Русский
Русский
English
Статистика
Реклама

Давление

Как получить всё из ничего, когда очень хочется, но нельзя

05.05.2021 12:08:12 | Автор: admin

Насколько это реально, почему нельзя, а также, какое слово зашифровано ниже и причём тут стартапы, вы узнаете из этой статьи

image

Любой газ можно превратить в жидкость простым сжатием, если температура газа ниже критической. Поэтому деление веществ на газы и жидкости в значительной мере условно. Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры, то есть температуры, после достижения которых, газ приобретает свойства жидкости, и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.

Первый газ (аммиак) был обращён в жидкость уже в 1799 г. Дальнейшие успехи в сжижении газов связаны с именем английского физика М. Фарадея (1791 1867), который сжижал газы путём их одновременного охлаждения и сжатия.

image

Ко второй половине 19 века из всех известных в то время газов остались не сжиженными только шесть: водород, кислород, азот, оксид азота, оксид углерода и метан, их назвали постоянными газами. Задержка в сжижении этих газов ещё на четверть столетия произошла потому, что техника понижения температуры была развита слабо, и они не могли быть охлаждены до температуры ниже критической. Когда физики научились получать температуры порядка 1К, удалось все газы обратить не только в жидкое, но и в твёрдое состояние.

Непрерывные хаотические тепловые движения, в которых всегда участвуют частицы любого вещества и интенсивность (энергия) которых определяет его температуру, оказывают существенное влияние на все происходящие в веществе явления. Именно поэтому почти всякое свойство вещества, так или иначе, зависит от температуры, то есть от интенсивности тепловых движений частиц в нём.

Изучение свойств вещества при очень низких температурах, когда молекулярные движения ослаблены, представляет большой интерес. Только при низких температурах можно исследовать те или иные явления в условиях, когда постоянный фон тепловых движений не влияет на них.

При низкотемпературных исследованиях изучаемое тело приводят в контакт с телом достаточно низкой температуры, с так называемым хладагентом. Задачей техники низких температур и является создание таких хладагентов. Ими обычно являются различные сжиженные газы, находящиеся в состоянии кипения. Они особенно удобны тем, что контакт с охлаждаемым телом не изменяет их температуру, а приводит лишь к более интенсивному испарению. Именно сжижение газов открыло для исследования область низких температур, в том числе и самых низких близких к абсолютному нулю.

Всякий газ может быть переведён в жидкое состояние, но необходимым условием для этого является предварительное охлаждение газа до температуры ниже критической. Углекислый газ, например, можно сжижить при комнатной температуре, поскольку его критическая температура равна 31,1С. То же, можно сказать и о таких газах, как аммиак и хлор.

Но есть и такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние. К таким газам относятся воздух (а также его составные части азот, кислород и аргон), водород и гелий, у которых критические температуры значительно ниже комнатной. Для сжижения таких газов их необходимо предварительно охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведён в жидкое состояние. Сжиженные таким образом газы удобнее хранить под атмосферном давлении (в открытом сосуде), но в этом случае их температура должна быть ещё более низкой такой, при которой давление будет равно 1 атм. Для азота температура хранения соответствует 77,4 К, в то время как критическая температура азота равна 126,1 К. Для кислорода эти цифры соответственно равны 90 К и 154,4 К, для водорода 20,5 К и 33 К и для гелия 4,4 К и 5,3 К. Эти четыре газа широко используются практически, в том числе и как хладагенты.

Из приведенных цифр, как критических температур, так и тех конечных температур, до которых должны быть охлаждены сжижаемые газы, видно, что охлаждение требуется весьма значительное. Для достижения столь сильного охлаждения обычно используются два метода (по отдельности и комбинированно).

Первый метод сжижения газа связан с использованием эффекта Джоуля Томсона. Видоизменение опыта по расширению газа, предложенное Джоулем и Томсоном, позволяет достичь заметного изменения температуры газа, в частности охлаждения, обусловленного его неидеальностью, так как расширение идеального газа в пустоту не сопровождается изменением его температуры. Газ при достаточно большом, но постоянном давлении вынуждают протекать через теплоизолированную пористую перегородку. Это значит, что протекание газа происходит адиабатно. Гидродинамическое сопротивление перегородки приводит к тому, что на ней теряется часть давления газа и газ выходит из перегородки при более низком давлении. Газ расширяется или дросселируется. Дросселем называется любое устройство, представляющее сопротивление для протекания газа. Для того, чтобы течение газа было стационарным, то есть происходило при постоянных значениях давлений по обе стороны дросселя, необходим какой-либо насос (компрессор), который поддерживал бы постоянными эти давления. Этот компрессор производит внешнюю работу сжатия газа. Этим процесс дросселирования отличается от расширения газа в пустоту, при котором внешняя работа равна нулю. Явление изменения температуры газа при его адиабатном расширении дросселированием от одного постоянного давления к другому называется эффектом Джоуля Томсона. Изменение температуры неидеального газа в процессе Джоуля Томсона объясняется тем, что при расширении газа увеличивается расстояние между молекулами и, следовательно, совершается внутренняя работа против сил взаимодействия между молекулами. За счёт этой работы изменяется кинетическая энергия молекул, а, следовательно, и температура газа. В идеальном газе, где силы взаимодействия молекул равны нулю, эффекта Джоуля Томсона нет.

В исторически первой машине для сжижения газов (воздуха) в технических масштабах (Линде и Гэмпсон, 1895 г.) для охлаждения газов ниже критической температуры и последующего сжижения использовался метод дросселирования. Приведём схему машины Линде (рисунок ниже), в которой помимо эффекта Джоуля Томсона был применён важный конструктивный принцип противоточного теплообмена и теперь применяемый во всех ожижительных машинах.

Воздух поступает в компрессор K, в котором он сжимается до 200 атм. После этого он проходит через змеевик, охлаждаемый проточной водой, где он отдаёт тепло, выделившееся при сжатии. Таким образом, в дальнейший путь к сжижению идёт сжатый газ с температурой такой же, как и до сжатия. Этот газ проходит затем через змеевик ab к дроссельному вентилю (крану) V1 и расширяется через него в приёмник f до давления в 1 атм. При этом расширении газ несколько охлаждается, но не настолько, чтобы превратиться в жидкость. Охлаждённый, но не сжижавшийся газ возвращается затем обратно через змеевик cd. Оба змеевика, ab и cd, расположены друг относительно друга так, что между ними, а также между порциями газа, проходящими по ним, существует тепловой контакт. Благодаря этому испытавший расширение и охлаждение газ охлаждает идущую ему навстречу порцию сжатого газа, которой ещё предстоит расшириться через вентиль V1. В этом и заключается метод противоточного обмена теплом.

image

Ясно, что вторая порция газа подойдёт к расширительному вентилю V1, имея более низкую температуру, чем первая, а после дросселирования она ещё больше понизиться. Таким образом, к вентилю будет подходить всё более холодный газ. Через некоторое время после начала работы машины постепенное охлаждение газа холодными встречными потоками приведёт к тому, что газ при очередном дросселировании начнёт частично сжижаться и накапливаться в приёмнике f, откуда он может быть слит через кран V2 в сосуд для хранения сжиженных газов (сосуд Дьюара).

При установившимся процессе работы машины в разных её местах наблюдаются приблизительно такие температуры: у входа в змеевик ab температура 293 К (комнатная); на выходе из этого змеевика 170 К; после дросселирования 80 К, у входа в змеевик cd 80 К; на выходе из него комнатная температура. Давление перед вентилем 200 атм, после дросселирования 1 атм.

Устройство, включающее оба змеевика ab и cd, в котором происходит охлаждение газа встречным потоком охлажденного газа, называется теплообменником. В машине Линде теплообменник осуществляется в виде вставленных одна в другую трубок, которым вместе придавалась форма змеевика. Газ высокого давления поступает по внутренней трубке. Встречный поток охлаждённого газа низкого давления проходит по внешней трубке, омывая внутреннюю и охлаждая, таким образом, газ в ней.

Второй метод сжижения газов называется методом Клода, он основан на методе адиабатного расширения в детандерах. Рассмотрим его принципиальное отличие от метода Линде.

При дросселировании газа охлаждение достигается за счёт внутренней работы, совершаемой газом против сил притяжения между молекулами. Как известно, охлаждение газа происходит и в том случае, когда он адиабатно расширяется, совершая внешнюю работу. Газ, расширяясь и совершая при этом работу, уменьшает свою внутреннюю энергию, а значит, и температуру. Это в равной мере относится и к идеальному, и к реальному газам. Причиной охлаждения газа при совершении им внешней работы является уменьшение скоростей молекул при их ударах об удаляющийся от них поршень, которому они передают часть своей кинетической энергии. Охлаждение при адиабатном расширении с совершением внешней работы должно быть более эффективным, чем при дросселировании, так как адиабатное расширение процесс обратимый, в то время как эффект Джоуля Томсона процесс необратимый. А, как известно, обратимость процессов в машине обеспечивает большой коэффициент полезного действия. Часть, в которой происходит расширение газа, называется детандером.

Впервые такая машина для сжижения газов (рисунок ниже) была построена Клодом в 1902 году для сжижения воздуха.

image

Рассмотрим принцип действия этой машины. Газ подвергается изотермическому сжатию в компрессоре K, откуда он поступает в теплообменник E1. Здесь он разделяется на два потока (в точке O). Первый идёт через теплообменник E2 к дроссельному вентилю и подвергается дросселированию с охлаждением за счёт эффекта Джоуля Томсона; второй поток (на его долю приходится 80% газа) поступает в детандер, расширяется в нём, совершая работу, и за этот счёт охлаждается. Из детандера охлаждённый газ возвращается в теплообменник E1, охлаждая встречную очередную порцию сжатого газа. К нему в точке O присоединяется и тот газ, который охладился в результате дросселирования. До этого он, проходя через теплообменник E2, тоже охлаждал встречный газовый поток. Таким образом, из описания метода Клода видно, что охлаждение в детандере используется для предварительного охлаждения перед дросселированием.

В первой машине Клода детандер представлял собой поршневую машину. Работу, которую в ней совершает сжатый газ, можно использовать для облегчения работы компрессора, для принудительной смазки машины и т. д.

Условия, характерные для машины Клода (ожижающей воздух), примерно таковы: давление на выходе из компрессора 40 атм, температура на входе в детандер (после охлаждения в теплообменнике E1) 200 К; температура после расширения в детандере 110 К при давлении в 1 атм.

По сравнению с методом адиабатического охлаждения метод, основанный на эффекте Джоуля Томсона, обладает большей простотой. В нём не возникает проблемы смазки, поскольку используемая аппаратура не содержит никаких подвижных частей, работающих при низких температурах. Однако за эту простоту приходиться платить огромной потерей эффективности охлаждения и необходимостью работать при высоких давлениях с использованием больших количеств газа. Охлаждение, которое можно получить адиабатическим расширением, обычно много больше того, что даёт эффект Джоуля Томсона. Но при этом встречаются существенные трудности, связанные со смазкой подвижных узлов: при низких температурах масло замерзает. Например, Клод применял прокладки из сухой обезжиренной кожи. Роль смазки играл сам воздух, просачивающийся в небольшом количестве между уплотнением поршня и стенками цилиндра.

В начале XX века велись поиски способов повысить температуру в домнах, и тем самым упростить выплавку чугуна. Для этого предполагалось применять поддув в домну обогащённого кислородом воздуха. Кислород получают из жидкого воздуха посредством пофракционной перегонки. Соответственно возникла проблема получения жидкого воздуха в промышленных масштабах. Существовавший на то время способ охлаждения (дросселирование через тонкую трубку) был очень энергозатратным и недостаточно эффективным, что не позволяло применять кислород в металлургии. Попытки применять поршневые детандеры оканчивались неудачей, так как они быстро выходили из строя, забиваясь водяным льдом. Для применения поршневых детандеров воздух приходилось осушать, пропуская через специальные химические смеси, что опять же чрезмерно усложняло и удорожало процесс.

Таким образом дальнейшему развитию криогеники мешала одна мааленькая деталь: производительность. Она оставалась ниже плинтуса и стоимость оборудования и газов была очень высокой.

image

Однако, в первой половине 20-го века произошел перелом.

П. Л. Капица начал штурм кислородно-криогенной крепости именно с турбодетандера. Он был вторым, после Ж. Клода, творцом поршневого детандера (вспомним, что Капица еще в 1934 г. в Кембридже создал первый гелиевый поршневой детандер), но с турбодетандерами, также как вообще с турбомашинами, он никогда не имел дела. Именно это (в сочетании, разумеется, с выдающимися способностями и физика, и инженера) ему, по-видимому, и помогло.

За необычайно короткий срок два года он с блеском решил задачу, создав новую машину, настолько эффективную, что она обеспечила целую революцию в криогенной технике.

image

Разработка турбодетандера позволила применять кислород в доменных печах и конвертерах. Это не только упростило выплавку чугуна, но и упростило преобразование чугуна в железо (сталь). Получаемая сталь была более высокого качества, чем ранее, так как содержала меньше растворённого в ней азота. Применение чистого кислорода вместо воздуха также существенно повышает температуру в конвертере, что позволяет в нём переплавлять существенно большее количество металлолома.

image
Устройство и работа бессемеровского конвертера (Бессемеровский процесс, бессемерование чугуна, производство бессемеровской стали в настоящее время устаревший метод передела жидкого чугуна в сталь путём продувки сквозь него сжатого воздуха, обычного атмосферного или обогащённого кислородом. Процесс был предложен в Англии Генри Бессемером в 1856 году)

Конвертер (англ. converter, от лат. convertere превращать) аппарат (вид печи) для получения стали из передельного расплавленного чугуна и шихты продувкой воздухом или технически чистым кислородом. В настоящее время чаще применяется кислород, который подается в рабочее пространство конвертера через фурмы (под давлением около 1,5 МПа). Такой метод получения стали называют конвертерным или кислородно-конверторным. Более половины всей стали в мире получается конвертерным способом.

Конвертер представляет собой ёмкость, состоящую из трех частей: верхней шлема, средней цилиндра и нижней днища. Днище может быть приставным, вставным или цельным с цилиндрической частью. В этом случае конвертер называют глуходонным.

Метод характеризуется высокой производительностью: конвертерный цех в составе трёх 400-тонных конвертеров может обеспечить годовой объём производства на уровне 10 миллионов тонн стали.

Основные страны-производители стали в кислородных конвертерах: Китай, Япония, США, Россия, Германия, Южная Корея, Украина, Бразилия, Индия.

Конвертер (или конвертирование как процесс) применяется и в цветной металлургии, в частности, для удаления избыточных железа и серы из сульфидных расплавов (штейнов), с получением файнштейна или белого матта маложелезистых сплавов сульфидов цветных металлов. При дальнейшей продувке белого матта в конвертере может быть получена черновая медь.

image


Чем же объясняется резкое повышение КПЛ турбодетандера (на 15-20%, которых не хватало), достигнутое Капицей? Очевидно, что тут дело было не в частных усовершенствованиях, а в принципиальном изменении.

Чтобы разобраться, в чем здесь дело, посмотрим, как устроен турбодетандер внутри.

image


Как и у всякой турбины, в. нем имеется расположенный по периферии неподвижный направляющий аппарат и помещенное внутри него вращающееся рабочее колесо. В направляющем аппарате по окружности расположены сопла, где, расширяясь, поток рабочего тела разгоняется и приобретает определенную скорость. Попадая на лопатки рабочего колеса, рабочее тело вращает его, производя работу и отдавая энергию. Скорость при этом снижается. Отработавшее рабочее тело выпускается через патрубок в центре рабочего колеса. Так устроены все турбины паровые, газовые и водяные. По характеру движения текущего рабочего тела в направляющем аппарате и колесе турбины делятся на активные и реактивные. В турбодетандере активного типа направляющий аппарат имеет сужающиеся каналы, в которых газ разгоняется до большой скорости (близкой к скорости звука, т.е. несколько сот метров в секунду) и снижает начальное давление р1 до значения рm почти равного конечному р2. Струи газа, попадая на вогнутые короткие лопатки рабочего колеса, меняют направление, оказывая на них давление, и вращают его.

Таким образом, кинетическая энергия потока преобразуется в работу. При этом давление газа гадает незначительно, достигая конечного р2, а температура понижается.

По такому принципу работали все прежние турбодетандеры. П. Л. Капица решил перейти на другой принцип и создал реактивный (вернее, активно-реактивный) турбодетандер. В нем распределение обязанностей между направляющим аппаратом и рабочим колесом стало совсем другим, близким к тому, которое существует в водяных турбинах. Направляющий аппарат здесь снабжен менее длинными каналами, и в нем срабатывается лишь часть интервала давления от p1 до р2; значение pm находится примерно посередине. Газ разгоняется до значительно меньшей скорости, чем звуковая; она достигает лишь значения, необходимого для плавного, безударного входа в каналы рабочего колеса. Лопатки его сделаны длинными, и газ, проходя в каналах между ними, срабатывает оставшуюся часть рm р2 интервала давлений, расширяясь в них. Работа совершается уже не только в результате изменения направления потока газа, но и под действием реакции струи, вытекающей из межлопаточных каналов (отсюда и термин реактивный).

Вследствие того что скорость воздуха в активно-реактивном турбодетандере значительно ниже, гидравлические потери в нем намного меньше, чем в активном; эта разница имеет особенно существенное значение, потому что холодный сжатый воздух по плотности ближе к жидкой воде, чем к водяному пару. Именно это обстоятельство толкнуло Капицу обратить внимание на водяную турбину как конструктивный прототип турбодетандера. В конечном счете Капица сформулировал свое кредо так: " правильно выбранный тип турбодетандера будет как бы компромиссом между водяной и паровой турбиной".

Работа над турбодетандером началась в 1936 г., а уже в 1938 г. в ИФП был создан небольшой опытный турбодетандер, у которого КПД составлял около 0,8! Затем, не переводя дыхания, на базе этого турбодетандера была собрана опытная установка низкого давления воздуха, на которой получался жидкий воздух. Характерно, что все оборудование этой установки (за исключением компрессора) делалось из подручных материалов и изделий в мастерских ИФП. При этом была проявлена в высшей мере эффективная солдатская находчивость. Так, например, механизм переключения регенераторов приводился в движение двумя электромагнитными транспортными тормозами завода Динамо. Таким образом, впервые удалось ожижить воздух, не сжимая его предварительно до высокого давления.

Наряду с процессами ожижения Линде и Клода, о которых мы уже говорили, появился новый, получивший в дальнейшем название процесс Капицы.

Теперь же КПД турбодетандера, несмотря на его малые размеры, не только достиг заветного рубежа 0,8, но и перешел его, причем в наиболее сложных условиях с окончанием процесса на границе ожижения. Успешный пуск и опытная эксплуатация экспериментальной установки показали, что путь к использованию низкого давления не только в технике ожижения воздуха, но и для его разделения открыт. Это, разумеется, не снимало необходимости решить целый ряд задач как по организации достаточной очистки воздуха и его ректификации, так и других, но в основе проблема была разрешена.
Публикация результатов этих работ в начале 1939 г. произвела подлинную сенсацию и поначалу вызвала некоторое замешательство среди специалистов-криогенщиков. Однако никакой явно выраженной реакции не последовало как у нас, так и за границей еще изучали и переваривали сенсационную новость.

image
Первый турбодетандер, разработанный и изготовленный под руководством нобелевского лауреата в области физики, академика Петра Капицы.

Но в конечном итоге, изобретение академика Капицы в корне изменил всю мировую индустрию криогеники.

В военные годы необходимость в производстве жидкого кислорода из воздуха в промышленных масштабах резко возросла (в частности, для производства взрывчатки). Капица усиленно работал над внедрением в производство разработанной им кислородной криогенной установки. В 1942 году был изготовлен первый экземпляр турбокислородной установки производительностью до 200 кг/ч жидкого кислорода и в начале 1943 года запущен в эксплуатацию.

Война обостряет нужду в кислороде, говорил Капица, выступая с докладом на собрании президиума 18 мая 1943 года. Нам надо действовать энергично, чтобы использовать для нашей страны все возможности, которые открывает для промышленности наш метод получения кислорода.

А в 1945 году была сдана установка с производительностью в десять раз больше, ставшая самой мощной в мире турбинной установкой для получения жидкого кислорода.

При обороне Сталинграда жидкий кислород, получаемый по методу Капицы использовался для изготовления одной из самых мощных взрывчаток оксиликвит-а.

image

Из за недостатка взрывчатых веществ в осажденном городе, обороняющиеся снаряжали отлитые из бетона корпуса авиабомб опилками и заливали жидким кислородом. Срок годности такого состава был в пределах 4 часов.

Принцип работы современного турбодетандера

Технологический газ под давлением поступает черезвходной сопловой аппарат на рабочие лопатки расширительной турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диск турбины на вал.

Таким образом, газ проходит из области высокого давления через турбину в область низкого давления, при этом расширяясь и ускоряясь. В результате этого процесса газ теряет свою температуру и вырабатывает механическую энергию вращения, которую используют для вращения находящегося с ним на одном валу генератора или компрессора. Отработанный газ выпускается через выходной диффузор.

image


image

Принцип работы турбодетандера

image
Турбодетандеры могут несколько отличаться по внешнему виду, но их суть остается, как правило, неизменной они содержат 2 колеса-крыльчатки

Следуя Первому началу термодинамики, турбодетандер преобразует внутреннюю энергию сжатого газа в механическую с понижением его температуры. Иными словами, турбодетандер динамическая расширительная машина лопаточного типа, в которой происходит адиабатическое расширение потока газа с совершением внешней механической работы. Расширение газа с отводом энергии приводит к понижению давления и температуры газа.

То есть, упрощая, можно сказать что на одном концу вала усредненного турбодетандера находится нагнетательная турбина, на другом турбодетандер. Сжатый турбиной до 2-5 бар воздух поступает на турбодетандер, совершает работу, расширяется и теряет температуру. Вуаля: жидкий газ! (после нескольких прогонов).

Ничего не понятно!

Ок, еще короче это машина, которая позволяет дешево и просто произвести много жидкого газа и для его производства не требуется высокое давление в 200 бар (как при существоваших до появления турбодетандера способах) а достаточно низкого давления в 2-5 бар (в теории, достаточно даже бытового компрессора из хозмага!).

Вот теперь другое дело! (Надеемся, теперь вы догадались, какое слово зашифровано в самом начале?)

image

Турбодетандеры бывают абсолютно разных размеров. От этого зависит только их производительность.

image

И вот тут мы пришли к самому главному. Самый нетерпеливый из читателей, полностью осиливший этот лонгрид, спросит:

Ну и что мне с того? Ну да, были великие люди, делали великие вещи. Как это может быть мне полезно?

image

Чтобы ответить на этот вопрос, следует обозначить несколько фактов:

1) Что в российском сегменте интернета, что в зарубежном можно по пальцам одной руки пересчитать эксперименты любителей, интересовавшихся и построивших хоть что то из области криогеники(сжижения газов). Эта область почему то незаслуженно обходится любителями.

Одним из довольно известных экспериментов является построенный американским любителем генератор жидкого азота. Свой опыт он подробно описал здесь.

Однако, данный эксперимент весьма далек от скоростных возможностей турбодетандера.

2) В те времена, когда многоуважаемый академик Капица создавал свой турбодетандер, еще не было продвинутых способов обработки, вроде ЧПУ или 3D печати металлом. Настоящее время предоставляет гораздо более богатые возможности, для пытливых умов.

Некоторые, даже создают весьма любопытные стартапы. Например, такие, как настольный станок гидроабразивной резки:

Современная 3d печать металлом или (более доступная для любителей) печать пластиком или фотопечать, позволяют создавать сложные детали на дому. В том числе, для последующего литья металла по выплавляемой или выжигаемой модели.

На известном сайте алиэкспресс продается множество индукционных плавилок металла, настольного формата, по низкой цене.

Другими словами, легко можно создать на дому металлические колёса турбодетандера, маленького размера.

Полагаем, что мало какой самодельщик откажется налить с утра стакан пенного, запотевшего пива жидкого азота собственной пивоварни азотоварни!

Любой газ из тех, что есть в воздухе; криогенные температуры; жидкие и сжатые газы разных видов И всё это великолепие, плод трудов миниатюрной настольной криогенной установки!

И, отвечая на вопрос, поставленный в самом начале, скажем: ответом является удивительное и остроумное устройство, известное под названием турбодетандер. Именно оно позволяет получить много разного из окружающего нас ничего, то есть невидимого воздушного океана.

Отличный стартап, который принес бы много пользы и продвинул эксперименты множества экспериментаторов!

А впрочем, это будет уже совершенно другая история

Подробнее..

Перевод Как переделать планету атом за атомом

22.04.2021 10:12:30 | Автор: admin

Когда планета не планета? Когда идут гелиевые дожди? Как вода одновременно может быть в твердом и жидком состоянии? Чтобы ответить на эти вопросы, ученые берут вещества, из которых обычно состоят планеты, подвергают их экстремальному давлению и смотрят, что получится.

В одной из самых технологически продвинутых лабораторий всех времен включают высокоэнергетический лазер. Он испускает импульс света, который существует доли секунды, и в течение этого времени воздействует на микроскопические количества наиболее распространенных веществ во Вселенной.

Такая ударная волна может создать никогда ранее не виданные состояния вещества, существующие в недрах планет. Либо могут получиться минералы, рассыпанные в кратерах на спутниках, или вещества, которыми нашпигованы астероиды и метеориты, как тщательные хронисты фиксирующие историю нашего хаотического прошлого.

Звучит как цитата из научной фантастики причем, и на большом экране картинка напоминает сцену из фантастического фильма. Но сегодня такие эксперименты это реальная наука, которая делается не в одной, а во многих лабораториях высоких энергий во всем мире. Такая техника один из вариантов динамического сжатия, отличающегося высокой скоростью и интенсивностью. При стремительном сжатии планетарного вещества воспроизводятся процессы, протекающие в недрах планет и при высокоэнергетических событиях, например, при столкновениях и ударах небесных тел.

Это уловитель в Национальном комплексе лазерных термоядерных реакций, один из важнейших приборов для подобных экспериментов. Иллюстрация: Damien Jemison, Ливерморская национальная лаборатория им. ЛоуренсаЭто уловитель в Национальном комплексе лазерных термоядерных реакций, один из важнейших приборов для подобных экспериментов. Иллюстрация: Damien Jemison, Ливерморская национальная лаборатория им. Лоуренса

Мы стали размышлять, как реально можно создать в лаборатории такие условия, которые существуют в недрах планеты, сказалаАрианна Глисон, специалист по экспериментальной физике минералов в Национальной ускорительной лаборатории SLAC и в Стэнфордском университете в Менло-Парк, штат Калифорния. - берем самые бесхитростные минералы кварц, полевой шпат и задаемся вопросом: как они выглядят, каковы их свойства при экстремальных условиях?

Водород, метан, вода, силикаты, железо все эти обычные материалы, входящие в состав планеты, могут менять в ее недрах агрегатное состояние, в зависимости от температуры и давления. От таких изменений на атомном уровне может зависеть, будет ли у планеты ядро и мантия, будет ли магнитное поле, выдержит ли планета катастрофическое столкновение, и сможет ли на ней существовать жизнь.

На протяженииболее чем полувека ученые ставили эксперименты по динамическому сжатию и смогли выяснить, что происходит с обычным планетарным веществом в центре Земли. Возможность изучать в лаборатории внутреннее устройство более крупных планет и экзопланет появилась совсем недавно.

Алмазы, пушки и лазеры

До того, как сложились все мобильные элементы динамических экспериментов с давлением, в ходе статических экспериментов изучалось постоянное давление. При этих динамических экспериментах ученые искусственно создают такие условия с высокой температурой и высоким давлением но далее поддерживают эти условия на протяжении некоторого периода времени: минут, часов и даже лет, - говорит Глисон.

Инструмент, чаще всего используемый в таких целях, называется ячейка с алмазными наковальнями, где образцы буквально стискиваются между камнем и наковальней. После того, как к образцу приложено давление, ученые могут отслеживать любые изменения в его химии, молекулярной или кристаллической структуре, визуальных свойствах и фазе.

Научное сообщество уже почти 50 лет работает с давлениями порядка сотни гигапаскалей, то есть, 1 миллиона атмосфер, говорит Раймонд Джинлоз, ученый-планетолог из Калифорнийского университета в Беркли (давление на поверхности Земли составляет 1 атмосферу). сотня гигапаскалей важная отметка в нашей дисциплине, поскольку примерно соответствует давлению на границе ядра и мантии Земли. Вцентре ядра Землидавление примерно втрое выше, и такое давление вполне достижимо в новой, уменьшенной ячейке с алмазными наковальнями, где та же сила, что и в более ранней модели прикладывается к более мелкому образцу и, следовательно, давление удается увеличить.

Столько энергии выдает молния за долю секунды. Статическое сжатие определенно закладывает основу таких работ и является опорой для опытов, проводимых сегодня в физике минералов, говорит Глисон. Но и прочность алмаза, и миниатюрность образца не безграничны. А динамическое сжатие позволяет достичь таких давлений, которые существуют в ледяном гиганте, суперземле и газовом гиганте, позволяет изучать такие события как ударные контакты, при которых все быстро меняется. Речь о том, чтобы радикально ускорить приложение давления.

Когда вся эта дисциплина еще только зарождалась, говоритДжун Уикс, в подвалах НИИ нашлись большие газовые пушки, применявшиеся для измерений, связанных с уравнениями состояния. Снаряды на очень высокой скорости врезаются в образец-мишень, заключенный в испытательной камере, а затем ученые наблюдают, как волны давления распространяются по мишени. После этого исследуются изменения.

Уикс, занимающаяся планетологией в Университете Джона Хопкинса, Балтимор, штат Мэриленд, ставит эксперименты по сжатию образцов лазером, изучая таким образом, как атомы и молекулы взаимодействуют глубоко внутри планет. В последние 20 лет на переднем крае этой дисциплины развивается сжатие с использованием оптических лазеров высоких энергий, как например в Национальной Ускорительной Лаборатории SLAC.

Фокусируем [лазер] на образце, и он превращает поверхность образца в плазму, а эта плазма расширяется и направляет равновеликую противоположную волну давления на образец, объясняет Уикс. Все это происходит за несколько миллиардных долей секунды.

В Z-машине для генерации высоких температур, высоких давлений и высокоэнергетических рентгеновских лучей используются электрические токи и магнитные поля. При помощи этой установки ученые изучают уравнения состояния тех веществ, из которых состоят планеты. Иллюстрация: Randy Montoya/Sandia National LaboratoriesВ Z-машине для генерации высоких температур, высоких давлений и высокоэнергетических рентгеновских лучей используются электрические токи и магнитные поля. При помощи этой установки ученые изучают уравнения состояния тех веществ, из которых состоят планеты. Иллюстрация: Randy Montoya/Sandia National Laboratories

При помощи лазеров иимпульсных источников энергии удалось изучать, что происходит с веществами при давлениях до миллиарда атмосфер что в тысячу раз превышает величины, достижимые при статическом сжатии, объясняет Джелноз. Чем короче лазерный импульс, тем большего давления можно достичь с его помощью, так как образец одномоментно претерпервает более сильное воздействие.

Гелиевые дожди подсвечивают Сатурн

На Земле дождь состоит из жидкой воды, а на Сатурне из жидкого гелия. Это известно благодаря экспериментам с использованием лазера; такие эксперименты поставлены вНациональном комплексе лазерных термоядерных реакцийв Национальной Ливерморской Лаборатории им. Лоуренса. Они помогли определить, когда водород и гелий смешиваются друг с другом, а когда разделяются; это свойство называется смешиваемостью.

Водород самый распространенный элемент во Вселенной, он так или иначе присутствует в составе любого планетарного тела, как в чистом виде, так и в соединениях, например, в воде или метане, говоритТакуо Окучи, адъюнкт-профессор в Институте Планетарного Вещества при университете Окаямы в Японии. Он поясняет, что химическое состояние водорода может очень, очень отличаться в зависимости от условий окружающей среды, [в сущности] показателей температуры и давления.

Такие изменения на уровне атомов отражаются в планетарном масштабе. По словам Окучи, при давлениях, существующих в недрах Юпитера и Сатурна, водород становится металлическим, то есть, атомы водорода располагаются столь плотно, что их электроны перекрываются друг с другом. Жидкий металлический водород поддерживает магнитное поле внутри этих газовых гигантов (Окучи уточняет, что внутри Урана и Нептуна в металлическое состояние переходит вода.)

При достаточно высоких давлениях и подходящей температуре водород и гелий растворяются друг в друге, образуя однородную жидкость, говоритСара Стюарт, планетолог из Калифорнийского университета в Дэвисе. - При таком высоком давлении они уже не газообразные, но мы называем их жидкостью. Есть такой температурный предел, ниже которого гелий образует капли и в виде таких осадков выпадает в недра планеты.

Джелноз сравнивает такую смесь с маслом и водой.

Сатурн примерно на 50% ярче, чем должен быть в своем возрасте и, как объясняет Стюарт, дело именно в гелиевых дождях: они идут на Сатурне, а на Юпитере их нет. Такаяидеясуществует уже некоторое время, но лишь сравнительно недавно появилась возможность создать такие условияв лаборатории.

На Нептуне небо в алмазах

На ледяных гигантах, Уране и Нептуне, выше доля метана (CH4), воды (H2O) и аммиака (NH3) чем на газовых гигантах, и эксперименты с динамическим сжатием показали, что там дожди еще более странные. Команда во главе сДомиником Краусомисследовала, что бывает с чистыми углеводородами, когда они попадают в условия, которые могут существовать в недрах такой планеты конкретно, Нептуна.

Мы зафиксировали формирование наноалмазов, говорит Краус. Давление, создаваемое при наносекундном лазерном сжатии, разрывает молекулярные связи между углеродом и водородом, в результате чего углерод спекается в нанометровые алмазы. Это открытие подтвердило давние теоретические выкладки.

Подобные эксперименты подчеркивают, насколько лазерное сжатие целесообразнее, чем ячейка с алмазными наковальнями. В экспериментах обоих типов используются источники ярчайших рентгеновских лучей, позволяющих анализировать микроструктуру образцов до, во время и после сжатия. Но, когда рассматриваешь сигнатуру крошечных алмазов, то удобнее, если в качестве инструмента сжатия алмазы не применяются.

Более того, как указывает Окучи, водород реагирует с любым окружающим веществом, в том числе, с той капсулой, в которой содержится капсула с лазером. Так же реагирует и вода, также распространенная на разных планетах. При помощи сильнейшего лазерного пучка мы сжимаем материал за считанные наносекунды, и за это время можно сразу же выполнить несколько измерений. Это наилучший способ проводить измерения в столь экстремальных условиях, без какого-либо загрязнения или химических реакций.

Брать за основу результаты наносекундных экспериментов и экстраполировать их до планетарных масштабов это порой зыбкое дело. Определенно, какие-то вещи, происходящие за наносекунды, будут происходить и на протяжении миллионов лет, говорит Краус. Вопрос в том, что еще такого может произойти за это время, чего мы не замечаем в доступных нам микромасштабах?

Ультра-краткие периоды, в течение которых мы способны доводить образцы планетарного вещества до планетарного давления, по мнению Уикс также являются самым слабым местом этого метода. Мы пытаемся задавать вопросы о том, как развивается ситуация в недрах планеты, причем, в реальности такие процессы занимают целую вечность, а в эксперименте одну наносекунду. Чем более экстремальных состояний мы пытаемся достичь, тем короче будет временное окно, доступное для их изучения.

Твердожидкая вода осложняет изучение газовых гигантов

Если мы сможем лучше понять, что происходит с веществом внутри Урана и Нептуна, это также поможет нам в изучении самого распространенного типаэкзопланет.

Краус отмечает, что среди экзопланет наблюдается изобилие мини-Нептунов, которые, вероятно, весьма похожи на наши Уран и Нептун, но лишены такой толстой водородно-гелиевой атмосферы. На самом деле там такая плотная ледяная каша.

Эксперименты, опубликованные в 2018 году, что льдистость ледяных гигантов на самом деле, более сложное явление, чем считалось ранее. Мы обнаружили, что вода переходит в такое необычное суперионное состояние лишь при высоком давлении и при таких температурах, которые характерны для глубин Урана и Нептуна, говоритМариус Милло, физик из Национальной лаборатории им. Лоуренса в Ливерморе. Суперионный лед это новое состояние вещества.

Милло руководил исследовательской группой, открывшей это ранее не известное агрегатное состояние вещества. Сначала они попробовали использовать ячейку с алмазными наковальнями, а затем работали в лаборатории Omega Laser FacilityРочестерского университета, где смогли искусственно кристаллизовать воду в таком новом состоянии.

Суперионный лед это такое состояние воды, в котором атомы кислорода, входящие в состав знакомой нам молекулы H2O, образуют кристаллическую решетку, как и в обычном льду, говорит Милло. - Но, в отличие от того льда, который мы видели в кубиках, в суперионном льду атомы водорода свободно движутся в кристаллической решетке из атомов кислорода. В таком состоянии водород напоминает жидкость внутри твердого кристалла, образованного атомами кислорода. Это очень необычное твердожидкое состояние.

При давлении, устанавливающемся в мантии ледяного гиганта (около 200 миллионов атмосфер), суперионный лед тает при температуре около 4 700 C, гораздо выше, чем температура окружающей среды. В новом исследовании команда подтвердила свойства этого нового состояния льда. Вполне возможно, что суперионный лед не тает даже в самых глубинах Нептуна и Урана, считает Милло, поэтому ледяные гиганты могут оказаться вполне твердыми.

Атомытекучего водородаобладают электрическим зарядом, поэтому воздействуют с магнитным полем планеты, а, возможно, и влияют на него. Более того, структура и перенос энергии внутри такой планеты могут влиять и на другие наблюдаемые там явления, например, на погоду.

Применить эти новые открытия при изучении ледяных гигантов сложно из-за острого дефицита наблюдаемых данных.Уран и Нептунбыли мимолетно исследованы лишь в 1980-е, когда рядом с ними прошел Вояджер-2. Поэтому мы не знаем подробностей о гравитации этих планет, их магнитных полях, погоде и составе, а все эти данные помогли бы лучше соотнести теорию и эксперименты.

В настоящее время уже прорабатываются возможности будущей космической миссии к ледяному гиганту. Компрессионные эксперименты помогают лучше представить, в каких условиях может оказаться зонд, подсказать, какие данные следует собирать во время миссии, а также трактовать эти наблюдения в верном контексте.

Проводить эксперименты с высоким давлением, беря за исходный материал ледяные гиганты из нашей системы уже очень сложная задача, говорит Краус. Чтобы затем применить полученные знания при изучении экзопланет, нужно учитывать те ограничения, что уже выявлены для наших планет и подумать, какие еще ограничения могут возникнуть.

Мы как будто разобрали Землю и собрали ее заново

Динамическое сжатие не только помогает уточнить наши представления о том, что сейчас происходит внутри планет, но и бесценно для понимания внезапных и краткосрочных высокоэнергетических событий, как, например, удары астероидов, способные основательно сбить с курса эволюцию целой планеты.

Рассмотрим систему Земля-Луна. Химические сигнатуры земных и лунных пород позволяют предположить, что давным-давно произошло серьезное импактное событие, из-за которого часть Земли была буквально снесена, и из этого материала образовалась Луна. Но, сочетая минералогию, физику высоких давлений и компьютерные симуляции, удалось выяснить, что через некоторое время после этого столкновения Земля ненадолго утратила статус планеты.

А превратилась в синестию: расплавленный текучий железокаменный сгусток, который мог напоминать по форме бублик или летающую тарелку. Мы привыкли считать, что атмосфера отделена от каменных пород, говорит Стюарт, понимаем под атмосферой ту газовую смесь, которой дышим. Пытаясь понять, что произошло после колоссального столкновения, мы учитываем в наших расчетах смешиваемость внешних областей синестии. Металлы, камень и атмосфера все это было растворено друг в друге и напоминало по свойствам жидкость.

ФормаЗемли в состоянии синестиипостоянно менялась, и различные ее части вращались с разной скоростью, что отличает синестию от обычной планеты. Мы изучали конкретные термодинамические состояния и динамику их изменения, чтобы понять, какие вещества при этом образовывались, говорит Стюарт. - Это просто открыло нам глаза, показав, что планета может превратиться в совершенно особенное тело.

Компьютерные симуляциикрайне важны для понимания импактных феноменов, и мы не можем воссоздать все реальные условия в лаборатории, моделируя столкновения как таковые, поскольку не располагаем гравитационными мощностями, которые позволили бы смоделировать событие планетарного масштаба. Мы собираем базовые материаловедческие данные о породах и минералах, но симуляции и моделирование ab initio незаменимы для понимания роли этих событий в планетарной эволюции.

Многие планеты внутри рыхлые

Земля обзавелась Луной и вновь стала планетой. Но изучение условий, при которых смешиваются железо и силикаты, поднимает новые вопросы о том, а в самом ли деле в недрах планеты они образуют отдельные слои? В стандартной модели планеты, так, как пишут в учебниках, железо, силикаты и атмосфера внутри планеты образуют ярко выраженную слоистую структуру. На этом основаны наши теории о том, как внутри планеты происходит перенос тепла и генерируется магнитное поле. Ноэксперименты с железокремниевыми сплавами подсказывают, что эти границы могут быть гораздо более зыбкими.

Наши представления о слоистых планетах могут быть совершенно неверны. Планеты-суперземлимогут выглядеть подобно Земле железное ядро, дальше скалистые породы и атмосфера, более плотная, чем у нас или весьма отличаться от Земли в том, что камень и железо в их недрах могут смешиваться друг с другом в виде расплава, и четко выраженного металлического ядра у них не будет, говорит Стюарт.

Далее такие же сложности возникают на границе условной суши и атмосферы. В недрах такой планеты могут достигаться настолько высокие показатели температуры и давления, что граница атмосферы и поверхности также становится зыбкой: часть атмосферы растворяется в магме, а магма частично рассеивается в атмосфере.

Наше представление о слоистых планетах может оказаться полностью неверным. Мы пока не можем измерить эти величины экспериментально, но в течение ближайших 10 лет сможем, считает Уикс.

Импакты и хронология Солнечной системы

Примерно 4 миллиарда лет назад во внутренней части Солнечной системы шла настоящая каменная бомбардировка. Радиоизотопная датировка минералов, образовавшихся при таких столкновениях, позволяет оценить, когда это происходило, а следы ударных контактов в зернах минералов помогают понять силу удара. Циркониевый век или бадделеитовый век очень важны для нас при периодизации всей истории этой бомбардировки, - указывает Аи-Чэн Чжан, профессор минералогии в Нанкинском университете в Китае. Но для некоторых циркониевых руд не удается уверенно определить возраст.

Чжан изучает минералы из образцов, взятых с астероидов, Марса и Луны; такие минералы образуются под действием высокого давления при ударных событиях. Мы хотим понять, почему в импактной сигнатуре от образца к образцу прослеживаются некоторые отличия. Связаны ли они со скоростью взаимодействия, либо с удаленностью гелиоцентрической орбиты от Солнца? В настоящее время мы не можем сказать с уверенностью, говорит Чжан. Эта информация критически важна, чтобы выстроить модель для понимания динамики Солнечной системы, в особенности внутренней части Солнечной системы.

Мы в ограниченной степени понимаем эти процессы, в меру того, что знаем о запуске радиоизотопных часов в минералах и о том, какие процессы могут обнулять эти часы. Чжан, стремясь до этого докопаться, анализирует метеориты и образцы, доставленные из космических миссий. Мы по-прежнему пытаемся выяснить, какие импактные события пришлись на циркониевый или бадделеитовый век, опираясь на наши минералогические и геохронологические исследования, сказал он. Это позволит понять, протекала ли импактная эра во внутренней части Солнечной системы в один конкретный период или волнами.

Усилия, связанные с уточнением импактной истории солнечной системы, призваны ответить на вопрос о жизнепригодности молодой Земли и других небесных тел, говорит Стюарт. Можно присмотреться к импактным событиям и сказать, что, возможно, именно из-за них Земля, Марс и Венера такие разные, но мы в самом деле не можем объяснить, как это произошло.

Расширяющаяся дисциплина компрессионной физики

В зависимости от диапазона давлений и интересующего нас вопроса, говорит Уикс, у нас в распоряжении всевозможные техники нагнетания высокого давления и всевозможные техники зондирования получающихся состояний. И наши методы становятся все лучше. Те или иные научные комплексы могут быть ориентированы преимущественно на иные области физики высоких энергий, например, на ядерную физику или физику высоких энергий, но нам никто не мешает пристроить туда же наши камни, а потом попытаться найти ответы на наши вопросы.

Новые приборы помогают не только выйти на новые пределы давления, но и извлекать из каждого эксперимента гораздо больше данных, и извлекать быстрее. Для сравнения: первые установки по лазерному сжатию могли делать всего несколько залпов в день, а на современных установках тестировать образцы можно раз в несколько минут.

При помощи лазера удобно выравнивать аппаратуру и диагностические инструменты перед пуском Z-машины. В процессе сжатия рентгеновские лазеры зачастую используются для снятия данных. Иллюстрация: Sandia National LaboratoriesПри помощи лазера удобно выравнивать аппаратуру и диагностические инструменты перед пуском Z-машины. В процессе сжатия рентгеновские лазеры зачастую используются для снятия данных. Иллюстрация: Sandia National Laboratories

Физика минералов вот-вот столкнется с проблемой больших данных, считает Уикс, но это не проблема, а возможность. Некоторые команды уже примериваются, как можно проектировать эксперименты с учетом возможностей машинного обучения, и не только находить наилучшие инструменты для ответа на вопрос, но и расставлять приоритеты, выбирая, какие вопросы задать прежде всего.

Некоторые экспериментаторы считают, что на ближайших этапах нужно протестировать более реалистичные смеси планетарных материалов. В конце концов, ледяные гиганты состоят не только из воды и углеводородов. Другие предлагают обращать внимание на ограниченный набор свойств вещества, в частности, на его электропроводимость, вязкость и скорость охлаждения, и искать, как эти величины связаны с крупномасштабными свойствами планет их яркостью, погодой и магнитными полями. Третьи хотят извлечь новую информацию из сравнительно хорошо изученных веществ, вооружившись уникальными свойствами лазеров, более точно измеряя образцы, подвергнутые сжатию, используя более продвинутые эксперименты для сбора данных.

Но экспериментаторы, работающие со сверхвысокими давлениями, не смогут сами ответить на эти вопросы. Мы определенно не сможем собрать достаточно информации по различным химическим соединениям, чтобы решить наши задачи, опираясь на одни лишь лабораторные данные, говорит Стюарт. Нам абсолютно необходимо моделирование. А затем более точные ограничения, в зависимости от того, что подскажут нам наблюдатели.

Благодарности

Сайт Eos, выпустивший оригинал этой публикации, благодарит Себастьена Меркеля, научного консультанта по физике минералов и горных пород, за разработку серии статей по экспериментам из области высоких температур и высоких давлений и, в частности, за подготовку этой статьи.

Подробнее..

Спасительный пазл механика экзоскелета дьявольского жука

30.10.2020 12:22:53 | Автор: admin


Ни для кого не секрет, что эволюция это крайне длительный, сложный и порой невероятно странный процесс. Стоит взглянуть на муравьеда, птичку киви или на утконоса, как сразу же начинаешь задумываться про чувство юмора матушки-природы. Однако любые адаптационные изменения, приобретенные в ходе эволюции, всегда имеют логическое объяснение и вполне практическое применение, какими бы странными на первый взгляд они ни казались. Ученые из университета Пердью (США) решили повнимательнее изучить необычного жука вида Nosoderma diabolicum, который способен выдерживать внушительное давление. В чем особенность строения жука-экстремала, насколько он вынослив, и как человек может использовать секреты жука в инженерии? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Прежде всего стоит познакомиться с главным героем сего исследования. Жук Nosoderma diabolicum (или Phloeodes diabolicus), также называемый дьявольский броненосный жук, что для самого жука, скорее всего, крайне обидно, принадлежит к семейству зофериды (Zopheridae). Обитает данный вид на западном побережье Северной Америки.


Nosoderma diabolicum

Внешний вид дьявольского жука и стал причиной столь нелестного имени. Обитая под корой лиственных и хвойных деревьев, они стараются всячески слиться с окружением. Ввиду этого их черный панцирь покрыт шероховатостями, придающими ему немного устрашающий вид. Кроме того, этот жук не только маскируется, но и в случае опасности притворяется мертвым.

Забыв про эстетику, можно уверенно сказать, что основной чертой, отличающей дьявольского жука от многих других насекомых, является отсутствие крыльев. Такое строение тела не было изначальным, а проявилось в ходе эволюции.

Подготовка к взлету божьей коровки.

Вспомните, как выглядит, например, божья коровка во время взлета. Ее крылья спрятаны под раскрывающимися элитрами (надкрыльями), которые являются частью прочного экзоскелета. У некоторых насекомых элитры в полете не участвуют, либо их летные функции крайне ограничены.

Но вот дьявольский жук-броненосец когда-то давным-давно решил избавиться от крыльев полностью. Логично, что в таком случае элитры ему больше не нужны, и они могли бы эволюционировать из двух частей в цельный панцирь без швов и стыков. Однако все произошло несколько иначе.

Результаты исследования


Чтобы оценить устойчивость P. diabolicus к внешним нагрузкам, которые могут возникнуть в его естественной среде обитания, были проведены испытания на сжатие всего его экзоскелета и сравнение максимальной прочности на сжатие с показателями других жуков, обитающих в регионе южной Калифорнии.


Изображение 1

Для сравнительного анализа были выбраны виды жуков, которые обладают схожими защитными механизмами как в структуре панциря (защита от давления и клевания), так и в поведении (танатоз мнимая смерть): Asbolus verrucosus, Eleodes grandicollis и Cryptoglossa muricata.

В начале сжатия P. diabolicus демонстрирует изменение жесткости с 115 Н/мм до 291 Н/мм при смещении 0.64 мм (1c). Разрушение панциря происходит при максимальной силе в 149 Н (среднее значение 133 16 Н). Эти показатели примерно в 39000 раз превышают вес его собственного тела. Для сравнения: взрослый человек, сжимающий большой и указательный пальцы вместе, создает силу в 43.0 18.4 Н.

Другие жуки, участвующие в опытах, смогли выдержать пиковую нагрузку не больше 68 Н, а отношение прочности к массе у них гораздо ниже, чем у дьявольского жука (вставка на ). Asbolus verrucosus показывал схожие с P. diabolicus результаты, но на середине процесса деформирования (т.е. при 50% от нагрузки) началось разрушение панциря.


Результаты тестов на сжатие.

Помимо микроструктурных, наномеханических и композиционных особенностей надкрылий (график и снимки выше), внутри экзоскелета дьявольского жука было обнаружено две важные особенности:

  • медиальный шов, который навсегда соединяет два надкрылья вместе (1e);
  • латеральные (боковые) интерфейсы, соединяющие надкрылья с брюшной кутикулой и поддерживающие их (1f).

На медиальном шве расположены необычные образования, напоминающие выступы на кусочках пазла (видео ниже).

Медиальный шов P. diabolicus, соединяющий два надкрылья.

Сравнение P. diabolicus с его летающими родственниками показало, что такие образовании необходимы для взлета и полета насекомого (1g).

Как мы уже знаем, жуки вида P. diabolicus предпочитают прятаться под корой, камнями или под слоем опавшей листвы. Это помогает им справляться с климатическими изменениями и избегать нежелательных встреч с потенциальными хищниками. Однако, когда тебя не видно, есть вероятность быть случайно раздавленным. Следовательно, жуки этого вида должны выдерживать внешнюю нагрузку, не повреждая свои внутренние органы ().


Изображение 2

Анализ дьявольского жука с помощью компьютерной томографии (КТ) выявил заполненную воздухом область под надкрыльями (субэлитральная полость), расположенную над брюшной полостью (черное пространство на 2a).


Сравнение макро- и микроструктур панциря у наземных и летающих жуков: P. diabolicus, A. verrucosus, C. muricata, E. grandicollis и T. dichotomus (по рядам сверху вниз).

Дальнейший анализ посредством КТ и СЭМ (сканирующий электронный микроскоп) показал наличие трех латеральных интерфейсных архитектур, которые обеспечивают поддержку надкрыльев над брюшной кутикулой: гребенчатые, защелкивающиеся и свободно расположенные элементы (2b). Также выяснилось, что эти элементы плавно сливаются друг с другом по всей длине тела (видео ниже).

Варианты латеральных интерфейсов, соединяющих надкрылья с брюшной кутикулой у P. diabolicus.

Моделирование всего экзоскелета P. diabolicus при сжатии предполагает, что напряжение сконцентрировано по периметру кутикулы, при этом нагрузка передается на брюшную часть через первый и второй типы латеральной поддержки, описанные выше.


Модель экзоскелета дьявольского жука во время сжатия, созданная методом конечных элементов.

Практические опыты на сжатие и моделирование (изображение выше) изолированных секций панциря демонстрируют вариации жесткости и максимального смещения между опорами ( и 2d).

Первая опора включает почти полное шовное пересечение, соединяющее надкрылья с брюшной кутикулой и показывающее наиболее жесткую механическую реакцию. Этот высоко интегрированный сустав обеспечивает максимальную защиту грудной клетки и жизненно важных органов, формируя неподвижную опору у основания дугообразных надкрылий, чтобы противостоять изгибающим моментам.

Механические испытания и компьютерная томография подтвердили, что максимальное смещение поперечного сечения до разрушения пропорционально высоте субэлитральной полости.

Вторая опора включает фиксирующую конструкцию, которая блокируется при сжатии, позволяя выдержать смещение на 40% больше при минимальном напряжении на интерфейсе (2c).

При более внимательном рассмотрении поверхности интерфейсов был обнаружен обширный массив стержневидных элементов (микротрихии) размером 2х2 мкм (2b). Подобно волосковидным выступам, которые летающие жуки используют для удержания своих крыльев, микротрихии у дьявольских жуков имеют меньшее соотношение сторон (1:1 против 1:5 у летающих жуков) и, вероятно, обеспечивают фрикционный захват для предотвращения скольжения во время нагрузки.

В случае, когда нагрузки нет, вторая опора (задняя область надкрылий) не имеет никакой механической связи между надкрыльями и брюшной кутикулой.

Двумерные модели поперечного сечения кутикулы в различных местах боковой опоры при сжимающей нагрузке показывают, что напряжение на любой из боковых поверхностей интерфейса более чем на порядок ниже, чем в медиальных швах (2d). Трехмерная модель кутикулы под сжимающей нагрузкой подтверждает, что напряжение существенно падает на боковых опорах для отдельно расположенных опор по сравнению с встречно-гребенчатой опоры.

Данные наблюдения могут свидетельствовать о том, что отдельные и взаимосвязанные опоры обеспечивают отклонение надкрылий и, следовательно, увеличивают поглощение энергии во время сжатия. Таким образом обеспечивается повышение податливости (антипод жесткости). А встречно-гребенчатые опоры в этот момент увеличивают жесткость. Другими словами, в разных участках тела жука имеются разные по функционалу опоры, которые в совокупности позволяют защитить внутренние органы насекомого во время сжатия.

Самой же любопытной частью экзоскелета дьявольского жука с точки зрения защиты является медиальный шов. Данный элемент является результатом того, что жук в ходе эволюции из летающего превратится в наземного. Медиальный шов обеспечивают механическое соединение его надкрылий ().


Изображение 3

Жуки других видов также имеют подобные образования, предотвращающие разделение надкрылий. Однако у дьявольского жука медиальный шов все же отличается от остальных.

Моделирование экзоскелета P. diabolicus показало относительно однородное распределение напряжения по шву из-за его эллиптической геометрии и количества соединений (3b). У других же видов в этих областях наоборот наблюдалось повышенное напряжение, особенно в местах контакта встречно-гребенчатых структур.

Геометрический анализ элементов шва (зубцов, напоминающих элементы пазла, которые необходимы для соединения кусочков) P. diabolicus показал соотношение 1.8:1 между большой полуосью (b) и точкой фокусировки (a), при этом первичная геометрия каждого элемента параметрически представлена в виде трех идентичных эллипсов, соединенных друг с другом на расстоянии под определенным углом (3c). Угол контакта между эллипсами составляет 25, что дает механическую блокировку, которая предотвращает разделение надкрылий при растяжении. Кроме того, равномерное распределение напряжений на интерфейсе лопаток панциря увеличивает максимальную жесткость на растяжение и сдвиг, а также прочность и вязкость разрушения.

Из этих данных следует, что пазлообразная структура медиального шва, эллиптическая геометрия его элементов, а также их количество в совокупности позволяют равномерно распределять напряжение и предотвращают разрыв между механически блокируемыми элементами.

Опыты на растяжение образцов, напечатанных на 3D-принтере, и соответствующее моделирование выявили линейную зависимость между количеством зубцов и повышенной жесткостью, и между ударной вязкостью и нормализованной пиковой нагрузкой медиального шва.

Увеличение количества зубцов приводит к более равномерному распределению неупругой деформации. За счет этого соединенные надкрылья, хоть и являющиеся отдельными частями, по своим свойствам напоминают однородный материал (3d).

Более тщательный анализ показал, что максимальная прочность наблюдается у швов с двумя зубцами, тогда как максимальная жесткость наблюдается у образцов с пятью, а пиковая нагрузка с четырьмя зубцами (3e). Чем меньше задействовано зубцов, тем меньше концентрация неупругих деформаций на шейке зубца (зауженная область зубца у его основания). Такое неупругое распределение деформации может объяснить переход от пластичного разрушения (вырывание с повреждением вокруг зубцов) к хрупкому разрушению (разрушение в области шейки) при увеличении количества зубцов или при уменьшении их размера.


Изображение 4

Далее были рассмотрены различные микроструктурные эффекты, связанные с медиальным швом.

При более внимательном рассмотрении поперечных сечений медиального шва (4a) была выявлена многослойная архитектура, которая при растягивающей нагрузке показывает разрушение матрицы, указывая на локальное расслоение (4b). Контрастная визуализация показывает степень расслоения зубцов, что свидетельствует о снятии напряжения (4c). При увеличении деформации наблюдается значительное расслоение с разделением волокон между слоями (желтые стрелки на 4d).

В отличие от однородных материалов, которые обычно ломаются в области зубца или самого тонкого элемента, микроструктура внутри зубцов дьявольского жука обеспечивает значительное снятие напряжения и рассеивание энергии, предотвращая разрушение шейки зубца.

Для лучшего понимания микроструктурных особенностей геометрии зубцов были созданы три модели пазла с различными значениями угла (15, 25 и 50).

Во всех трех случаях первичные соотношения сторон эллипсов постоянны и равны 1.8:1, а зубцы, напечатанные на 3D-принтере, имеют многослойную архитектуру, имитирующую таковую у дьявольского жука.

Зубцы с углом 25 продемонстрировали более высокие нормированные значения пиковой нагрузки и ударной вязкости (4e). Подобное наблюдалось и при 15, однако при увеличении угла до 25 (как у дьявольского жука) возникает значительная деформация с последующим отслаиванием с последующим вырыванием.

Дальнейшие эксперименты на растяжение и моделирование методом конечных элементов выявили распределение деформации, и подтвердили наличие расслоения между слоями зубца перед вытягиванием волокон (4f).

Наконец, у сильно изогнутого зубца ( = 50) наблюдается значительная деформация шейки, за которой следует перелом (без видимого отслоения).

Эти данные говорят о наличии конкурирующих механизмов. С одной стороны мы имеем эллиптическую геометрию, которая обеспечивает максимальное сцепление и прочность шва. С другой расслоение зубцов, предотвращающее локальные напряжения, которые могут вызвать разрушение шейки зубца.

Вывод заключается в том, что тип механического соединения на медиальном шве дьявольского жука обеспечивает надежное соединение надкрылий и более предсказуемый отказ в случае деформации, чем у других жуков.

На заключительном этапе исследования ученые решили применить полученные знания и создать биомиметические композитные аналоги медиального шва дьявольского жука. Полученные образцы тестировали и сравнивали с полимерной нитью, зубцами на полимерной основе и со стандартной аэрокосмической конструкцией Hi-Lok, которая используется для соединения, например, конструкций из алюминиево-углеродного композита.


Примеры Hi-Lok креплений.

Оценка распределения деформации, прочности и рассеивания энергии (4g) показала, что композитные зубцы, имитирующие шовный материал жука, немного прочнее (около 19 1.08 МПа), чем современные инженерные крепежные детали (около 18 0.73 МПа). При этом они демонстрируют существенное увеличение (более чем 100%) рассеяния энергии во время смещения (158.0 30.4 МПа/мм против 76.5 1.4 МПа/мм).

У дьявольского жука наблюдается равномерное распределение напряжения внутри зубца (4h), с локальным отслаиванием, позволяющим избежать разрушения шейки, которое происходит в обоих контрольных образцах (то есть в углеродной нити и зубцах на основе полимера).

Крепеж Hi-Lok демонстрирует локальное распределение деформации вокруг штифтового соединения и приводит к выходу из строя и разъединению пластин. Однако слоистая микроструктура внутри композитного зубца демонстрирует более постепенное разрушение, поскольку расслоение внутри лезвия заставляет шейку структуры расширяться в поперечном направлении, блокируя структуру вместо разрушения или сужения/удлинения до разрушения.

Авторы исследования рассказывают о своих находках.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


С точки зрения науки, природа всегда была вдохновением для человечества. Множество даже самых современных технологий тем или иным образом берут свое начало из чего-то, что встречается в природе.

В данном труде ученые изучили экзоскелет дьявольского жука, которого с уверенностью можно назвать одним из самых живучих насекомых планеты. В ходе эволюции, отказавшись от умения летать, этот жук не просто лишился крыльев, но преобразовал надкрылья в сложную структуру, оснащенную механическими компонентами и продуманной микроструктурой. Надкрылья соединены между собой зубцами, как кусочки пазла, что обеспечивает повышение прочности и сопротивления сжатию.

Для человечества это открытие имеет не только интеллектуальную ценность, но и практическое применение. Тесты с искусственными аналогами медиального шва дьявольского жука, сделанными из композитных материалов, показали, что их свойства превосходят таковые даже у крепежной системы Hi-Lok, которая используется в современной космонавтике.

Иногда можно услышать фразу: что бы вы не делали, природа это уже сделала, причем лучше. Учитывая исследования, подобные рассмотренному нами сегодня, начинаешь верить этому высказыванию все больше и больше.

Пятничный офф-топ:
К числу необычных насекомых можно без сомнения причислить и дровосека-титана. Этот жук, обитающий в джунглях Амазонки, может вырастать до 17 см в длину. Настоящий кошмар для тех, кто страдает инсектофобией.

Офф-топ 2.0:
Мимикрия, танатоз и прочный экзоскелет это не единственные методы защиты среди насекомых. Многие из них используют самое настоящее химическое оружие, способное отпугнуть назойливого хищника или помочь в охоте на добычу.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Нет реальности без боли электронный эквивалент рецепторов кожи человека

11.09.2020 10:13:26 | Автор: admin


Кожа это не только самый большой орган нашего тела, но и самая большая сенсорная система, ежесекундно собирающая информацию о внешних раздражителях и уровнях их воздействия на наш организм. С механической точки зрения, воссоздание кожи человека не является столь сложной задачей, но это будет лишь искусственный защитный слой, лишенный нейронной активности. Ученые из Мельбурнского королевского технологического университета (Мельбурн, Австралия) разработали систему искусственных датчиков, имитирующих различные сенсоры кожи человека. Что потребовалось для создания столь сложной имитации, каков принцип работы устройства, какие раздражители оно способно воспринимать, и где может быть применена данная разработка? Ответы на эти и другие вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Сенсорная система кожи человека может быть разделена на несколько подсистем, каждая из которых отвечает за определенные раздражители. Самыми распространенными и важными считаются рецепторы давления (тельца Пачини), температуры (терморецепторы) и боли (ноцицепторы).

Каждый из этих рецепторов собирает информацию и передает сигналы в мозг человека для обработки и принятия соответствующего решения. Подобный принцип работы и у других сенсорных систем (зрение, слух, вкус, обоняние).

Логично, что подобная биологическая система крайне сложна для воспроизведения, даже при учете современных тактильных сенсоров и КМОП (комплементарная структура металл-оксид-полупроводник).

Существуют разработки, в которых реализован искусственный ноцицептор на основе диффузионного мемристора*, который может демонстрировать нормальное состояние, состоящее из напряженной и релаксационной стадии ноцицептора, а также аномальное состояние с аллодинией* и гипералгезией* ноцицептора, использующего внешние стимулы в качестве напряжения.
Мемристор* пассивный элемент в микроэлектронике, способный изменять свое сопротивление в зависимости от прошедшего через него заряда.
Аллодиния* аномальная боль, вызванная раздражителем, который обычно не вызывает болевых ощущений (например боль при легком прикосновении).

Гипералгезия* аномально высокая чувствительность организма к болевым стимулам.
По словам ученых, данные разработки крайне важны, поскольку механизм переключения мемристора зависит от проводящих нитей, которые имеют примерно субнанометровый диаметр. Используя термоэлектрический модуль и пьезоэлектрический модуль давления, можно успешно достичь напряженного и релаксационного состояния среди четырех основных функций ноцицептора.

На данный момент подобная методика используется для создания искусственного глаза, но реализация ее в формате искусственной кожи пока не была достигнута.

В данном труде ученые демонстрируют рабочий прототип искусственных электронных рецепторов, которые имитируют тельце Пачини, терморецептор и ноцицептор. Достичь этого удалось за счет комбинации нескольких функциональных составляющих:

  • мемристор для принятия решений на основе титаната стронция SrTiO3 (STO) с дефицитом кислорода;
  • датчик давления на основе золота на растяжимом эластомере (полидиметилсилоксан, т.е. PDMS);
  • температурный триггер на основе оксида ванадия (VO2) с фазовым переходом.

Основным отличием данной концепции от предыдущих является отсутствие необходимости в отдельных и сложных термоэлектрических модулях и пьезоэлектрических датчиках давления для практической реализации соматосенсоров. Следовательно, в разработке используются исключительно недорогие и легкодоступные тонкие оксидные пленки, а также носимые датчики давления на биосовместимом PDMS.

Результаты исследования


Прежде чем создавать что-либо, необходимо обдумать что и как будет работать в финальном варианте. С целью создания искусственных рецепторов кожи была разработана гипотетическая основа для реализации функциональных телец Пачини, терморецепторов и ноцицепторов (схема ниже).


Изображение 1

Человеческие соматосенсоры через спинные рога (выступы серого вещества) соединены со спинным мозгом, который передает информацию в мозг (). Существуют специальные пути для определения давления (синий цвет на 1a) и температуры (красный цвет на 1a).

Тельца Пачини это слои мембран, заполненных жидкостью. Отпечатки пальцев являются ярким примером тельца Пачини. Когда на тело оказывается местное давление, часть тельца деформируется, вызывая сдвиг химических ионов (например, натрия или калия) и, как следствие, возникает рецепторный потенциал на нервном окончании кожи. Этот рецепторный потенциал при достижении достаточной энергии (порог) генерирует электрический импульс внутри тельца, который проходит через центральную нервную систему, чтобы активировать двигательный ответ через нервные волокна (синий цвет на 1a).

Когда температура кожи поднимается выше 30 C, терморецептор определяет тепло и запускает потенциалы действия. Частота возбуждения увеличивается с увеличением температуры стимула, пока не достигнет значения насыщения. Кроме того, тепловые ноцицепторы, которые улавливают болевые сигналы, начинают срабатывать при температуре около 45 C. Эти клетки специализируются на обнаружении вредоносного тепла и ожогов.

Когда вредоносный стимул получен тепловым нейроном, расположенным на свободном нервном окончании, электрический ответ отправляется ноцицептору, чтобы сравнить, пересекает ли амплитуда стимула пороговое значение для генерации потенциала действия и отправки в центральную нервную систему через спинной мозг (красный цвет на ).

Чтобы создать аналогичные искусственные рецепторы, были использованы датчики давления на основе золота и PDMS, которые переключаются между состоянием низкого сопротивления (LRS) и состоянием высокого сопротивления (HRS) без и с приложенным давлением для имитации тельца Пачини (1b и 1c).

Чтобы воспроизвести поведение терморецепторов и ноцицепторов, использовался фазовый переход VO2, который может переходить от HRS при комнатной температуре к LRS при температуре выше температуры перехода (68 C).

Кроме того, в качестве элемента принятия решений для оценки пороговых уровней была использована резистивная коммутационная память на основе STO (титанат стронция).

Для искусственного тельца Пачини, когда нет определяемого давления, ток через мемристор принятия решения (I1) недостаточен из-за напряжения смещения, чтобы инициировать двигательную реакцию (1b). При приложении давления датчик переходит в режим HRS, блокирующий I2, что позволяет максимальному току проходить через мемристор. Из-за более высокого I1 мемристор на основе STO переключается на LRS. Следовательно, через тельце протекает более высокий ток, вызывающий двигательную реакцию ().

В случае терморецептора и ноцицептора VO2 может демонстрировать изменение сопротивления на три-четыре порядка при температуре перехода. Если же температура ниже температуры перехода, то VO2 является изолятором.

Таким образом, через рецептор протекает незначительное количество тока, а напряжение, которое появляется на мемристоре, недостаточно для его включения (1d). По достижении температуры перехода VO2 переключается на LRS, в результате чего на мемристоре появляется более высокий потенциал, что вызывает его переключение на LRS. Когда и VO2, и STO находятся в LRS, через рецептор протекает повышенный ток (1e).

Искусственное тельце Пачини


После создания концепции будущего устройства ученые приступили к поэтапной реализации. На первом этапе было создание искусственного тельца Пачини, для чего использовался мемристор на основе кислорододефицитного STO со стековой структурой: Pt (100 нм) / Ti (10 нм) / STO (55 нм) / Pt (25 нм) / Ti (7 нм) и подложка SiO2.

Нижний слой Ti используется как адгезионный слой нижнего слоя Pt, а верхний слой Ti используется как резервуар для кислорода, а также как адгезионный слой верхнего слоя Pt. Нижний слой Pt принимает участие в процессе переключения, а вот верхний служит в качестве инертного материала, предотвращающего TiO2 из-за воздействия кислорода окружающей среды.

Архитектура датчика давления вдохновлена биологическим тельцем Пачини, которое имеет спиральную форму с шириной дорожки и зазором 100 мкм. Диаметр всей спирали целиком составляет 7.8 мм. Для создания сенсора на PDMS толщиной 300 мкм был нанесен Au (200 нм) / Cr (20 нм).


Изображение 2

На изображении показан искусственный эквивалент тельца с интеграцией мемристора и датчика давления.

Сеть датчиков давления работает таким образом, что позволяет рецептору активировать мемристор, который работает как компонент принятия решений.

В биологических системах при достижении достаточного рецепторного потенциала компонент принятия решения может создать электрический импульс для активации мотора центральной нервной системы. Чтобы создать реплику этой функции с определенным пороговым значением, от датчика давления требуется восприятие определенного спектра значений давления. Для простоты демонстрации работоспособности системы ученые решили упростить этот момент до всего двух значений: есть сильное давление и давления нет вообще.

Фиксированное сопротивление в 100 кОм было выбрано для ограничения тока, проходящего через сеть датчика давления, которая имеет сопротивление всего 0.6 кОм. Это гарантирует, что система показывает очень низкий ток при отсутствии давления. На изображении 2b показан отклик и повторяемость автономного датчика давления.

При приложении давления датчик давления переходит в очень HRS с сопротивлением около 1 ГОм из-за деформации и трещин, которые очень часто встречаются для датчиков на основе PDMS. Из-за деформаций и трещин характеристики датчика давления могут ухудшиться после многократных циклов, однако это не мешает демонстрации самой концепции искусственного датчика. Когда давление сбрасывается, зазоры из-за трещин снова закрываются, создавая LRS, в результате чего датчик возвращается в исходное состояние.

Подобная картина наблюдается и в биологических датчиках, которые также деформируются, что приводит к сдвигу химических ионов при приложении давления.

Следует отметить, что компонент принятия решения, состоящий из мемристорного элемента на основе STO, должен быть первоначально подвергнут гальванопластике путем приложения напряжения смещения при очень низком токе 1 мкА к верхнему и нижнему электродам. Этот этап создает локализованный канал для образования проводящих нитей через STO. После этого требуется развертка напряжения для переключения устройства между состояниями HRS и LRS.

Важно и то, что без приложенного давления ток, протекающий через мемристор, недостаточен для его переключения. Однако при приложении давления датчик, содержащий ответвление, переходит в состояние HRS, что приводит к максимальному потенциалу рецептора на мемристоре (). При достижении порога рецепторного потенциала мемристор, принимающий решение, переключается из состояния HRS в состояние LRS (). В этом состоянии примененная последовательность 0 +0.85 В 0 1.12 В 0 переключает устройство в состояние LRS для положительного цикла и в состояние HRS для отрицательного полупериода (2d и ).

Чтобы перевести устройство в LRS, учитывается только положительный полупериод. В соответствии с изображением 2d, когда давление не подается, цепь датчика давления имеет общее сопротивление 100.6 кОм, тогда как параллельный компонент принятия решения (мемристор) имеет сопротивление 70 кОм. Таким образом, эквивалентное сопротивление всего тельца Пачини составляет 41.2 кОм.

Это эквивалентное сопротивление пропускает ток всего 0.02 мА через всю цепь, что можно рассматривать как расслабленное состояние. Приложение давления преобразует цепь датчика давления в состояние с чрезвычайно высоким сопротивлением 1 ГОм, в то время как сопротивление мемристора составляет всего около 2.5 кОм, изменяя эквивалентное сопротивление всего тельца Пачини примерно на 2.5 кОм. Это низкоомное состояние допускает ток 0.35 мА по всей цепи.

Таким образом, стимул давления генерирует ответный сигнал, который почти на 18 раз выше, чем в расслабленном состоянии, что может позволить центральной нервной системе инициировать свой двигательный ответ. После того как двигательная реакция завершена, для инициализации тельца Пачини можно применить обратную полярность к мемристору, используя неиспользованные электроды.

Искусственный терморецептор


Для создания терморецептора в основе мемристора была использована такая же стек-структура, как и для тельца Пачини, т.е. металл-изолятор-металл (МИМ).


Изображение 3

Часть верхнего электрона использовалась совместно с поверхностью VO2 (3а и 3b) для последовательного подключения теплового датчика. Для смещения всего устройства этот электродный слой, состоящий из Pt (100 нм) / Ti (10 нм), был нанесен на поверхность VO2. Между исходным электродом и верхним электродом мемристора поддерживалось существенное расстояние в 100 мкм.

На изображении показана схема подключения терморецептора, в которой смещение приложено через металл к тепловому датчику, а земля (GND на схеме) подключена к нижнему электроду мемристора, принимающего решение.

График 3d показывает кривую зависимости сопротивления от температуры для перехода диэлектрикметалл на тонкой пленки VO2. Очевидно, что при достижении температуры перехода наблюдается падение удельного сопротивления на четыре порядка. Очевидный тепловой гистерезис также наблюдается в циклах нагрева и охлаждения. Также было установлено отсутствие какого-либо заметного влияния температуры на резистивное переключение ().

Мемристор может показывать изменение сопротивления от 100 кОм до 2 кОм в процессе переключения. Однако для более понятного анализа было решено рассматривать сопротивление состояния HRS как 93 кОм, а сопротивление состояния LRS как 9 кОм при 80 мВ напряжения считывания (VREAD), так как при этом напряжении наблюдается максимальное отношение переключения ROFF / RON. Последовательность переключения напряжения готового автономного устройства составила: 0 +0.65 В 0 0.80 В 0. Когда та же последовательность применяется ко всему терморецептору, сопротивление уменьшается, и, следовательно, ток рецептора увеличивается с повышением температуры (3f).

Чтобы обеспечить необходимое коммутируемое напряжение, температура приемника поддерживалась на уровне 70 C. Это необходимо для гарантии того, что VO2 находится в состоянии LRS. Затем приложение напряжения смещения от 0 до 2 В полностью устанавливает и сбрасывает устройство ().


Изображение 4

Для мемристора, принимающего решение, исходное сопротивление 93 кОм намного ниже, чем HRS теплового датчика, которое составляет 11 МОм. Таким образом, частичное напряжение, которое появляется на мемристоре, принимающем решение, не может достичь порогового значения VSET для преобразования его из HRS в LRS. Следовательно, и термодатчик, и мемристор находятся в состоянии HRS, что позволяет минимальному току протекать через терморецептор [4b(i)].

Когда применяется критическая температура 70 C, сопротивление термодатчика уменьшается на четыре порядка, а частичное напряжение мемристора постепенно увеличивается до напряжения SET с увеличением отклика рецептора [4b(ii)]. Как только VSET включает мемристор, он переходит в LRS от HRS с сопротивлением 9 кОм [4b(iii)].

На этом этапе формируется максимальный рецепторный ответ. LRS памяти будет сохраняться в течение длительного времени, даже если тепловой стимул полностью отключен. Чтобы перепрограммировать мемристор, отрицательное напряжение VRESET может перевести его с LRS в HRS [4b(iv)]. Для этого можно подавать отрицательное напряжение от неиспользуемых электродов ().

Искусственный ноцицептор


Можно с уверенностью сказать, что ноцицепторы значительно отличаются от своих собратьев. Ноцицепторы имеются по всему человеческому телу и расположены на конце аксона сенсорного нейрона.

Чтобы избежать воздействия вредоносных раздражителей, ноцицептор реагирует двумя способами: нормальными и анормальными.

В нормальных условиях, когда нерв, оканчивающийся на коже, получает вредоносный стимул, ответный сигнал отправляется ноцицептору, чтобы сравнить, превышает ли сигнал определенное пороговое значение, и решить, требуется ли генерировать потенциал действия для центральной нервной системы. В этом нормальном состоянии ноцицептор медленно отключается на время, известное как процесс релаксации. Используя этот порог и процесс релаксации, ноцицептор изолирует тело от любого нежелательного критического и непрерывного воздействия раздражителей.

Анормальный ответ возникает, когда организм сталкивается со стимулами, близкими к порогу повреждения ноцицептора, и в этом состоянии ноцицептор работает как обычный рецептор, чтобы избежать дальнейшего повреждения. Если же травма все же была получена, то уязвимость пораженной ткани возрастает. Ноцицептивная система адаптируется к этой повышенной уязвимости, локально понижая ноцицептивный порог и облегчая ноцицептивный ответ, тем самым обеспечивая адекватную защиту тканей.

Ноцицептор демонстрирует два различных поведения в анормальных условиях: аллодиния и гипералгезия.

Аллодиния дает ответный сигнал при нижнем пороговом значении, тогда как гипералгезия создает более сильный ответный сигнал при превышении порогового значения, указывая на то, что при аномальном состоянии порога для ноцицептора нет.

Для наблюдений за поведением искусственного терморецептора в нормальных условиях, который работает как ноцицептор во время вредоносных стимулов, устройство было переключено на LRS, а показания считывались при VREAD80 мВ.

Поскольку срабатывание биологического ноцицептора в значительной степени зависит от интенсивности стимула, на искусственный ноцицептор воздействовали серией температурных стимулов с различной интенсивностью в диапазоне от 66 до 82 C (5a).


Изображение 5

График 5b демонстрирует ответный сигнал относительно интенсивности приложенного теплового стимула. Следует отметить, что ноцицептор не включается, пока температурный импульс не достигнет 68 C, что является температурой перехода используемого VO2. Таким образом, когда VO2 попадает в LRS из-за температурно-индуцированного перехода, более высокий ток начинает течь по всей цепи. Подобное повеление напоминает биологические системы, в которых ноцицептор генерирует запускающий мозг потенциал действия, когда сила стимула достигает значений выше критического.

Дальнейшее увеличение интенсивности стимула выше порогового значения приводит к большему току, что также согласуется с реакцией биологического аналога: чем выше интенсивность стимула, тем выше интенсивность ответной реакции. На графике 5c показаны стимулы нагрева и охлаждения и соответствующий ответный сигнал при 68 C.

График 5d показывает ослабление ответного сигнала с течением времени после того, как вредоносный стимул был отключен, т.е. процесс релаксации, который определяется VO2, так как нет влияния температуры на мемристор на основе STO.

Из-за тенденции к увеличению сопротивления VO2 по мере снижения температуры с течением времени искусственный ноцицептор ограничивает ток через цепь, и, следовательно, наблюдается уменьшение интенсивности ответных сигналов.

Более сильный ответный сигнал из-за более высоких стимулов требует относительно большего времени для полной релаксации. Например, ответному сигналу при 68 C требуется 100 с, чтобы достичь базового тока в 0.5 мкА, тогда как ответный сигнал при 80 C не может полностью релаксировать за 100 с.

Для наблюдения за поведением устройства в анормальных условиях, к искусственному ноцицептору был применен стимул, интенсивность которого была гораздо выше, чем в нормальных условиях.

Ноцицептор нагревали до 90 C со скоростью 20 градусов в минуту и охлаждали до 60 C, что ниже порогового значения (68 C) в нормальных условиях.

Далее следовал повторный нагрев с 60 до 90 C, необходимый для определения наличия/отсутствия генерации пониженного порога и усиленного ответа, которые являются основными свойствами аллодинии и гипералгезии.

Последовательность 60 90 60 90 применялась к VO2 части рецептора и ко всему рецептору, содержащему VO2 и стек металл-изолятор-металл ().


Изображение 6

На графиках отчетливо видно, что ответный сигнал намного более линейный в VO2 () по сравнению с сигналом всего ноцицептора (6b). Это вполне ожидаемо, так как при высокой интенсивности стимула VO2 находится в почти металлическом состоянии с относительно низким сопротивлением 5 кОм после перехода. Более того, приложенное напряжение смещения VREAD (80 мВ) электрически настраивает VO2, чтобы сделать его еще более металлическим, что приводит к линейному отклику.

В то же время, когда подобное смещение VREAD появляется на всем ноцицепторе, максимальное падение напряжения происходит на мемристоре, который находится в состоянии LRS (9 кОм). На этом этапе напряжения на VO2 недостаточно, чтобы показать линейный отклик. Следовательно, данное поведение является нелинейным.

На схеме показано поведение при аллодинии и гипералгезии. В биологической системе интенсивность ответа выше в аномальном состоянии для подпороговой (аллодиния) и сверхпороговой (гипералгезия) интенсивности стимула.

На 6d показан отклик по отношению к двум циклам нагрева последовательности с последовательностью 60 90 60 90 C. Тут видно, что отклик для второго цикла нагрева усиливается, а порог снижается.

В поведении искусственного рецептора четко видны аллодиния ниже пороговой интенсивности и гипералгезия выше пороговой интенсивности (70 C). Из этого следует, что снижая порог и усиливая интенсивность ответа, ноцицептор активирует и усиливает защитные реакции, такие как отстранение или избегание острых болезненных стимулов.


Демонстрация принципа работы электронного эквивалента тельца Пачини.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мозг человека является одной из самых сложных биологических систем. Но нельзя отрицать и того факта, что кожа человека не менее сложна, особенно учитывая немалый список выполняемых ею функций.

Воссоздать некоторые из функций кожи в искусственном эквиваленте не сложно, но вот касательно рецепторов, собирающих информацию об окружающей среде, так сказать не получится.

Тем не менее, ученым все же удалось достичь некоторых результатов в создании искусственных рецепторов, улавливающих давление, температуру и боль.

Как заявляют авторы сего труда, их устройство способно различать легкое прикосновение и, например, укол иглы. На первый взгляд, это весьма банальные вещи, однако ранее такой точности не было в электронных рецепторах.

В будущем ученые, естественно, намерены продолжить свой труд, дабы расширить спектр воспринимаемых внешних стимулов, что позволит сделать их устройство еще более точным. Подобные разработки однозначно найдут свое применение не только в протезировании, но и даже в робототехнике.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Скорость звука каков ее предел?

14.10.2020 10:20:11 | Автор: admin


Одна из основных задач какой-либо точной науки заключается в измерении и объяснении тех или иных процессов, а также их участников. За многие годы исследований, расчетов и споров научное сообщество пришло к пониманию того, что существуют определенные ограничения в некоторых явлениях. К примеру, скорость света в вакууме равна 299 792 458 м/с. Согласно специальной теории относительности, ничто не может двигаться быстрее. Другими словами, мы имеем верхний скоростной лимит для света. Однако такой лимит для скорости звука пока не был установлен. Ученые из Лондонского университета королевы Марии (Англия, Великобритания) провели расчеты, результатом которых стало открытие верхнего предела скорости звука. Что стало основой расчетов, каковы их результаты, и в каких областях можно применить новообретенные знания? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Звук это волны механических колебаний в какой-либо среде. Скорость распространения этих волн напрямую зависит от самой среды. К примеру, в твердых объектах звук распространяется быстрее, чем в воздухе. Однако и тут могут быть флуктуации в измерениях, поскольку важна не только среда как таковая, но и ее состояние (температура, давление и т.д.).

Логично, что скорость звука сложно назвать константой, так как в разных условиях она будет своя: в воздухе это 331 м/с, в воде 1500 м/с (тут будут вариации в зависимости от температуры, давления и солености воды), а в стекле 4800 м/с.

Но как же рассчитать верхний лимит скорости звука?

Как напоминают нам ученые, некоторые важные свойства конденсированных фаз* определяются фундаментальными физическими константами.
Конденсированные фазы* состояние вещества, когда число его компонентов (атомов, молекул и т.д.) крайне велико, а взаимодействия между компонентами очень сильны. К числу таких фаз можно отнести и твердые вещества, и жидкости.
Радиус Бора позволяет охарактеризовать межатомное расстояние в ангстрем (1 = 0.1 нм) масштабах с точки зрения массы электрона (me), заряда (e) и постоянной Планка (h). Эти же фундаментальные константы входят в энергию Ридберга*, задавая масштаб характерной энергии связи в конденсированных фазах и химических соединениях.
Постоянная Ридберга* предельное значение наивысшего волнового числа любого фотона, который может быть испущен атомом водорода. Также эта постоянная определяет волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.
Тем не менее крайне важную в физике играют безразмерные и не зависящие от единиц измерения константы. К ним относятся постоянная тонкой структуры* и отношение массы протона к массе электрона*.
Постоянная тонкой структуры* () фундаментальной физической постоянной, которая характеризует силу электромагнитного взаимодействия. Эта постоянная определяет размер крайне малого изменения величины энергетических уровней атома и образования тонкой структуры, которые являются набором узких и близких частот в его спектральных линиях.
Отношение массы протона к массе электрона* (mp/me константа, равная 1836,15267261.
Объединение этих констант позволяет определить новую безразмерную константу, описывающую верхнюю границу скорости звука (vu) в конденсированных фазах (формула 1):

где c скорость света в вакууме, постоянная тонкой структуры, mp/me отношение масс протона и электрона, vu верхний предел скорости звука.

Подтверждение верности данной формулы было получено благодаря многочисленным экспериментам и моделированию атомарного водорода.

Результаты исследования


Авторы сего труда отмечают, что существует два подхода к определению v (скорости звука). Один поход начинается с оценки упругости системы, а второй с оценки ее вибрационных свойств. Оба подхода дают сопоставимые результаты (приготовьтесь, формул будет немало).

Что касается упругости системы, то продольная скорости звука равна: v = (M/p)1/2, тогда как M = K + 4/3G, где K объемный модуль упругости; G модуль сдвига; p плотность.

Было установлено, что упругие постоянные определяются плотностью электромагнитной энергии в конденсированных фазах. В частности, была установлена четкая связь между модулем объемной упругости (K) и энергией связи (E): K = f E/a3, где а межатомное расстояние, f коэффициент пропорциональности.

Это соотношение может быть выведено с точностью до константы, задаваемой второй производной функции, представляющей зависимость энергии от объема. Для наиболее прочно атомарно связанных твердых тел f варьируется в диапазоне от 1 до 4. Также стоит учесть и коэффициент пропорциональности между M и E/a3, который варьируется от 1 до 6.

Объединение v = (M/p)1/2 и М = f E/a3 в результате дает v = f1/2(E/m)1/2, где m масса атома или молекулы (в данном случае использовалась m = pa3). Коэффициент f1/2 составляет примерно от 1 до 2 и может быть исключен в случае приблизительной оценки v. В таком случае мы получим (формула 2):

Энергия связи в конденсированных фазах определяется ридберговской энергией порядка нескольких электрон-вольт (формула 3):

где е заряд электрона, m масса электрона. ER используется для оценки величины энергии связи (E).

Используя E = ER из формулы 3 в формуле 2 мы получим (формула 4):

где = (1/40)(e2/hc) постоянная тонкой структуры.

Такой же результат, как и в формуле 4, можно получить и посредством второго подхода, где основной акцент поставлен на рассмотрении вибрационных свойств системы.

Продольную скорость звука (v) можно оценить как фазовую скорость по кривой продольной дисперсии [ = (k)] в приближении Дебая: v = D/kD, где D это частота Дебая; kD волновой вектор. Применение kD = /a (a межатомное/межмолекулярное расстояние) приводит к (формула 5):

Как мы уже рассматривали ранее, характеристики межатомного разделения описываются радиусом Бора (aB) в ангстрем масштабах (формула 6):

Далее было использовано отношение между фононной энергией (hD) и E. Фононная энергия может быть выражена как h(E/ma2)1/2. Если взять отношение hD/E, использовать а = aB из формулы 6 и E = ER из формулы 3, то в результате получится (формула 7):

Применение формулы 7 в формуле 5 дает следующее (формула 8):

Сравнение данных расчетов с первым подходом указывает на то, что второй подход использует больше приближений, потому ученые решили на дальнейших этапах исследования использовать первый подход (формула 4), который является более точным.

Далее выбранный подход был проверен на более практическом уровне.

me характеризует электроны, которые отвечают за взаимодействия между атомами. Электронный вклад далее отражается в коэффициенте c (c e2/h), который представляет собой скорость электронов в модели Бора. Ученые отмечают, что с и v не зависят от c. Использование формулировки v в виде с в формуле 4 обусловлено двумя факторами.

Во-первых, так намного удобнее и информативнее представлять границу в отношении vu/c, что обычно применяется в отношении скорости Ферми и скорости света (vF/c).

Во-вторых, именно (наряду с mp/me) имеет фундаментальное для стабильности протонов и обеспечения синтеза тяжелых элементов и, следовательно, существования твердых тел и жидкостей, в которых звук может распространяться.

m формула 4 характеризует атомы, участвующие в распространении звука. Его масштаб задается массой протона mp: m = Amp, где A атомная масса. Учитывая, что А = 1, а m = mp, применение формулы 4 позволяет определить значение верхней границы скорости звука (формула 9):

Таким образом было показано, что vu зависит только от фундаментальных физических констант, включая безразмерную постоянную тонкой структуры и отношение масс протона и электрона.

Вышеуказанная формула является расширенным вариантом формулы 4 для атомарного водорода. Объединение формул 4 и 9, при учете m = Amp, позволяет получить (формула 10):

Что ж, теперь можно немного отдохнуть от формул и приступить к обсуждению расчетов и экспериментов.

Ученые отмечают, что хоть скорость звука определяется модулями упругости и плотностью, они существенно отличаются в зависимости от типа связи: сильные ковалентная, ионная или металлическая связи, обычно дающей большую энергию связи, промежуточные водородные связи, а также слабые дипольные и ван-дер-ваальсовые взаимодействиям. Модули упругости и плотность также меняются в зависимости от конкретной конструкции, которую принимает система. Кроме того, тип связи и структура сами по себе взаимозависимы: ковалентная связь приводят к образованию открытых структур, а ионная плотноупакованных. Следовательно, скорость звука для конкретной системы не может быть предсказана аналитически и без явного знания структуры и взаимодействий внутри нее, подобно другим системно-зависимым свойствам, таким как вязкость или теплопроводность.

Тем не менее зависимость v от m или A может быть изучена в семействе элементарных твердых тел. Элементарные твердые вещества не имеют смешанных особенностей, существующих в соединениях из-за смешанной связи между разными атомными разновидностями (включая смешанную ковалентно-ионную связь между одними и теми же парами атомов, а также разные типы связи между разными парами).


Изображение 1

Теория была проверена на практике с применением 36 различных элементарных твердых тел, в том числе полупроводников и металлов с большими энергиями связи. Результаты теоретических расчетов были объединены с результатами опытов на графике выше. Прямая линия на графике (формулу 10) оканчивается ее верхней теоретической границей (формула 9) для A = 1. Линейный коэффициент корреляции Пирсона*, рассчитанный для экспериментального набора (log A, log v), составил -0.71. Его абсолютное значение немного выше границы, условно разделяющей умеренную и сильную корреляции.
Коэффициент корреляции Пирсона* используется для изучения связи двух переменных, измеренных в метрических шкалах на одной и той же выборке.
Расчетные и экспериментальные значения vu, показанные на графике прямой и пунктирной линиями, указывают на пересечение в точке 37.350 м/с, что подтверждает верность расчетных походов и, особенно, верность аппроксимации коэффициент в формуле 4, что дает хорошее согласование с экспериментальными данными.


Изображение 2

Далее было решено проверить согласование расчетных данных с экспериментальными с применением более широкого спектра образцов (133 образца). Экспериментальные значения v были меньше, чем верхняя теоретическая граница vu в формуле 9. vu примерно вдвое больше v в алмазе, это является самой высокой скоростью звука, измеренной в условиях окружающей среды.

Формула 10 может использоваться для приблизительного прогнозирования средней или характеристической скорости звука (v). A1/2, которая, согласно формуле 10, относится к скорости звука, варьируется по периодической таблице в диапазоне от 1 до 15 со средним значением 8. Согласно расчетам соответствующее значение v равно 4513 м/с. Это на 16% согласуется с 5392 м/с средним значением по всем элементарным твердым телам, и на 14% с 5267 м/с средним значением по всем твердым телам на графике выше.

В эксперименты также были включены данные по скорости звука в жидкости при комнатной температуре, которые варьируются от 1000 до 2000 м/с. Однако в высокотемпературных жидких металлах, таких как Al, Fe, Mg и Ni, v достигает более высоких значений в диапазоне от 4000 до 5000 м/с. Из этого следует, что скорость звука в жидкостях полностью удовлетворяет расчетную верхнюю границу скорости.

Ученые отмечают, что хоть приближения, использованные в некоторых формулах, и могут повлиять на вычисление v и его оценку, vu все же формируется исходя из фундаментальных констант. Другими словами, в конечном итоге приближения не имеют столь значимого влияния.

Также было установлено, что рассчитанное значение верхней границы скорости звука применимо к твердым телам не только с сильной межатомной связью, но и со слабой. Формула 3, 6 и 7 предполагают, что валентные электроны непосредственно участвуют в связывании. Следовательно, они играют важную роль в системах с металлической, ковалентной и ионной связью. Несмотря на то, что связывание в твердых телах со слабой связью также имеет электромагнитное происхождение, слабые дипольные и ван-дер-ваальсовые взаимодействия приводят к меньшему E и, как результат, меньшему v. Потому из этого следует, что верхняя граница vu применима и к слабосвязанным системам.

Ученые отмечают, что верхняя граница vu соответствует твердому водороду с прочной металлической связью. Данная фаза вещества существует только при мегабарном давлении и динамически нестабильна при атмосферном давлении, где происходит образование молекул. Посему было решено провести расчеты v в атомарном водороде, чтобы подтвердить верность расчетов как таковых.

Расчеты скорость звука в атомарном водороде проводились с применением структуры I41/amd, которая является наилучшей структурой-образцом для твердого атомарного металлического водорода. Известно, что эта структура становится термодинамически стабильной в диапазоне давлений от 400 до 500 ГПа, ниже которого твердый водород является молекулярным твердым телом. Однако было обнаружено, что I41/amd динамически устойчива при давлениях выше примерно 250 ГПа, поэтому расчеты проводились в диапазоне давления от 250 до 1000 ГПа.


Изображение 3

На графике выше представлена скорость звука как функция давления и плотности. Рассчитанное значение скорости звука было ниже значения vu в широком диапазоне давлений. Увеличение v выше расчетной верхней границы возникает лишь при давлении 600 ГПа и выше. Следовательно, при нормальных условиях скорость звука не будет превышать расчетную верхнюю границу.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые определили, что важнейшую роль в оценке максимально возможной скорости звука играют две фундаментальные константы постоянная тонкой структуры и отношение массы протона к массе электрона.

Проведенные расчеты были проверены на практике с применением разнообразных материалов. Эксперименты позволили установить, что скорость звука должна уменьшаться с атомарной массой. Из этого следует, что максимальная скорость звука достигается в твердом атомарном водороде, который может существовать в таком виде лишь при очень высоком давлении. Тем не менее было установлено, что верхняя граница скорости звука в рамках данного исследования составляет 36100 м/с. С практической точки зрения, подобные исследования крайне важны для понимания тех или иных материалов, а также их свойств.

Естественно, ученые не намерены останавливаться на достигнутом. Их расчеты и соответствующие экспериментальные данные требуют перепроверки, уточнения и дополнительного подтверждения. В будущем данное исследование будет продолжено, а верхняя граница скорости звука может неожиданно сместиться в большую или меньшую сторону ввиду новых данных. Как бы то ни было, фундаментальный подход остается прежним, а сам факт лучшего понимания процессов, протекающих вокруг нас, позволяет с уверенностью смотреть на развитие данного исследования.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Живой пылесос динамика хобота слона во время притягивания объектов

11.06.2021 10:21:30 | Автор: admin


В мире природы полно созданий, отличающихся своим необычным методом передвижения, внешним видом, гастрономическими предпочтениями, поведением и т.д. Конечно, для них самих ничего необычного нет, ибо все это является результатом сотен тысяч лет эволюции, нацеленной на выживание вида в постоянно меняющихся условиях окружающей среды. То, что является необходимостью для животного, для нас становится объектом исследований и вдохновением в разработках, применяемых в самых разных отраслях, от медицины до робототехники. Так ученые из Технологического института Джорджии (США) решили провести детальный анализ хобота слона, с помощью которого травоядный гигант способен и пить, и собирать еду. Что происходит с хоботом, когда слон пьет, какую силу он применяет, когда поднимает мелкие объекты, и где можно применить полученные данные? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Слоны хоть и являются самыми крупными обладателями хобота, но далеко не единственными. Бабочки, ленточные черви, пиявки, клопы, тапиры, морские слоны и т.д. все они обладают той или иной формой хобота. В разных случаях хобот служит органом осязание, питания и даже защиты.

Для слонов же хобот, образованный из носа и верхней губы, является своего рода швейцарским ножом. С его помощью они набирают воду (которую потом выливают в рот), подбирают мелкие предметы, срывают плоды, дышат во время переправы через водоемы, используют в коммуникации со своими сородичами и т.д.


Изображение 1

Один африканский слон (Loxodonta africana) ежедневно потребляет более 200 кг растительности, тратя около 18 часов в день на добычу травы, листьев, фруктов и коры деревьев (1a).

Самое удивительно то, что хобот слона может весить порядка 100 кг, но при этом слон с легкостью может поднять с пола мелкий и хрупкий предмет, не повредив его. Секрет такой аккуратности не только в гибкости и подвижности хобота, но и в воздухе, который он всасывает. Ученые предположили, что важную роль в том, как слон манипулирует хоботом, играют ноздри и легкие животного. Во время всасывания воды также происходят определенные изменения, вызванные сокращением мышц, что позволяет слону получать больше воды за один заход.

Факт того, что слоны используют воду и воздух в качестве дополнительных инструментов для манипуляции с объектами окружающей среды, был описан еще в 1871 году Чарльзом Дарвином. Он заметил, что слоны могут перемещать объекты вне их досягаемости с помощью дуновения через хобот. Слоны могут регулировать продолжительность дуновения в зависимости от расстояния до объекта и даже намеренно направлять струю воздуха на стену, которая затем оттолкнет объект ближе к ним.

Ученые отмечают, что животные, которые манипулируют объектами с помощью потока жидкости, обычно обитают в воде, а не на суше. Ярким примером являются рыбы из рода Toxotes (брызгуны), способные выстреливать струей воды в насекомых над поверхностью водоема.


Брызгун на охоте.

Кальмары и осьминоги также стреляют водой, но не для охот, а для передвижения. Многие виды рыб используют так называемое всасывающее кормление, когда они втягивают еду в ротовое отверстие.

Учитывая уникальность подобного поведения среди наземных существ, слоны и их хоботы требуют изучения, считают ученые. Посему было проведено несколько тестов, во время которых ученые фиксировали любые изменения морфологии хобота слона во время кормления, забора воды и манипуляций с мелкими хрупкими объектами.

Результаты исследования


В ходе тестов (14 заходов) подопытного слона кормили брюквой, нарезанной кубиками разных размеров. Захват хоботом менялся в зависимости от размера и количества кубиков (1b). Когда слону давали 10 мелких кубиков (менее 40 мм), он использовал цепкий конец хобота без всасывания. Если же мелких кубиков было больше 10, то слон предпочитал всасывание (1c). Забавно, что ученые охарактеризовали звук, которым сопровождался этот процесс, как звук работающего пылесоса.


Методы сбора мелких (16 мм) и крупных (32 мм) кубиков брюквы. В первом случае присутствует всасывание (обратите внимание на звук). Во втором его нет, так как кубики слишком большие.

Любопытно, что во время тестов с зернами всасывание не использовалось, вместо этого слон пытался захватить как можно больше зерен в пригоршню. Скорее всего всасывания не было, чтобы предотвратить застревание зерен в хоботе.

Далее трапеза слона продолжилась чипсами (тортилья), чтобы оценить его взаимодействие с крупными плоскими объектами. Толщина чипса не более 500 мкм, посему его сложно поднять с плоской поверхности (использовалась силовая платформа). Для разрушения чипса нужно приложить силу в 11 2 Н (Ньютон), что составляет около 1% от веса хобота слона.

После первого контакта процесс поднятия чипса занимал 3.0 0.2 секунды. Сам процесс можно разделить на три этапа (1d и 1e): приближение к объекту, поиск объекта, подъем объекта.


Притягивание чипса методом всасывания воздуха (видео замедлено в 5 раз).

Слон сначала не касался чипса напрямую, а дотрагивался до внешнего края силовой платформы, прикладывая при этом силу в 4 1 Н. На этапе поиска он приближался к чипсу, применяя силу в 5 Н, т.е. 50% от необходимой для разрушения чипса силы.

Во время этапа подъема наблюдалось два разных поведения. В первом случае слон применял всасывание на фиксированном расстоянии от чипса (1d). Во втором применял всасывание, прижимая хобот прямо к чипсу (1e). Любопытно и то, что в любом случае слон практически всегда поднимал чипс без его повреждения.

Визуальные наблюдения за слонами хоть и веселое занятие, но они дают слишком мало данных. Потому ученые дополнительно измеряли создаваемое давление всасывания во время тестов с водой. Дабы лучше визуализировать поток, всасываемый хоботом, в воду были добавлены семена чиа. Профиль потока кажется параболическим, о чем свидетельствует большее расстояние, пройденное семенами чиа в области центра ноздрей ().


Изображение 2

График 2c показывает ход потока жидкости в хоботе по времени, измеренный по мере уменьшения жидкости в резервуаре. Во время трех тестовых заходов слон всасывал воду в течение 1.5 0.1 с, что соответствует объемному расходу Qw = 3.7 0.3 л/с. И тут ученые опять проводят странное сравнение (для американцев это вполне нормальная практика): такой объемный расход эквивалентен 20 смывам туалета (не знаю, как такое сравнение может помочь оценить или визуализировать силу потока, но ладно).


Эксперимент с всасыванием воды.

Общий объем жидкости в хоботе составил 5.5 0.41 литра. После всасывания 3 литров была пауза примерно в полсекунды, в момент которой скорость потока была 1 1.2 л/с. Затем поток снова увеличивался до 4.5 2.1 л/с в последние полсекунды цикла всасывания. Подобная динамика наблюдалась во время всех наблюдений. Ученые предполагают, что кратковременные перерывы во время всасывания необходимы для предотвращения попадания воды в постериальный сфинктер хобота.

Для дальнейшего анализа необходимо было установить внутренний объем хобота (длиной примерно 1.9 м). Для этого были использованы данные измерений поперечного сечения хобота. Полость хобота имеет радиус 1 см на дистальном конце и 3 см на проксимальном. Расчетный объем хобота в таком случае будет 5.2 литра, что почти равно объему втягиваемой воды (5.5 л). Как слон может втягивать воду в объеме большем, чем объем его собственного хобота? Ранее проведенные исследования показали наличие мышечной структуры, идущей от ноздрей, которая позволяет хоботу расширяться.

Далее ученые провели ультразвуковое исследования (3a), чтобы выяснить пределы расширения этой структуры. Ультрасонографические измерения стенок хобота проводились в трех условиях: естественное дыхание, втягивание воды и втягивание воды с отрубями.


Изображение 3

На снимках 3c и 3d видно, что радиальные мышцы сокращались, когда слон втягивал воду с отрубями.


Ультразвуковое исследование носовой стенки слона во время всасывания отрубей. Красной стрелкой отмечена граница между жидкостью и стенкой носа.

Исходный радиус хобота и ноздри равны 7.5 и 1.5 см соответственно. Следовательно, толщина исследуемой стенки хобота равна 6 см. При всасывании воды толщина стенки уменьшалась до 5.7 см, а при всасывании воды с отрубями до 5.6 см.

Было установлено, что радиус ноздри во время всасывания воздуха, воды и воды с отрубями составил: 1.5 0.2 см, 1.8 0.2 см и 1.9 0.2 см соответственно (3e). Таким образом значения радиуса во время всасывания воды и воды с отрубями увеличивались на 18% и 28% соответственно.

Если предположить, что радиус увеличивается по всей длине хобота, то внутренний объем хобота увеличивается на 40% для воды и на 64% для воды с отрубями.

Однако у любой системы есть свой предел. Ученые создали математическую модель для расчета эффективного расстояния для кормления методом всасывания (2d). Модель позволила установить максимальное давление, применяемое в экспериментах с водой, и максимального расстояния от чипса, на котором слон может его поднять с помощью всасывания.

В экспериментах с водой средняя скорость воды (uw) в хоботе представляет собой расход, деленный на площадь поперечного сечения ноздрей: Qw / (2a2) 2.7 м/с, где a = 2.1 см это радиус ноздри. Максимальное давление наблюдалось в конце цикла всасывания, когда вода достигает максимальной скорости и высоты в хоботе. Если рассчитать число Рейнольдса* потока внутри ноздри, можно узнать, испытывает ли жидкость турбулентность.
Число Рейнольдса* отношение инерционных сил к силам вязкого трения в вязких жидкостях и газах.
Число Рейнольдса для транспортировки воды по трубе Rew = 8.1 х 104, а число Рейнольдса для воздуха 4.2 х 106. Учитывая, что эти числа Рейнольдса выше 4000, для аппроксимации можно использовать закон Бернулли*. В результате было установлено, что прилагаемое давление составляет -20 кПа.
Закон Бернулли* если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот.
Если аналогичное давление применяется во время всасывания чипса, то скорость воздуха составляет 150 м/с. Также расчеты показывают, что расстояние, на котором слон может эффективно притягивать объекты, линейно зависит от размера ноздри. Следовательно, объект с меньшей массой или большей площадью может эффективно всасываться и на большем расстоянии, чем во врем экспериментов с чипсами.

В экспериментах площадь поверхности чипса составляла 113 см2, а масса 10 г. Учитывая ускорение свободного падения (в расчетах было 9.81 м/с2) и рассчитанное давление (-20 кПа), ученые установили, что максимальная высота эффективного всасывания составляет 4.6 см.

Важнейшим аспектом, влияющим на эффективность всасывания, является давление в легких слона. Слоны могут создавать высокое давление в легких из-за их специализированной дыхательной системы. Растяжимая сеть коллагеновых волокон заполняет плевральное пространство, свободно соединяя легкие с грудной стенкой, при это не ограничивая движения легкого по отношению к грудной стенке (Почему у слона нет плевральной полости?, Джон Б. Уэст, 2002).

Именно эта анатомическая особенность позволяет генерировать потоки воздуха с такой большой скоростью. Кроме того, эндоторакальная фасция* у слонов в восемь раз толще, чем у людей, кроликов, крыс и мышей, что может создавать дополнительное давление в их легких.
Эндоторакальная фасция* слой рыхлой соединительной ткани глубоко в межреберных промежутках и ребрах, отделяющий эти структуры от подлежащей плевры. Фасциальный слой является самой внешней мембраной грудной полости.


Изображение 4

В заключение ученые, основываясь на полученных данных, решили определить, способны ли другие животные притягивать объекты всасыванием, как и слоны. Сначала было оценено соотношение массы тела к радиусу ноздри (4a), который увеличивается с размерами существа (из тех, что учитывались в расчетах).

У слонов самые широкие ноздри из всех исследованных млекопитающих, с радиусом ноздри от 10 мм на кончике до 30 мм на расстоянии 90 см от него. Используя слонов как точку отчета, ученые составили диаграмму максимального расстояния, на котором млекопитающие в теории может притягивать объекты всасыванием (4b). К примеру, для коров такое расстояние составляет 1 см, а для свиней и тапиров 0.65 см.

Ну и самое забавное, конечно. Человек тоже может притягивать предметы всасывая воздух, правда они будут не толще листа бумаги, а максимальное расстояние для успешности трюка с чипсом не может быть больше 0.4 мм. А любые флуктуации воздуха между чипсом и носом сделает трюк невыполнимым.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


За что можно любить науку, так это за ее безграничность. Человек готов с необъятным любопытством исследовать все, от таинственного космоса и глубин океанов до хобота слона.

В данном исследовании ученые провели эксперименты и расчеты, детально описывающие то, как именно слону удается притягивать объекты с помощью всасывания. С одной стороны это кажется весьма простым процессом, однако для его реализации необходимо множество факторов, от нестандартных легких до гибкой мышечной структуры хобота.

Для слона его хобот является и манипулятором, и датчиком окружающей среды, и инструментом по забору образцов. Обоняние слонов намного лучше нашего, а гибкость и подвижность хобота позволяют им взаимодействовать даже с самыми хрупкими предметами, не повреждая их.

Слоны это удивительные создания, которых можно с легкостью назвать примером того, как даже самые, на первый взгляд, странные причуды эволюции обладают смыслом, логикой и практическим применением.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята. :)

P.S. Большая просьба после прочтения сего материала не пробовать дома притянуть чипсы методом втягивания воздуха. Вряд ли авторы исследования хотели, чтобы вы поперхнулись, пытаясь изобразить Дамбо.

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru