Русский
Русский
English
Статистика
Реклама

Термоядерная установка

Когда будет термояд 500-мегаваттный проект ITER глазами участника

02.09.2020 16:16:09 | Автор: admin
Если объяснять на пальцах, термоядерный реактор это когда в магнитном поле удерживают плазму с температурой в 150 раз выше, чем на Солнце, а в трех метрах от нее находится охлаждающий контур гигантских катушек с температурой почти абсолютный ноль по Кельвину. По факту получаем самую горячую и самую холодную точки в галактике под одним колпаком. В реакторе два изотопа водорода сплавляются в гелий, высвобождая нейтрон, обладающий огромной энергией. По сути, это Солнце на Земле.


ITER международный проект по строительству опытного реактора мощностью 500 МВт, который официально перешел из стадии строительства на стадию сборки.

Виталий Красильников наш рассказчик, работает на проекте уже семь лет.

Виталий родом из Троицка. Закончил троцикую школу 3 (теперь это лицей), отучился на физтехе в МИФИ, выбрав по примеру отца и друзей семьи тему токамаков, а после работал в научном центре ТРИНИТИ. Откликнулся на интересную вакансию в ITER и в данный момент участвует в строительстве самого большого токамака из когда-либо спроектированных человеком. С конца прошлого года Виталий вместе с коллегами курирует разработку нейтронных диагностик.

В августе при поддержке троицкой Точки Кипения он провел вебинар Когда будет термояд?. Эту статью мы сделали вместе с Виталием на основе его лекции и сессии вопросов ответов, которая за ней последовала.


Итак, давайте поговорим о термоядерном синтезе.

Была такая шутка: в каком бы году вы ни спросили, вам отвечают, что термояд будет через 10 лет. Сегодня эти прогнозы по срокам мы формулируем на основе проекта ITER International Thermonuclear Experimental Reactor (Международного экспериментального термоядерного реактора). Сейчас это знамя, под которым ведутся все основные разработки в данной области.

В пике ITER должен производить 500 МВт ядерной мощности в 10 раз больше, чем требуется для его работы. Это один из самых амбициозных энергетических проектов. Сегодня в нем участвуют семь стран-партнеров, представляющих больше 50% населения планеты: страны ЕС (выступают как единый участник), Китай, Индия, Япония, Россия, Корея и США. Со стороны проект поддерживают Австралия и Казахстан.

Базовые принципы работы термоядерной установки


Для неподготовленной части аудитории сделаю небольшое отступление об основных идеях, заложенных в ITER.

Экспериментальный реактор строится для изотопов водорода дейтерия и трития. Если у обычного водорода ядро состоит из одного протона, то ядро дейтерия содержит один протон и один нейтрон, а ядро трития один протон и два нейтрона. В результате реакции дейтерия и трития получается сложное ядро из пяти элементов, которое разваливается на гелий и нейтрон.


Ядерная реакция дейтерия и трития с образованием гелия и свободного нейтрона

Гелий инертный газ, который ничем не вредит. У свободного нейтрона короткое время жизни, он сам по себе не опасен. Но он обладает большой энергией, поэтому нейтрон необходимо каким-то образом поймать и затормозить, а его кинетическую энергию применить с пользой. Один из вариантов нагреть воду, создать турбину и преобразовать эту энергию в электричество.

Чтобы соединить дейтерий и тритий, их нужно разогнать навстречу друг другу. В больших объемах это можно сделать, нагрев смесь двух газов. Но чтобы реализовать эту реакцию в масштабах ITER (получив заданное отношение затрачиваемой и полезной мощности), по предварительным расчетам, придется нагреть смесь до 100200 млн градусов (по Кельвину или Цельсию уже не важно). Для сравнения: на Солнце всего 10 млн градусов, т.е. температура внутри экспериментального реактора должна быть в 1020 раз выше.

Чтобы удержать плазму такой температуры в замкнутом объеме, можно использовать электрические и магнитные поля.
Один из подходящих инструментов предложили еще в Советском Союзе это тороидальная камера, получившая название токамак.
Термоядерный реактор ITER в разрезе

Токамак представляют собой магнитную катушку, где магнитные поля сформированы таким образом, что удерживают плазму в неком объеме внутри бублика.

Огромные перспективы термоядерного синтеза стоят на трех столпах.

  • Топливо для описанной реакции, по сути, бесконечно, существующих запасов землянам хватит на миллионы лет: дейтерий доступен в Мировом океане, а тритий можно производить в неограниченном количестве из лития.
  • Взрыв или ядерное разрушение в результате неконтролируемой термоядерной реакции невозможны в принципе. Если что-то идет не так, реакция просто затухает.
  • И третий это отсутствие выбросов. На выходе мы имеем гелий, который остается в плазме и подогревает ее, а также нейтрон с большой кинетической энергией, который нужно просто поймать. Сама установка, конечно, облучается нейтронами, но не производит ядерные отходы.

Токамаки строились и раньше, в том числе в России. Но даже самый крупный токамак, находящийся в Англии (Jet), пока потребляет больше энергии, чем производит: сейчас отношение полученной мощности к затраченной от 0,8 до 0,9. В ITER планируют улучшить результаты на порядок, добившись отношения 10 за счет другой физики плазмы, которая должна сама себя подпитывать. Правда, предстоит еще понять, как управлять этими процессами.

С ростом масштабов и температур инженерные проблемы растут нелинейно. Увеличился объем плазмы в два раза катушка нужна в четыре раза больше. Нужны сверхпроводники, которые придется обернуть в некий термос и обеспечить внутри температуру -270 градусов. Все это нетривиальные инженерные задачи.


ITER: диаметр 28 метров, высота 30 метров. Масса 30 тысяч тонн

Вот так выглядит ITER. Токамак размещен в колбе, она называется криостат. Это внешняя оболочка, которая охлаждает сверхпроводники катушек, создающих магнитное поле.
Внутри токамака необходимо создать температуру в 100 раз выше температуры Солнца это будет самая горячая точка нашей Галактики. А снаружи будет одна из самых холодных точек 4 градуса по Кельвину.
Расстояние между самой горячей и самой холодной точками всего несколько метров.

Когда технологии не поспевают за теорией


Практически по всем направлениям разработки ITER мы сталкиваемся с проблемами, которые еще никто никогда не решал.

К примеру возьмем электронику, предназначенную для работы в вакууме и использующуюся для космических целей. Однако у нее нет защиты от радиации, которой в космосе почти нет. Существуют радиационно стойкая сталь и электроника для атомных реакторов, но они неспособны работать в вакууме (таких требований в реакторах просто не было). А значит, нужны новые, устойчивые и к вакууму, и к радиации материалы.

Еще пример нейтронные детекторы, которыми я занимаюсь. Для ITER нам нужно несколько сотен детекторов, по 10 кристаллов в каждом. Нынешними темпами мир выращивает примерно 1050 кристаллов в год, а к 2025-му нужно будет получить около 2000 кристаллов. Этот спрос неспособны удовлетворить имеющиеся установки. Несколько западных лабораторий работают над тем, чтобы доработать технологию.

И подобные примеры можно приводить бесконечно.

Краткая история ITER


Впервые о проекте ITER публично заговорили в 1985 году на саммите в Женеве на пике оттепели международных отношений. США и СССР в лице Горбачева и Рейгана договорились о совместных разработках в области термоядерного синтеза. А крестным отцом ITER, пожалуй, можно назвать Е.П. Велихова советского ученого, который предложил эту идею Горбачеву.


Встреча Рейгана и Горбачева на саммите в Женеве, 1985 г.

Некоторое время достигнутая договоренность существовала в эдаком вакууме, но в начале 2000-х к ней вернулись.

Когда в ноябре 2006 года в Елисейском дворце было подписано соглашение между семью странами-участниками, стало понятно, что проект ITER будет реализован.

Строительные работы на площадке начались в 2007 году. К 2010-му на территории уже вырубили лес, выровняли землю, построили несколько зданий. Начали рыть котлован под токамак-комплекс. На фото видны автомобили и домики. Площадь вырытого котлована размером с городской квартал.



В 2011-м начали заливать фундамент.


Ниже на фото активные сейсмические подставки. Они заменяемые: если одна из них выйдет из строя, специальный робот залезет под здание и произведет замену.


Сверху бетонной плиты специальная противосейсмическая раскладка арматуры, которая будет заливаться бетоном.


Я приехал на проект в 2013 году. Тогда все строительство шло под землей и выглядело примерно так:


С конца 2014 года началось возведение стен над землей. На фото ниже Assembly Building. В него для предварительной сборки будут попадать все крупные компоненты системы, а в здание токамака их перенесут с помощью большого крана.



А это подстанция высокого напряжения и трансформаторы.


В 2015 году Assembly Building обернули во внешние стены.


А это фото 2016 года:


А на фото ниже хорошо виден прогресс с 2014 года по весну 2020-го. Фото сделаны с разных ракурсов, но на них заметны существенные улучшения.



А вот так проект выглядит сегодня:


Здание токамака из бетона со стенами толщиной 1-1,5 м закончили 18 июня 2020-го (металлическая конструкция сверху временная)

Еще несколько фото прогресса. Первый кадр снят внутри токамак-здания. Под этой крышкой будет размещаться токамак ITER. Вдали видно здание сборки и перемещаемый кран.


А это основание криостата. Оно уже установлено туда, где будет собираться токамак.


В начале лета 2020-го проект ITER официально перешел из стадии строительства на стадию сборки. Мы чуть ли не каждую неделю принимаем на стройплощадке большие элементы токамака: катушки, части вакуумной камеры. И это новый вызов. Огромные компоненты предстоит подгонять с точностью часового механизма. К примеру, допуски изготовления вакуумной камеры (30-метровой конструкции весом чуть меньше килотонны) 1 мм. Возможно, оборудование придется подгонять под неточные размеры компонентов.

А параллельно идет постоянное уточнение конструкции, переделка чертежей.
Например, электрики выяснили, что нужно использовать более толстые провода. Те, в свою очередь, не помещаются в трубопроводы, плюс придется увеличивать отверстия в стенах. А значит, вырастет поток нейтронов наружу. Итог: придется разрабатывать более стойкую к радиации электронику.
Есть такая шутка, что каждые два года проект строят заново. Но при этом ни один шаг нельзя пропустить: нельзя восемь лет ничего не делать, включившись только на финальном этапе. Необходимо пройти весь путь от начала и до конца.

Структура проекта


Как я сказал, в проекте семь участников. В соответствии с базовой договоренностью Европейский союз вкладывает 45%, остальные страны по 9%. Вкладывают деньги в центральную организацию на юге Франции. А также оборудование (части установки) и лучшие умы.

На гистограмме ниже показано, как страны-участницы вкладываются в отдельные направления.


Под восьмой аббревиатурой JF, по всей видимости, скрывается доля других стран (Казахстан и Австралия). Это распределение довольно плоское. Направления не разделены между странами, и это осознанный шаг, чтобы знания в каждой из областей не концентрировались в одних руках. Все делают понемногу. Например, Россия отвечает за верхние патрубки вакуумной камеры. Также она делает несколько диагностических систем.


Тут видно, что Россия поставляет катушки тороидального поля, часть диверторов, несколько модулей термозащиты, часть вакуумной камеры

Важный момент, на котором я хотел бы остановиться, это организация процессов в ITER.


В центре структуры генеральный директор ITER Organization, над ним совет ITER, в который входят представители всех партнеров, участвующих в проекте. Правительства стран участниц проекта на схеме показаны зеленым.

Совет управляет всем процессом, диктуя свои решения директору. Тот, в свою очередь, воплощает их в реальность, управляя рядом департаментов. На схеме их всего три, в реальности же их намного больше.

Департаменты общаются с локальными агентствами стран-участниц (иногда их называют домашними агентствами), а те взаимодействуют с лабораториями и индустрией именно они строят компоненты токамака и поддерживающих систем.

Некоторые подсистемы изготавливает ITER напрямую, но большая часть все же проходит через всю цепочку от директора до завода в конкретной стране.

Как видно из схемы, линейное управление проектом отсутствует. Локальные агентства имеют выход на свои правительства, и цепь замыкается. Эта нелинейность важная особенность ITER: в любом вопросе участвуют разные стороны.

Для ITER определено четыре основных этапа.


Таймлайн проекта. Выход на полную мощность запланирован на 2035 год. После система будет использоваться только в научных целях и для обкатки технологий
Так называемая Stage Approach Configuration должна дать первую плазму к декабрю 2025 года. Эту дату установили несколько лет назад, и она не сдвигается, несмотря на коронавирус и политические изменения.
В этой конфигурации ITER будет функционировать всего полгода. Мы называем эту стадию политической плазмой: на малой мощности она поможет нам проверить вакуумную камеру, систему нагрева, магниты. В итоге мы должны понять, что вакуумная камера работает и плазма создается.

Далее начнется досборка тонких систем, в том числе системы нагрева плазмы. По мере сборки запланированы Prefusion power operation 1 и 2 на 2028 и 2032 годы соответственно.
Выход на максимальную мощность в декабре 2035 года. После 2035 года ITER будет функционировать в научных целях еще 10 лет. Планируется 5,5 тыс. разрядов в 500 МВт по 500 секунд.

Вместо итогов


На данном этапе речь не идет о коммерческом производстве электроэнергии путем термоядерного синтеза. Нейтроны не будут захватываться, а их энергия не будет преобразовываться в электричество. Нейтроны будут выходить из установки, и их будут задерживать бетонные стены здания. Частицы будут проникать в комнаты и ячейки, поэтому во время работы установки людей в здании не будет. А механические свойства материалов, подвергающихся постоянной бомбардировке нейтронами, конечно, рассчитывают с учетом планируемого срока эксплуатации установки (полный выход нейтронов за все время работы установки порядка 1021).

В теории есть несколько способов использовать кинетическую энергию нейтронов во благо. Один я уже упоминал нагреть воду и поставить турбину. Второй путь гибридный. Небольшой токамак можно обложить ураном-238 и использовать нейтроны для поддержания реакции распада урана. Масса урана при этом может быть много меньше критической, т.е. взрыва не произойдет ни при каких условиях. Если что-то пойдет не так в такой гибридной установке, реакция просто затухнет. Уран будет работать только за счет того, что его бомбардируют нейтроны, которые появляются, когда идет термоядерная реакция. И хотя такая станция производит радиоактивные отходы, она безопасна не может взорваться.
Но финальная цель это, конечно, чистый термояд, где нет урана и ядерных отходов. Это единственно правильная цель, но путь к ней долгий и сложный. Если ITER выполнит свою функцию и к 20352045 годам ответит на вопрос, можно ли получить выход энергии в 10 раз больше, чем затрачено, мы начнем строить демонстрационную станцию. В лучшем случае к 2050-му она даст ответ, будет ли коммерческий старт у проекта.
Однако двигаться в этом направлении надо. И ITER это выгодная сделка. Каждый участник вкладывает 9%, но получает 100% разработок. По сути, это большой учебный проект для всех стран, который стоит намного дороже, чем любые коммерческие разработки. Но, несмотря на это, проект идет согласно графику и не обманывает ожидания. С каждым годом ему все больше доверяют, а значит, дальше работа должна пойти лучше и быстрее.


Основной этап строительства ITER завершен. Настал черед сборки реактора (фото март 2020-го)

В общем, это будет подарок нашим внукам. О том, как продвигается проект, рассказывают на YouTube-канале ITER Organization.
Подробнее..

Когда путь важнее цели. Сколько нам еще остается до полноценной термоядерной энергетики?

12.12.2020 12:17:16 | Автор: admin


Так выглядел строящийся комплекс ITER в феврале 2020 года. ITER может стать первой установкой, которая позволит получить горящую или самоподдерживаемую термоядерную плазму. В этом строящемся сооружении будут расположены термоядерный токамак и системы его обеспечения. Фото из архива ITER

На Хабре не обошли вниманием новость о том, что Китай запустил новый токамак, HL-2M Tokamak. Эта новость особенно интересна тем, что освежает в памяти историю о печальном долгострое нашего века будущем термоядерном реакторе ITER, который возводится силами всей Европы на юге Франции и должен стать первым подобным устройством, которое могло бы производить больше энергии, чем потребляет само. Тем не менее, с сожалением отметим, что и HL-2M, и даже ITER удручающе далеки от полноценной термоядерной электростанции.

Не будем вдаваться в детали устройства токамаков и самого ITER эти темы в изобилии рассмотрены во всевозможных источниках, например, в вышеупомянутой хаброновости. Под катом речь пойдет о том, какой путь открывает перед нами ITER (в переводе с латыни iter означает путь), и почему этот путь оказался извилист как восьмерка стеллатора.


Начало


Можно сказать, что все началось еще в 1920-е, когда Артур Эддингтон предположил, что Солнце и звезды могут гореть благодаря преобразованию водорода в гелий. Эту идею быстро подхватили журналисты и фантасты, полагавшие, что обуздать энергию Солнца не составит труда, и сырьем для топлива подобного реактора может стать самая обычная вода.

Как известно, термоядерная реакция с физической точки зрения противоположна ядерной. Если при ядерной реакции тяжелое ядро расщепляется на более легкие, то при термоядерной легкие ядра сливаются в несколько более тяжелые. Самая известная ядерная реакция это деление ядра урана:



Это типичная последовательность, выстраивающаяся в ядерном реакторе на АЭС.
Термоядерные реакции, напротив, протекают с преимущественно с участием гелия и водорода, и приводят к образованию более тяжелых изотопов из более легких. В звездах главной последовательности наиболее типична следующая термоядерная реакция:



Подробно о термоядерном синтезе и вариантах конструкции термоядерного реактора рассказано в замечательной статье, опубликованной на Хабре Михаилом Сваричевским в 2013 году. Там же можно почитать скептический авторский вердикт, в соответствии с которым полноценная термоядерная энергетика дело далекого будущего. Статья действительно огненная:



Пока отметим, что технические сложности, вставшие на пути создания термоядерной электростанции, оказались столь серьезными, что периодизация ее развития несопоставима с темпами развития атомной энергетики. Хронология:

Деление ядра


1939 открытие (Л. Мейтнер и О. Фриш)
1942 ядерный реактор Энрико Ферми (Чикагская поленница) управляемая ядерная реакция
1945 первое ядерное испытание (Тринити) и бомбардировка Хиросимы и Нагасаки неуправляемая ядерная реакция
1956 первая атомная электростанция (Обнинск)
1986 авария на Чернобыльской АЭС

Ядерный синтез


1926 гипотеза (А. Эддингтон) высказана в статье Внутреннее строение звезд
1934 Э. Резерфорд синтезировал гелий из трития
1952 в СССР осуществлен первый термоядерный взрыв (водородная бомба, неуправляемая реакция)
1954 в СССР построен первый токамак

2025 ожидается, что будет запущен ITER.

Тем не менее, в бюллетене IAEA за 2019 год идея создания термоядерной электростанции обсуждается совершенно серьезно и даже буднично. Приведено три условия, которые должны выполняться на полноценной термоядерной электростанции:

  1. Очень высокие температуры (свыше 100 миллионов градусов Цельсия)
  2. Достаточная плотность частиц в плазме (где и протекает реакция) что повышает вероятность соударений между частицами
  3. Достаточно прочный конфайнмент, предотвращающий возможные утечки плазмы и обеспечивающий стабильно идущую термоядерную реакцию.


Далее в документе следует оговорка, что наиболее успешной конструкцией термоядерного реактора в настоящее время является именно токамак.

Если вы еще не успели ознакомиться с приведенными выше ссылками и освежить в памяти, как выглядит и работает токамак коротко остановимся на этом вопросе.

Токамак это сложносокращенное слово, означающее тороидальная камера с магнитными катушками. Первый токамак был сконструирован в 1954 году в СССР, а термин предложен только в 1957 году. На Западе интерес к строительству токамаков возник значительно позже, в 1968 году, после того, как с подобным устройством в институте Курчатова познакомилась группа английских ученых, убедившихся в его работоспособности. Итак, токамак это исходно вакуумная камера тороидальной формы, наполняемая смесью дейтерия и трития, тяжелых изотопов водорода. Стенки токамака, естественно, не в состоянии удерживать внутри горячую плазму, в которой идут термоядерные реакции, поэтому плазма удерживается в тороидальной камере при помощи сильнейших магнитных полей и, будучи там, напоминает по форме шнур.



Важнейшим физическим показателем, позволяющим судить, будет ли термоядерная реакция давать больше энергии, чем потребляет реактор, является критерий Лоусона, сводящийся к следующей формулировке:

Чтобы термоядерный синтез стал источником энергии, произведение плотности частиц и времени их удержания на предельно близком расстоянии друг от друга должно превышать определенную величину.


В настоящее время наиболее энергетически выгодной термоядерной реакцией считается термоядерный синтез с участием двух изотопов водорода: дейтерия и трития. При слиянии ядра дейтерия и ядра трития образуется ядро гелия плюс очень высокоэнергетический нейтрон. При соблюдении нужных условий выделяющаяся при этом энергия является достаточной для дальнейших термоядерных реакций. Кроме того, дейтериево-тритиевая реакция является наиболее целесообразной с практической точки зрения, так как в ходе нее проще всего преодолевается кулоновский барьер, и эту реакцию наиболее удобно поддерживать в искусственно созданных условиях.

Следует отметить, что наряду с парой дейтерий-тритий рассматриваются еще три варианта термоядерных реакций, которые потенциально могут быть применимы в промышленности. Вот они все:

  1. Дейтерий + дейтерий (тритий и протон 4,0 МэВ),
  2. Дейтерий + дейтерий (гелий-3 и нейтрон, 3,3 МэВ),
  3. Дейтерий + тритий (гелий-4 и нейтрон, 17,6 МэВ),
  4. Дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ).


К четвертой реакции, наиболее выгодной с энергетической точки зрения, мы еще вернемся ниже.

Немаловажным фактором, ограничивающим ресурсную базу для термоядерной энергетики, является необходимость добычи дейтерия и производства трития. Остановимся на ней подробнее.

Размножение трития



Дейтерий относительно широко распространен в природе, и его можно в достаточном количестве извлекать из морской воды. Тритий же, хотя и присутствует в природе, слишком редок, чтобы добывать его в полезных объемах. Поэтому его придется промышленно синтезировать. В настоящее время тритий добывают из охладителя реакторов, работающих на тяжелой воде, либо получают путем бомбардировки литиевых мишеней в реакторах на легкой воде.

Предполагается, что для работы одной 500-мегаваттной термоядерной электростанции потребуется около 50 килограммов тритиевого топлива в год. Эта величина не только намного превышает возможности современной промышленности, позволяющей получать около 2-3 кг трития в год, но и не учитывает стоимость производства, которая будет достигать миллиардов долларов. Соответственно, термоядерная энергетика требует разработки метода, который позволил бы размножать тритий прямо на станции. К счастью, таким методом потенциально может стать сама термоядерная реакция.

Окружив токамак литиевым бланкетом, можно (с выделением тепла) получать тритий, когда ядра лития будут захватывать образующиеся при синтезе нейтроны и спонтанно превращаться в тритий. В настоящий момент находятся в разработке технологические решения, необходимые для сбора трития, образующегося таким образом.

Далее уместен вопрос: так ли экологически чиста и энергетически выгодна термоядерная энергетика? Здесь следует процитировать некоторые возражения, приведенные в вышеупомянутой статье Михаила Сваричевского:

  1. Термоядерная энергия вовсе не такая кристально чистая. На единственной реалистичной на данный момент реакции D+T поток нейтронов, который сделает радиоактивными любые элементы конструкции в ~10 раз выше, чем в обычных реакторах на той же мощности. Корпус реактора придется менять раз в 5-10 лет.
  2. Человечество безусловно достигнет показателя Q=10 (получаем в 10 раз больше термоядерной энергии, чем тратим). Этого показателя вероятно удастся достигнуть на токамаке ITER в 2030-х годах и позднее.
  3. Несмотря на достижение Q=10, термоядерные реакторы будут намного дороже, чем классические урановые из-за более сложной конструкции, более короткого срока службы корпуса и сверхпроводящих магнитов. Термоядерные реакторы также не смогут быть маленькими (как например плавучая мини-АЭС)
  4. Термоядерного топлива не много тритий очень дорог и дефицитен. Получение его не проще и не дешевле, чем получение плутония из отходов урана или U-233 из тория.
  5. Гелий-3 никак не помог бы человечеству, даже если бы его были горы на земле. Паразитная реакция D+D все равно будет давать радиацию, а оптимальная температура миллиард градусов, намного сложнее D+T над которой бьется человечество на данный момент.


А вот что отмечает по поводу экологичности термоядерных электростанций IAEA:

Простейший процесс термоядерного синтеза протекает с участием двух изотопов водорода: дейтерия и трития. Тритий радиоактивен, но период его полураспада невелик (12,32 года). Он используется лишь в незначительных количествах и, следовательно, не представляет такой опасности, как долгоживущие радиоактивные ядра. В результате такой реакции дейтерия с тритием образуется атом гелия (инертного газа) и нейтрон. Энергию этих продуктов (атома и нейтрона) можно собирать для запитывания реактора и выработки электричества соответственно. Следовательно, от термоядерных реакций не остается долгоживущих радиоактивных отходов. Но в процессе синтеза образуются активированные нейтронами материалы, окружавшие плазму. Иными словами, когда нейтроны (продукт реакции синтеза) попадают в стенки реактора, сам реактор и его компоненты становятся радиоактивными. Поэтому при строительстве термоядерных электростанций в перспективе придется оптимизировать их конструкцию таким образом, чтобы свести к минимуму такую нейтронную радиоактивность и объем радиоактивных отходов, образующихся в результате.

Таким образом, ITER можно считать не столько супертокамаком, сколько тестовым прототипом термоядерной электростанции, который позволит оценить стоящие перед индустрией технологические и экологические вызовы. Среди них: размножение трития, контроль плазмы, продвинутая диагностика, борьба с износом конструкций. Кроме того, предстоит выяснить, как долго корпус реактора способен выдерживать воздействие горячей плазмы.

Как и любая перспективная технология, термоядерная энергетика уже порождает свои стартапы. Вот важнейшие из них:

  1. TAE Technologies. Компания TAE (Ирвайн, штат Калифорния) более 20 лет занимается разработкой подхода под названием обращенная магнитная конфигурация. Технология TAE основана не на дейтериево-тритиевом синтезе (DT), а на потенциально перспективном синтезе водорода и бора. Хотя, запустить такую реакцию гораздо сложнее нужны температуры на порядок выше, чем при DT реакция не дает побочного продукта в виде высокоэнергетических нейтронов, осложняющих дейтериево-тритиевый синтез. Технология FRC предполагает магнитный метод удержания тороидальной плазмы (см. ниже).
  2. Commonwealth Fusion Systems (CFS). Это проект-спинофф, развиваемый Центром по изучению физики плазмы и термоядерного синтеза при Массачусетском технологическом институте. В CFS придерживаются классического подхода с использованием токамака, но используют новейшие технологические достижения, которые просто не могли быть учтены при проектировании ITER. Важнейшим из них является использование сверхпроводящего материала REBCO на основе оксидов редкоземельных металлов, бария и меди (ITER использует в аналогичном качестве ниобиево-оловянный сплав). Предполагается, что такая технология позволит сконструировать более компактные, эффективные и дешевые магниты.
  3. General Fusion. Эта компания расположена в канадском Ванкувере и прорабатывает один из самых революционных подходов, именуемый синтез замагниченной мишени (MTF). В конструкции MTF применяется сфера, заполненная литиево-свинцовой смесью. Под воздействием магнитов смесь приобретает форму воронки, и далее через нее пропускаются магнитные импульсы, генерирующие в жидком металле своеобразную ударную волну и сжимающие плазму до концентрации, при которой должен начаться термоядерный синтез. Выделяемое при этом тепло используется для генерации электричества.
  4. Tokamak Energy. Эта компания, работающая в Великобритании, стремится запустить традиционный термоядерный синтез с использованием токамака, но использует токамак, напоминающий по форме не бублик, а сферу. Эта установка называется ST40, в настоящее время проходит исследования. Предполагается, что в ней достижима температура до 15 миллионов градусов Цельсия.


Как следует из вышеизложенного, в первой трети XXI века мы пришли к исследованию всех этих экзотических технологий термоядерного синтеза в основном по трем причинам, осложняющим промышленное использование такой энергии:

  1. Сложность добычи трития.
  2. Сложность стабильного удержания намагниченной плазмы в пределах реактора.
  3. Сложность утилизации радиоактивных отходов из-за воздействия нейтронов радиоактивным становится сам реактор.


Реголитовая Голконда



И здесь самое время перейти к заключительной части нашего экскурса: обратить внимание на гелий-3, участвующий в четвертой из важнейших термоядерных реакций, упомянутых выше:

Дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ)

Выход энергии заметно превышает 17,6 МэВ, вырабатываемые при тритиевой реакции, а вместо нейтрона имеем в качестве побочного продукта протон, что во многом решает проблему радиоактивного загрязнения.

Основная проблема заключается в том, что гелий-3 (ядро которого состоит из двух протонов и одного нейтрона) чрезвычайно редок по сравнению с основным изотопом гелий-4 (два протона и два нейтрона): доля гелия-3 на Земле составляет 0,000137% (1,37 частей на миллион); основным источником этого изотопа на нашей планете является солнечный ветер.

Но еще в 1986 году специалисты из Института технологий термоядерного синтеза при университете Висконсина определили, что в лунном грунте, реголите, может содержаться миллион тонн гелия-3. Добыча гелия-3 на Луне может быть коммерчески выгодным предприятием, так как извлекаемая из него энергия в 250 раз превысит энергию, требуемую на его добычу и доставку на Землю. Лунных запасов гелия-3 может хватить для обеспечения термоядерной энергетики на целые столетия.

Нейтроны, образующиеся при дейтериево-тритиевом синтезе, ускользают из реактора, поскольку не обладают электрическим зарядом и, следовательно, их нельзя удерживать электромагнитным полем. Напротив, протоны побочный продукт термоядерной реакции с гелием-3 имеют положительный заряд, и улавливать их не составляет труда. Более того, можно использовать и энергию самих протонов, которая непосредственно пойдет на выработку электричества. В таком случае отпадает необходимость получать водяной пар для вращения турбины именно по такому принципу вырабатывается энергия на современных атомных электростанциях.
Таким образом, освоение Луны приобретает неиллюзорную практическую ценность. Отработка технологий термоядерного синтеза, возможно, первоначально на основе дейтериево-тритиевого синтеза, могла бы стать этапом на пути к энергетическому самообеспечению лунной реголитодобывающей промышленности, цель которой обеспечить термоядерным топливом Землю.

Здесь мы настолько углубились в научную фантастику, что в этом посте пора осторожно поставить точку и поблагодарить всех, кто его дочитал и готов обсудить.

Хотя, в качестве эпилога предлагаю взглянуть еще на эту старенькую статью из журнала Кот Шрёдингера. Мало того, что в ней классные картинки, так еще и переброшен мостик от темы, которую мы рассмотрели здесь, к теме терраформирования. В этой индустрии будущего, по-видимому, без термояда тоже никак не обойтись.

Пока же и ITER, и весь описанный путь далеки от завершения. Но хочется надеяться, что дорогу осилит идущий.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru