Русский
Русский
English
Статистика
Реклама

Lidar

Перевод Илона Маска против лидаров Псевдолидар

17.06.2020 14:20:13 | Автор: admin
Tesla давно мечтает сделать камеры, работающие не хуже лидара. Если ее мечта осуществится, это сильно поможет конкурентам.

image

Всем хорошо известно, что думает Илон Маск о применении лидара (технологии трехмерного изображения) в беспилотных автомобилях. Он не планирует использовать ее в Tesla и считает костылем. Это очень спорная точка зрения, только время покажет прав ли он.

Tesla продвигает технологию, называемую псевдо-лидаром или виртуальным лидаром. Эта технология заключается в построении инструментов для создания снимков с камеры (стерео или обычных). Нужно выяснить насколько далеко находится каждый пиксель на снимке. Лидар вычисляет расстояние до каждого пикселя. Он определяет сколько времени требуется световому импульсу, чтобы попасть в пиксель и вернуться обратно со скоростью света. Люди оценивают расстояние, используя мозг. Мы знаем насколько большие те или иные предметы и как они движутся. Это дает нам представление о том насколько далеко они находятся. Мы также используем стереозрение, потому что у нас два глаза. Однако стереозрение работает только на относительно близком расстоянии. Еще есть параллакс движения вы наблюдаете за тем как движутся предметы на фоне и используете некоторые другие подсказки, чтобы определить расстояние до объекта.

Это удивительные явления. Человеческий мозг легко с ними справляется. Вы можете делать это даже с одним закрытым глазом пока ведете автомобиль. Люди пытаются создать методы машинного обучения, которые тоже смогут определять расстояние по изображению, используя нейронные сети. Это и есть виртуальный лидар. Вот результат одного интересного исследования.

Обучить виртуальный лидар гораздо проще, чем обучить обычные нейронные сети. Для этого обычно требуется множество изображений, для которых люди кропотливо вычисляют расстояния. Поскольку на тестовой машине может быть установлен действительно дорогой лидар, вы можете прокатиться на ней и получить не только тестовые данные, но и показатели с лидара. Вы показываете нейронной сети кучу изображений с реальным расстоянием, вычисленным лидаром, и сеть учится определять расстояние самостоятельно. Этот метод своеобразный вид обучения без учителя (unsupervised learning). Вам не нужны люди, определяющие расстояние вручную. Обучение без учителя значительно дешевле чем с учителем. Что нейронные сети могут делать действительно хорошо, так это обучаться. Их можно также обучать на данных симулятора, чтобы улучшить свои модели.

Можно также полагаться на то, что объекты реального мира меняют расстояние определенным образом. Эти изменения можно предсказать. Когда вы видите объект, движущийся по всем законам физики, ваша оценка расстояния, скорее всего, будет правильной. Если вы увидите, как объект прыгает в космосе каким-то невообразимым образом, вы будете знать, что ваши расчеты вероятно ошибочны.

Нейронные сети с этим справляются. Их единственная проблема в том, что они смотрят на отдельные кадры, а не на движущиеся изображения, как люди. Мы часто ошибаемся, когда речь идет о статичных изображениях. Со временем методы машинного обучения смогут превзойти нас в этом. Проблема в том, что мы должны убедиться, что эти методы чрезвычайно надежны. Вы также должны обучать нейронные сети на вещах, которые вы сами никогда не видели. Это будет для них своеобразным вызовом. Например, что-то необычное замаячило впереди на тропинке вашего переулка. Вам нужно узнать насколько далеко эта штука находится, причем узнать наверняка и в ближайшее время. Если это машина, вы знаете размер машины, поэтому понимаете как далеко она находится. Также можно показать нейронной сети поворачивающую машину. Для человека это нормальное явление, но нейронная сеть может быть такого никогда не видела. Когда вы видите какой-то объект, то задаетесь вопросом: это большой объект вдали или маленький объект вблизи? Единственный способ узнать это увидеть связь объекта с геометрией дороги. Это сложнее.

Если кто-то справится с этой задачей, у него будет инструмент, который сможет делать снимки с камеры и создавать трехмерное облако точек благодаря лидару. Поскольку камеры дешевле, на создание этого инструмента уйдет гораздо меньше денег. Также этот инструмент сможет справляться с очень большими расстояниями. Многие лидары ограничены расстоянием в 120 метров. Дорогие лидары могут распознавать объекты на расстоянии 240 метров. Люди же способны понять, что находится на расстоянии мили.

Ирония в том, что разработчики лидара сделали эту технологию, зависящей от облака точек и потратили много времени на ее улучшение. Если идея с псевдо-лидаром внезапно выгорит, то создаст качественные облака точек, которые можно будет сразу же использовать. Те, кто надеется на псевдо-лидар, получат другой опыт использования данных в этой форме. Им придется придумать как объединить другие элементы своей системы зрения с оценкой расстояния. К таким элементам относится сегментация изображения на разные объекты и их классификация. Tesla может быть совсем не готова использовать тот прорыв, на который так надеялась.

Компании, использующие лидар, наоборот окажутся в выигрыше. Отлично, мы можем заменить дорогой лидар чем-то подешевле, скажут они. Если они еще и производят лидар (как Ford, Cruise, Waymo и Aurora), то осознают как много денег потратили впустую.

Ясно одно нужно определять расстояние до любых объектов на дороге и делать это быстро и качественно. Мы уже видели, как беспилотный автомобиль Tesla несколько раз врезался в грузовики, шлагбаумы и заглохшие транспортные средства, которые были скрыты автомобилем, внезапно выехавшим на дорогу. Когда датчики обнаруживают препятствие на дороге, вам нужно знать наверняка, насколько далеко это препятствие находится. Это необходимо для экстренного торможения. Лидар почти всегда дает эту информацию, а компьютерное зрение нет. Псевдо-лидар это попытка решить проблему. На данный момент большинство других компаний планируют решить ее с помощью лидара. Они знают как он работает и ожидают, что он станет дешевле.

Конечно, если Tesla решит эту проблему внутри компании, она не поделится решением с другими. Однако демонстрация решения может побудить другие компании сделать то же самое. Команда распознавания объектов может также разработать инструмент, который просто попытается сопоставить оценку расстояния с классификацией, а не создавать облако точек подобно лидару.

Перевод: Диана Шеремьёва



image

О компании ИТЭЛМА
Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

Читать еще полезные статьи:

Подробнее..

Снежная слепота беспилотных авто

02.06.2021 10:16:01 | Автор: admin


У природы нет плохой погоды, каждая погода благодать. Слова этой лирической песни можно понимать образно, интерпретировав погоду как отношения между людьми. Можно понимать и буквально, что также верно, ибо не было бы снежной и холодной зимы, мы бы не так ценили лето, и наоборот. Но беспилотные автомобили лишены лирических чувств и поэтического мироощущения, для них далеко не вся погода благодать, особенно зимняя. Одной из основных проблем, с которыми сталкиваются разработчики робомобилей, это снижение точности датчиков, указывающих машине куда ей ехать, во время плохих погодных условий. Ученые из Мичиганского технологического университета создали базу данных погодных условий на дорогах глазами беспилотных авто. Эти данные были нужны дабы понять что нужно изменить или улучшить, чтобы зрение робомобилей во время снежной бури было не хуже, чем в ясный летний день. Насколько плохая погода влияет на датчики беспилотных авто, какой метод решения проблемы предлагают ученые, и насколько он эффективен? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Работу беспилотных авто можно сравнить с уравнением, в котором очень много переменных, которые нужно учесть все без исключения для получения верного результата. Пешеходы, другие авто, качество дорожного покрытия (видимость разделительных полос), целостность систем самого беспилотника и т.д. Многие исследования ученых, провокационные заявления политиков, колкие статьи журналистов базируются на связи между беспилотным автомобилем (далее просто авто или автомобиль) и пешеходом. Это вполне логично, ибо человек и его безопасность должны стоять на первом месте, особенно учитывая непредсказуемость его поведения. Морально-этические споры о том, кто будет виноват, если автомобиль собьет пешехода, выскочившего на дорогу, продолжаются до сих пор.

Однако, если убрать из нашего образного уравнения переменную пешеход, то все равно останется много потенциально опасных факторов. Погода является одним из них. Очевидно, что в плохую погоду (ливень или снежная буря) видимость может снизиться настолько, что порой приходится просто остановиться, ибо ехать нереально. Зрение автомобилей, конечно, сложно сравнить со зрением человека, но их датчики страдают от снижения видимости не меньше нас. С другой стороны у машин есть более широкий арсенал этих датчиков: камеры, радары диапазона миллиметровых волн (MMW), система глобального позиционирования (GPS), гиростабилизатор (IMU), система обнаружение и определение дальности с помощью света (LIDAR) и даже ультразвуковые системы. Несмотря на это многообразие органов чувств, автономные машины все еще слепы во время плохой погоды.

Дабы понять, в чем же дело, ученые предлагают рассмотреть аспекты, совокупность которых тем или иным образом влияет на возможное решение этой проблемы: семантическая сегментация, обнаружение проходимого (подходящего) пути и объединение датчиков.

При семантической сегментации вместо обнаружения объекта на изображении каждый пиксель классифицируется индивидуально и присваивается классу, который пиксель представляет лучше всего. Другими словами, семантическая сегментация это классификация на уровне пикселей. Классическая семантическая сегментация сверточная нейронная сеть (CNN от convolutional neural network) состоит из кодирующей и декодирующей сетей.

Кодирующая сеть понижает дискретизацию входных данных и извлекает функции, а декодирующая использует эти функции для восстановления и повышения дискретизации входных данных и, наконец, присваивает каждому пикселю тот или иной класс.

Двумя ключевыми компонентами в декодирующих сетях являются так называемые слой MaxUnpooling и слой свертки Transpose. Слой MaxUnpooling (аналог слоя MaxPooling операция пулинга с функцией максимума) необходим для снижения размерности обрабатываемых данных.


Пример операции MaxPooling.

Существует несколько методов распределения значений (т.е. пуллинга), которые имеют общую цель сохранить местоположения максимальных значений в слое MaxPooling и использовать эти местоположения для размещения максимальных значений обратно в совпадающие местоположения в соответствующем слое MaxUnpooling. Этот подход требует, чтобы сеть кодирования-декодирования была симметричной, в которой каждый уровень MaxPooling в кодере имеет соответствующий уровень MaxUnpooling на стороне декодера.

Другой подход разместить значения в заранее определенном месте (например, в верхнем левом углу) в области, на которую указывает ядро. Именно этот метод и был использован в моделировании, речь о котором пойдет немного позже.

Транспонированный сверточный слой противоположен обычному сверточному слою. Он состоит из движущегося ядра, которое сканирует входные данные и свертывает значения для заполнения выходного изображения. Объемом вывода обоих слоев, MaxUnpooling и транспонированного можно управлять, регулируя размер ядра, отступы и шаг.

Второй аспект, играющий важную роль в решении проблемы плохой погоды, является обнаружение проходимого пути.

Проходимый путь это пространство, в котором машина может безопасно двигаться в физическом смысле, т.е. обнаружение проезжей части. Этот аспект крайне важен для различных ситуаций: парковка, плохая разметка на дороге, плохая видимость и т.д.

По словам ученых, обнаружение проходимого пути может быть реализовано как предварительный шаг к обнаружению полосы движения или какого-либо объекта. Этот процесс вытекает из семантической сегментации, цель которой состоит в том, чтобы сгенерировать попиксельную классификацию после обучения на наборе данных с пиксельной разметкой.

Третий, но не менее важный, аспект это объединение датчиков. Под этим подразумевается буквальное объединение данных от нескольких датчиков для получения более полной картины и уменьшения вероятных погрешностей и неточностей в данных отдельных датчиков. Существует однородное и неоднородное объединение датчиков. Примером первого может быть использование нескольких спутников для уточнения местоположения по GPS. Примером второго является объединение данных камер, LiDAR и Radar для беспилотных авто.

Каждый из вышеперечисленных датчиков по отдельности действительно показывает отличные результаты, но только в нормальных погодных условиях. В более суровых условиях работы их недостатки становятся очевидными.


Таблица преимуществ и недостатков датчиков, используемых в беспилотных авто.

Именно потому, по мнению ученых, объединение этих датчиков в единую систему может помочь в решении проблем, связанных с плохими погодными условиями.

Сбор данных


В данном исследовании, как уже упоминалось ранее, были использованы сверточные нейронные сети и объединение датчиков для решения проблемы обнаружения пути, по которому можно проехать, в неблагоприятных погодных условиях. Предлагаемая модель представляет собой многопотоковую (по одному потоку на датчик) глубокую сверточную нейронную сеть, которая будет понижать дискретизацию карт функций (результат применения одного фильтра к предыдущему слою) каждого потока, объединять данные, а затем повторно повышать дискретизацию карт для выполнения попиксельной классификации.

Для проведения дальнейших работ, включающих расчеты, моделирование и тестирование, необходимо было много данных. Чем больше, тем лучше, говорят сами ученые, и это вполне логично, когда речь идет о работе различных датчиков (камеры, LiDAR и Radar). Среди множества уже существующих наборов данных был выбран DENSE, которые охватывает большую часть необходимых для исследования нюансов.

DENSE также является проектом, нацеленным на решение проблем нахождения пути в суровых погодных условиях. Ученые, работавшие над DENSE, проехали порядка 10000 км по Северной Европе, записывая данные с нескольких камер, нескольких LiDAR, радаров, GPS, IMU, датчиков дорожного трения и тепловизионных камер. Набор полученных данных состоит из 12000 выборок, которые можно разбить на более мелкие подгруппы, описывающие конкретные условия: день+снег, ночь+туман, день+ясно и т.д.

Однако для правильной работы модели необходимо было провести коррекцию данных из DENSE. Исходные изображения камеры в наборе данных имеют размер 1920 х 1024 пикселей, их уменьшили до 480 х 256 для более быстрого обучения и тестирования модели.

Данные LiDAR хранятся в формате массива NumPy, который нужно было преобразовать в изображения, масштабировать (до 480 x 256) и нормализовать.

Данные радара хранятся в файлах JSON, по одному файлу для каждого кадра. Каждый файл содержит словарь обнаруженных объектов и несколько значений для каждого объекта, включая x-координаты, y-координаты, расстояние, скорость и т.д. Такая система координат параллельна плоскости автомобиля. Чтобы преобразовать ее в вертикальную плоскость, нужно учитывать только y-координату.


Изображение 1: проецирование y-координаты на плоскость изображения (слева) и обработанный кадр радара (справа).

Полученные изображения подвергались масштабированию (до 480 x 256) и нормализации.

Разработка CNN модели



Изображение 2: архитектура разработанной CNN модели.

Сеть была спроектирована так, чтобы быть как можно более компактной, так как глубокие сети кодирования-декодирования требуют немало вычислительных ресурсов. По этой причине сеть декодирования не была спроектирована с таким количеством уровней, как сеть кодирования. Сеть кодирования состоит из трех потоков: камера, LiDAR и радар.

Поскольку изображения с камеры содержат больше информации, поток камеры сделан глубже, чем два других. Он состоит из четырех блоков, каждый из которых состоит из двух сверточных слоев слоя пакетной нормализации и слоя ReLU, за которым следует слой MaxPooling.

Данные LiDAR не столь массивны, как данные от камер, потому его поток состоит из трех блоков. Точно так же поток Radar меньше, чем поток LiDAR, потому состоит всего из двух блоков.

Выходные данные от всех потоков изменяются и объединяются в одномерный вектор, который подключен к сети из трех скрытых слоев с ReLU активацией. Затем данные преобразуются в двумерный массив, который передается в сеть декодирования, состоящую из четырех последовательных этапов MaxUnpooling и транспонированной свертки для повышения дискретизации данных до размера ввода (480x256).

Результаты обучения/тестирования CNN модели


Обучение и тестирование проводились на Google Colab с использованием GPU. Подмножество данных, размеченных вручную, состояло из 1000 выборок данных камеры, LiDAR и радара 800 для обучения и 200 для тестирования.


Изображение 3: потери в обучающих выборках во время фазы обучения.

Выходные данные модели были подвергнуты постобработке с расширением и эрозией изображения с различными размерами ядер, чтобы уменьшить количество шума в выходных данных классификации пикселей.


Изображение 4: точность в тестовых выборках во время фазы тестирования.

Ученые отмечают, что самым простым показателем точности системы является пиксельная, т.е. отношение правильно определенных пикселей и неправильно определенных пикселей к размеру изображения. Пиксельная точность рассчитывалась для каждой выборки в наборе тестирования, среднее из этих значений и представляет общую точность модели.

Однако этот показатель не является идеальным. В некоторых случаях определенный класс недостаточно представлен в выборке, от чего точность пикселей будет значительно выше (чем на самом деле) из-за того, что не хватает пикселей для тестирования модели для определенного класса. Посему было решено дополнительно использовать MIoU среднее отношение области пересечения к области объединения.


Визуально представление IoU.

Подобно точности пикселей, точность по IoU вычисляется для каждого кадра, а конечный показатель точности это среднее от этих значений. Однако MIoU рассчитывается для каждого класса отдельно.


Таблица значений точности.


Изображение 5

На изображении выше показаны четыре выбранных кадра движения по снегу с камеры, LiDAR, радара, наземных данных и выходных данных модели. Из этих изображений очевидно, что модель может очертить общую окружность области, в которой транспортное средство может безопасно двигаться. Модель при этом игнорирует какие-либо линии и края, которые в противном случае можно было бы интерпретировать как края проезжей части. Модель также показывает хорошие результаты в условиях пониженной видимость (например, во время тумана).

Также модель, хоть это и не было основной целью данного конкретного исследования, избегает пешеходов, другие машины и животных. Однако этот конкретный аспект необходимо усовершенствовать. Тем не менее, учитывая, что система состоит из меньшего числа слоев, она обучается гораздо быстрее, чем ее предшественники.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные данные к нему.

Эпилог


Отношение к беспилотным автомобилям неоднозначное. С одной стороны, робомобиль нивелирует такие риски, как человеческий фактор: нетрезвый водитель, лихачество, безответственное отношение к ПДД, малый опыт вождения и т.д. Другими словами, робот не ведет себя как человек. Это хорошо, так ведь? И да, и нет. Во многом автономные транспортные средства превосходят водителей из плоти и крови, но далеко не во всем. Плохая погода тому яркий пример. Человеку, конечно, непросто ехать во время снежной бури, но для беспилотных авто это было практически нереально.

В данном труде ученые обратили внимание на эту проблему, предложив сделать машины немного человечнее. Дело в том, что у человека тоже есть датчики, которые работают командно для того, чтобы он получал максимум информации об окружающей среде. Если датчики беспилотного авто также будут работать как единая система, а не как отдельные ее элементы, можно будет получить больше данных, т.е. повысить точность нахождения проходимого пути.

Конечно, плохая погода это собирательный термин. Для кого-то легкий снегопад это плохая погода, а для кого-то буря с градом. Дальнейшие исследования и тестирования разработанной системы должны научить ее распознавать дорогу в любых погодных условиях.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Что делают 3D-сенсоры в смартфонах? РАЗБОР

25.09.2020 22:13:02 | Автор: admin
Все чаще мы видим в смартфонах так называемые 3D-сенсоры, или сенсоры глубины. Большинство из них также называют ToF-сенсорами аналогично одноименной технологии. По слухам, такой сенсор будет установлен и в новом iPhone (там он называется LiDAR, подробнее мы об этом рассказывали в другом материале). Эти сенсоры довольно дорого стоят, но зачем они нужны понятно не всем. Производители уверяют, что сенсоры позволяют делать лучше фото и портреты или добавляют фишки в дополненную реальность. Но так ли это на самом деле?



Сегодня обсудим, зачем нужны 3D-сенсоры в смартфонах, как это работает, ну и конечно, проведем несколько тестов и проверим заявления производителей.

Что такое 3D сенсор (сенсор глубины)


Для начала, давайте разберемся, а что такое 3D-сенсор? Фотокамеры захватывают проекцию окружающего мира на плоскость. По одной лишь фотографии не понять реальный размер объекта размером ли он с бутылку или с Пизанскую башню. И расстояние до него тоже не понять.



Для того, чтобы понимать реальные размеры объектов на фото, масштабы съемки, отличать, что ближе к камере, а что дальше, и нужны 3D-сенсоры.Они уже давно и активно применяются в робототехнике, автономном транспорте, играх, медицине и много где еще. Более того, наши глаза это тоже 3D сенсор. При этом, в отличие от LiDARа и ToF-сенсоров в смартфонах, глаза пассивный 3D-сенсор. То есть не излучающий никакого света, а работающий только на основе поступающего света. Только благодаря этому мы можем хоть как-то перемещаться в пространстве и взаимодействовать с окружающими объектами. Теперь 3D-сенсоры появились и в смартфонах.

Как работает ToF?


LiDAR в iPadе, а также все 3D-сенсоры в Android-смартфонах это time-of-flight или сокращенно ToF-сенсоры. Они определяют расстояния до объектов вокруг, напрямую измеряя сколько времени понадобится свету, чтобы долететь от камеры до объекта и вернуться обратно. Это очень похоже на эхо в пещере, оно тоже после отражения от стенок возвращается к нам с запаздыванием. Чтобы пролететь 1 метр свету нужно 3 наносекунды, для 1 см 30 пикосекунд. Вроде бы все понятно. Но есть проблема.

Это очень маленькие промежутки времени. Как камера может такое замерить? Не будет же она делать миллиард кадров в секунду, а потом их сравнивать? Есть 2 основных подхода для решения этой проблемы: dToF (direct ToF) и iToF (indirect ToF). И чтобы вас заинтриговать еще сильнее: абсолютное большинство Android-смартфонов используют как раз iToF сенсоры, тогда как LiDAR в Apple iPad и скорее всего в грядущих iPhone это редкий представитель семейства dToF сенсоров. Так чем же они отличаются?

iToF indirect ToF




Начнем с iToF. В таких сенсорах излучатель отправляет высокочастотный модулированный свет, то есть этот свет постоянно включается и выключается с частотой десятки миллионов раз в секунду. За счет того, что свету нужно время для полета до объекта и обратно, фаза, то есть вот это состояние где-то между включенностью и выключенностью, света, вернувшегося в камеру, немного отличается от фазы света в момент отправки. На сенсоре исходный и отраженный обратно от объекта сигналы накладываются друг на друга, и за счет этого определяется сдвиг фаз, который и позволяет понять расстояние до каждой точки объекта.

dToF direct ToF




dToF работает немного иначе. В таких сенсорах напрямую измеряется разница во времени между отправкой света и детектированием его отражения на сенсоре. Для этого используются так называемые SPAD: single photon avalanche diodes. Они могут детектировать крайне маленькие импульсы света, фактически даже ловить единичные фотоны. Такие SPAD расположены в каждом пикселе сенсора. А в качестве излучателя в таких сенсорах используются как правило так называемые VCSEL Vertical Cavity, Surface Emitting Laser. Это лазерный излучатель, подобный тем, что используются в лазерных мышках и много где еще. dToF сенсор в LiDAR разработан совместно с Sony и является первым массовым коммерческим dToF сенсором.

Можно лишь гадать, почему в iPad используется dToF сенсор, но давайте отметим преимущества такого сенсора. Во-первых, в отличие от iToF сенсора излучатель испускает не сплошную стену света, а лишь светит в отдельных направлениях, что позволяет экономить батарейку. Во-вторых, dToF сенсор меньше подвержен ошибкам в измерении глубины из-за так называемой multipath interference. Это типичная проблема iToF сенсоров. Она возникает из-за переотражения света между объектами перед попаданием обратно в сенсор и искажает измерения сенсора.

Как это работает, разобрались, давайте теперь посмотрим, а зачем вообще 3D-сенсоры используются в смартфонах.

Зачем это нужно в смартфонах



1. Безопасность




Первым массовым внедрением 3D-сенсоров в смартфонах мы обязаны Apple и технологии Face ID. Распознавание лиц при использованиитрёхмерных данных намного точнее и надежнее классического распознавания лиц по фото. Для Face ID Apple использует технологию структурированной подсветки, на ней мы остановимся подробнее как-нибудь в следующий раз.

2. AR




Большинство производителей заявляют, что именно более качественный и точный режим дополненной реальности является главной задачей 3D-сенсоров. Более того, это также поддерживается непосредственно компанией Google. Буквально недавно они представили грядущее обновление своей библиотеки дополненной реальности ARCore, позволяющее более реалистично размещать виртуальные объекты в реальности ивзаимодействовать с реальными объектами.

Для этой же задачи Apple встроили LiDAR в iPad Pro. Такое можно делать и без 3D-сенсора, но с ним все работает точнее и надежнее, плюс задача становится вычислительно сильно проще и разгружает процессор. 3D-сенсор выводит AR на другой уровень.

3. Улучшение фотографий




Ряд производителей, например, Samsung и HUAWEI заявляют, что 3D-сенсор используется в первую очередь для более качественного размытия фона и более точного автофокуса при съемке видео. Другими словами, он позволяет увеличить качество обычных фото и видео.

4. Прочее




Доступ к данным сенсоров у некоторых смартфонов открыт, поэтому появляется все больше приложений, предлагающих новые применения. Так, например, с помощью внешних приложений 3D-сенсор можно использовать для измерения объектов, трехмерного сканирования и motion tracking'а. Есть даже приложение, позволяющее сделать из своего смартфона прибор ночного видения.

Тесты


С тем как это работает в теории разобрались, давайте теперь посмотрим, как это работает на практике, и есть ли какой-то толк от этих дорогущих 3D-сенсоров в флагманах. Для тестов мы взялиRedmi Note 9S, у него есть ToF-сенсор и мы сделали несколько снимков в портретном режиме, но во втором случае просто закрыли 3D-камеру пальцем. И вот что получилось.



Всё просто размытие действительно больше и лучше, если ToF работает.



И для частоты эксперимента мы взяли Samsung Galaxy S20 Ultra, который также получил ToF-камеру.



И найдите хотя бы одно отличие?



Что получается? Дело в том, что в зависимости от производителя ToF-камера используется по-разному и в разной степени.

Можно сказать, что часть производителей смартфонов располагает ToF-датчики в своих смартфонов не для маркетинга, чтобы добавить ещё одну камеру, а скорее на всякий случай. А дальше уже алгоритмы решают использовать эту камеру или нет?



При этом на сегодняшний момент необходимости в LiDAR или ToF-камерах прямо нет. Так что это видимо чуть больше маркетинг.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru