Русский
Русский
English
Статистика
Реклама

Networks

Перевод Calico Enterprise обзор

09.02.2021 02:22:17 | Автор: admin

Translation of this article written by John Armstrong on Jan 20, 2021

Вступая в новый год, самое время поразмышлять о достижениях компании Tigera и о том, насколько Calico Enterprise изменилась за последний год и как она стала ведущим решением в сфере безопасности и мониторинга сетей и микросервисов Kubernetes. Опыт работы с пользователями корпоративного класса помог Tigera определить наиболее важные требования пользователей для успешного развертывания кластеров Kubernetes и успешного перехода от пилотных проектов к промышленным проектам. Эти знания помогли Tigera создать систему Calico Enterprise, архитектура которой и представлена ниже. Давайте рассмотрим этот многофункциональный слоёный пирог, снизу вверх.

Архитектура корпоративных решений Calico:

Calico Enterprise является родным для Kube

Cначала следует вспомнить несколько важных вещей. Calico Enterprise - это Kubernetes-native, Kube-native решение, в котором все, что делается, является расширением примитивов Kubernetes. Вся мощь Kubernetes используется путем интеграции с Kubernetes через API плюс путем создания собственного агрегированного API сервера. Операторная модель, взятая целиком из Kubernetes, используется для доступа и управления ресурсами, для выполнения таких функций, как, например, RBAC. Calico Enterprise, будучи родным для Kubernetes, по мере развития Kubernetes автоматически поддерживает взаимно совместимость.

Модель безопасности, работающая всюду

В качестве важнейшего основополагающего элемента Calico Enterprise предоставляет общую модель безопасности, которая работает в гетерогенных средах. На практике это означает, что она работает в любом общедоступном облаке в гибридной или мульти облачной конфигурации, с любым дистрибутивом Kubernetes, с виртуальными машинами и с голым металлом. Большинство крупнейших поставщиков общедоступных облаков и дистрибутивов Kubernetes выбрали решение Tigera и работают совместно, чтобы обеспечить тесную интеграцию с Calico Enterprise.

Почему это важно? Многие из клиентов Calico Enterprise используют стратегию нескольких облаков или гибридного облака (один из клиентов использует аж четыре облака) и в результате выбрали Kubernetes, потому что это абстракция, которая может работать в любой облачной инфраструктуре. А поскольку Calico Enterprise может работать в любом облаке и на любом дистрибутиве, это логичный выбор для облачных архитекторов и команд разработчиков, которым нужно решение, легко адаптирующееся при изменении требований. Многие компании сочетают Kubernetes и не Kubernetes среды и выбрали Calico Enterprise, потому что им требовалось единое решение, работающее в обеих этих средах.

Подключаемый, ориентированный на будущее Data Plane - Linux, Windows и eBPF

Calico Enterprise с самого начала разрабатывался с полностью подключаемым data planes, поэтому клиенты могут выбрать между разными data planes. Сетевой уровень Kubernetes выделяет три уровня data planes, и все они представлены в Calico Enterprise. Большинство пользователей используют стандартный data plane ядра Linux, потому что они еще не используют последние версии Linux, необходимые для поддержки eBPF. Некоторое количество рабочих приложений выполняется в Windows, и для этих клиентов предлагается то же единое решение, которое работает в Linux. Для пользователей, которые хотят расширить пределы производительности с использованием последних ядер Linux, Calico Enterprise предлагает eBPF data plane. В ближайшие несколько лет неизбежно появятся более быстрые data plane технологии, и Calico Enterprise планирует добавить их поддержку. Это еще один способ, которым Tigera защищает будущие инвестиции клиентов Calico Enterprise и демонстрирует приверженность предоставлять наиболее продвинутые, масштабируемые и надежные решения для пользователей Kubernetes.

Давайте посмотрим на четыре технологии в центре диаграммы, которые обеспечивают возможности безопасности и мониторинга.

Управление трафиком North-South

Calico Enterprise обеспечивает контроль безопасности как North-South, так и East-West трафика. В среде Kubernetes North-South принято обозначать трафик, который следует внутрь сети и из сети, а East-West - трафик, следующий внутри сети. Именно на стыке North-South между кластером Kubernetes и внешней средой мы сталкиваемся с наибольшими проблемами безопасности. Используя средства Calico Enterprise для управления политикой (policy) DNS и средства контроля входящего / исходящего доступа (ingress/egress access controls), пользователи контролируют North-South трафик. Корпоративный универсальный межсетевой экран Calico и интеграция с SIEM (Calico Enterprise universal firewall and SIEM integration) - это два метода, которые поддерживают интеграцию существующих средств управления безопасностью предприятия со средой Kubernetes.

Управление трафиком East-West

Контроль трафика East-West ограничивает область разрушения в случае нарушений безопасности, которые приводят к APT (advanced persistent threat). Есть несколько способов, с помощью которых Calico Enterprise помогает настроить эти средства контроля. Подход Calico Enterprise с глубокой защитой (defense-in-depth) обеспечивает защиту на трех уровнях: хост, контейнер / виртуальная машина и приложение. Используя единую структуру политики безопасности, вы настраиваете все эти уровни с помощью декларативной модели. Можно установить очень мелкие элементы управления доступом и фильтровать трафик на уровне протокола приложения, например, по протоколам http, https или MongoDB. Можно выполнять микросегментацию как для контейнерных рабочих нагрузок, так и для рабочих нагрузок виртуальных машин.

Безопасность и постоянное соответствие нормативам (Continuous Compliance)

По мере расширения зоны использования Kubernetes наблюдается потребность в еще более глубоком подходе к защите конфиденциальных данных, подпадающих под действие нормативных требований. Для обеспечения безопасности и постоянного соответствия нормативам (Continuous Compliance) Calico Enterprise обеспечивает шифрование данных в пути (data-in-transit encryption) с лучшей в отрасли производительностью, а также непрерывную отчетность о соответствии политик безопасности и средств управления. В Calico Enterprise есть богатый набор функций обнаружения вторжений (Intrusion Detection), который включает обнаружение различных угроз, настраиваемые оповещения об известных атаках, обнаружение аномалий поведения и приманки (honeypod). Calico Enterprise использует автоматизированный подход к обнаружению вредоносных программ и реагированию на них. Например, Tigera создала алгоритм машинного обучения в Calico Enterprise, который специально нацелен на обнаружение DGA (Domain Generation Algorithm), облегчая группам безопасности обнаружение DGA активности. Calico Enterprise может запускать автоматическое исправление, удаляя мошенническую микросервис из сети за миллисекунды, и генерируя затем рекомендации по политике предотвращения возможных атак.

Мониторинг и устранение неисправностей

Время простоя обходится дорого, а мониторинг распределенных приложений очень сложен. Calico Enterprise динамически генерирует диаграмму сервисов (Service Graph), которая позволяет легко понять, как микросервисы ведут себя и взаимодействуют друг с другом во время работы, упрощая тем самым процесс отладки и мониторинга. Динамическая диаграмма сервисов предоставляет очень богатый набор информации, включая информацию о том, в каких пространствах имен взаимодействуют рабочие нагрузки, подробную DNS информацию , подробные журналы событий (flow logs) для каждого отдельного потока в вашем кластере и то, как оцениваются сетевые политики. Горячие точки производительности автоматически идентифицируются и выделяются, а предупреждения (alerts) выдаются в контексте диаграммы сервисов. Пользуясь этой диаграммой, а также с помощью функции автоматического захвата пакетов, инженеры и программисты могут быстро находить источник проблемы на уровне приложения, процесса и сокета.

Единое управление и автоматизация

Унифицированные элементы управления обеспечивают безопасность и наблюдаемость в средах с несколькими кластерами, несколькими облаками и гибридными облачными средами, а также предоставляют единую панель для обеспечения согласованного применения элементов управления безопасностью. Они также поддерживают непрерывную интеграцию CI / CD для опытных пользователей. Calico Enterprise ввела в действие концепцию уровней политик, которые поддерживают делегирование полномочий по организационной структуре и областям ответственности для различных групп с разными потребностями (безопасность, сеть, платформа, DevOps, SRE, разработка). Уровни политик определяют порядок, в котором оцениваются политики сетевой безопасности, и используются для реализации средств управления безопасностью, которые не могут быть изменены или отменены неавторизованными пользователями. Например, средства контроля доступа в масштабе предприятия, созданные группой безопасности, имеют первостепенное значение и находятся на самом высоком уровне. Уровни политик могут объединяться в несколько кластеров с использованием возможностей централизованного управления Calico Enterprise, что позволяет использовать единое управление безопасностью, применяющиеся ко всем кластерам.

Подробнее..

Как Иван ошибку в бэкенде локализовывал

09.09.2020 12:15:30 | Автор: admin
В комментариях к одной из моих статей про базовые команды Linux shell для тестировщиков справедливо заметили, что в ней не было указано применение команд в процессе тестирования. Я подумал, что лучше поздно, чем никогда, поэтому решил рассказать историю Backend QA-инженера Вани, который столкнулся с неожиданным поведением сервиса и попытался разобраться, где именно случилась ошибка.



Что тестировал Ваня


Ваня знал, что ему предстоит тестировать связку nginx + сервис.
Здесь я сразу сделаю ремарку: такая связка была выбрана для этой статьи просто потому, что она нагляднее всего может продемонстрировать применение различных утилит при дебаге проблемы и потому, что её очень просто сконфигурировать и поднять. В реальных условиях это может быть либо просто сервис, либо цепочка сервисов, которые делают запросы друг другу.

В качестве сервиса выступает дефолтный HTTP сервер Python SimpleHTTPServer, который в ответ на запрос без параметров выводит содержимое текущей директории:

[root@ivan test_dir_srv]# ls -ltotal 0-rw-r--r-- 1 root root 0 Aug 25 11:23 test_file[root@ivan test_dir_srv]# python3 -m http.server --bind 127.0.0.1 8000Serving HTTP on 127.0.0.1 port 8000 (http://personeltest.ru/away/127.0.0.1:8000/) ...

Nginx же сконфигурирован следующим образом:

upstream test {server 127.0.0.1:8000;}server {listen    80;location / {proxy_pass http://test;}}

Ване нужно было протестировать один-единственный тест-кейс: проверить, что запрос на / работает. Он проверил, и всё работало:

MacBook-Pro-Ivan:~ ivantester$ curl http://12.34.56.78<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><title>Directory listing for /</title></head><body><h1>Directory listing for /</h1><hr><ul><li><a href="test_file">test_file</a></li></ul><hr></body></html>

Но затем в один момент на тестовом стенде разработчики что-то обновили, и Ваня получил ошибку:

MacBook-Pro-Ivan:~ ivantester$ curl http://12.34.56.78<html><head><title>502 Bad Gateway</title></head><body bgcolor="white"><center><h1>502 Bad Gateway</h1></center><hr><center>nginx/1.14.2</center></body></html>

Он решил не скидывать эту непонятную ошибку разработчикам, а получить доступ по ssh на сервер и разобраться, в чём там дело. Знаний в области такого рода дебага проблем у него было мало, но он очень хотел научиться, поэтому вооружился поисковиками, логикой и пошёл локализовывать баг.

Первая мысль Вани: логи


Действительно, если случилась ошибка, то нужно просто найти её в лог-файле. Но сначала нужно найти сам лог-файл. Ваня полез в Google и узнал, что часто логи лежат в директории /var/log. Действительно, там нашлась директория nginx:

[root@ivan ~]# ls /var/log/nginx/access.log access.log-20200831 error.log error.log-20200831

Иван посмотрел последние строчки error лога и понял, в чём дело: разработчики ошиблись в конфигурации nginx, в порт upstream закралась опечатка.

[root@ivan ~]# tail /var/log/nginx/error.log2020/08/31 04:36:21 [error] 15050#15050: *90452 connect() failed (111: Connection refused) while connecting to upstream, client: 31.170.95.221, server: , request: "GET / HTTP/1.0", upstream: "http://127.0.0.1:8009/", host: "12.34.56.78"

Какой можно сделать из этого вывод? Логи лучший друг тестировщиков и разработчиков при локализации ошибок. Если есть какое-то неожиданное поведение сервиса, а в логах при этом ничего нет, то это повод вернуть задачу в разработку с просьбой добавить логов. Ведь если б nginx не писал в лог о неудачной попытке достучаться до апстрима, то, согласитесь, искать проблему было бы сложнее?

В тот момент Ваня задумался: А что, если бы в nginx логи лежали в другой директории? Как бы я их нашёл? Через пару лет у Вани будет больше опыта работы с сервисами в Linux, и он будет знать, что путь к лог-файлу часто передают сервису аргументом командной строки, либо он содержится в файле конфигурации, путь к которому также часто передают сервису аргументом командной строки. Ну и в идеале путь к лог-файлу должен быть прописан в документации сервиса.

Кстати, через файл конфигурации можно найти путь к лог-файлу и в nginx:

[root@ivan ~]# ps ax | grep nginx | grep masterroot   19899 0.0 0.0 57392 2872 ?    Ss  2019  0:00 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf[root@ivan ~]# grep "log" /etc/nginx/nginx.conferror_log /var/log/nginx/error.log warn;log_format main '$remote_addr - $remote_user [$time_local] "$request" 'access_log /var/log/nginx/access.log main;

А что если в логах ничего нет?


В свободное время Ваня решил подумать, а как бы он справился с задачей, если бы nginx не писал ничего в лог. Ваня знал, что сервис слушает порт 8000, поэтому решил посмотреть трафик на этом порту на сервере. С этим ему помогла утилита tcpdump. При правильной конфигурации он видел запрос и ответ:

Дамп трафика на порту 8000
[root@ivan ~]# tcpdump -nn -i lo -A port 8000tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on lo, link-type EN10MB (Ethernet), capture size 262144 bytes09:10:42.114284 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [S], seq 3390176024, win 43690, options [mss 65495,sackOK,TS val 830366494 ecr 0,nop,wscale 8], length 0E..<..@.@..............@.............0.........1~c.........09:10:42.114293 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [S.], seq 4147196208, ack 3390176025, win 43690, options [mss 65495,sackOK,TS val 830366494 ecr 830366494,nop,wscale 8], length 0E..<..@.@.<..........@...110.........0.........1~c.1~c.....09:10:42.114302 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [.], ack 1, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 0E..4..@.@..............@.....111.....(.....1~c.1~c.09:10:42.114329 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [P.], seq 1:88, ack 1, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 87E.....@.@..b...........@.....111...........1~c.1~c.GET / HTTP/1.0Host: testConnection: closeUser-Agent: curl/7.64.1Accept: */*09:10:42.114333 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [.], ack 88, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 0E..4R/@.@............@...111...p.....(.....1~c.1~c.09:10:42.115062 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [P.], seq 1:155, ack 88, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 154E...R0@.@............@...111...p...........1~c.1~c.HTTP/1.0 200 OKServer: SimpleHTTP/0.6 Python/3.7.2Date: Mon, 07 Sep 2020 13:10:42 GMTContent-type: text/html; charset=utf-8Content-Length: 34009:10:42.115072 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [.], ack 155, win 175, options [nop,nop,TS val 830366494 ecr 830366494], length 0E..4.@.@..............@...p.11......(.....1~c.1~c.09:10:42.115094 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [P.], seq 155:495, ack 88, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 340E...R1@.@..<.........@...11....p.....|.....1~c.1~c.<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><title>Directory listing for /</title></head><body><h1>Directory listing for /</h1><hr><ul><li><a href="test_file">test_file</a></li></ul><hr></body></html>09:10:42.115098 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [.], ack 495, win 180, options [nop,nop,TS val 830366494 ecr 830366494], length 0E..4.@.@..............@...p.13......(.....1~c.1~c.09:10:42.115128 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [F.], seq 495, ack 88, win 171, options [nop,nop,TS val 830366494 ecr 830366494], length 0E..4R2@.@............@...13....p.....(.....1~c.1~c.09:10:42.115264 IP 127.0.0.1.33296 > 127.0.0.1.8000: Flags [F.], seq 88, ack 496, win 180, options [nop,nop,TS val 830366495 ecr 830366494], length 0E..4..@.@..............@...p.13 .....(.....1~c.1~c.09:10:42.115271 IP 127.0.0.1.8000 > 127.0.0.1.33296: Flags [.], ack 89, win 171, options [nop,nop,TS val 830366495 ecr 830366495], length 0E..4R3@.@............@...13 ...q.....(.....1~c.1~c.^C12 packets captured24 packets received by filter0 packets dropped by kernel


При неправильной конфигурации (с портом 8009 в апстриме nginx) на порту 8000 никакого трафика не было. Ваня обрадовался: теперь даже если разработчики забыли реализовать запись в лог при сетевых ошибках, всё равно можно хотя бы узнать, идёт ли трафик на нужный хост или порт.

Какой вывод можно сделать из этой истории? Даже если логов нет, в Linux есть утилиты, которые могут помочь с локализацией проблем.

А если не сеть?


Всё хорошо работало, но однажды Ваня снова получил ошибку, на этот раз другую:

MacBook-Pro-Ivan:~ ivantester$ curl http://12.34.56.78<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN""http://www.w3.org/TR/html4/strict.dtd"><html><head><meta http-equiv="Content-Type" content="text/html;charset=utf-8"><title>Error response</title></head><body><h1>Error response</h1><p>Error code: 404</p><p>Message: File not found.</p><p>Error code explanation: HTTPStatus.NOT_FOUND - Nothing matches the given URI.</p></body></html>

Ваня снова зашёл на сервер, но в этот раз проблема не была связана с сетью. В логе сервиса тоже было написано File not found, и Ваня решил разобраться, почему внезапно появилась такая ошибка. Он знает, что есть процесс python3 -m http.server, но не знает, содержимое какой директории выводит этот сервис (или, другими словами, какая у этого процесса current working directory). Он узнаёт это с помощью команды lsof:

[root@ivan ~]# ps aux | grep python | grep "http.server"root   20638 0.0 0.3 270144 13552 pts/2  S+  08:29  0:00 python3 -m http.server[root@ivan ~]# lsof -p 20638 | grep cwdpython3 20638 root cwd  DIR   253,1   4096 1843551 /root/test_dir_srv2

Также это можно сделать с помощью команды pwdx или с помощью директории proc:

[root@ivan ~]# pwdx 2063820638: /root/test_dir_srv2[root@ivan ~]# ls -l /proc/20638/cwdlrwxrwxrwx 1 root root 0 Aug 31 08:37 /proc/20638/cwd -> /root/test_dir_srv2

Такая директория действительно есть на сервере, и в ней лежит файл с именем test_file. В чём же дело? Иван погуглил и нашёл утилиту strace, с помощью которой можно смотреть, какие системные вызовы выполняет процесс (про strace, кстати, есть хорошая статья на Хабре, и даже не одна). Можно либо запускать новый процесс через strace, либо подключаться этой утилитой к уже запущенному процессу. Ване подходил второй вариант:

Вывод утилиты strace
[root@ivan ~]# strace -ff -p 20638strace: Process 20638 attachedrestart_syscall(<... resuming interrupted poll ...>) = 0poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 1 ([{fd=4, revents=POLLIN}])accept4(4, {sa_family=AF_INET, sin_port=htons(57530), sin_addr=inet_addr("127.0.0.1")}, [16], SOCK_CLOEXEC) = 5clone(child_stack=0x7f2beeb28fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f2beeb299d0, tls=0x7f2beeb29700, child_tidptr=0x7f2beeb299d0) = 21062futex(0x11204d0, FUTEX_WAIT_PRIVATE, 0, NULLstrace: Process 21062 attached<unfinished ...>[pid 21062] set_robust_list(0x7f2beeb299e0, 24) = 0[pid 21062] futex(0x11204d0, FUTEX_WAKE_PRIVATE, 1) = 1[pid 20638] <... futex resumed> )    = 0[pid 20638] futex(0x921c9c, FUTEX_WAIT_BITSET_PRIVATE|FUTEX_CLOCK_REALTIME, 27, {1598879772, 978949000}, ffffffff <unfinished ...>[pid 21062] futex(0x921c9c, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x921c98, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1[pid 20638] <... futex resumed> )    = 0[pid 20638] futex(0x921cc8, FUTEX_WAIT_PRIVATE, 2, NULL <unfinished ...>[pid 21062] futex(0x921cc8, FUTEX_WAKE_PRIVATE, 1) = 1[pid 20638] <... futex resumed> )    = 0[pid 20638] futex(0x921cc8, FUTEX_WAKE_PRIVATE, 1) = 0[pid 20638] poll([{fd=4, events=POLLIN}], 1, 500 <unfinished ...>[pid 21062] recvfrom(5, "GET / HTTP/1.1\r\nConnection: upgr"..., 8192, 0, NULL, NULL) = 153[pid 21062] stat("/root/test_dir_srv/", 0x7f2beeb27350) = -1 ENOENT (No such file or directory)[pid 21062] open("/root/test_dir_srv/", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)[pid 21062] write(2, "127.0.0.1 - - [31/Aug/2020 09:16"..., 70) = 70[pid 21062] write(2, "127.0.0.1 - - [31/Aug/2020 09:16"..., 60) = 60[pid 21062] sendto(5, "HTTP/1.0 404 File not found\r\nSer"..., 184, 0, NULL, 0) = 184[pid 21062] sendto(5, "<!DOCTYPE HTML PUBLIC \"-//W3C//D"..., 469, 0, NULL, 0) = 469[pid 21062] shutdown(5, SHUT_WR)    = 0[pid 21062] close(5)          = 0[pid 21062] madvise(0x7f2bee329000, 8368128, MADV_DONTNEED) = 0[pid 21062] exit(0)           = ?[pid 21062] +++ exited with 0 +++<... poll resumed> )          = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500)  = 0 (Timeout)poll([{fd=4, events=POLLIN}], 1, 500^Cstrace: Process 20638 detached<detached ...>


Обычно вывод strace довольно объёмный (а может быть и очень большим), поэтому удобнее сразу перенаправлять его в файл и потом уже искать в нём нужные системные вызовы. В данном же случае можно сразу обнаружить, что сервис пытается открыть директорию /root/test_dir_srv/ кто-то переименовал её и не перезапустил после этого сервис, поэтому он возвращает 404.

Если сразу понятно, какие именно системные вызовы нужно посмотреть, можно использовать опцию -e:

[root@ivan ~]# strace -ff -e trace=open,stat -p 20638strace: Process 20638 attachedstrace: Process 21396 attached[pid 21396] stat("/root/test_dir_srv/", 0x7f2beeb27350) = -1 ENOENT (No such file or directory)[pid 21396] open("/root/test_dir_srv/", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)[pid 21396] +++ exited with 0 +++^Cstrace: Process 20638 detached

Вывод: иногда можно немножко залезть под капот процессу, а помогает с этим strace. Так как эта утилита выводит все системные вызовы, которые использует процесс, то с её помощью также можно находить и сетевые проблемы (например, к какому хосту/порту пытается подключиться процесс), что делает её довольно универсальным инструментом дебага. Также существует похожая утилита ltrace.

Есть ли что-то ещё?


Ваня на этом не остановился и узнал, что есть GNU Project Debugger GDB. С его помощью можно залезть в процесс и даже немного модифицировать его. И Ваня решил попробовать обнаружить последнюю ошибку с помощью GDB. Он предположил, что раз сервис выводит содержимое директории, то можно попробовать поставить breakpoint на функции open() и посмотреть, что будет:
Вывод утилиты gdb
[root@ivan ~]# gdb -p 23998GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-119.el7Copyright (C) 2013 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law.  Type "show copying"and "show warranty" for details.This GDB was configured as "x86_64-redhat-linux-gnu".For bug reporting instructions, please see:<http://www.gnu.org/software/gdb/bugs/>.Attaching to process 23998 <здесь много сообщений о загрузке символов и отсутствии debugging symbols...>...0x00007f2284c0b20d in poll () at ../sysdeps/unix/syscall-template.S:8181T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)Missing separate debuginfos, use: debuginfo-install keyutils-libs-1.5.8-3.el7.x86_64 krb5-libs-1.15.1-34.el7.x86_64 libcom_err-1.42.9-13.el7.x86_64 libgcc-4.8.5-36.el7.x86_64 libselinux-2.5-14.1.el7.x86_64 openssl-libs-1.0.2k-16.el7.x86_64 pcre-8.32-17.el7.x86_64 zlib-1.2.7-18.el7.x86_64(gdb) set follow-fork-mode child(gdb) b openBreakpoint 1 at 0x7f2284c06d20: open. (2 locations)(gdb) cContinuing.[New Thread 0x7f227a165700 (LWP 24030)][Switching to Thread 0x7f227a165700 (LWP 24030)]Breakpoint 1, open64 () at ../sysdeps/unix/syscall-template.S:8181T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)(gdb) n83T_PSEUDO_END (SYSCALL_SYMBOL)(gdb) n_io_FileIO___init___impl (opener=<optimized out>, closefd=<optimized out>, mode=<optimized out>, nameobj=0x7f227a68f6f0, self=0x7f227a68f6c0) at ./Modules/_io/fileio.c:381381                Py_END_ALLOW_THREADS(gdb) n379                self->fd = open(name, flags, 0666);(gdb) n381                Py_END_ALLOW_THREADS(gdb) print name$1 = 0x7f227a687c90 "/root/test_dir_srv/"(gdb) qA debugging session is active.Inferior 1 [process 23998] will be detached.Quit anyway? (y or n) yDetaching from program: /usr/local/bin/python3.7, process 23998[Inferior 1 (process 23998) detached]


После команды c (continue) Ваня в другой консоли запустил curl, попал в дебаггере в точку останова и стал выполнять эту программу (то есть сервис) по шагам. Как только он нашёл в коде open по какому-то пути name, он вывел значение этой переменной и увидел /root/test_dir_srv/.
GDB это мощный инструмент, и здесь описан простейший вариант его использования. Иногда он может помочь в воспроизведении каких-либо сложных кейсов (например, можно приостановить процесс в нужный момент и воспроизвести состояние гонки), также он помогает с чтением core dump файлов.

А что если Docker?


В один момент DevOps решили, что сервис теперь будет деплоиться Docker-контейнером, и нужно было провести ретест всех кейсов, которые нашёл Ваня. Ваня без проблем нагуглил следующее:

  1. Использовать tcpdump, strace и gdb можно и внутри контейнера, но нужно иметь ввиду Linux capabilities (есть статья, которая объясняет, почему strace не работал в контейнере без --cap-add=SYS_PTRACE).
  2. Можно использовать опцию --pid.

Но ему стало интересно, можно ли посмотреть весь трафик, идущий в контейнер (или из контейнера), прям с хоста. У tcpdump есть возможность выводить трафик какого-либо интерфейса (опция -i), каждому контейнеру соответствует один виртуальный интерфейс veth (это можно увидеть, например, через ifconfig или ip a), но как понять, какому контейнеру какой интерфейс соответствует? Если контейнер не использует host networking, то внутри него будет сетевой интерфейс eth0, через который он может общаться по сети с другими контейнерами и хостом. Остаётся лишь найти, ifindex какого интерфейса на хосте совпадает с iflink интерфейса eth0 контейнера (что это означает можно почитать здесь).

[root@ivan ~]# for f in `ls /sys/class/net/veth*/ifindex`; do echo $f; cat $f; done | grep -B 1 `docker exec test_service_container cat /sys/class/net/eth0/iflink` | head -1/sys/class/net/veth6c18dba/ifindex

Теперь можно запускать tcpdump для интерфейса veth6c18dba:

tcpdump -i veth6c18dba

Но есть способ проще: можно найти IP-адрес контейнера в его сети и слушать трафик на нём:

[root@ivan ~]# docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' test_service_container172.17.0.10[root@ivan ~]# tcpdump -i any host 172.17.0.10

Вывод: дебаг в Docker-контейнере это не страшно. Утилиты в нём работают, а для чтения логов можно использовать docker logs.

Выводы


Как ответственный инженер, Ваня решил кратко законспектировать новую для себя информацию во внутренней базе знаний. Вот что он написал:

  • Логи лучший друг человека. Если встречается неожиданное поведение сервиса и при этом он не пишет ничего в лог это повод попросить разработчиков добавить логов.
  • Иногда бывает, что локализовать ошибку надо, даже если в логах ничего нет. К счастью, в Linux есть много утилит, которые помогают с этим.
  • С дебагом любых сетевых коммуникаций помогает tcpdump. Он помогает видеть, какой трафик откуда и куда идёт на сервере.
  • Заглянуть внутрь процесса помогают утилиты strace, ltrace и gdb.
  • Всё это можно использовать, если сервис работает в Docker-контейнере.
  • Много информации о процессе есть в директориях /proc/PID. Например, в /proc/PID/fd находятся симлинки на все открытые процессом файлы.
  • Также помочь получить различную информацию о системе, файлах или процессах могут утилиты ps, ls, stat, lsof, ss, du, top, free, ip, ldconfig, ldd и прочие.

Надеюсь, вам была полезна эта история, и хотя бы однажды она поможет вам понять, в чём дело, когда вы будете что-то дебажить в Linux. Если Ваня что-то упустил, делитесь этим в комментариях!
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru