Русский
Русский
English
Статистика
Реклама

Geology

Геология XXI века как наука данных о Земле

17.06.2020 22:05:08 | Автор: admin

Сразу оговорюсь, что деление на века немного условно. Например, спутниковая интерферометрия используется с конца 1980-х годов, при этом высококачественные данные стали общедоступными только в 2000-х годах. Трехмерные модели тоже отнюдь не новинка, и делали их ну очень давно ведь и плоская Земля на трех китах вполне себе объемная модель. Так в чем же разница геологии века прежнего и настоящего?



Слева фрагмент геологической карты США, справа 3D геологическая модель с интерферограммой на поверхности рельефа по данным радарной спутниковой съемки (на шкале Density Gradient,% является характеристикой неоднородности геологической плотности, а Band Magnitude обозначает разность фаз отраженного сигнала радара для пары разновременных снимков)


Геология: ремесло или наука


Как нам подсказывает википедия:


Геология (от др. -греч. Земля + учение, наука) совокупность наук о строении Земли, её происхождении и развитии, основанных на изучении геологических процессов, вещественного состава, структуры земной коры и литосферы всеми доступными методами с привлечением данных других наук и дисциплин.

Таким образом, геология требует использования знаний и методов многих разных наук. Думаю, многие геологи согласятся с такой формулировкой: мастерство геолога заключается в умении интерпретировать данные разных наук и масштабов для построения непротиворечивой геологической модели. Вдумайтесь с течением времени все науки делятся на множество специализаций, а геология требует знания и применения различных наук, не говоря уже о знании самой геологии. Конечно, и геологи тоже специализируются на разных разделах геологии, но об этом как-нибудь в другой раз. При этом многие геологические эксперименты не воспроизводимы из-за своей сложности или продолжительности, а результат интерпретации всех данных зависит от опыта геолога и того, насколько он понимает и умеет использовать разнородные данные.


Век XX


Как мы обсудили выше, физика или математика или наука о данных (data science) сами по себе ценности для геологов не представляют все зависит от того, насколько каждый геолог способен понять их и интерпретировать имеющиеся данные. Общедоступны ли геологические данные в условиях, когда для их получения нужен доступ к специальным архивам (бумажным) и, зачастую, авторам этих данных для получения объяснений? Повторимы ли результаты геологических обследований, выполняемых геологоразведывательными группами из десятков и даже сотен специалистов годами и даже десятилетиями? Может ли физик или математик или специалист по данным получить геологически значимые результаты без участия геолога? За редким исключением, ответ очевиден.


На картинке до хабраката показан фрагмент геологической карты США, достаточно точной пространственно и качественной но только для определенного масштаба. Просто взять и сравнить эту карту с другими данными [очень] сложно, равно как и оценить степень совпадения и имеющиеся отличия (а тем более найти их причины).


Век XXI


Что изменилось в нашем веке? Многое, или даже почти все. Данные стали как общедоступными, так и регулярными благодаря дистанционному зондированию Земли с искусственных спутников Земли. В предыдущей статье я перечислил лишь некоторые из общедоступных наборов данных Общедоступные данные дистанционного зондирования Земли: как получить и использовать и многие из них обновляются для каждой точки поверхности планеты каждые несколько дней, так что мы можем проанализировать изменения, их динамику, оценить зашумленность данных, да и просто работать с этими данными с помощью всей мощи статистических методов. Вместо работы со статичной моделью без возможности ее валидации стали доступны динамические модели и разнообразные методы их оценки.


На картинке до хабраката справа на поверхности рельефа показана интерферограмма (смещение каждой точки земной поверхности в единицах длины волны радара), полученная по разновременной паре радарных снимков Sentinel-1 (до и после близкого к поверхности землетрясения в центре). Сама модель посчитана методом инверсии по данным точного рельефа США, подробности смотрите в предыдущей статье Методы компьютерного зрения для решения обратной задачи геофизики. Поскольку нам известны точные координаты как спутниковых снимков, так и участка рельефа, мы легко совмещаем их. На интерферограмме мы видим разломы как линии разрыва значений фазы, отражающие поверхности как резкие границы, позиции максимального смещения геологических блоков как центры колец Добавим, что направления и значения смещений также вычисляются по радарным данным. На картинке внизу слева показана статичная модель и справа к ней добавлены (черным пунктиром) линии смещения геологических блоков:



Разломы можно выделять старым добрым геологическим методом линеаментным анализом. Линеаменты представляют собой геологически значимые штрихи, получаемые с помощью преобразования Хафа на рельефе или космических снимках. Преобразование Хафа выполняется легко (также доступно во множестве библиотек, например, OpenCV), а вот геологически значимые штрихи это те, которые сочтет значимыми геолог. Мда. Так вот теперь мы можем выделенные штрихи просто сравнить с интерферограммой для выделения из них геологически значимых.


На следующей картинке показано сечение модели через эпицентр землетрясения правый от центра блок поднялся вверх и левый от центра опустился вниз в результате этого сейсмического события:



Откуда мы это знаем? Да мне знакомый геолог сказал. Серьезно. А еще мы можем посчитать значения вертикального смещения (в миллиметрах, кстати, это к слову о точности) и убедиться в этом без помощи геолога. На картинке выше хаброката показана фазовая картинка, обратите внимание на порядок чередования окраски полос (желтым или красным к центру) и поведение рельефа для работающих с интерферограммой специалистов достаточно первого, а для опытного геолога достаточно второго. А можно просто взять и программно посчитать вертикальное смещение поверхности в каждой точке (vertical displacement). Кстати, для анализа смещения при наличии шумов и разрывов используются алгоритмы роутинга на растре задача нетривиальная, поскольку при миллиметровой точности измерений в результате землетрясений возможны вертикальные разрывы поверхности Земли в метры и десятки метров.


Итак, сопоставляя статичную геологическую модель с интерферограммой, мы можем детально проверить положения разломов при их выходе на поверхность, местоположения центров геологических блоков, ограниченных этими разломами, направления и значения смещения геологических блоков и все это сделать без участия геолога! Кроме того, анализируя интерферограммы по серии снимков (есть примеры анализа лет за 40), можно узнать еще больше. Стоит отметить, что это лишь один из примеров. Например, по данным спутниковых гравитометров публикуются модели движения геологических масс, по данным спутниковых магнитометров изучается движение расплавов и жидкостей, Само собой, и геолог, получивший такие результаты, сможет дать намного более точный прогноз о состоянии вулканов, разрушительности и вероятности землетрясений, перспективах бурения на полезные ископаемые и так далее.

Подробнее..

Вычислительная геология и визуализация

07.03.2021 12:13:35 | Автор: admin

Мы уже обсуждали современные методы в геологии в статье Геология XXI века как наука данных о Земле на примере модели землетрясения в горном массиве Монте Кристо в Неваде, США 15 мая 2020 года магнитудой 6.5 баллов. И все бы хорошо в этой модели, да вот только самое интересное смещение геологических блоков и "дыхание гор" нам схематично указал опытный геолог. Самое же важное заключается в том, что современная вычислительная геология (включая геофизику, моделирование и визуализацию) позволяет создать динамическую (4D) геологическую модель и наяву увидеть происходящие геологические процессы.



Геологическая модель с интерферограммой на поверхности рельефа по данным радарной спутниковой съемки, где на шкале Density Anomaly,% является характеристикой неоднородности геологической плотности и черная сфера в центре указывает координаты эпицентра землетрясения, расположенного на глубине 2.8 км.


Поскольку в указанной выше статье мы уже рассмотрели статичную модель, сразу перейдем к динамической модели и ее визуализации. Как обычно, воспользуемся для этого Open Source программой ParaView и моим расширением для ГИС данных N-Cube ParaView plugin for 3D/4D GIS Data Visualization. Вот как выглядит проект ParaView:


Напомню, что геологическую модель мы создаем методом так называемой геофизической инверсии, когда на основе данных гравитационного поля на поверхности Земли вычисляем соответствующее распределение плотности под этой поверхностью. Увы, но измерения непосредственно гравитационного поля (или нужной нам вертикальной его компоненты) с такой точностью и периодичностью не производятся, поэтому воспользуемся заместо этого открыто доступными регулярными радарными снимками. Дело в том, что пространственные спектры гравитационного поля, рельефа и радарных (и оптических) снимков практически эквивалентны, что и дает возможность восстановить распределение плотности с точностью до множителя. Если вам интересны детали, то в GitHub репозитории GIS Snippets доступны Jupyter Python 3 ноутбуки с соответствующими моделями (и ссылками на теоретические основы). Спутниковая интерферограмма получена средствами замечательного открытого тулкита GMTSAR.


В случае однократного землетрясения смещение даже огромных геологических массивов происходит достаточно быстро, и сам процесс, разумеется, зарегистрировать почти невозможно, если только (чудесным образом) именно в этот момент не будет получен один из регулярных космических снимков. На практике же нам приходится довольствоваться снимками за несколько дней до и несколько дней после землетрясения. Используя такие снимки, мы построили две модели для выбранного участка Монте Кристо. Также представляют интерес снимки, сделанные через несколько недель после события после так называемого процесса релаксации недра Земли приходят в новое устойчивое состояние, при этом вероятны небольшие (относительно первоначального смещения) подвижки геологических блоков. Поскольку в нашем случае такое смещение достаточно мало, здесь мы не будем пытаться его визуализировать. В случае повторяющихся землетрясений на одной территории возможно построить и более сложные модели, показывающие промежуточные геологические состояния, хотя это связано с техническими сложностями корректного вычисления результата многократных смещений территории (по трем координатным осям) за период времени в годы и десятки лет. Впрочем, и эта задача успешно решается, теорию и практические примеры можно найти в документации к открытому программному пакету GMTSAR.


Итак, у нас есть две геологические модели и интерферограмма, сделанные в момент времени до и после землетрясения. В данном случае, когда не произошло катастрофических геологических нарушений, мы можем воспользоваться фильтром TemporalInterpolator в ParaView для интерполяции промежуточных состояний в моменты времени между нашими двумя моделями. Началом интервала времени для интерполяции является состояние до землетрясения, а окончанием состояние после этого события. Признаться, сначала я попытался сделать плавную анимацию процесса, но добился этим лишь того, что смещения вообще оказались визуально не заметными. С пошаговой анимацией дело пошло лучше и смещения геологических блоков стали хорошо различимы:



Здесь мы видим, как опускается расположенный близко к поверхности в левой части модели геологический блок и поднимается геологическая структура в правой части, при этом происходит некоторое уплотнение ("утряска") субгоризонтального слоя в середине модели без его горизонтального смещения. Полученная картина в точности соответствует описанию геолога, зато теперь мы сами все это можем увидеть. Обратим внимание, что эпицентр землетрясения соответствует месту стыковки геологических блоков, что совершенно очевидно для геолога и свидетельствует о том, что подобные смещения происходили и происходят многократно. Именно так за миллионы лет и "растут горы":



Красным цветом на интерферограмме показаны поднявшиеся участки (в данном случае, на 20-30 см), а синим опустившиеся (на 15-20 см). Смотрите подробнее в статье Общедоступные данные дистанционного зондирования Земли: как получить и использовать


В заключение скажу, что сам я очень рад увидеть такую динамическую модель несмотря на более чем десятилетнюю работу с геологами и десятки построенных 3D геологических моделей, мне все еще были не очень понятны их объяснения динамики смещения, поворотов и скольжения геологических блоков Еще замечу, что данная динамическая модель построена исключительно для удовлетворения моего научного интереса, посколько для геолога здесь и так все очевидно.


В заключение, приглашаю всех посетить GitHub репозитории с множеством геологических моделей и их визуализацией в Blender и ParaView, а также примерами анализа пространственных спектров, синтеза гравитационных данных высокого разрешения на основе данных дистанционного зондирования и другими вычислениями, в том числе, выполняемыми на геоиде средствами PostgreSQL/PostGIS. Также смотрите готовые визуализации на YouTube канале.

Подробнее..

Легенды и мифы геофизики

23.05.2021 12:20:57 | Автор: admin

Давайте посмотрим, насколько понятно устроена природа, и как просто это можно доказать, при этом познакомимся с мифами, в которые зачастую верят геофизики (хотя их учили совершенно противоположному, как будет показано ниже). Откройте учебники и статьи по геофизике и вы увидите там преобразования Буге, разложения по сферическим функциям и другие термины, заимствованные из разных наук. При этом, преобразование Буге придумано 300 лет назад для анализа результатов нескольких десятков измерений, а форма нашей планеты далека от сферической настолько, что все глобальные модели оперируют эллипсоидами. Все это наследие чрезвычайно затрудняет понимание простых и очевидных, в общем-то, вещей и явлений.



Видите взаимосвязь ортофотоснимка и рельефа? Если да, то вы или геолог или можете им стать: корреляция компонентов (разложения в пространственный спектр) составляет 41% для длины волны 20 м, 58% для 50 м и 99% для 300 м (Jupyter Python ноутбук с вычислениями доступен по ссылкам ниже). Большинство геофизиков поклянутся, что это у вас спектры порченые (записано с натуры), игнорируя и геофизику и прилагаемые вычисления и ссылки на публикации.


Миф первый, рельеф и сила тяжести


Одним из краеугольных мифов является следующий, смотрите к примеру русскоязычную страницу википедии Изостазия (возможно, после публикации моей статьи викистраницу поправят):


Важнейшим доказательством изостазии является отсутствие связи между рельефом и силой тяжести.

Увы, именно в отсутствие такой связи верят многие из встреченных мной геофизиков (но не геологи), хотя это абсолютно неверно! Что интересно, в англоязычной версии этой же викистраницы написано прямо противоположное, смотрите пример с айсбергом в разделе Deposition and erosion:


An analogy may be made with an iceberg, which always floats with a certain proportion of its mass below the surface of the water. If snow falls to the top of the iceberg, the iceberg will sink lower in the water. If a layer of ice melts off the top of the iceberg, the remaining iceberg will rise. Similarly, Earth's lithosphere "floats" in the asthenosphere.

Этот пример очень наглядный когда надводная часть айсберга уменьшается из-за его таяния, то при этом и весь айсберг постепенно всплывает и уменьшается, а если надводная часть увеличивается из-за намерзания снега сверху, то айсберг оседает и подводная часть тоже увеличивается. Таким же образом, земная литосфера вместе с рельефом на ней плавает в астеносфере. Вероятно, из русскоязычной статьи это простое и понятное объяснение убрали только потому, что оно явно противоречит рассматриваемому мифу...


Посмотрим, что говорит оглавление русскоязычного учебника по геофизике (Викулин, 2004):


Глобальные волны геоида, отсутствие их связи с особенностями строения земной коры

Здесь глобальные волны геоида это изменения (аномалии) поля силы тяжести порядка масштабов планеты, для которых, как и указано, отсутствует связь с рельефом. В то же время, для всех компонентов силы тяжести меньшего масштаба эта связь есть! Могу лишь предположить, что студенты-геофизики зачастую не понимают смысла выражения "глобальные волны геоида" (кстати, для обработки спутниковых данных современные глобальные модели оперируют "изменяющимся во времени квазигеоидом" с явным указанием порядка волны...).


Более того, корреляция компонентов силы тяжести (или вертикальной компоненты гравитационного поля) и рельефа близка к 100%, как показано в работе "Radially symmetric coherence between satellite gravity and multibeam bathymetry grids" (Marks and Smith, 2012). На графике ниже график радиальной когеренции (справа) из указанной статьи дополнен мною двумерной коррелограммой (слева) для глобальной модели гравитационных аномалий Sandwell and Smith Gravity Anomaly и глобальной модели рельефа GEBCO 2019:



Если на графике радиальной когеренции (корреляции) не понятно, почему для первых километров масштаба связь компонентов мала, то на двумерной коррелограмме все становится ясно измеренная сила тяжести относится к поверхности океана, а топография, очевидно, ко дну. Таким образом, здесь мы видим, что до масштабов ~40 км корреляция компонент близка к 100%. Более того, для региона Индонезия высокая корреляция (>75%) наблюдается до масштабов в сотни километров и средняя (>50%) для масштабов в тысячи километров, как показано в статьях по ссылкам ниже.


Миф второй, рельеф и аномалия Буге


Что интересно, миф второй полностью противоречит первому, что не мешает многим геофизикам верить в оба разом. Встречайте Аномалию Буге (Бугера):


Аномалия Бугера расхождение между теоретически вычисленным и реальным значением гравитационного поля Земли в определённой точке референц-эллипсоида.

В этом определении сразу кроется подвох (и даже не один на самом деле, речь идет про вертикальную компоненту гравитационного поля) как, неужели мы настолько плохо вычисляем гравитационное поле Земли? На самом же деле, задача состоит в выделении относительно малых аномальных составляющих, соответствующих геологическим объектам, из измеренных значений силы тяжести. Предлагается это делать в два шага, или две редукции:


Редукция Бугера называется простой или неполной, если местность можно приближенно представить в качестве бесконечной плоскости.

Очевидно, что с высотой (удалением от планеты) сила тяжести уменьшается, поэтому наблюдаемые (измеренные) на разной высоте значения силы тяжести нельзя сопоставить напрямую. Вот Буге и придумал способ, как удалить эту разницу из-за изменения высоты точки наблюдения (измерения), вычитая некую константу, домноженную на высоту точки наблюдения. Конечно, использование модели плоской Земли создает огромную ошибку при обработке современных точных данных, об этом я уже писал на Хабре в статье Почему в 21 веке геофизики верят в теорию плоской Земли?


И следующий шаг, или редукция:


Уточнённая, или полная редукция Бугера позволяет полностью учесть влияние рельефа местности.

Здесь речь о том, что наличие на местности неровностей в виде возвышений или углублений влияет на измеренную в этих местах силу тяжести, так что для сравнения измеренных значений нужно и их компенсировать. Заметим, что такая поправка, то есть необходимость учитывать влияние рельефа местности на силу тяжести, очевидно противоречит первому мифу. И эта поправка Буге проста в использовании нужно было среднюю плотность пород умножить на высоту точки наблюдения (возможно, Буге и до интеграла по глубине бы додумался, только где ему было взять среднюю плотность пород на территории в зависимости от глубины). Для самого Буге, с учетом расстояния между точками наблюдения километров 20 и более, о большой точности речь не шла, и средняя плотность собранных им же геологических образцов по региону его вполне устраивала для вычисления поправки. Увы, для современных детальных измерений этот метод совсем никуда не годится.


Посмотрим практический пример, как компоненты силы тяжести глобальной модели WGM2012 после редукции Буге (слева) и еще одной редукции (справа) коррелируют с компонентами рельефа глобальной модели GEBCO 2019:



Как видим, про "полностью учесть рельеф местности" речь тут явно не идет то есть результат редукции Буге противоречит его определению, а значит, его использование неправомерно. Обратим внимание на правый график тут мы ожидаем максимум корреляции 100%, а наблюдаем всего около 75%, что показывает неточность самой модели WGM2012 (по сравнению с использованной выше Sandwell and Smith Gravity Anomaly, авторы которой вовсе не вычисляют редукцию Буге по уже понятным причинам), таким образом, здесь реальная корреляция редукции Буге с рельефом получится около -100%.


Если обратиться к учебнику "Гравиразведка" (Утёмов, 2009), там в соответствующем разделе есть разъяснение полученного результата:


Большую роль при вычислении аномалий Буге играет правильный выбор плотности промежуточного слоя. При слишком завышенной, либо слишком заниженной плотности получается отрицательная, либо положительная корреляция поля и высотных отметок.

Таким образом, раз мы получили отрицательную корреляцию, проблема кроется в завышенной плотности, использованной для построения модели. Если же уменьшать значение этого параметра, то для коротковолновых компонент (начало графика) корреляция станет сильно положительной. Таким образом, для правильного вычисления редукции Буге необходимо априори иметь детальную плотностную модель всей территории, включающую в себя все геологические аномалии, что, очевидно, делает обсуждаемую редукцию Буге полностью бесполезной.


Лучшим путем представляется использование полосовой пространственной фильтрации для выделения аномалий искомого масштаба, в этом случае и решение обратной задачи (восстановление плотности геологической среды по значениям силы тяжести на поверхности) получается однозначным. Также используется приведение измеренных значений к единому уровню (обычно, уровню моря) разными методами.


Миф третий, сферический конь эллипсоид в вакууме


Этот миф элитный только для тех геофизиков, кто вообще запомнил про существование сферических функций. Действительно, функции такие существуют и даже используются (в математической физике), но в практической геофизике они вообще-то не нужны. Посмотрим русскую викистраницу Геопотенциальная модель:


В геофизике модель геопотенциала представляет собой теоретический анализ измерения и расчета эффекты Земли гравитационного поля

Да-а, расчета эффекты Земли это, конечно, не совсем русский язык, или даже совсем не русский. Равно как и теоретический анализ измерения тоже тот еще шедевр. Тем не менее, можно понять, что модель геопотенциала это модель (глобального) гравитационного поля Земли. Это определение уже ошибочное на самом деле, рассматривается вертикальная компонента гравитационного поля, то есть сила тяжести (гравитационное поле векторное, а сила тяжести скалярная, и связь между ними весьма сложная). Но, главное, геофизикам такая модель вообще не нужна! А кому нужна, описано дальше в этой же викистатье:


Рекурсивные алгоритмы, используемые для численного распространения орбит космических аппаратов

Несмотря на коверканный русский язык, здесь все верно глобальная модель силы тяжести необходима для запуска космических аппаратов. Теперь понятен и смысл разложения по сферическим функциям так удобнее для вычисления круговых орбит (спутников) вокруг нашей планеты. Каким образом этот раздел теоретической физики попал в учебники геофизики, уму непостижимо, но, на мой взгляд, не удивительно, что геофизики вообще не поняли, что это и зачем.


В реальности же геофизики занимаются задачами локальными поиском полезным ископаемых, планированием инженерных сооружений, предсказанием ущерба от стихийных бедствий наподобие извержения вулкана, И для локального представления поля силы тяжести его (глобальное) сферическое разложение абсолютно не применимо в принципе нельзя получить глобальную модель по данным на отдельно взятой территории. А применимы различные пространственные разложения такие, как преобразование Фурье, вейвлет-преобразование и так далее. И здесь мы подходим к следующему мифу.


Миф четвертый, о пространственных спектрах


У меня в коллекции есть такие перлы, как спектры у вас порченые (освятить, что ли, хотят?) и другие. Попросту говоря, геофизики не имеют никакого понятия, что это такое.


Давайте посмотрим, как же практически работать с пространственными спектрами. Как всегда в математике, все эти преобразования по сути чрезвычайно просты. Например, результат применения гауссова фильтра масштаба N метров есть низкочастотная фильтрация (low-pass filter), разница между исходным изображением и фильтрованным есть высокочастотная фильтрация (high-pass filter) и разница между двумя фильтрами масштаба N и M метров есть полосовая фильтрация (band-pass filter). Для выделения компонента пространственного спектра шириной l метров для длины волны L метров достаточно выполнить полосовую фильтрацию с фильтрами масштаба L-l/2, L+l/2. Спектр мощности может быть представлен как стандартное отклонение полученных компонент, а через логарифм спектра мощности посчитана и фрактальная размерность. Для примера посмотрите график радиальной когерентности из статьи НАСА и двумерную спектрограмму, полученную указанным методом, в обсуждении первого мифа выше.


Низкочастотная фильтрация это улучшенная замена Буге преобразования:



А если выполнить высокочастотную фильтрацию, то мы сразу получаем все глобальные разломы то есть границы литосферных плит и микроплит:



У специалистов может возникнуть вопрос, зачем стоит использовать (относительно медленную) матричную свертку для вычислений вместо, скажем, быстрого Фурье-преобразования (БПФ). Так вот, плюсы такого подхода заключаются в том, что при вычислении свертки мы можем корректно обрабатывать пропущенные значения (игнорировать их, а не использовать значение-заполнитель, и одновременно подсчитывать количество, считая результат неопределенным при большом числе пропущенных значений) и границы и даже работать с разреженными данными.


Интересно, что аргентинские геофизики применяют индекс фрактальности для вычисления средней плотности по территории в зависимости от глубины для использования в преобразовании Буге. В самом деле, этот способ работает для территории Латинской Америки (и не только там, но не везде по миру все зависит от характера профиля плотности) я проверил с помощью численного моделирования, по ссылкам ниже вы найдете готовый Jupyter Python ноутбук с вычислениями. А вот глобальные модели гравики для Латинской Америки с помощью сферических разложений получаются очень так себе (впрочем, для космических вычислений это не мешает, там не нужны детальные пространственные компоненты силы тяжести на уровне поверхности) слишком высока фрактальность территории (сильно расчлененные горы с их отрогами), видимо, потому и пришлось придумывать фрактальный метод анализа.


Заключение


Мифы живучи, и чтобы не бороться с их носителями, давно придуманы различные обходные маневры. Например, некоторые российские геофизики мелким шрифтом указывают, что они использовали полосовую фильтрацию результатов преобразования Буге (если посмотреть на график выше, они просто удаляют ту часть графика, где корреляция отлична от нуля) хотя нужна здесь просто полосовая фильтрация. Что касается связи компонент силы тяжести с рельефом (и с космоснимками), то в русскоязычных статьях просто избегают об этом упоминать, просто показывая результаты обработки космоснимка или рельефа как поля силы тяжести и вовсе не поясняя, каким образом эти данные связаны между собой.


Бонус


И специальное дополнение для мифоборцев. Не стал добавлять еще один миф, просто "на закуску" приведу выдержку из рецензии, когда-то полученной от журнала "Отечественная геология":


Авторы пытаются нас убедить в том, что математические манипуляции с оптическим сигналом одного из каналов мультиспектральной съемки позволяют нам анализировать глубинное строение Земли. Математические обработки мультиспектральных снимков направлены на улучшение их визуального восприятия и классифицирования представленных на них объектов для создания тематических карт.

Так что учтите если вы ссылаетесь на результаты из публикаций, скажем, НАСА (аналогично корреляции между пространственными спектрами рельефа и гравиметрии посчитав таковую между рельефом и космическими снимками) то будете обвинены в ереси ("математических манипуляциях") и все ваши "порченые спектры" придется немедленно освятить (боюсь, путем окунания компьютера в чан со святой водой и никак иначе). Я предупредил! :)


Ссылки


Marks, K.M., Smith, W.H.F., 2012. Radially symmetric coherence between satellite gravity and multibeam bathymetry grids. Mar Geophys Res 33, 223227. https://doi.org/10.1007/s11001-012-9157-1


Викулин А.В., 2004. ВВЕДЕНИЕ В ФИЗИКУ ЗЕМЛИ. УЧЕБНОЕ ПОСОБИЕ ДЛЯ ГЕОФИЗИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ ВУЗОВ


Утёмов Э.В., 2009. Гравиразведка


Spectral Coherence between Gravity and Bathymetry Grids


WGM2012 spatial components of free-air gravity and topography correlation


Bouguer and Free-Air Gravity Anomalies in terms of spatial spectrum


There is a high correlation between DEM and ortho photos


3D Density Inversion by Circular Hough Transform [Focal Average] and Fractality Index


[Gaussian Filtering on Spheroid [Sandwell & Smith]](

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru