина такой лавины попадает в ионизированный канал: дополнительная ионизация позволяет ей вырваться вперед из общей массы и образовать вокруг себя область с высокой напряженностью поля. Это приводит к появлению кратковременного импульса тока на фоне шума из слившихся вместе более слабых импульсов, вызываемых отдельными лавинами разряда.

В отличие от режима Гейгера-Мюллера, в коронном режиме счетчик остается чувствительным к энергии частиц. Слабоионизирующие частицы -- гамма-кванты и выбитые ими электроны -- если и порождают импульсы тока, то они тонут в шуме короны. Только при высокой интенсивности гамма-излучения, свыше 50-1000 Р/ч, наблюдается значительное усиление этого шума и увеличение среднего тока. В большинстве практических случаев, не связанных с работой внутри активной зоны реактора, можно считать, что коронные счетчики вообще нечувствительны к гамма-излучению.

Коронные счетчики применяют обычно для детектирования альфа-частиц и нейтронов. Счетчики альфа-частиц можно сделать разборным и помещать препарат непосредственно внутрь: при рабочем давлении в 1 атм нет необходимости в вакуумной системе и достаточно промыть объем счетчика потоком смеси Пеннинга из баллончика. Тем не менее, промышленно выпускаемые счетчики (САТ-7, САТ-8, СИ-9АМ) снабжены окнами из тонкой слюды.

Коронные счетчики нейтронов заполняют обычно смесью, содержащей BF3 при давлении больше атмосферного или содержат боросодержащий твердый радиатор. Как и гелиевые, они в основном чувствительны к медленным и тепловым нейтронам, так что для регистрации быстрых нейтронов их нужно помещать в замедлитель. В коронном режиме могут работать и многие гелиевые счетчики, рассчитанные на пропорциональный режим.

Рис. 10. Выходной сигнал коронного счетчика нейтроновРис. 10. Выходной сигнал коронного счетчика нейтронов

Включение счетчика в коронном режиме почти ничем не отличается от пропорционального, но для поддержания устойчивого коронного разряда и сопротивление в анодной цепи должно быть велико. Его следует выбирать согласно документации на счетчик: так, для относительно низковольтного СИ-9АМ оно составляет 6-8 МОм, для более высоковольтных нейтронных счетчиков, таких, как СНМ-16 -- 47 МОм. Обычно схема включения коронных счетчиков с рекомендуемыми номиналами приводится в паспорте, и ее следует придерживаться. Выходной сигнал представляет собой шум, на фоне которого наблюдаются импульсы, форма и длительность которых зависит от номиналов внешних элементов. Амплитуда этих импульсов составляет десятки милливольт, иногда до 150-200 мВ. Следует подобрать порог дискриминации таким образом, чтобы шум не попадал в счетный канал. При этом нужно учитывать, что амплитуда импульсов зависит от энергии частиц и выбор порога дискриминации -- это компромисс между эффективностью регистрации и фоном и чувствительностью к гамма-излучению.

У коронных счетчиков, как и у счетчиков Гейгера-Мюллера, имеется хорошо выраженное плато на счетной характеристике. Наклон этого плато обратный: скорость счета не растет с напряжением, а падает. При этом амплитуда импульсов почти не зависит от напряжения питания.

Заключение

На этом я заканчиваю рассмотрение газоразрядных детекторов. Я не касался здесь детекторов, задачей которых является восстановление пространственной траектории частиц -- искровых и стримерных камер, многоэлектродных пропорциональных и дрейфовых камер, так как имею о них лишь самое общее представление. Следующая статья будет посвящена сцинтилляционным детекторам.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru