Русский
Русский
English
Статистика
Реклама

Беспроводные сети

Разработка кибер-безопасной информационно-технической системы высшего учебного заведения

23.03.2021 00:21:32 | Автор: admin

От автора

В данной статье рассмотрены проектирование, тестирование, разработка и внедрение кибер-безопасной информационно-технической системы высшего учебного заведения на примере моего личного, в итоге успешного опыта внедрения в Университет таможенного дела и финансов в 2019 году. Результаты могут быть применены на любом этапе создания кибер-безопасных информационно-технических систем, в том числе высшие учебные заведения, корпоративные/домашние сети и прочее.

Отвечу на все интересующие Вас вопросы в комментариях, или личных сообщениях. Я открыт к дополнениям, оптимизации, а также критике со стороны профессионалов. Приятного ознакомления!

Введение

Развитие новых видов связи, быстрое совершенствование информационно-телекоммуникационных технологий и методов обработки данных радикально меняет облик современного образования. Во всём Мире эти тенденции, наиболее четко прослеживаются на примере дистанционного обучения (ДО) в период карантина, связанного с Коронавирусом.

Еще совсем недавно Высшие учебные заведения стран при организации ДО и совместного использования необходимого дистанционной связи были лишены возможности применения традиционных технологий и сетей радиорелейных линий с ретрансляторами (единственного на то время надёжного способа передачи информации), расположенными вне населенных пунктов из-за очевидной сложности технического и экономического характера. Одним словом, из-за дороговизны технической реализации ДО.

Однако, в настоящее время, прогресс в области развития цифровых методов, компьютерных и телекоммуникационных систем и сетей позволяет серьёзным образом изменить вид действующих и будущих образовательных технологий образования в целом. По моему мнению, развитие системы современного образования в стране непосредственно связан с наличием на местах скоростных каналов связи, позволяющих обеспечивать не только локальное, но и отдаленное обучение с учетом необходимых консультаций и непосредственно необходимых для обучения демонстраций, например, через Zoom , Skype, Discord конференции, реализуя доступ к современным базам данных и используя при необходимости методы распределенной обработки данных типа ODP (Open Distributed Processing, ITU - T Rec. X.901 / ISO / IEC 10746 - 1, ITU - T Rec. X. 902 / ISO / IEC 10746 - 2 ITU - T Rec. X.904 / ISO 10746 - 4 и некоторые другие).

Более того, идея унификации беспроводной связи для всех видов сервиса привела к появлению стандартов для мобильных сетей сначала третьего поколения (3G), а в дальнейшем 4G и 5G. Так, основной целью стандартов 3G было объединение телефонной и цифровой связи в глобальных сетях мобильной связи. Основными стандартами были UMTS (W-CDMA) и CDMA-2000. Основное отличие сетей четвертого поколения от предыдущего заключается в том, что технология 4G полностью основана на протоколах пакетной передачи данных. В плане развития концепции 4G и как дальнейшее развитие серии стандартов 802.11, реализуется стандарт 802.16 (Wireless Man), который находит не только промышленное, но и коммерческое применение. Обладая большим количеством неоспоримых преимуществ, он, как и многие другие подобные решения, может находить применение только находясь относительно близко от магистральных сетей, а и реализуется путем создания сетей, имеющих локальное покрытие. При этом, необходимо отметить, что переход в более коротковолновые диапазоны, связанные с относительно большим влиянием атмосферных условий на распространение радиоволн, исследованным до настоящего времени достаточно хорошо. Однако, для известных флуктуаций атмосферных и погодных параметров соответствующие изменения параметров прохождения сигнала хотя и могут быть легко прогнозируемые, но, как показывает практика, они (наземные устройства связи) все равно оказываются, более уязвимыми по отношению к закрытым (локальных сетей внутреннего пользования) к воздействию различных природных катаклизмов, и это необходимо принимать во внимание. Аналогичная тенденция прослеживается и при реализации возможностей и работы по выделенным каналам Интернет, хотя, для обоих случаев обеспечивается защищенность канала передачи данных. При этом, как правило, проявляется растущая тенденция, связанная с дефицитом пропускной способности образовательных трафиков национального спутникового ресурса, что в конечном итоге приводит и к его удорожанию.

Итак, чётко прослеживается принципиальная необходимость решения проблемы ДО конкретного вуза посредством использования внутренних информационных ресурсов в виде электронных учебников, конспектов лекций, виртуальных лабораторных работ и других методических разработок в виде единого банка хранения всей информации при использовании своей локальной технической системы обработки и доставки информации. Последний, (в отсутствии необходимости ведения бумажного архива), должен быть защищенным и доступным в любой момент времени, как для студентов, так и для специалистов ВУЗа, способствуя повышению их профессионального уровня. При этом очевидно, что любое ДО не может обходиться без технических средств его обеспечения.

Таким образом, передо мной была поставлена задача разработки кибер-безопасной информационно-технической системы (ИТС) для главного корпуса Университета таможенного дела и финансов с целью дальнейшего её использования в качестве ДО. Причем, при реализации поставленной задачи, нужно было ознакомиться с особенностями ДО и с современным состоянием и построением защитных информационно-технических систем.

Техническая реализация

Этот раздел тесно связан с актуальностью проблематики обеспечения безопасности использования глобальной сети интернет, что очевидна для большинства пользователей и требует на каждом этапе приема-передачи и обработки сопутствующих потоков не только априорной оценки угроз и рисков, а также разработки и реализации надёжных систем защиты с целью уменьшения отрицательного влияния на достоверность и целостность информации.

В этом аспекте, прежде всего, весомый вклад вносят точки входа (доступа), обеспечивая способы подключения к сети интернет. Так, при подключении к таким точкам, человек начинает передавать данные.

Эти данные очень легко перехватить, изменить и передать совершенно другую информацию, либо же злоумышленник может получить конфиденциальное сообщение, контактную и личную информацию, которые передаёт пользователь сети.

Итак, нужно понимать, что при подключен ни к глобальной сети - открывается двухканальная связь с помощью которой можно, как отправлять данные, так их и получать. Это говорит нам о том, что каждый пользователь может подключиться к любому ресурсу, а злоумышленник может подключиться к нему, что приводит к нежелательным последствиям.

Поэтому такие точки доступа к сети интернет не могут быть полностью безопасны. Злоумышленники могут перехватывать данные, подменять их и получать доступ к вашему цифровому устройству, что ведёт к риску так называемой компрометации данных и информации. Нам же нужно максимально минимизировать все риски.

Особенности реализации информационно-технической системы в Университете таможенного дела и финансов

Все, даже безупречные современные устройства, требуют решения по оптимизации его использования, прежде всего, при так называемой привязке к непосредственному объекту внедрения ИТС. А так как мы используем Мировую(Глобальную) цифровую информацию обеспечения в ВУЗе, то нас интересует как быстро эту информацию можно найти и как в целостном режиме передать непосредственно пользователю используя локальную систему связи университета. Привязка нашей системы имеет свои особенности связаны с расположением учебных корпусов вуза. В нашем случае можно было ожидать , что используется как эфирная среда распространения электромагнитных волн для передачи/приёма сообщений (Wi-Fi), так и кабельная система (витая пара, 4 пары, RG - 45, изображена на рис 1.1 ниже) и оптическая линия по стандарту GPON.

Необходимо было предусмотреть перекрытия так называемых теневых зон средств приёма/передачи сигналов используя стандартные системы Wi-Fi обеспечения. В связи с этим, мы должны использовать такие тактические данные устройств, что смогут обеспечить непрерывную зону покрытия главного корпуса в УТДФ, который представляет собой П - образное здание . (Рис. 1.2 - 1.3, фото со спутника, и схематическое отображение Google Maps ниже).

В связи с этой особенностью мы ожидаем, что нам придётся использовать различные системы связи и устройства. Для того , чтобы не ошибиться, нам нужно было провести апробацию этой системы и устройств на уровне одной кафедры, используя лабораторное макетирование (стенд) .

На данный момент один из самых распространенных способов подключения к сети интернет реализуют с помощью технологии Wireless Fidelity (Wi-Fi), которая имеет удобный и быстрый способ соединения, используя беспроводной радио-частотный канал.

Апробация информационно-технической системы

Для тестирования системы на кафедре кибербезопасности УТДФ все компоненты сети были соединены, и сформировали стенд для апробации (схема подключения изображена на рис 1.4 ниже).

Особое внимание было уделено привязке точек доступа, реализованные с помощью оборудования Ubiquiti UniFi. Внешний вид точек доступа приведены ниже на рис. 1.5 1.6.

Эти точки доступа передают сигнал также с помощью радио - частотного канала той же сверхвысокой частоты и в них реализована технология бесшовного покрытия. Эта технология позволяет не подключаться постоянно вручную к каждой новой точке доступа, а, наоборот, оптимизировать режим связи в автоматическом режиме. Так, если Вы выходите из зоны покрытия сигнала первой точки, то в автоматическом режиме Вы подключаетесь к следующей ближайшей точки сети с минимальной задержкой (рис. 1.7 - 1.8)

Для нормального функционирования и оптимизации работы точек доступа были проведены контрольные замеры мощности сигнала точек доступа, с целью выявления "мёртвых зон" и дальнейшего выбора оптимального расположения точек доступа для обеспечения "бесшовной сети" на всех четырёх этажах учебного корпуса.

Для решения этой задачи мы использовали закрытое серверное помещение межкафедральной информационно-технической лаборатории, надёжное хранилище от посторонних людей, куда мы перенесли все устройства и начали отрабатывать возможность подключения абонентов и трансляции Интернет трафика. Для стендирования были использованы устройства Ubiquiti Uni-Fi AP так как передача происходила на относительно коротких дистанциях (до 15 метров). В качестве Интернет-трафика использовалась ветвь УТДФ, к которой был подключен главный сервер лаборатории и маршрутизировали трафик с помощью витой пары и RG - 45. Для подключения экосистемы Ubiquiti мы использовали фирменное компактное серверное решение Ubiquiti Cloud, с помощью которого смогли настроить маршрутизацию трафика, его мониторинг (не нарушая конфиденциальность абонентов), обслуживания и создания резервных копий системы (Backup). После настройки и подключения мы воспользовались программным обеспечением, которое показывает уровень сигнала каждой точки доступа, и настроили режим ретрансляции, то есть фактически создали такое бесшовное покрытие, что могло усиливать и ретранслировать сигнал на вcе дополнительное крыло главного корпуса УТДФ.

Так, на базе кафедры кибербезопасности и информационных технологий в кабинете межкафедральной учебной лаборатории УТДФ был создан прототип системы , включающий в себя две точки доступа, который отлично работал в тестовом режиме всю рабочую неделю, обслуживая коллектив и студентов кафедры кибербезопасности и информационных технологий, кафедра компьютерных наук, межкафедральную информационно-техническую учебную лабораторию, и другие аудитории в радиусе действия.

То есть, после тестирования стендовой системы мы получили положительный результат, система показала свою работоспособность и зарекомендовала себя как систему, которую можно масштабировать на весь главный корпус УТДФ . Однако, для этого нужно разработать способ распространения стабильного покрытия на весь П - образный корпус.

Масштабирование, защита и внедрение информационно-технической системы

Благодаря успешному тестированию точек доступа нам удалось рассчитать примерную дальность Wi-Fi покрытия с учётом бетонированных стен здания - от 10 до 15 метров в зависимости от количества стен. Однако, корпус не является симметричным, то есть, расположив точки доступа слишком близко мы создадим искусственные электромагнитные наводки на систему, которые имеют диструктивное влияние на информационно-техническую систему вобщем. Для решения этой задачи мы взяли второй тип точек доступа Ubiquiti Unifi Long Range (с англ. Дальней дальности) , тем самым минимизировали скопления большого количества точек доступа благодаря установленным одной точки далекой дальности для длинных коридоров, и отдельную для актового зала так как это помещение является крупнейшим в здании. Имея эти данные мы сделали набросок схемы покрытия здания УМСФ и смогли рассчитать условное месторасположение каждой "точки доступа". Ниже, на рис. 1.9 зелёным выделены точки LR, синим - AP на каждом из 4 этажей корпуса (набросок рисовали в Paint, перфекционисты - извините :)

Кафедральная, а затем и университетская Wi-Fi система способна работать в СВЧ диапазоне (именно на частотах 2,4ГГц и 5ГГц), поддерживая 802.11 a / b / g / n Стандарты Wi-Fi. При этом следует отметить широкий выбор возможных скоростей обмена сообщениями (от 6,5 до 450 Мбит / с на частоте 2,4 ГГц и от 6,5 до 300 Мбит / с на частоте 5ГГц, используя соответственно стандарты 802.11n MSC0 - MSC23 и MSC0 - MSC15).

В нашей системе беспроводное сетевое соединение реализовано с помощью технологи Power over Ethernet (PoE). Технология PoE реализует в себе использование одного кабеля витой пары для передачи данных, а также питания периферийных устройств. Для передачи напряжения чаще всего используют неиспользованные (свободные) для передачи данных пары проводов, в нашем случае это синяя и коричневая (рис. 1.10).

В нашем случае было внедрено использование пар для передачи питания и пара для данных, то есть стандарты PoE, которые обеспечивают сигнализацию между оборудованием источника питания (power sourcing equipment) и устройством питания. Для корректной работы требуется PoE адаптер, фото которого ниже на рис 1.11.

Защита информационно-технической системы

Для эффективного регулирования кибер-отношений мы должны изучать не то состояние, которое сейчас существует, а прогнозировать и моделировать те кибер-отношения элементов структуры, которые возможны будут в будущем, и формировать механизм управления рисков, исходя из будущего состояния системы.

Для защиты устройств от студентов, или потенциальных злоумышленников были проведены комплексные меры безопасности оборудования. А именно: расположение точек доступа выше 2,5 метров (на стенах, или потолке), скрытия линий питания и передачи данных в кабель-каналах (кабельтонах) на той же высоте, создание контролируемых (открытых) и неконтролируемых (закрытых) линий коммутации данных и питания на каждом этаже в закрытых серверных комнатах с ограниченной формой допуска (коробки коммутации).

Особенностью реализованной системы есть то, что она комбинирует в себе как безопасную беспроводную связь с помощью радио-частотного канала, а также является их защищенность посредством использования непрерывного контроля со стороны сервера на основе системы Ubiquiti CloudKey. Внешний вид сервера и типичная схема подключения изображена на рис 1.12.

С помощью этого сервера обеспечивается постоянный контроль и мониторинг входных и выходных данных. В частности формируется отчетная статистика, благодаря её помощи реализована система блокировки подозрительного трафика сети. Применяется шифрование и Secure Sockets Layer (SSL) сертификация. Это обеспечивает конфиденциальность обмена данными между клиентом и сервером с помощью Transmission Control Protocol / Internet Protocol (TCP / IP).

Защита сервера управления системой надёжно зашифрована с помощью биометрической защиты панели администрирования (сканирование отпечатка пальцев, сканирование лица, рис. 1.13).

Защита беспроводной сети Wi-Fi реализована с помощью метода шифрования WPA2-PSK с использованием пароля более 10 символов, который на сегодня является наиболее криптостойким алгоритмом аутентификации устройств.

Благодаря данным мерам каждый студент и любой преподаватель учебного заведения могут подключиться к сети интернет, а главное, это подключение защищено и безопасно, а также не имеет в себе угроз и рисков перехвата, то есть злоумышленники не получают доступ к передаваемой информации.

Итоги

На базе современного развития цифровых методов, компьютерных и телекоммуникационных систем, а также сетей, была поставлена цель и реализованы задачи технического оснащения дистанционного обучения, позволяющие обеспечивать не только локальное, но дистанционное обучение студентов с учётом необходимых консультаций и демонстраций через, например , Zoom, Skype, Discord конференции, что является актуальным в период карантина, связанного с коронавирусом. В ходе этих задач были рассмотрены и получены следующие результаты:

- проведён анализ информационно-технических систем высших учебных заведений, по результатам которого дальше использовали современные мировые информационно-технические сервисы такие как Google Classroom, Zoom конференции, Skype, Google Hangouts, Prometheus, SuperMemo, Stepik, Coursera, SoloLearn, Brain Code. Проведено сравнение преимуществ и недостатков (плюсы и минусы) современного состояния этих методов ДО;

- формализованы требования к защите информации в информационно-технических системах и выбора методик защищенность и конфиденциальности информации, то есть информационно-технические системы высших учебных заведений должны отвечать современным требованиям помехозащищенности и безопасности функционирования с учетом надежного обеспечения конфиденциальности, доступности и целостности учебной, научной и административной информации . В связи с чем предложенный метод криптографической сокрытие информации и защиты источников питания от несанкционированного доступа;

- в будущем озвученные ИТС и их структуру можно масштабировать на спутниковый уровень (ретрансляционный) для покрытия больших территорий.

Особая благодарность в.о. зав.кафедры кибербезопасности УТДФ Прокопович-Ткаченко Дмитрию Игоревичу за предоставленные возможности для создания ИТС, доценту кафедры кибербезопасности Тарасенко Юрию Станиславовичу за помощь с оформлением и расчётами, а также студентам Олейнику Александру, Рудакову Михаилу и Луценко Владимиру за оказанную помощь в прокладке линий коммуникации!

Спасибо за внимание!

Подробнее..

Wi-Fiв офис, на склад, завод, банк Сценарии внедренияи сборкиWi-Fiв сферы бизнеса.(Часть2)

27.04.2021 12:23:09 | Автор: admin

Оглавление

  1. Введение

  2. Wi-Fi и размер бизнеса

    2.1для малого бизнеса

    2.2для среднего

    2.3дляenterprise

  3. Сценарии примененияWi-Fiв сферах бизнеса

    3.1 Wi-Fiна заводе

    3.2Умный ритейл.Wi-Fiв магазины и ТРЦ.

    -Сеть магазинов

    -МаркетингТРЦ

    3.3Wi-Fiв отеле, ресторане, кафе.

    3.4Wi-Fiвбанках

    3.5Wi-Fiна складе

  4. Заключение

Введение

В прошлойстатьерассказ шел о технологиях и инструментах, которые внедряют вWi-Fi. Часть 2 будет о типовых сценариях внедрения. Если лень читать- проматывай(ссылка на ту же статью в блог)вниз, там будет калькулятор. Калькулятор учитывает вендора, количество точек доступа и дополнительный функционал.

Сразу оговорюсь, статья будет не только оWi-Fi6в вакууме. В каждом кейсе будет примеси других технологийи оборудования. Все статьи я составлял с помощью решений отCiscoи Aruba/Huaweiкакальтернатива.Но это не значит, что мы не найдем аналогов наZyxel.

Начнем с решений в зависимости от масштаба бизнеса. Каждый класс предприятий имеет свой подходк построение беспроводной сети.

Wi-Fi и размер бизнеса

Малый бизнес

В малом бизнесе требования к WI-Fiсетям минимальные. В офисе на20-30человек хватит1-2точек доступа.Контроллер не нужен, либо им может стать точка доступа.Если в офис приходят посетители, стоит позаботиться о гостевом доступе.Возможна интеграция склада и терминалов сбора данных через беспроводноесоединение.Кибербезопасность ограничивается антивирусами на конечном устройстве и двухфакторной аутентификацией(CiscoDuo).

Средний бизнес

Схема беспроводной сети в средней компании уже включает в себя контроллер. Контроллер управляет подключенными точками доступа. В компаниях с виртуализацией контроллер может устанавливаться на виртуальную машину.

Еще всреднем бизнесе появляется понятие кибербезопасности. Дополнительно к аутентификации добавляется межсетевой экран для анализа вирусов в трафике.В теории каждый узел может быть защищен.Вопрос: стоит ли объект защитыпотраченныхсредств.

Офис нашей компанииОфис нашей компании

В офисе любого размера есть потребность в мобильных сотрудниках.Удаленкаэкономит деньги на аренду и содержания офиса. Командировки помогают вести проект и разговаривать с сотрудниками на месте. Выезды к заказчику приближают его к покупке.Чтобы безопасно подключаться к инфраструктуре нуженбезопасный канал.CiscoAnyConnectего предоставляет.

Типовой дизайн:

Требуется подключенияWi-Fiи сетевых служб в офисе под ключ. В офисе должны быть проводная и беспроводная инфраструктура, гостевой доступ, система безопасности, унифицированные коммуникации.

Помещение 1500 м2

Кол-во сотрудников: 150 человек

Решения кейса

На уровень ядра устанавливается коммутатор доступа-Catalyst9500.

На уровне доступа-Catalyst9200.Точки доступа-CiscoAironet9117или 9120.

КонтроллерCatalyst9800-L.(может быть виртуальным)

Управление и контроль:CiscoISE(Опция)

Безопасность периметра:Firepower1010+Duo(Опция)

Продукты:CiscoDNA,Firepower+Duo+ESA/WSA,Cisco ISE, Cisco Aironet 9117.

ИнфраструктураСМБв вакуумеИнфраструктураСМБв вакууме

Enterprise

Организация

WLANна уровнебранча(офиса компании), не отличается от среднего.На глобальномуровне добавляются коммутаторы ядра иDNACenter.Enterpriseотличается от СМБпостроением кибербезопасности в компании,интеграциейбизнес-приложений(но о них мы поговорим в другой статье)и повышенной отказоустойчивостью.

Так может выглядетьIT-инфраструктураEnterpriseТак может выглядетьIT-инфраструктураEnterprise

ВEnterpriseсегментекибербезопасность более актуальна,чем в среднем бизнесе.Точекпроникновения злоумышленниковбольше, чем в среднем бизнесе.Цена ошибкивыше. Стоимость простоя региональнойсети магазиновможетдостигатьсотен миллионов рублей.

Категории средств безопасности:

  • Сканеры уязвимости

  • SIEM-системы

  • Защита приложений

  • WebApplicationFirewall

  • CDN

Каждая категория закрываетпотребностьEnterpriseв безопасности.Но эта статья больше для СМБ, поэтому не будем углубляться вподробностирешенийдля большого бизнеса.

Сценарии применения Wi-Fi в сферах бизнеса

Описание сценариев применения будет по принципу.

  • Типовой дизайн предприятия сценария

  • Технологии для решения задач сценария

  • Решения кейса

  • (Иногда) Схема исполнения

Все описанныесценарии- общее среднее по сфере бизнеса. Типовые проблемы, которые мы часто встречаем у заказчиков, описаны ниже.

Каждый бизнес особенный, и кейс может отличаться от Вашего.

Wi-Fi на заводе

Wi-fiсеть на заводе строится по подобию складской сети. Разница в производственной линии и более агрессивной среде.

Типовой дизайн:в промзоне размещенарматурныйзавод.Управление завода намерено внедритьтерминалы сбора данныхдлямаркировкиконечной продукции. На территории цеха отсутствует беспроводная сеть- ее нужнопостроить с нуля. Финансовые потери от 1 дня простоя составляютот10до 80млн рублейв зависимости от контракта.

Стандартный вид производственного предприятия изнутриСтандартный вид производственного предприятия изнутри

Применимые технологии:

Задача похожа на организациюWi-Fiна складе, с важным отличием. Есть производственная линия, управляемая промышленными ПК. Терминалы сбора данных, вместе с высоким темпом производства нагружают беспроводную сеть. Высокая цена простоя требует вложений в кибербезопасность.

Основной акцент делается на непрерывности производственного процесса.

Риски прерывания по частиITинфраструктуры:

  • Прерывание сигналовIOTустройств из-за перекрытий и чугунного оборудования

  • Физическое повреждениеIT-оборудования

  • Остановка процессов вследствие вредоносного ПО и хакерской атаки

Направленные антенны

Электромагнитные помехи, изоляционные материалы, плотные перекрытия, балки, опоры мешают распространениюWi-Fiсигнала. Без направленной антенны сигнал потеряется.ТехнологияBeamFormingподойдет для агрессивной среды завода.

Wi-Fi антенна (не в вакууме)Wi-Fi антенна (не в вакууме)

Кибербезопасность

Атака на производственную цепь- цель для злоумышленников.Основные цели- бизнес-данные,энергоснабжение, АСУ-ТП.Отвязать сеть, возможно, лучшее решение для безопасности производственного цикла. Все управление производством сводится к1-2ПК. На них установлены специальное ПО управления.

Атака на производственные процессы может проходить не впрямую на ПК управления. А через офис. Фишинговая рассылка может быть адресована в центральный офис компании, а затем прислана директору завода. Поэтому для защиты сети нужен мониторинг трафика.

Задача безопасностисводится к безопасности этихпромышленныхПК и смежных устройств.Фаерволлы, Многофакторная аутентификация и анализ трафика сети обезопасят промышленную сеть.

Пример использования:

Складское помещение нуждается в бесперебойномwi-fi.Работа на территории ведется в 3 смены. Стоимость простоя:10 млн. руб./сутки.

Одноэтажное здание

Площадь: 20000 м2

Кол-во ТСД: 20шт.

Кол-во ноутбуков15шт.

Решения кейса

На уровень ядра устанавливается коммутатор доступа-Catalyst9400.

На уровне доступа-Catalyst9200.Точки доступа-CiscoAironet9117с внешнимиантенами.

Промышленные коммутаторы:CiscoIE1000с защищенными портамиTACACS(Опция)

Контроллервотказоустойчивой конфигурации(может быть виртуальным).

Управление и контроль:CiscoISE(Опция)

Безопасность периметра:Firepower+Duo(Опция)

Продукты:

Cisco:МаршрутизаторCisco ISE(Опция),МСЭFirepower+Duo,КонтроллерточекдоступаWiFiC9800-40-K9,точкидоступаCisco Aironet 9117 Out-Door.

Huawei:USG6320,КонтроллерHuawei AC6508,точкидоступаAirEngine6760X1

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа518 Series,управлениеAruba Central

Умный ритейл. Wi-Fi в магазинах и ТРЦ

Wi-Fiв ритейле использует службы склада, создает гостевой доступдля посетителейи служит для маркетинговых исследований иуведомлений.Wi-Fiмаркетинг, наверное, единственное применение технологии, которое может приносить прямую прибыль компании. ФактическиWi-Fiвмагазинеили в офисе продаж являетсяобразующейтехнологией.Склад магазина использует терминалы сбора данных, они беспроводные.

Сеть магазинов

Кейс: сетьпродуктовыхмагазиновне имеет беспроводной сети в каждой точке продаж. Проблемы недочета товарапривели к модернизации системы склада ивнедрению терминалов сбора данных (ТСД). Каждый ТСД требует подключения к беспроводной сети,значитв каждой точке продаж должен быть местныйWi-Fi.

Решение:организация беспроводной сети в точке продаж-задачане сложная.Сложности начинаютсяворганизациимагазиновв единую сетьи управление беспроводной сетью изцентрального офиса.Для построения таких сетей используютсявиртуальные контроллеры.Контроллеры размещаются на виртуальных машинах и используют мощности, которые ей выделены. Обслуживание виртуального контроллера не требует присутствия администратора в серверной. Администратор может управлять оборудованием хоть у себя дома.

Может выглядеть такМожет выглядеть так

Технологии и средства

Виртуальный контроллер

WLC(Опция)

(WirelessLocalController)может контролировать разветвленные сети, вроде той, что в кейсе. Основныепроблемыв управлении такими сетями:

  • нехватка информации о магазине(качество покрытия,загруженность устройств, безопасность в сетях, время на устранение ошибок и их кол-во)

  • Отдельные дорогостоящие специалисты на конечныхточках (магазины, офисы ит.п.)

  • Увеличение человеко-часов на обслуживание инфраструктуры как в магазине, так и в центральном офисе

WLC управляет всеми точкамидоступаизцентра управления. Центр управления это веб-интерфейсы, или CLI с которого администратор управляет параметрами каждой подключенной точки.

DNA(Опция)

DNAуправляет всеми сетевыми устройствами, чего не может сделать WLC. Этовиртуальные маршрутизаторы, коммутаторы, межсетевые экраны,контроллеры точек доступа и сами точки доступа.

Вот как выглядит пункт управления DNAВот как выглядит пункт управления DNA

Обычно DNA внедряется как подспорье раздутомуштатуинженеров.Однако внедрение DNA- дорогостоящий процесс.

Система по своим характеристиками и цене подходит среднему иEnterpriseбизнесу.

Продукты:

Cisco:МСЭFirepower 2100,контроллерКонтроллерWiFiC9800-40-K9(может быть виртуальным),точкидоступаCatalyst 9113, DNA(возможно).

Huawei:МСЭUSG 6320,КонтроллерHuawei AC6508,точкидоступаAirEngine8760-X1

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа515 Series,управлениеAruba Central

МаркетингТРЦ

Кейс: Маркетинговый отдел торгового центра Юпитер сообщил о снижении спроса на продукцию. Маркетологи сошлись во мнении, что посетители хотят более индивидуального подхода. Было принято решение внедрить систему умногоWi-Fiивидеоаналитики.

WI-Fiзона в ТРЦWI-Fiзона в ТРЦ

Решение:

Технологии трекинга на территории магазина появились4-5лет назад.Последние 2 года маркетинг активно внедрял эти технологии. И сейчас Вы наблюдаете их у себя в уведомлениях на телефоне.

Эта связка дает информацию:

  • о поле

  • возрасте

  • предпочтениях

  • семейном положении

  • покупательской способности

В умелых руках эти инструменты продают посетителю те товары, которые, возможно, хочет купить покупатель.

Пример: В середине зимы вы пришли в торговый центр, в котором уже были раньше. После 10 мин прогулки в таком центре, на телефон приходитpush-уведомление магазина N с предложением купить пальто по скидке. Система предложила пальто, по нескольким причинам.

1.Скоро будет весна

2. Вы уже покупали в магазине N одежду

3. Вы даже примеряли пальто в магазинах конкурентов.

Точки доступа поддерживаютBluetoothТочки доступа поддерживаютBluetooth

Каждаякрупицаинформации- процентквероятности покупки. Как только количество информации наберет критическую массу произойдет продажа.

Точность предложения, зависит от количества информации о покупателе. Никто не любит, когда "впаривают" ненужный товар. Системы аналитики на базеwi-fiсделают предложение точнее.

Продукты:

Cisco:МСЭFirepower 2100,контроллерКонтроллерWiFiC9800-40-K9(может быть виртуальным),точкидоступаCatalyst 9130,DNA(Опция), Duo(Опция).

Huawei:МСЭUSG6320,КонтроллерHuawei AC6508,точкидоступаAirEngine8760-X1

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа530Series,управлениеAruba Central

Wi-Fi в отеле, ресторане, кафе (HoReCa)

В гостиничном и ресторанном бизнесе беспроводная связь является правилом хорошего тона. Вы можете работать вкомандировке, Вы показываете презентации на переговорах в кафе или ресторане.

По факту,внедрение передовых технологий вотель- имиджевый вопрос.ХорошееWi-Fiсоединение воспринимается пользователями как стандарт, а не как дополнительное удобство.

Типовой дизайн(на примере гостиницы):

Для гостиниц характерна разветвленная сетьwi-fiточек. Так как каждый номер должен быть покрытWi-Fiсигналом, сетьпотребность в большом количестве точек.На территории отеля нет посторонних точек, значит нет конфликтамежду сигналами,интерференциии пр. Есть только большое количество перекрытий и стен.

Типовой дизайн этажа гостиницыТиповой дизайн этажа гостиницы

Технологиии сферы применения:

ГостеваяWi-Fiсеть отеля

Гостевой беспроводной сети уделяют особое внимание. Гости приезжают на командировку, по работе, или в качестве фрилансеров. Оставлять их без качественнойWi-Fiсети- удар по репутации. Вряд ли они вернутся при следующей поездке или порекомендуют отель друзьям, если сеть будет прерываться и мешать работе.

BeamForming

Поможет преодолеть стены между номерами.BeamFormingусиливает слабый сигнал, в частности, для преодоления стен.Следовательно, чтобы покрыть всю площадь сигналом, потребуется меньше точек доступа.

BSSColoring

В зонах, где конечные устройства находятся между точками доступа,антенна конечного устройства может подключаться то к одной, то к другой антенне. Из-за этого сигнал будет прерываться.

IOTи умное управление отелем(Опция)

В отель можно внедрить все то же самое что и в умный дом.Но в отеле есть котельные, электрощитовые, системы управления отелем и пр.IOTустройства и беспроводная сеть поможет управлять всеми основными системамииз единого центра.

Управление:

  • освещением, влажностью,отоплением

  • датчики движения

  • сетью, розетками

  • электронными дверьмии окнами

  • IOT-техника (умные пылесосы, колонки, телевизоры ит.п.)

Таким образом обслуживание зданием можно управлять из дома. Это ведет к снижению затрат на инфраструктуру.

Авторизация пользователейи гостевой портал

В последнее время стали популярны гостевые порталы. На гостевом портале пользователь может заказать еду в номер, подключить каналы на ТВ и забронировать время на лечебные процедуры.Пользователи заходятна портал повнутреннейсетигостиницы, без подключения к интернету.

Есть далеко не во всех отеляхЕсть далеко не во всех отелях

Пример использования:

Отель 5Season7-х этажноездание. В здание проведен10-гигабитный интернет, но ссамого начала модернизации, постояльцы жаловались на плохойWi-Fi.В конечном счете,руководство приняло решение модернизировать беспроводную сеть отеля.Тем более, что появились технологии умного управления отелем.Это внедрение повысит статус отеля среди конкурентов.

Кол-во номеров: 110шт.

Кол-воIOTустройств-2000 единиц

Решения кейса

На уровеньдоступаустанавливаются2коммутатора-Catalyst9400встэке.

На уровне доступана каждый этаж устанавливается коммутаторыCatalyst9300.Точки доступа-CiscoAironet9120сфункциейCleanAir.

Контроллер9000в отказоустойчивой конфигурации(может быть виртуальным).

Управление и контроль:CiscoISE

Безопасность периметра:Firepower2100.

Продукты:

Cisco:МСЭFirepower2100,контроллерКонтроллерWiFiC9800-40-K9,точкидоступаCatalyst9120,DNA(Опция),ISE,Duo(Опция).

Huawei:МСЭUSG6320,КонтроллерHuawei AC6508,точкидоступаAirEngine8760-X1

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа550Series,управлениеAruba Central

Финансовый сектор

Под эту категорию попадают банки, компании-брокеры,финтехстартапы. Поотчетув IV квартале2020гогода совершено 29 преступлений в финансовом секторе. Главные объекты атаки- сетевое оборудование (26 из 29 атак).

Банковский залБанковский зал

Чтобы обезопасить компанию от хакеров, стоимость взлома должен бытьвысокой. Чем больше времени, денег, человеческих ресурсов потратит хакер, тем вероятнее, что взлом не случится.Без сомнения,это самый эффективным способ защиты.

В 95% банках установленwi-fi, но только 23% используютдополнительныесредства безопасности. Дополнительные средства безопасности это- песочницы, многофакторная аутентификация, анализ поведения пользователей, мониторинг сетевой активности. Каждый из перечисленных пунктов делает дорожеценувзлома.

Дизайн сети

Сетевая топология- тоже способ построить безопасность.Не будем заострять внимание на высоте монтажа точек.

Существуют требования к дизайну сети:

  • Выделение специальных зон для гостевого доступа

  • Разные права доступа гостевого и офисного доступа

  • Подавление сигнала за пределами зон

Для безопасности сети на каждом узле должна быть своя защита. На уровнекоммутатора- политика управления портами, на уровне контроллера- построение политики подключения, на уровне файрволла- аналитика поведения пользователей и аутентификация.

Так выглядит подключенные IT-продукты в банковской сфере 2019 годаТак выглядит подключенные IT-продукты в банковской сфере 2019 года

Более подробно о средствахзащиты

Песочницы

Термин не совсем правильный в рамкахWi-Fi, но раскрывающий суть. В сети создается промежуточная зона, сSSL(или другой) сертификацией.Любойвредоносповредит только виртуальную машину, на которой размещены ПО и данные.Оригиналы же будут не тронуты.

(Более подробныйответесть уKaspersky)

Шифрование потоков данных/Мониторингзашифрованного трафика злоумышленник может перехватить данные вwi-fi.Это может быть инсайдерская информация или имена доверенных лиц, которые он потом использует. Чтобы не допустить утечки, данные должны шифроваться.Шифрование происходит на уровне точек доступа и контроллера. Никакого дополнительного ПО не нужно.

Многофакторная аутентификацияИЛИ авторизация- распространенный способ защиты сетей. Простой принцип действия- любой, кто заходит в сеть, подтверждает личность генерируемым паролем, письмом илибиометрией. Способов идентификации много.

Аналитика поведения пользователей

Системы анализа пользователей в сети, пока чтоbest-practiceв мире сетевой безопасности. Сложность обмана такой системы стоит дорогов расчете денег и человеческих ресурсов.

Принцип действия систем поведенческой аналитики-

Создается образ посетителя сети, который наделяется определенными параметрами (их очень много).

  • Частота (ГГц)

  • Фреймы

  • Количество

  • Используемые приложения

  • Базовая скорость

  • Скачки триангуляции

  • И многое, многое другое (см. документацию)

Стандартный посетитель сети находится в допустимых пределах. Как только пределы нарушены, системаищет паттерны злоумышленникаили вредоносного ПО. В случае совпадения пользователь блокируется.

Продукты:

Cisco:МСЭFirepower2100,контроллерКонтроллерWiFiC9800-40-K9(может быть виртуальным),точкидоступаCatalyst9120,DNA,ISE(Опция),Duo,WirelessIPS(Fortigate)илиCyberThreatDefense,CiscoDNA(Опция),CiscoUmbrella(Опция),ESA/WSA(Опция),SecureX(Опция).

Huawei:МСЭUSG6320, КонтроллерHuaweiAC6508,точкидоступаAirEngine8760-X1

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа550Series,управлениеAruba Central

Wi-Fi на складе

Типовой сценарий:

Высокие стеллажи спаллетамитовара, высокие потолки, высокое содержание пылии влажности делают распространения сигнала сложным и неравномерным. Зимой неотапливаемые склады страдают от влажности и низких температур.

К складскойWi-Fiсети подключаются терминалы сбора данных, сканеры штрихкодов и ноутбуки.Каждый терминал или ноутбук обращаются к базам данных и бизнес-приложениям.

Как видно из примера условия беспроводной сети на складе можно считать сложными, если не агрессивными.

Классическая картина на складеКлассическая картина на складе

Проблема решается комплексно

Защита от помех и высокоскоростные точки доступа.

У вендоров уже появились точки доступа с защитой от помех.Например,уCiscoэтоCleanAir.Технологиянаходит источник(и) помех и перенастраивает сеть для лучшего сигнала.

Управление политиками доступа.

У ТОП производителей точек доступа есть контроллеры с дополнительным ПО, для управления.Платформы управления могут автоматически управлять и балансировать точки доступа.

Правильное расположение точек доступа.

Даже6йстандарт не обойдет стеллаж толщиной в 3 метра. Только правильное расположение точек доступа покроет сигналом весь склад.

Чтобыузнатьгде сигнал ловит хуже, нуженпредиктивныйанализ. Есть несколько способов исполненияпредиктива.

Первыйспособ- без выхода на местность.

В специальной программе строят план помещения, указывают материалы перекрытия, высоту потолков и другие подробности.На план наносят точки доступа, и программа обсчитывает распространение сигнала. Если покрытие сигналом устраивает- точки устанавливаются в реальности.

Второй способ-с выходом на местность.

На территории предприятия устанавливаются тестовые точки доступа. Далее инженер ходит сWi-Fiантеннойпо территории склада и проверяет уровень сигнала. Преимущество метода в высокой точности, так как покрытие проверяется на практике.

Так выглядит планпредиктиваТак выглядит планпредиктива

Пример использования:

Складское помещениенуждается в бесперебойномwi-fi.Работа на территорииведется в 3 смены. Стоимость простоя: 150k$/сутки.

Одноэтажное здание

Площадь: 25 000 м2

Кол-во ТСД: 25шт.

Кол-во ноутбуков 20 шт.

Решения кейса

На уровеньдоступаустанавливается коммутатор доступа-Catalyst9400.

На уровне доступа-Catalyst9200.Точки доступа-CiscoAironet9117с внешнимиантеннами.

КонтроллерWiFiC9800-40-K9(может быть виртуальным)в отказоустойчивой конфигурации.

Управление и контроль:CiscoISE(Опция)

Безопасность периметра:МСЭFirepower2100.

Так может выглядеть инфраструктура на складеТак может выглядеть инфраструктура на складе

Продукты:

Cisco:МСЭFirepower1100,контроллерКонтроллерWiFiC9800-40-K9,точкидоступаAironet1560,ISE,Duo,CiscoDNA.

Huawei:МСЭUSG6320, КонтроллерHuaweiAC6508,точкидоступаAirEngine6760-X1E

Aruba:КонтроллерMobility Conductor Hardware Appliance,точкидоступа513Series,управлениеAruba Central

Калькулятор есть в статье в блоге

В этомкалькуляторе подобраныминимальные позициипо которым, можно примерно понятьот какой цены начинается внедрение WI-Fi.

Заключение

В этих двух статьях я постарался широкими мазкамиописатькак и куда внедряетсяWi-Fi.

Статья не освещает каждую сферу глубокои не стоит читать ее как руководство.Чтобыподобратьрешения под конкретный случай пишите нам наzakaz@olly.ru

Подробнее..

Рожденные в карантине беспроводной датчик и все-все-все. Битва роботов в конце

26.04.2021 12:16:37 | Автор: admin
image
Рабочая неделя сокращена и теперь ты мой
Твоя прокрастинация. Апрель 2020.


imageВ этой статье я c удовольствием хочу поделится с Вами универсальной платой, которую легко можно использовать для:
  • метеостанции, беспроводного датчика температуры\влажности на солнечной батарее или без нее;
  • автоматического полива цветов на солнечной батарее;
  • безопасным пускателем фейерверков;
а также
  • управлением открывание/закрывая форточки в парнике или механический кнопконажиматель;
  • модуль охранной сигнализации или контактный датчик;
  • управление светодиодной лентой или небольшим вентилятором;
  • умный уличный фонарь на солнечных батареях;
  • наручными/настенными часами или кухонным таймером;
  • и даже электрическая мышеловка или кормилка для животных.


Устройство представляет собой микроконтроллер с приемопередатчиком nrf24l01 и выходами до 3А стоимостью всего от 2*. Заинтересовались и хотите попробовать сами? Последние 10 плат вышлю по Германии абсолютно бесплатно.
* по ценам на 07.2020

Что в черном ящике?

Требования к устройству


Необходимость разработки, как ни странно, пришла от желания установить банальный беспроводной датчик температуры. Я знаю, на Хабре и в Интернете представлено огромное количество температурных датчиков на любой вкус. Но у большинства готовых работ есть серьезный недостаток цена. Платить по 10-15 за штуку, на фоне текущего дефицита и подорожания микросхем, это не серьезно, особенно когда тебе надо больше 10 штук.
Почему так много?
Когда температура в доме опускается ниже 19C, возникает дискомфорт и желание включать отопление. Двери в комнатах закрываются и там образуется свой микроклимат. Слишком высокая температура плохо скажется на счетах и выбросах СО2, а низкая температура будет способствовать избыточной влажности и появлению плесени.
Для помещений рекомендуется соблюдать следующие температуры: гостиная +22C, спальня +20C, ванная +25C, детская +23C, коридор +18C, подвал > +1C, гараж > 0C.
Вторым недостатком увиденных мною датчиков является радиус действия. WiFi с трудом пробивает междуэтажные перекрытия, а что уже говорить о подвале. Можно протянуть WiFi в подвал, для любимой мышки, но она перегрызет провода, испугавшись излучения. Поэтому, датчик должен уметь ретранслировать сообщения от других датчиков.

Третье требование автономность. Для 10 датчиков нужно более 10 батареек и, конечно, хотелось бы заряжать батарейки не чаще 2-3 раз в год. А лучше вообще забыть про зарядку. Например, датчик расположенный на улице может заряжаться от солнечной батареи, а датчик в кладовке может работать от таблетки, просыпаясь 1 раз в час.

Четвертое требование универсальность. Хочется иметь класс устройств, которые будут долго спать, отправлять 5-8 байт в сеть, а при наступлении события включать что-нибудь маломощное, до 2-3А.

Выбор компонентов


В качестве приемопередатчика был выбран NRF24L01, известный не только благодаря своей низкой цене, но и богатым выбором готовых SMD модулей со встроенным усилителем и разъемом внешней антенны.

Датчик температуры/влажности должен иметь цифровой интерфейс и точность выше 1 градуса и опять же приемлемую цену. Выбор пал на SHTC3.

Дисплей должен быть дешевым и информативным. В качестве дисплея было выбрано семейство больших и малых SSD1306 дисплеев. Кончено, я задумывался и над E-paper и для него зарезервировано место, но он плохо ведет себя на морозе и все еще дорого стоит.

Основной дисплей является не энергоэкономичным, поэтому надо определять необходимость его включения. Датчик движения SR602 понравился из-за его размеров. Также можно включить сенсорную кнопку или ИК-приемопередатчик.

Аккумуляторы были выбраны 2 типов: NiMH, как безопасное и дешевое решение для домашних и уличных нужд, если постоянная отрицательная температура длится меньше 1-2 недель и LiFePo4 для уличных нужд при сильных отрицательных температурах.

Контроллер заряда аккумуляторов был выбран CN3085 для NiMh и CN3058e для LiFePo4. Они имеют схожую цоколевку, за исключением вывода DONE, без которого можно обойтись. NiMH также можно заряжать через токоограничительный резистор.

Так и сложились требования к микроконтроллеру: SPI, I2C, RTC с alarm, PWM, ADC, 5 свободных gpio, малое потребление, рабочую температуру -40C..+85C, диапазон напряжений аналогичный NRF24L01, также, имеет значение цена, комфортный для пайки корпус и большой lifetime.
Взвесив все за и против выбор пал на STM8L051. Некоторые могут обвинить меня в предвзятости к STMicroelectronics и будут правы, но на самом деле
были рассмотрены и отброшены следующие варианты:
ESP32-S2FH4 дешево, но WiFi энергозатратен и придется возиться с отладкой высокочастотных схем;
STM32L0XX + NRF24L01 очень хорош, но хотелось бы дешевле;
PIC16Fxx + NRF24L01 также понравился, но нет RTC;
nRF52810 хорош в своем классе, но будет дороже, чем NRF24L01 + дешевый микроконтроллер;
и некоторые китайские производители были отброшены по причине плохой поддержки.

Таким образом определился следующий список компонентов:
Наименование компонента Цена*, Минимум Обычный Обычный с экраном Метеостанция Внешняя метеостанция
STM8L051 0.4 x x x х х
NRF24L01+ 0.6 x x x х х
PCB 0.2 x x x х х
Кварц. резонатор 1TJF090DP1AI075 0.2 x x х х
Датчик температуры SHTC3 0.8 x x х х
Датчик движения SR602 0.4 x х х
Аккумулятор NiMh 1 x x х х
Зарядка аккумулятора CN3085 и стабилизатор напряжения AP2210K-3.3 0.3 x х х
Дисплей SSD1306 0.91 1.1 x
Дисплей большой SSD1306 2.4 10 х х
Солнечная панель 2 х
Итого, 1.2 3.2 5 13.9 15.9

* по состоянию на 07.2020, текущая цена может отличаться в 2-10 раз. Будем надеяться, что это скоро пройдет.

Схема принципиальная.


Я не настоящий электротехник, поэтому в схеме могут быть допущены ошибки, влияющие на работу устройства в долгосрочной перспективе.
Разработка принципиальной схемы и платы выполнялась в KiCAD.

Основные узлы


Питание


Ключик для датчиков и внешних устройств, 2 шт



и многочисленные разъемы



Схема разрабатывалась универсальная и необходимость пайки элементов зависит от конфигурации устройства. Пайка всех элементов сделает устройство нерабочим.
Например, в схеме предусмотрены 3 варианта зарядки батарей через зарядные контроллеры, с подключением внешнего блока питания и через токоограничительный резистор для подключения солнечной панельки.
Также невозможно одновременно использовать датчик движения и диод D2, как индикатор MCU.
Цоколевки для SMD модулей NRF24L01 и NRF24L01 Long Range разные и можно подключить только один из них.

С целью снижения энергопотребления, был установлен отдельный ключ Q1-VT1, который прерывает питание дисплея, приемопередатчика и датчика температуры. В режиме сна основными потребителями являются микроконтроллер, 100К подтяжки на VT1,VT2 и датчик движения, при его установке. I2C шина также была подтянута на отключаемое питание датчиков, дабы избежать утечки драгоценного заряда в режиме сна.

Для подключения внешних устройств, таких как водная помпа, сервопривод, аналоговые датчики или кнопки управления, предусмотрен разъем J4 с управляемым питанием Q2-VT2. Этот выход может иметь раздельное питание с основной платой J3. Максимальное напряжение зависит от подобранных транзисторов и здравого смысла.

Печатная плата.


Я не настоящий проектировщик печатных плат, поэтому с благодарностью приму все Ваши замечания. Плата проектировалась двухслойная из соображений экономии.
Верхний слой

Нижний слой


SMD компоненты выбраны размером 0804, для комфортного разглядывания номиналов резисторов и ручной пайки. Знаю, что многие из вас способны запаять 0204 с закрытыми глазами 60Вт паяльником, так вот это схема и для тех кто этого не может. Для самого мелкого компонента температурного датчика SHTC3 нанесена разметка для его точного позиционирования. Посадочное место для ключей управления устройством, к которому можно подработать транзистор с переключением до 6А при 8V, что больше возможностей дорожек.

Датчик температуры\влажности разместился рядом с контроллером в надежде, что большую часть времени контроллер будет спать и не будет нагревать датчик. По этой причине, силовые элементы унесены на противоположные концы платы, но это не помогает и в режиме зарядки температура увеличивается на 4-5 градусов. NRF24L01 припаивается отдельным модулем, для экономии времени и возможности выбора типа приемопередатчика. Проект данной платы вы найдете на GitHub.

Если схема зарядки аккумулятора не требуется, то можно ее отломать бокорезами, сделав кусь по линии отверстий(берегите глаза).

Плата распаивалась с помощью паяльной пасты и утюжных технологий. Запекать 2 мин. при температуре Лён:

Смотрится вполне сносно:


Корпус


Размер платы удачно совпадает с размерами 2 батареек ААА, что делает доступными все корпуса с батарейками 2xААА или 2xАА. Также подойдут некоторые корпуса для 1x18650 при диагональном размещении платы. Вид у этих коробочек соответствует цене, но мы их спрячем и замаскируем.
Для устройств находящихся на видном месте спешу поделится технологией быстрого и дешевого изготовления красивых корпусов.
Покупаем или печатаем пластиковый корпус и фанеру толщиной 1-2мм из благородных пород дерева. С помощью цианокрилата(берегите глаза и нос) клеем фанеру на пластик и отрезаем все лишнее. Если у вас такие же кривые руки, то необходимо запастись шпатлевкой по дереву и замазать сделанные щели и сколы. Затем, надо дать просохнуть клею и шпатлевке, затереть всё наждачной бумагой и покрыть маслом или лаком.
Таким образом, из
серой пластиковой коробочки


получается теплый деревянный корпус.


Тестирование


Платы были успешно протестированы при температурах от +40С до -14С в конфигурации с дисплеем и датчиком движения. Для плат, которые будут использоваться на улицы в качестве защитного покрытия был использован специальный лак.

Измеренный ток в спящем режиме ~1.5мкА при 2.6В. При включенном режиме потребление зависит от количества подключенных устройств, яркости дисплея, количестве включенных пикселей и режимах приемопередатчика, в среднем получилось 40мА.
Ниже приведено расчетное время работы в зависимости от используемой батареи.
АКБ Заряд, mAh Номинальное напряжение, V Период передачи данных, c Расчетное время работы на 70% заряде, дней
AAx2 2500 2.4 300 217
AAAx2 900 2.4 300 77
AAx3 2500 3.6 120 174
AAAx3 900 3.6 120 62
CR2025 150 3 3600 189
AAx6 5000 3.6 120 350

На сегодняшний день я не могу подтвердить достоверность расчетных данных, испытания продолжаются.

Программное обеспечение.


STM8L051 является 8 битным MCU, имеет 1Кб RAM и 8 Кб ПЗУ. Это значит, что в 8 Кб необходимо уместить максимальную комплектацию:
поддержка интерфейсов i2c, spi;
поддержка устройств: датчик, NRF, дисплей, часы;
протокол передачи данных SMESH;
шрифт (цифры, знаки, буквы);
график вывоза мусора.
И здесь придется бороться за каждый байт. Программный код был написан на языке С для компилятора sdcc. Из допущенных ограничений стоит отметить, что шрифт уместился только от пробела до заглавной Z, а годовой график вывоза мусора пришлось упаковать в 1 байт на событие. Для дисплея размером 128*32 пикселя требуется RAM буфер 512 байт, что приемлемо для микроконтроллера, а вот для экрана 128*64 требуется уже 1Кб, что в RAM уже не помещается. Поэтому, для большого экрана, его буфер пришлось делить на 2 части верхние 3 строки текста и нижние 3 строки текста.

Возможно, описание программного кода со всеми ухищрениями следует оформить отдельной статьей, но сначала исходный код должен быть приведен в приличный вид. Выкладываться на github он будет постепенно, пропорционально полученному отклику.

SMESH (Simular MESH)


Да, уместить полноценный MESH в 8Кб не получилось, но по крайней мере он умеет ретранслировать сообщения. Для управления необходим контроллер, который будет синхронизировать устройства, принимать показания датчиков, передавать время и другие данные. Каждое устройство имеет уникальный ID(4 байта) и динамический однобайтовый адрес. Одна сеть поддерживает до 126 узлов, с максимальным диаметром 22 узла. Кроме этого, каждый узел может ретранслировать данные с устройств не участвующих в сети.

Подразумевается, что контроллер сети постоянно включен и передает данные устройствам. Устройства же спят большую часть времени, просыпаясь согласно расписанию. Расписание имеет установленный период и всегда кратно одному часу. Таким образом, зная точное время и период цикла можно вычислить следующий сеанс связи. С началом периода устройства должны проснуться, передать свои данные и уснуть до следующего сеанса.
Если устройство не будет просыпаться каждый сеанс связи, то оно должно быть исключено из цепочки ретрансляторов данных.

Основа функционирования сети точное время. Поэтому сообщения с точным временем от контроллера сети передаются регулярно. Это помогает скорректировать время на устройствах и быстро подключить новое устройство.

Как мы знаем в аббревиатуре IoT буква S означает seсurity. Нарушать эти традиции у меня не хватило памяти. Но можно быть уверенным, в случае атаки злоумышленник будет находится в радиусе 100 метров от крайнего узла, и при обнаружении невероятных значений температуры вам следует выпустить ваших собак.

На данный момент полноценного тестирования сети проведено не было, но в первом приближении это работает.

Контроллер сети


Изначально контроллер сети планировалось сделать также на базе микроконтроллера, в виде шлюза NRF24L01 WiFi. Но, посчитав соотношение цена\функциональность\время разработки, выбор пал на полноценный PC Raspberry PI Zero(20) c 6'' HDMI дисплеем+touchscreen(30). Несмотря на свою одноядерность и 1Гб RAM RPi Zero справился со своей задачей отображения сенсоров и почасового прогноза погоды на остаток дня.
В качестве ОС был развернут минимальный образ OC *Linux* и установлен Kivy, который поддерживает egl, умеет работать с framebuffer и не нуждается в Xwindows. Следуя заветам Unix, было написано несколько программ, каждая из которых вносит небольшой вклад в отображение информации. Основной является программа управления сетью, которая также принимает данные с устройств, распределяет динамические адреса и передает точное время, погоду и другую информацию. Программа написана на языке С и может быть портирована на любой микроконтроллер. Также работают несколько небольших Python-скриптов: однин из них прекрасно генерирует картинку первого этажа дома, второй для второго этажа, еще один для генерации погоды от OpenWeatherMap на следующие 12 часов, отправки данных на сервер и телеграмм, и наконец, программа, которая показывает сгенерированные картинки по кругу, с возможностью swipe и обеспечивает интерфейс с пользователем.



Чтобы монитор не светился постоянно, к RPI был приделан все тот же датчик движения, по сигналу с которого или с touchpad подается команда к включению монитора. Через 30 секунд монитор выключится, если сигналы не поступят опять.

С самого начало было очевидно, что в конечном счете разработка вышла дороже, чем готовые датчики, но эту плату можно использовать и для других прекрасных вещей.



Автоматический полив цветов на солнечной батареи


Скоро лето, время когда люди уезжают в отпуска, оставляя свои комнатные растения без воды под жаркими лучами палящего солнца. Я знаю, на Хабре и в Интернете представлено огромное количество систем полива для цветов. Большая их часть требует питания 220В или емких LiPo АКБ.

Для модификации нашей платы в автоматическую поливку цветов нам потребуется маломощная водяная помпа до 3А и напряжением 3-4В. Помпу необходимо поместить в емкую канистру от 5л. Желательно, чтобы канистра находилась на одном уровне с цветком, иначе мощности помпы может быть недостаточно для подъема воды более, чем на 30см. Если канистра с водой будет выше цветка, то необходимо поставить обратный клапан, который будет предотвращать самотек воды, запуская в трубопровод воздух. Помпа подключается к разъему J4.

В простейшем случае, длительность включения насоса можно настроить экспериментально. Например, установить включение на 3 минуты 2 раза в день. Для ручной регулировки цикла подачи воды можно подключить дисплей и 2-3 кнопки к разъему J7. В качестве обратной связи можно использовать ADC канал или поместить датчик влажности ближе к поверхности земли. А источник питания лучше использовать 3-6 аккумуляторов АА и солнечную батарею(блок батарей) площадью от 0.4 кв.м., которую необходимо подключить к разъему J8 и приклеить(прислонить) к окну.

Данная схема уже была реализована и, возможно, работает и по сей день, но на другом микроконтроллере.

Безопасный пускатель фейерверков


Не сомневаюсь, что читатели Хабра соблюдают технику безопасности при запуске фейерверков, но несчастные случаи также возможны при некачественной продукции. Поэтому для безопасности и комфорта инициировать запуск фейерверков лучше на безопасном расстоянии.

Для этого понадобится 2 таких устройства: одно для запуска, с нитью накаливания, а второе для управления. В качестве нити накала можно использовать никелевую нить малого сечения, намотанную на разъем и подключенную к J4. Для нагрева нити достаточно 3-4 аккумулятора АА и соответствующий току и напряжению транзистор в ключе VT2. Длину нити следует подобрать так, чтобы она светилась ярко-желтым светом, но при этом не перегорала мгновенно.

Перед надеванием нити накаливания на фитиль фейерверка, фитиль следует загнуть. Для пульта управления следует использовать второе устройство, подключить кнопку запуска к разъему J12. Соблюдайте осторожность при включении устройства!
Демонстрацию устройства, к сожалению, провести не удалось из-за отмены фейерверков в этом году из-за COVID.

Бонус. Битва роботов.



Их схватка будет легендарна

В качестве побочного продукта(своего рода вложенная прокрастинация) сопряжения STM8L0xx+NRF24L01 были изготовлены роботы для игры всей семьей. Схему печатной платы, ПО и модели деталек для 3D печати можно найти на GitHub.

Идея была в создании дешевой игрушки на радиоуправлении с возможностью расширения. В качестве основы корпуса была взята печатная плата, на которую крепятся моторы N20 с редуктором на 150об/мин и батарейный отсек с поворотным колесом.
Для добавления зрелищности борьбе был предусмотрен крюк с сервоприводом, но в схватке реальной пользы от него почти нет. С помощью крюка робот может самостоятельно переворачиваться и впиваться в ногу. На плате есть возможность подключения излучателя для стрельбы фотонами и фотодиода с операционным усилителем, а также внешней платы управления на базе esp32 c внешней камерой. К сожалению, все это так и не было протестировано.

В проекте также используются NiMH аккумуляторы, терпимые к замыканию и ударам, особенно, в руках детей. Cледует обратить внимание на максимальный ток NiMH аккумуляторов, дешевые аккумуляторы не способны выдать ток, необходимый для работы сервопривода под нагрузкой и просаживают напряжение, сбрасывая микроконтроллер.

Было придумано множество вариантов игр, роботы могут устраивать гонки, драться, играть в футбол. Один из вариантов игры можно увидеть в этом коротком видео:

За все время эксплуатации сломалось 6 больших колес, 2 кнопки пульта управления, 2 сервопривода и 1 мотор. Запасайтесь колесами!
Подробнее..

WI-FI 6 ЧТО ЭТО? КАКИЕ СЕРВИС ПОДКЛЮЧАТЬ? СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ (ЧАСТЬ 1)

15.04.2021 16:11:54 | Автор: admin

ЧТО ЖЕ ТАКОЕ WI-FI 6 И ЧЕМ ОН ЛУЧШЕ ПРОШЛХ ФОРМАТОВ

Резюме

Wi-Fi 6 (или802.11 ax) новый стандарт беспроводных сетей. Новый формат, который создавался с целью исправить баги прошлых стандартов. К 2021му году у WiFi накопилось достаточно нерешенных проблем.

  • Конфликт между точками Wi-Fi

  • Разрыв сигнала с точкой

  • Однопоточность сигнала. 1 сигнал 1 устройство

  • Энергопотребление

Wi-Fi 6 создавался для решения этих проблем.

ОТЛИЧИЯ WI-FI 6 ОТ СТАРХ ФОРМАТОВ

Новые технологии решают недостатки прошлых стандартов. Ниже подробный список.

MU-MIMO

Что решает:Проблема конфликта точек Wi-Fi

Как действует:у точки доступа/роутера может быть не одна антенна. Из-за большого количества антенн устройства могут конфликтовать друг с другом. Такие конфликты ведут к разрывам сигналов и сбоям обмена информации. MU-MIMO дает каждому устройству свою собственную антенну.

OFDMA

Что решает:Проблема однопоточности

Как действует:до выхода Wi-Fi 6 точки доступа отправляли пакеты данных по очереди. Если в сети было больше 5 устройств это могло нивелировать широкополосный интернет. OFDMA одновременно делит сигнал между всеми устройствами. Каждое устройство получает столько трафика, сколько требуется.

Пример:В конференц-залах возможны сотни устройств в одной сети. В прошлых стандартах трафика бы не хватало, потому что есть большая очередь из устройств. OFDMA разобьет трафик по всей очереди, тем самым решив проблему.

BSS COLORING

Что решает:Конфликт между точками / конечными устройствами

Как действует:Точка доступа окрашивает сеть. Устройства, которые подключаются к сети видят только свои точки доступа. Таким образом точка доступа отличает свои устройства от чужих, тем самым, решает проблему конфликта точек.

Пример:В торговом центре может быть настоящий зоопарк точек доступа и тем более конечных устройств (мобильных телефонов, планшетов, смарт-часов и т.п.) В сети регулярно пополняется список подключенных устройств. Устройства, которые подключались ранее могут конфликтовать с соседними точками. BSS coloring решает эту проблему.

TARGET WAKE TIME (TWT)

Что решает:Энергопотребление

Как действует:как только точка перестает использоваться, она сразу переходит в режим ожидания. Если у конечных устройств нет постоянных фоновых процессов, экономия электроэнергии может достигать 90%.

Пример:Wi-Fi на складе затратнее, чем может казаться. Чтобы избежать интерференции сигнала из-за преград (стеллажи, полки, грузы) приходится увеличивать количество точек доступа. Конечные устройства используются только в момент погрузки/разгрузки и изменения положения товара, все остальное время сеть простаивает. Это неминуемо ведет к пустому расходу энергии. Для таких сценариев и создавался (TWT)

BEAM FORMING

Что решает:Разрыв сигнала с точкой

Как действует:Точка доступа направляет сигнал в сторону конечного устройства. Из-за преград сигнал может ослабевать или теряться.

Пример:В офисе может быть большое количество кабинетов. Ставить в каждом Wi-Fi точку экономически невыгодно, но и оставлять людей без сети, тоже не имеет смысла. Пара точек Wi-Fi 6 точек доступа могут закрыть потребность всего офиса.

Чуть более сложно, зато наглядно, это описано в видео. Кликай.

ЧТО УСТАНОВИТЬ ПОВЕРХ WI-FI 6

Теперь поговорим о сценариях использовании Wi-Fi 6 и о внедряемых сервисах. Сейчас существует огромный выбор решений, которые упрощают жизнь бизнесу. Мы разобьем их на подкатегории

  • Маркетинг

  • Склад

  • Производство

  • Управление

  • Безопасность

В следующей статье мы будем собирать готовые решения под каждый тип бизнеса.

МАРКЕТИНГ

Большинство решений предназначено для отслеживания позиции потенциального заказчика. Инструменты, которые внедряются поверх Wi-Fi, помогают определить профиль заказчика.

Аналитика потребительских привычек

Такие решения внедряются в магазины и торговые центры. На территории размещения wi-fi, строится тепловая карта. Красные зоны показывают самые посещаемые места. Далее можно использовать эти данные для более точного размещения торговых точек.

Профилирование клиента

На основании посещаемости маркетинговых зон, системы аналитики могут профилировать заказчика. Т е предоставлять рекламные акции, интересные только определенному профилю заказчика.

К примеру: женщине 30-45 лет, которая большую часть времени была возле магазинов мебели, могут быть интересна реклама товаров для дома и ремонта квартиры.

Wi-Fi ловушки

После того, как профиль посетителя создан можно отправлять ему актуальную рекламу и опросы. Специальное ПО позволяет рассылать рекламные уведомления или показывать промо ролики, при аутентификации в сеть.

СКЛАД

Решения Wi-Fi для склада полностью раскрываются только в паре с IOT устройствами. Склад всегда считается Серой зоной любого бизнеса из-за регулярных потерь/недочёта товаров. Для получения контроля над складом существует WMS решения

WMS (Warehouse Management System)

Такие системы позволяют вести учет и мониторить склад.

Возможности WMS систем:

  • Интеграция с CRM

  • Рекомендации к позиционированию грузов в рабочем пространстве

  • Интеграция со службами логистики

  • Управление человеческими ресурсами

В данном случае Wi-Fi является фундаментом, на котором будут размещаться такие решения.

УПРАВЛЕНИЕ

Целый массив решений помогает компаниям управлять персоналом.

Системы RTLS (Real-time Locating Systems) на базе Wi-Fi

Системы предназначены для отслеживания людей или объектов на исследуемой территории. Данная технология может работать вместе с инфракрасными или ультразвуковыми датчиками.

Формирование корпоративных политик

Корпоративные политики могут мониторить трафик и регистрировать посещение сторонних сайтов и ресурсов. Если работник посещает сайт конкурента или биржи по поиску работы, система это зарегистрирует.

Еще можно предотвратить утечку корпоративных данных, отслеживать геопозицию и блокировать устройство, в случае потенциально-опасных действий.

БЕЗОПАСНОСТЬ

Защищенный доступ к корпоративным сетям

Корпоративная Wi-Fi сеть может стать точкой атаки злоумышленников. Одного пароля на вход может быть недостаточно. ИБ решения на базе двухфакторной аутентификации добавляют трудностей злоумышленникам. Увеличение стоимости взлома является самым эффективным средством защиты.

Предиктивная аналитика угроз

У каждой кибер- угрозы есть признаки и сигнатуры. Для того чтобы находить вредоносное ПО внутри Wi-Fi сети инженеры придумали приложения для анализа угроз. Эти приложения подключаются к потоку данных и, с помощью нейронных сетей, анализируют поведение пользователей.

В СЛЕДУЮЩЕЙ ЧАСТИ

В следующей части мы обсудим готовые решения на базе WI-FI 6 для разных сценариев и типов и размеров кампаний

Подробнее..

Starlink Спутниковый интернет от Илона Маска Разбор

19.11.2020 16:18:00 | Автор: admin
Как думаете, сколько всего спутников человечество вывело на орбиту за всю свою историю?

Со времени запуска Спутника 4 октября 1957 года в космос были выведены более 9000 аппаратов, но только около 2000 из них функционируют в настоящее время. Остальные сгорели в атмосфере или сломались и стали космическим мусором на орбите.


А Илон Маск уже скоро собирается выпустить на орбиту земли 12 000 спутников по 260 кг каждый.И это только начало потом он планирует расширить сеть до 42 000 штук.Вы поняли Суммарно это существенно больше того, что было запущено за всю историю человечества! И главное он уже начал это делать!

Зачем? Как минимум спутниковый интернет это дорого и сложно и к тому же недостаточно быстро!

1 Мб- 5$

Поэтому он решил создать свой собственный интернет с блекджеком ну и как положено, покрывающий связью весь земной шар и доступный каждому и в чем-то он сможет быть лучше той же оптики!Сегодня мы выясним возможно ли такое и расскажем подробно о проекте Starlink. Как это работает при чем тут SpaceX!

История


Илон Маск анонсировал Starlink в январе 2015 года. Но почему мы говорим об этом сейчас, потому что кое-что произошло, но для начала немного о проекте и его истории

Сказать, что проект амбициозный ничего не сказать.Ведь Илон в своем выступлении пообещал, что новая спутниковая сеть будет способна покрыть практически всю территорию нашего голубого шарика и обеспечить до 50% пропускной способности всего мирового интернет-трафика тем самым произведя революцию в отрасли!

Правда с уточнением, что в густонаселенных местах, например в больших городах, до 10% трафика, но все равно это очень впечатляет.



Итак в чем же идея?

Для начала выясним какие сегодня есть проблемы у спутникового интернета!Например, одна из них это задержка. Она огромна и составляет порядка 500 мс.В CS:GO не погоняешь, да и вообще она сильно отстает от сегодняшних требований к интернету.

Чтобы понять, как она возникает, нам надо немного понять орбитальную механику!Вы знаете, что спутники летают на определенных расстояниях от земли, то есть по орбитам. Орбит этих много, они разные и служат для разных целей.Например, орбита Международной Космической Станции это около 400 километров, а орбита спутников GPS около 20 000 километров.

Такая орбита выбрана, чтобы каждый спутник покрывал определенную и большую область на планете ведь чем дальше ты от Земли, тем большую площадь можно увидеть.

С интернет-спутниками, да и с большинством телекоммуникационных спутников, все примерно также, только они летают еще дальше от Землина так называемой Геостационарной орбите на высоте около 35 000 километров от поверхности Земли.

У такой орбиты есть плюсы можно запустить всего несколько мощных спутников и они покроют всю поверхность планеты, но естественно есть и минусы, главные из которых задержка и относительно маленькая скорость передачи данных. Ведь сигналу нужно пройти путь туда-обратно, то есть 70000 километров. Именно это и рождает такую большую задержку.

Скажу по секрету, мы с Борей работали в спутниковом операторе я сам тестировал эту связь и помню это злосчастную задержку. А самый дорогой ресурс был та самая пропускная полоса на спутниках их же мало.

И что же предложили Starlink для решения этой проблемы?Смотрите! Вместо отправки нескольких спутников, на Геостационарную орбиту они решили вывести много маленьких спутников на Низкую Околоземную орбиту, то есть на высоту около 500 километров, которые будут постоянно находиться в связи друг с другом и с Землей. И мало того они не будут висеть в одной точке, а будут постоянно находиться в движении.

Ну и сколько же спутников надо вывести, чтобы создать такую живую паутину вокруг земли?

Мы уже ответили в начале, но это по-прежнему взрывает мозг. Янапомню для начала 12 000 штук, а потом еще 42 000. Число то какое, не иначе пасхалочка от Илона.

И пошло поехало...Первые тестовые спутники SpaceX запустили в 2018 году. В будущей сети они не будут принимать участие, однако они послужили для проверки систем связи.

Дальше уже в мае 2019 года, тоже в тестовом режиме, были запущены уже 60 первых предсерийных спутников версии 0.9, между собой они еще не умели общаться, но вот специальные антенны для связи с Землей уже были.

А вот уже с ноября 2019 года SpaceX уже начала выведение серийных спутников основной группировки версии 1.0. Это уже пригодные для использования спутники и на данный момент на орбите находится уже 844 спутника.

А каждый следующий запуск пополняет группировку примернона 60 спутников за раз.



Но как же это так, спросите вы? Тогда на выведение этих тысяч спутников им потребуются десятки лет, если за полгода запустили только около 500 штук.

Планы по запускам спутников Starlink уSpaceX просто грандиозные.Во-первых, они планируют выйти на запуск каждые 2 недели по 60 спутников к сентябрю. Во-вторых, это число явно не финальное, так как одна из целей SpaceX это возможность запусков одного и того же ракетоносителя с перерывами между запусками менее суток.

Вы ведь помните, что SpaceX научились сажать свои ускорители на Землю и использовать их повторно? Это значит, что запусков будет больше намного больше!



Ну и главное новая сверхтяжелая ракета Starship, разработка которой ведется очень активно, по расчетам она будет способна за раз выводить до 400 спутников Starlink!

Как это будет работать?


Скажем так это уже работает!

Для начала работы системы в полноценном режиме не нужно выводить десятки тысяч спутников. В принципе система уже позволяет себя тестировать и на сайте Starlink недавно можно было оформить заявку на бета-тест.

Сейчас на орбите уже 844 спутника и, по словам Маска, это обеспечивает значительный операционный потенциал. Фактически уже идет закрытое бета-тестирование, а с 27 октября начали рассылать приглашения на открытый бета-тест.

А вот, что произошло почти ровно год назад 22 октября:

Илон Маск отправил первый твит через систему Starlink!



Уже есть множество замеров скорости но о них позже.

Полноценное завершение первой фазы подразумевает выведение около 4 000 спутников, что уже обеспечит покрытие всей планеты.

Концепцию самой сети мы примерно поняли, теперь о поговорим о её устройствах.

О самих спутниках


Но о спутниках подробностей компания не дает, но вот информация из тех данных которые SpaceX подали в Федеральную комиссию по связи США.



Каждый спутник оснащен системой лазеров и 4 фазированными антеннами. Кроме того на спутниках есть ионные двигатели на основе криптона, которые нужны для изменения орбиты спутников, а также для того, чтобы натурально сжигать их в атмосфере Земли, когда их срок службы подходит к концу.

Лазеры нужны для того, чтобы спутники могли обмениваться информацией друг с другом и как бы передавать ее как эстафетную палочку.

Про саму систему лазерной передачи данных вообще ничего неизвестно кроме того, что спутники смогут одновременно общаться спятьюсоседями.

Представьте, что это будет как оптоволокно, только без самого волокна ведь в космосе оно не особо нужно!

Антенны же необходимы для связи со станциями пользователей на Земле. Они должны обеспечивать большую пропускную способность и иметь возможность работать с множеством пользователей одновременно. Известно, что они будут работать в Кей-Альфа и Кей-Ю диапазонах ( K u и K a ).

А что такое станция на земле?


По заявлениям самого Маска это антенна размером не больше коробки от пиццы. И для ее подключения необходимо будет лишь воткнуть ее в розетку и направить в небо!

То есть, чтобы вы понимали, процесс настройки антенны сегодня не такой простой я помню как сам это делал несколько лет назад!





Но давайте вспомним задержку мы помним, что она будет существенно ниже но на сколько? Приготовьтесь!

После реализации первой фазы задержка при связи со спутником составит около трех с половиной миллисекунд.

3 ms по спутнику вы только представьте и из любой точки мира!

Сравните с тем спутниковым интернетом, что есть сейчас. Тут задержка более чем в 100 раз меньше!

Мы поняли это будет существенно лучше текущего спутникого интернета, но мыслите дальше: Starlink будет быстрее оптоволоконного интернета на Земле!

Канал Real Engineering приводит очень классный пример.Для кого важны низкие задержки? Для геймеров? Ничего подобного для брокеров! У одних риски получить хедшот от пятиклассника, у других слить в трубу сделку надесятки миллионов долларов из-за грёбаного пинга!

Представьте, что вы сидите в Лондоне и вам надо срочно продать акции на Нью-Йоркской бирже. Конечно же ситуация абсолютно ежедневная для каждого из нас!

Через Starlink задержка составит 43 мс, а при использовании современного интернета это время составляет около 76 мс. То есть разница в 77%, а это огромное число? хоть мы и говорим о миллисекундах!

Главное, что за такое уменьшение задержки финансовые рынки мира готовы заплатить очень большие деньги. Если в прошлом, ради ускорения всего на 5 мс был проложен новый оптоволоконный кабель из Великобритании в США стоимостью в 300 миллионов долларов. Иэто только из Лондона в Нью-Йорк, а ведь есть ещё Гонконг, Сингапур, Токио. Тут уменьшение задержки будет еще больше!

При этом система надежна: если выходит из строя какой-то один спутник, то информация просто пойдет по другой цепи паутины.

То есть мало того, что система позволит надежнее и быстрее работать, так она еще и будет доступна из любой точки планеты. Неважно где в центре Тихого океана или в центре большого города!

В августе этого года уже появились первые данные пользовательских тестов. Даже обладая только маленькой частью того количества спутников, о которых идет речь, скорости уже отлично позволяют вам загружать видео в Instagram или смотреть видео на YouTube!



Давайте глянем что там предлагают тестировщикам: $499 терминал с антенной и встроенным Wi-Fi роутером, $99 месячная абонентская плата, Скорость: 50-150 Мбит, и задержку до 40 мс с улучшением до 20 мс уже в течении года! Для бета-теста вообще отлично. И понятно, что это еще совсем не финальная цена. Она легко может снизиться, когда проект наберет первичную большую пользовательскую базу! А приложение StarLink уже доступно в Apple Store и Google Play!



Более того нашлось уже первое применение:SpaceX предоставила пожарным из Вашингтона два наземных терминала системы Starlink, пишет The Verge. Он пригодились для тушения пожаров в лесах, где есть явная нехватка интернета

Также в будущем система будет полезна при других стихийных бедствиях, например, землетрясениях, когда наземная связь повреждена.



Но конечно не обходится без критики. Астрономическое сообщество выступило с опасением, что такое количество спутников будут очень сильно влиять на информацию получаемую телескопами на земле.

И действительно в 2019 году, после запуска первой партии спутников 19 из них в течение 5 минут мешали работе телескопа DECam (Dark Energy Survey), который предназначен для поисков следов темной энергии.В результате инженеры компании выкрутились придумали, что надо спутники покрывать специальным темным покрытием, которое сделает их как бы невидимыми для телескопов.

И пока что нет никакой информации о том, например, насколько сильно будет влиять окружение на сигнал, например кроны деревьев, горы, облака. Но по идее, чем больше спутников, тем меньше будут мешать помехи.

Что касается стоимости для абонентов. Есть только приблизительные цифры и звучат они так. Стоимость тарелки от 100 до 300 долларов и абонентская плата в 80 долларов в месяц.

Это уже сильно ближе к реальным ценам за интернет дорого, но явно не 5$ за Мб.

Но понятно, что с ростом числа абонентов и возможной будущей конкуренции с другими компаниями, эта стоимость явно будет снижаться! А другие компании есть например компания OneWeb!

Ну и конечно люди, которые бояться чипирования через 5G вышки, от этого проекта вообще сойдут с ума!

В общем, система будет улучшаться и совершенствоваться постоянно, но пока что вопросов еще много.

Давайте немного помечтаем о том, к чему нас приведет такой проект.Только представьте Интернет везде! В море на кораблях, в небе в самолетах, где угодно! Быстрое, стабильное и качественное соединение. А допустим, если вставлять антенны в крыши автомобилей. Все это делает нас все ближе к полноценной реализации Интернета Вещей!

А если помечтать и например уменьшить тарелку, до размеров антенны в телефоне: это интернет всегда и везде.



И ведь это не пустые примеры например, так случилось с GPS в свое время. Ведь первый GPS-приемник был совсем не маленький! А сейчас он уже есть в наручных часах!

Итого




Не знаю как вам, но мне очень нравится то, как развиваются современные технологии и без сомнений мы вошли в новую космическую эпоху!

Кроме того у Илона Маска есть еще один проект Neurolink, о котором мы тоже собираемся вам рассказать. Это конечно будет про то самое чипирование
Подробнее..

Концепция независимой инфраструктуры для IIoT системы на основе mesh cети

10.12.2020 22:22:03 | Автор: admin

Добрый день,

Меня зовут Алексей Бабушкин. Я СЕО независимого дизайн хауса электроники Hi-tech nation. Мы занимаемся контрактной разработкой продуктов в области интернета вещей. В свободное от работы время пилим свои решения с использованием беспроводной передачи данных и тестируем продуктовые гипотезы. Так родилась концепция независимой инфраструктуры для IIoT систем на основе mesh сети, которой я хочу с вами поделиться.

Начнём с теории

Промышленный Интернет вещей(IIoT) это система объединенных компьютерных сетей и подключенных к ним производственных объектов со встроеннымидатчикамиипрограммным обеспечениемдля сбора и обмена данными, с возможностью удаленного контроля и управления вавтоматизированномрежиме, без участия человека. При этом основной ценностью от внедрения IIoT является достижение максимальной результативности и экономичности производства за счет оптимизации его стоимости.

Типовая архитектура таких систем состоит из следующих 3-х уровней:

- оконечные периферийные устройства (датчики, контроллеры, исполнительные устройства и пр.). Этот уровень отвечает за сбор информации с устройств и за приведение её к стандартному виду, фильтрацию и локальное хранение;

- сетевые шлюзы (роутеры, gateway станции и пр.). Они создают инфраструктуру для управления и обмена данными между устройствами посредством проводных или беспроводных протоколов (RS-485, Modbus, CAN, BLE, Wi-Fi, ZigBee, LoRa, и пр.). На этом уровне происходит предварительная обработка информации, выстраивается коммуникация с верхнем уровнем и предоставляется возможность настройки и управления через веб-приложения;

- серверные решения (как правило в виде облачных платформ). Они обеспечивают удаленный доступ к системе и отвечают за более глубокий анализ собранных данных с использованием методов машинного обучения и за хранение больших объемов информации.

Теперь немного глубже

На старте формирования нашей концепции мы решили проанализировать все три уровня и выделить их слабые стороны.

На первом уровне главной головной болью является вопрос нахождения баланса между вычислительными возможностями оконечных устройств, их роли в работе всей системы и энергопотреблением. Современные сложные IIoT системы требуют большей автономности работы (в отрыве от сервера), быстрой реакции на команды (в части исполнительных устройств), дополнительной обработки информации, принятия решений на местах и простоты установки и настройки (желательно по принципу plug and play). При этом никто не отменял запрос на более низкую цену из-за большого количества подключенных устройств.

Слабые стороны второго уровня связаны, в первую очередь, с набирающим обороты переходом на беспроводную передачу данных. Радиоэфир становится все более перегруженным, поскольку большинство нелицензированных беспроводных технологий основаны на частоте 2,4 ГГц. Вскоре это станет одним из самых ограниченных ресурсов. Также стоит отметить неблагоприятную среду, в условиях реально работающих промышленных объектов, в которой приходится функционировать IIoT (большое количество металлоконструкций, высокочастотные помехи от работы производственного оборудования, Wi-Fi сети и пр.). Все эти факторы в совокупности могут привести к снижению качества работы IIoT системы или даже к полной остановке её работы. Чтобы избежать проблем со связью в будущем, современные беспроводные решения должны уметь сосуществовать с другими беспроводными технологиями, поддерживать динамическую смену каналов и работать на других частотах, например, 433 или 868 МГц.

Что касается непосредственно сетевых шлюзов, то сегодня многие производители устанавливают в свое оборудование, например, в те же роутеры или gateway-станции, как можно более высокопроизводительное "железо". Делается это не для улучшения качество сигнала, а чтобы предоставить пользователю, дополнительный функционал управления, со сложными графическими интерфейсами, выводом статистики и т.д. В первую очередь они делают это для того, чтобы оправдать завышенную стоимость новинок. Во вторую с целью улучшения пользовательского опыта при взаимодействии с продуктом. Понятно, что подобные действия продиктованы бизнесом. Возникает вопрос: зачем такое удорожание конечному пользователю. Такой подход противоречит основному принципу концепции промышленного интернета вещей, который гласит: стоимость решения не должна превышать ценность, которую пользователь получает в результате внедрения. Соответственно в интересах пользователей себестоимость отдельных компонентов должна не увеличиваться, а наоборот снижаться, как и стоимость обслуживания.

Слабые стороны третьего уровня связаны в первую очередь с недостатками облачных решений. К таким можно отнести вопросы безопасности. Согласно исследованию Crowd Research, проведенному в 2019 году, около 90% специалистов по кибербезопасности обеспокоены безопасностью используемых облачных сервисов. В некоторых отраслях (например, оборонно-промышленный комплекс) службы безопасности на основе внутренних нормативных актов ограничивают передачу данных за периметр предприятия, что исключает возможность использования облачных решений в принципе. Ещё одним недостатком облачных сервисов считают большую степень зависимости от поставщиков услуг (так называемый vendor lock-in), которые помимо предоставления сервисов и инфраструктуры, потенциально получают неконтролируемое влияние на рынок и клиентов. Так же сюда можно отнести высокую стоимость предоставления подобного рода услуг.

В ходе нашего исследования мы предположили, а что если, из архитектуры можно исключить элементы второго и третьего уровня, а весь их функционал оставить на стороне первого уровня оконечных периферийных устройств.

Так исторически сложилось

Все периферийные устройства мы, как правило, разрабатываем на основе микроконтроллера ESP32 разработанного компанией Espressif Systems. На наш взгляд, сегодня это один из лучших вариантов с точки зрения цена/качество/производительность на рынке. За вполне приемлемую цену мы получаем два ядра, аппаратные блоки шифрования, интегрированныеWi-FiиBluetooth модули, практически все периферийные интерфейсы и встроенный сопроцессор, на котором, посредством программирования на Assembler, можно весьма эффективно решать различные фоновые задачи в режиме ультранизкого потребления. Пришлось, конечно, практически полностью переписать китайский SDK, но сейчас не об этом.

Mesh

Беспроводную передачу данных мы решили строить на основе разработанной нашими инженерами mesh-cети. Q-mesh это сетевой протокол, построенный поверх протоколов IEEE 802.11n, IEEE 802.11lr и Bluetooth, позволяющий объединять многочисленные устройства, распределенные по большой площади как внутри, так и снаружи помещения в единую беспроводную локальную сеть. Сеть работает на частотах 2.4 ГГц и 868 МГц или 433 МГц. Частота 2.4 ГГц используется как основная, а частота 868 МГц или 433 МГц как дополнительная, для повышения надёжности, а также для маршрутизации между удаленными сегментами сети.

Наше решение отличается от аналогичных беспроводных решений тем, что не требует применения выделенной gateway станции. Любое из оконечных устройств, имеющих гарантированное питание, может полноценно взять на себя её функции. Выбор такого устройства происходит автоматически. Как правило, им становится то, у которого лучше условия обмена информацией. Например, самый низкий уровень помех, наибольшее число доступных устройств и т.д. Если устройство, выступающее в роли ведущего, по каким-либо причинам выходит из строя, то в течение нескольких секунд будет назначено другое. Замена происходит незаметно для пользователя.

Как мы храним данные

Все устройства оснащены достаточным объемом памяти, в которой постоянно накапливаются данные о работе устройства и, в некоторых случаях о состоянии внешней среды. Анализ этих данных позволяет не только эффективно использовать оборудование, но, также, в некоторой мере, прогнозировать поведение устройств и сети в целом, что обеспечивает постепенную автоматическую оптимизацию системы.

Дополнительная экономия сетевого трафика и памяти в наших устройствах достигается за счет того, что исключается повторное хранение и передача одинаковых данных. Например, при накоплении данных о температуре опрос датчика происходит периодически, но в массив данных его показания, вместе с меткой времени, попадают только в случае их отличия от предыдущих. Таким образом, если за сутки температура объекта не изменялась, то и в памяти хранится всего один отсчет.

В процессе работы такой системы может генерироваться значительный объем данных. Для их хранения, обработки и маршрутизации в системе предусмотрены сервера, построенные на микро сервисной архитектуре, которая позволяет распределять нагрузки. Это делает систему более устойчивой и надежной. Сервера обеспечивают передачу данных между удаленными ячейками mesh-сети, синхронизируют данные между собой и обновляют данные у пользователей в реальном времени. Устройства и пользователи подключаются к системе через веб-сокеты, что обеспечивает быстрый отклик устройств на команды и быстрое предоставление свежих данных пользователям.

Автономное питание

Все вычисления осуществляются внутри системы распределенным способом, в зависимости от источника питания. Что имеется в виду? Если одному из устройств с автономным питанием необходимо произвести сложные и энергозатратные вычисления, то система перенаправит эту задачу ближайшему устройству, имеющему постоянное сетевое питание. Такой подход обеспечивает приемлемый срок автономной работы для устройств с автономным питанием и ускоряет процесс принятия решения.

Элементы такой системы с автономным питанием рассчитаны на длительную работу без обслуживания. С целью экономии энергии эти устройства большую часть времени проводят в спящем режиме и, соответственно, не имеют постоянной доступности. Для эффективной работы с такими устройствами предусмотрена их виртуализация. Реализуется она следующим образом: на одном из ближайших, в смысле топологии и доступности, устройств, имеющем постоянное питание, создается виртуальная копия реального устройства и вся работа других устройств системы ведется уже с ним. Реальное же устройство по собственной инициативе общается со своим двойником и синхронизирует его состояние с реальным. Таким образом, например, пользователю нет необходимости ждать, когда проснется удаленный датчик, работающий по технологии NB-IoT, чтобы передать ему новые настройки. Он просто настраивает его цифрового двойника, и все настройки будут загружены по назначению во время очередного сеанса связи.

Ледовая арена Химик. Управление освещением реализовано согласно нашей концепцииЛедовая арена Химик. Управление освещением реализовано согласно нашей концепции

Передача данных

В отличие от традиционных сетей, например, Wi-Fi, Q-mesh поддерживает динамический выбор канала, основываясь на информации о загрузке каналов, интенсивности и спектре помех. Это способствует более устойчивой работе системы в условиях загруженного радиоэфира.

Нагрузка на различные участки системы может значительно меняться с течением времени. Это может вызывать заметные задержки в работе устройств. Для исключения, или, по крайней мере, для уменьшения вероятности таких перегрузок предлагается анализировать статистику по распределению трафика и реализовать предиктивную маршрутизацию. Таким образом, маршруты будут строиться с учетом ожидаемой нагрузки.

Скорость передачи данных в диапазоне 2.4 ГГц составляет от 0.25 до 112 Мбит/сек, а время задержки передачи от точки к точке от 5 до 50 миллисекунд. Скорость передачи данных в диапазоне 868 МГц составляет 1 Мбит/сек. Передача данных в диапазоне 433 МГц происходит на скорости 0.25 Мбит/сек.

Безопасность сети обеспечивается применением современных алгоритмов шифрования (AES с длиной ключа 192 или 256 бит) с использованием аппаратной поддержки. Трафик туннелируется между сервером и устройством или между парой устройств и шифруется отдельным ключом.Ключ генерируется из шума радиоэфира.

Управление и настройка

Вся система после включения настраивается автоматически, а в процессе работы перестраивается и подстраивается под внешнюю обстановку: расположение соседних устройств, уровень сигнала, загрузка радиоэфира. Процесс первоначальной настройки занимает от 3 до 60 секунд в зависимости от размера сети и заданной конфигурации. При выходе одного или нескольких устройств из строя перестроение системы происходит за время до 10 секунд.

Управление и настройка такой системы происходит через веб-интерфейс, который может раздавать любое из устройств системы выполняющего роль сетевого шлюза (gateway станции). Учитывая ограниченные вычислительные возможности периферийных устройств, поддержку веб-интерфейса они отдают в виде скрипта на сторону браузера смартфона, ПК или планшета, которые, располагают куда большей производительностью. Так как это происходит только в момент, когда пользователь взаимодействует с системой, то нагрузки на принимающую сторону не значительны. В свою очередь, для того, чтобы устройство проснулось и передало необходимые данные дальше, ему также не нужны большие вычислительные ресурсы. Поэтому мы можем использовать более дешевые и менее производительные микроконтроллеры, создавая для пользователя дополнительную ценность. В дополнение к этому, решения для браузеров легко интегрировать, так как они работают практически с любой ОС: Linux, Mac, Android и т.п. Таким образом, на том же ESP32 с 256 Кбайт оперативной памяти, мы можем запускать веб-приложения практически, любой сложности и с любой графикой, производить сложные вычисления на стороне веб-приложения с приемлемой скоростью отображения. Это возможно потому, что основная обработка происходит на стороне значительно более производительного оборудования и, поэтому, запас вычислительных ресурсов у нас практически безграничный.

Резюме

В сочетании с преимуществами децентрализации, разработанной нами mesh-сети, такой подход позволяет нам разворачивать локально закрытую и самодостаточную инфраструктуру для реализации концепции промышленного интернета вещей, используя только оконечные устройства. Такая инфраструктура может обходиться без участия внешнего сервера, предоставляя при этом все необходимые сервисы. Что в свою очередь позволяет выстроить независимую от инфраструктурных операторов систему, подконтрольную только конечному пользователю, сокращает издержки на обслуживание и повышает безопасность и сохранность данных.

Не смотря на то, что мы частично уже использовали подобный подход при реализации реальных проектов, к данной концепции мы все еще относимся как к гипотезе. Поэтому не стесняйтесь в комментариях, бросайте в нас камни, стучитесь в друзья и задавайте вопросы.

Подробнее..

Особенности защиты беспроводных и проводных сетей. Часть 2 Косвенные меры защиты

28.08.2020 12:23:00 | Автор: admin


Продолжаем разговор о методах повышения безопасности сетей. В этой статье поговорим о дополнительных мерах безопасности и организации более защищенных беспроводных сетей.


Предисловие ко второй части


В предыдущей статье Особенности защиты беспроводных и проводных сетей. Часть 1 Прямые меры защиты шла речь о проблемах безопасности сети WiFi и прямых методах защиты от несанкционированного доступа. Были рассмотрены очевидные меры для предотвращения перехвата трафика: шифрование, скрытие сети и фильтрация по MAC, а также специальные методы, например, борьба с Rogue AP. Однако помимо прямых способов защиты существуют ещё и косвенные. Это технологии, которые не только помогают улучшить качество связи, но и дополнительно способствуют улучшению защиты.


Две главных особенности беспроводных сетей: удаленный бесконтактный доступ и радиоэфир как широковещательная среда передачи данных, где любой приемник сигнала может прослушивать эфир, а любой передатчик может забивать сеть бесполезными передачами и просто радиопомехами. Это, помимо всего прочего, не лучшим образом сказывается на общей безопасности беспроводной сети.


Одной безопасностью жив не будешь. Наде ещё как-то работать, то есть обмениваться данными. А с этой стороны к WiFi много других претензий:


  • пробелы в покрытии (белые пятна);


  • влияние внешних источников и соседних точек доступа друг на друга.



Как следствие, из-за описанных выше проблем снижается качество сигнала, связь теряет устойчивость, падает скорость обмена данными.


Разумеется, поклонники проводных сетей с удовольствием отметят, что при использовании кабельных и, тем более, оптоволоконных соединений, таких проблем не наблюдается.


Возникает вопрос: а можно как-то решить эти вопросы, не прибегая к каким-либо кардинальным средствам вроде переподключения всех недовольных к проводной сети?


Где начало всех проблем?


На момент зарождения офисных и прочих WiFi сетей чаще всего поступали по нехитрому алгоритму: ставили одну-единственную точку доступа в центре периметра с целью максимального покрытия. Если для удаленных участков мощности сигнала не хватало, к точке доступа добавлялась усиливающая антенна. Очень редко добавлялась вторая точка доступа, например, для удаленного директорского кабинета. Вот, пожалуй, и все усовершенствования.


Такой подход имел свои основания. Во-первых, на заре становления беспроводных сетей оборудование для них стоило дорого. Во-вторых, установить больше точек доступа означало столкнуться с вопросами, на которые тогда не было ответов. Например, как организовать бесшовное переключение клиента между точками? Как бороться с взаимной интерференцией? Как упростить и упорядочить управление точками, например, одновременное применение запретов/разрешений, мониторинг и так далее. Поэтому гораздо проще было поступить по принципу: чем меньше устройств, тем лучше.


В то же время точка доступа, размещенная под потолком, вещала по круговой (точнее сказать, округлой) диаграмме.


Однако формы архитектурных строений не очень хорошо вписываются в округлые диаграммы распространения сигнала. Поэтому куда-то сигнал почти не доходит, и его нужно усиливать, а где-то вещание выходит за рамки периметра и становится доступным для посторонних.



Рисунок 1. Пример покрытия при использование единственной точки в офисе.


Примечание. Речь идет о грубом приближении, в котором не учитываются препятствия для распространения, а также направленность сигнала. На практике формы диаграмм для разных моделей точек могут отличаться.


Ситуацию можно улучшить, если использовать больше точек доступа.


Во-первых, это позволит более эффективно распределить передающие устройства по площади помещения.


Во-вторых, появляется возможность снизить уровень сигнала, не позволяя ему выходить за периметр офиса или другого объекта. В этом случае, чтобы считать трафик беспроводной сети, нужно почти вплотную приблизиться к периметру или даже войти в его пределы. Примерно так же действует злоумышленник, чтобы вклиниться во внутреннюю проводную сеть.



Рисунок 2. Увеличение числа точек доступа позволяет лучше распределить покрытие.


Давайте ещё раз рассмотрим оба рисунка. На первом четко прослеживается одна из главных уязвимостей беспроводной сети сигнал можно ловить на приличном расстоянии.


На втором рисунке ситуация не так запущена. Чем больше точек доступа, тем эффективнее зона покрытия и при этом мощность сигнала уже почти не выходит за пределы периметра, грубо говоря, за пределы кабинета, офиса, здания и других возможных объектов.


Злоумышленнику придется как-то незаметно подкрадываться поближе, чтобы перехватить относительно слабый сигнал \"с улицы\" или \"с коридора\" и так далее. Для этого надо вплотную приблизиться к офисному зданию, чтобы, например, встать под окнами. Либо пытаться проникнуть в само офисное здание. В любом случае это повышает риск засветиться на видеонаблюдении, попасть на глаза охране. При этом значительно сокращается временной интервал для атаки. Это уже трудно назвать \"идеальными условиями для взлома\".


Разумеется, остается ещё один "первородный грех": беспроводные сети вещают в доступном диапазоне, который могут перехватить все клиенты. Действительно, сеть WiFi можно сравнить с Ethernet-HUB, где сигнал передается сразу на все порты. Чтобы этого избежать, в идеале каждая пара устройств должна общаться на своем частотном канале, в который не должен встревать никто другой.


Вот вкратце основные проблемы. Рассмотрим пути их решения.


Средства защиты: прямые и косвенные


Как уже было сказано в предыдущей статье, идеальной защиты добиться в любом случае не получится. Но можно максимально затруднить проведение атаки, сделав результат нерентабельным по отношению к затраченным усилиям.


Условно средства защиты можно разделить на две основные группы:


  • технологии прямой защиты трафика, такие как шифрование или фильтрация по MAC;


  • технологии, изначально предназначенные для других целей, например, для повышения скорости, но при этом косвенным образом усложняющие жизнь злоумышленнику.



О первой группе было рассказано в первой части. Но в нашем арсенале есть ещё и дополнительные косвенные меры. Как уже было сказано выше, увеличение числа точек доступа позволяет снизить уровень сигнала и сделать равномерной зону покрытия, а это усложняет жизнь злоумышленнику.


Еще один нюанс повышение скорости передачи данных упрощает применение дополнительных мер безопасности. Например, можно на каждом ноутбуке установить VPN клиент и передавать данные даже внутри локальной сети по зашифрованным каналам. Это потребует некоторых ресурсов, в том числе и аппаратных, но уровень защиты при этом существенно повышается.


Ниже мы приводим описание технологий, которые позволяют улучшить работу сети и косвенным образом повысить степень защиты.


Косвенные средства улучшения защиты что может помочь?


Client Steering


Функция Client Steering предлагает клиентским устройствам вначале использовать диапазон 5ГГц. Если эта возможность клиенту недоступна, он всё равно сможет использовать 2.4ГГц. Для устаревших сетей с малым числом точек доступа основная работа строится в диапазоне 2.4ГГц. Для частотного диапазона 5ГГц схема с одной точкой доступа во многих случаях окажется неприемлема. Дело в том, что сигнал с большей частотой хуже проходит сквозь стены и огибает препятствия. Обычная рекомендация: для обеспечения гарантированной связи в диапазоне 5ГГц предпочтительнее работать в прямой видимости от точки доступа.


В современных стандартах 802.11aс и 802.11ax за счет большего числа каналов можно установить несколько точек доступа на более близком расстоянии, что позволяет снизить мощность, при этом не потеряв, а даже выиграв в скорости передачи данных. В итоге применение диапазона 5ГГц усложняет жизнь злоумышленников, но улучшает качество связи для клиентов, находящихся в пределах доступности.


Данная функция представлена:


  • в точках доступа Nebula и NebulaFlex;


  • в межсетевых экранах с функцией контроллера.



Auto Healing


Как было сказано выше, контуры периметра помещения плохо вписываются в округлые диаграммы точек доступа.


Чтобы решить эту проблему, во-первых, нужно использовать оптимальное количество точек доступа, во-вторых, уменьшить взаимное влияние. Но если просто взять и вручную снизить мощность передатчиков такое прямолинейное вмешательство может привести к ухудшению связи. Особенно это будет ощутимо при выходе одной или нескольких точек доступа из строя.


Auto Healing позволяет оперативно подстраивать мощность без потери надежности и скорости передачи данных.


При использовании этой функции контроллер проверяет состояние и работоспособность точек доступа. Если одна из них не работает, то соседние получают указание увеличить мощность сигнала, чтобы заполнить белое пятно. После того как точка доступа снова заработала, соседние точки получают указание уменьшить мощность сигнала, чтобы снизить уровень взаимных помех.


Бесшовный WiFi роуминг


На первый взгляд, эту технологию трудно назвать повышающей уровень безопасности, скорее, наоборот, ведь она облегчает переключение клиента (в том числе злоумышленника) между точками доступа в одной сети. Но если используется две или более точки доступа, нужно обеспечить удобную работу без лишних проблем. Помимо этого, если точка доступа перегружена, она хуже справляется с функциями защиты, такими как шифрование, возникают задержки при обмене данными и другие неприятные вещи. В этом плане бесшовный роуминг большое подспорье, чтобы гибко распределить нагрузку и обеспечить бесперебойную работу в защищенном режиме.


Настройка пороговых значений уровня сигнала для подключения и отключения беспроводных клиентов (Signal Threshold или Signal Strength Range)


При использовании одинокой точки доступа эта функция, в принципе, значения не имеет. Но при условии, когда работают несколько точек, управляемых контроллером, можно организовать мобильное распределение клиентов по разным AP. Стоит напомнить, что функции контроллера точек доступа есть во многих линейках маршрутизаторов от Zyxel: ATP, USG, USG FLEX, VPN, ZyWALL.


В указанных выше устройствах есть функция для отключения клиента, который подключен к SSID со слабым сигналом. Слабый означает, что сигнал ниже порога, установленного на контроллере. После того, как клиент был отключен, он отправит пробный запрос для поиска другой точки доступа.


Например, клиент подключился к точке доступа с сигналом ниже -65dBm, если порог отключения станции -60dBm, в этом случае точка доступа отключит клиента с таким уровнем сигнала. Теперь клиент запускает процедуру переподключения и уже подключится к другой точке доступа с сигналом, превышающим или равным -60dBm (пороговое значение сигнала станции).


Это имеет важную роль при использовании нескольких точек доступа. Тем самым предотвращается ситуация, когда большая часть клиентов скапливается на одной точке, в то время как другие точки доступа простаивают.


Помимо этого, можно ограничить подключение клиентов со слабым сигналом, с большой вероятностью находящихся за периметром помещения, к примеру, за стеной в соседнем офисе, что также позволяет рассматривать данную функцию как косвенный метод защиты.


Переход на WiFi 6 как один из путей повышения уровня безопасности


О преимуществах прямых средств защиты мы уже говорили ранее в предыдущей статье Особенности защиты беспроводных и проводных сетей. Часть 1 Прямые меры защиты.


Сети WiFi 6 обеспечивают более высокую скорость передачи данных. С одной стороны, новая группа стандартов позволяет увеличить скорость, с другой разместить ещё больше точек доступа на той же площади. Новый стандарт позволяет использовать меньшую мощность для передачи на более высокой скорости.


Повышение скорости обмена данными.


Переход на WiFi 6 предполагает повышение скорости обмена до 11Gb/s (тип модуляции 1024-QAM, каналы 160 МГц). При этом новые устройства, поддерживающие WiFi 6 обладают большей производительностью. Одной из главных проблем при внедрении дополнительных мер безопасности, таких как VPN канал для каждого пользователя это падение скорости. С WiFi 6 станет легче применять дополнительные системы защиты.


BSS Coloring


Ранее мы писали, что более равномерное покрытие позволяет снизить проникновение сигнала WiFi за периметр. Но при дальнейшем росте числа точек доступа даже использование Auto Healing может быть недостаточно, так как чужой трафик от соседней точки всё равно будет проникать в зону приема.


При использовании BSS Coloring точка доступа оставляет специальные метки (раскрашивает) свои пакеты данных. Это позволяет игнорировать влияние соседних передающих устройств (точек доступа).


Улучшенный MU-MIMO


В 802.11ax также есть важные улучшения технологии MU-MIMO (Multi-User Multiple Input Multiple Output). MU-MIMO позволяет точке доступа обмениваться данными с несколькими устройствами одновременно. Но в предыдущем стандарте эта технология могла поддерживать только группы из четырех клиентов на одной частоте. Это облегчало передачу, но не прием. WiFi 6 использует многопользовательский MIMO 8x8 для передачи и приема.


Примечание. Стандарт 802.11ax увеличивает размер групп MU-MIMO во входящем потоке, обеспечивая более эффективную производительность сети WiFi. Многопользовательский исходящий канал MIMO является новым дополнением к 802.11ax.


OFDMA (Orthogonal frequency-division multiple access)


Это новый метод доступа к каналам и управления разработан на основе технологий, которые уже были опробованы в технологии сотовой связи LTE.


OFDMA позволяет отправлять более одного сигнала по одной и той же линии или каналу одновременно, назначая интервал времени для каждой передачи и применяя частотное разделение. В результате не только растет скорость за счет лучшей утилизации канала, но и повышается безопасность.


Резюме


Сети WiFi с каждым годом становятся всё более безопасными. Использование современных технологий позволяет организовать приемлемый уровень защиты.


Прямые методы защиты в виде шифрования трафика весьма неплохо себя зарекомендовали. Не забываем и про дополнительные меры: фильтрация по MAC, скрытие идентификатора сети, Rogue AP Detection (Rogue AP Containment).


Но есть ещё и косвенные меры, улучшающие совместную работу беспроводных устройств и повышающие скорость обмена данных.


Использование новых технологий позволяет снизить уровень сигнала от точек, сделав покрытие более равномерным, что неплохо сказываются на самочувствии всей беспроводной сети в целом, в том числе и на безопасности.


Здравый смысл подсказывает, что для повышения безопасности все средства хороши: и прямые, и косвенные. Такое сочетание позволяет максимально усложнить жизнь злоумышленнику.


Полезные ссылки:


  1. Telegram chat Zyxel


  2. Форум по оборудованию Zyxel


  3. Много полезного видео на канале Zyxel (Youtube)


  4. Особенности защиты беспроводных и проводных сетей. Часть 1 Прямые меры защиты


  5. Wi-Fi или витая пара что лучше?


  6. Синхронизация точек доступа Wi-Fi для совместной работы


  7. Wi-Fi 6: нужен ли новый стандарт беспроводной связи обычному пользователю и если да, то зачем?


  8. WiFi 6 MU-MIMO и OFDMA: Две опоры вашего успеха в будущем


  9. Будущее WiFi


  10. Использование мультигигабитных коммутаторов как философия компромисса


  11. Два в одном, или миграция контроллера точки доступа в шлюз


  12. WiFi 6 уже здесь: что предлагает рынок и зачем нам эта технология


  13. Улучшаем работу Wi-Fi. Общие принципы и полезные штуки


  14. Улучшаем работу Wi-Fi. Часть 2. Особенности оборудования


  15. Улучшаем работу Wi-Fi. Часть 3. Размещение точек доступа


  16. Синхронизация точек доступа Wi-Fi для совместной работы


  17. Свои 5 копеек: Wi-Fi сегодня и завтра


Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru