Русский
Русский
English
Статистика
Реклама

Satellite imaging

Геология XXI века как наука данных о Земле

17.06.2020 22:05:08 | Автор: admin

Сразу оговорюсь, что деление на века немного условно. Например, спутниковая интерферометрия используется с конца 1980-х годов, при этом высококачественные данные стали общедоступными только в 2000-х годах. Трехмерные модели тоже отнюдь не новинка, и делали их ну очень давно ведь и плоская Земля на трех китах вполне себе объемная модель. Так в чем же разница геологии века прежнего и настоящего?



Слева фрагмент геологической карты США, справа 3D геологическая модель с интерферограммой на поверхности рельефа по данным радарной спутниковой съемки (на шкале Density Gradient,% является характеристикой неоднородности геологической плотности, а Band Magnitude обозначает разность фаз отраженного сигнала радара для пары разновременных снимков)


Геология: ремесло или наука


Как нам подсказывает википедия:


Геология (от др. -греч. Земля + учение, наука) совокупность наук о строении Земли, её происхождении и развитии, основанных на изучении геологических процессов, вещественного состава, структуры земной коры и литосферы всеми доступными методами с привлечением данных других наук и дисциплин.

Таким образом, геология требует использования знаний и методов многих разных наук. Думаю, многие геологи согласятся с такой формулировкой: мастерство геолога заключается в умении интерпретировать данные разных наук и масштабов для построения непротиворечивой геологической модели. Вдумайтесь с течением времени все науки делятся на множество специализаций, а геология требует знания и применения различных наук, не говоря уже о знании самой геологии. Конечно, и геологи тоже специализируются на разных разделах геологии, но об этом как-нибудь в другой раз. При этом многие геологические эксперименты не воспроизводимы из-за своей сложности или продолжительности, а результат интерпретации всех данных зависит от опыта геолога и того, насколько он понимает и умеет использовать разнородные данные.


Век XX


Как мы обсудили выше, физика или математика или наука о данных (data science) сами по себе ценности для геологов не представляют все зависит от того, насколько каждый геолог способен понять их и интерпретировать имеющиеся данные. Общедоступны ли геологические данные в условиях, когда для их получения нужен доступ к специальным архивам (бумажным) и, зачастую, авторам этих данных для получения объяснений? Повторимы ли результаты геологических обследований, выполняемых геологоразведывательными группами из десятков и даже сотен специалистов годами и даже десятилетиями? Может ли физик или математик или специалист по данным получить геологически значимые результаты без участия геолога? За редким исключением, ответ очевиден.


На картинке до хабраката показан фрагмент геологической карты США, достаточно точной пространственно и качественной но только для определенного масштаба. Просто взять и сравнить эту карту с другими данными [очень] сложно, равно как и оценить степень совпадения и имеющиеся отличия (а тем более найти их причины).


Век XXI


Что изменилось в нашем веке? Многое, или даже почти все. Данные стали как общедоступными, так и регулярными благодаря дистанционному зондированию Земли с искусственных спутников Земли. В предыдущей статье я перечислил лишь некоторые из общедоступных наборов данных Общедоступные данные дистанционного зондирования Земли: как получить и использовать и многие из них обновляются для каждой точки поверхности планеты каждые несколько дней, так что мы можем проанализировать изменения, их динамику, оценить зашумленность данных, да и просто работать с этими данными с помощью всей мощи статистических методов. Вместо работы со статичной моделью без возможности ее валидации стали доступны динамические модели и разнообразные методы их оценки.


На картинке до хабраката справа на поверхности рельефа показана интерферограмма (смещение каждой точки земной поверхности в единицах длины волны радара), полученная по разновременной паре радарных снимков Sentinel-1 (до и после близкого к поверхности землетрясения в центре). Сама модель посчитана методом инверсии по данным точного рельефа США, подробности смотрите в предыдущей статье Методы компьютерного зрения для решения обратной задачи геофизики. Поскольку нам известны точные координаты как спутниковых снимков, так и участка рельефа, мы легко совмещаем их. На интерферограмме мы видим разломы как линии разрыва значений фазы, отражающие поверхности как резкие границы, позиции максимального смещения геологических блоков как центры колец Добавим, что направления и значения смещений также вычисляются по радарным данным. На картинке внизу слева показана статичная модель и справа к ней добавлены (черным пунктиром) линии смещения геологических блоков:



Разломы можно выделять старым добрым геологическим методом линеаментным анализом. Линеаменты представляют собой геологически значимые штрихи, получаемые с помощью преобразования Хафа на рельефе или космических снимках. Преобразование Хафа выполняется легко (также доступно во множестве библиотек, например, OpenCV), а вот геологически значимые штрихи это те, которые сочтет значимыми геолог. Мда. Так вот теперь мы можем выделенные штрихи просто сравнить с интерферограммой для выделения из них геологически значимых.


На следующей картинке показано сечение модели через эпицентр землетрясения правый от центра блок поднялся вверх и левый от центра опустился вниз в результате этого сейсмического события:



Откуда мы это знаем? Да мне знакомый геолог сказал. Серьезно. А еще мы можем посчитать значения вертикального смещения (в миллиметрах, кстати, это к слову о точности) и убедиться в этом без помощи геолога. На картинке выше хаброката показана фазовая картинка, обратите внимание на порядок чередования окраски полос (желтым или красным к центру) и поведение рельефа для работающих с интерферограммой специалистов достаточно первого, а для опытного геолога достаточно второго. А можно просто взять и программно посчитать вертикальное смещение поверхности в каждой точке (vertical displacement). Кстати, для анализа смещения при наличии шумов и разрывов используются алгоритмы роутинга на растре задача нетривиальная, поскольку при миллиметровой точности измерений в результате землетрясений возможны вертикальные разрывы поверхности Земли в метры и десятки метров.


Итак, сопоставляя статичную геологическую модель с интерферограммой, мы можем детально проверить положения разломов при их выходе на поверхность, местоположения центров геологических блоков, ограниченных этими разломами, направления и значения смещения геологических блоков и все это сделать без участия геолога! Кроме того, анализируя интерферограммы по серии снимков (есть примеры анализа лет за 40), можно узнать еще больше. Стоит отметить, что это лишь один из примеров. Например, по данным спутниковых гравитометров публикуются модели движения геологических масс, по данным спутниковых магнитометров изучается движение расплавов и жидкостей, Само собой, и геолог, получивший такие результаты, сможет дать намного более точный прогноз о состоянии вулканов, разрушительности и вероятности землетрясений, перспективах бурения на полезные ископаемые и так далее.

Подробнее..

Вычислительная геология и визуализация

07.03.2021 12:13:35 | Автор: admin

Мы уже обсуждали современные методы в геологии в статье Геология XXI века как наука данных о Земле на примере модели землетрясения в горном массиве Монте Кристо в Неваде, США 15 мая 2020 года магнитудой 6.5 баллов. И все бы хорошо в этой модели, да вот только самое интересное смещение геологических блоков и "дыхание гор" нам схематично указал опытный геолог. Самое же важное заключается в том, что современная вычислительная геология (включая геофизику, моделирование и визуализацию) позволяет создать динамическую (4D) геологическую модель и наяву увидеть происходящие геологические процессы.



Геологическая модель с интерферограммой на поверхности рельефа по данным радарной спутниковой съемки, где на шкале Density Anomaly,% является характеристикой неоднородности геологической плотности и черная сфера в центре указывает координаты эпицентра землетрясения, расположенного на глубине 2.8 км.


Поскольку в указанной выше статье мы уже рассмотрели статичную модель, сразу перейдем к динамической модели и ее визуализации. Как обычно, воспользуемся для этого Open Source программой ParaView и моим расширением для ГИС данных N-Cube ParaView plugin for 3D/4D GIS Data Visualization. Вот как выглядит проект ParaView:


Напомню, что геологическую модель мы создаем методом так называемой геофизической инверсии, когда на основе данных гравитационного поля на поверхности Земли вычисляем соответствующее распределение плотности под этой поверхностью. Увы, но измерения непосредственно гравитационного поля (или нужной нам вертикальной его компоненты) с такой точностью и периодичностью не производятся, поэтому воспользуемся заместо этого открыто доступными регулярными радарными снимками. Дело в том, что пространственные спектры гравитационного поля, рельефа и радарных (и оптических) снимков практически эквивалентны, что и дает возможность восстановить распределение плотности с точностью до множителя. Если вам интересны детали, то в GitHub репозитории GIS Snippets доступны Jupyter Python 3 ноутбуки с соответствующими моделями (и ссылками на теоретические основы). Спутниковая интерферограмма получена средствами замечательного открытого тулкита GMTSAR.


В случае однократного землетрясения смещение даже огромных геологических массивов происходит достаточно быстро, и сам процесс, разумеется, зарегистрировать почти невозможно, если только (чудесным образом) именно в этот момент не будет получен один из регулярных космических снимков. На практике же нам приходится довольствоваться снимками за несколько дней до и несколько дней после землетрясения. Используя такие снимки, мы построили две модели для выбранного участка Монте Кристо. Также представляют интерес снимки, сделанные через несколько недель после события после так называемого процесса релаксации недра Земли приходят в новое устойчивое состояние, при этом вероятны небольшие (относительно первоначального смещения) подвижки геологических блоков. Поскольку в нашем случае такое смещение достаточно мало, здесь мы не будем пытаться его визуализировать. В случае повторяющихся землетрясений на одной территории возможно построить и более сложные модели, показывающие промежуточные геологические состояния, хотя это связано с техническими сложностями корректного вычисления результата многократных смещений территории (по трем координатным осям) за период времени в годы и десятки лет. Впрочем, и эта задача успешно решается, теорию и практические примеры можно найти в документации к открытому программному пакету GMTSAR.


Итак, у нас есть две геологические модели и интерферограмма, сделанные в момент времени до и после землетрясения. В данном случае, когда не произошло катастрофических геологических нарушений, мы можем воспользоваться фильтром TemporalInterpolator в ParaView для интерполяции промежуточных состояний в моменты времени между нашими двумя моделями. Началом интервала времени для интерполяции является состояние до землетрясения, а окончанием состояние после этого события. Признаться, сначала я попытался сделать плавную анимацию процесса, но добился этим лишь того, что смещения вообще оказались визуально не заметными. С пошаговой анимацией дело пошло лучше и смещения геологических блоков стали хорошо различимы:



Здесь мы видим, как опускается расположенный близко к поверхности в левой части модели геологический блок и поднимается геологическая структура в правой части, при этом происходит некоторое уплотнение ("утряска") субгоризонтального слоя в середине модели без его горизонтального смещения. Полученная картина в точности соответствует описанию геолога, зато теперь мы сами все это можем увидеть. Обратим внимание, что эпицентр землетрясения соответствует месту стыковки геологических блоков, что совершенно очевидно для геолога и свидетельствует о том, что подобные смещения происходили и происходят многократно. Именно так за миллионы лет и "растут горы":



Красным цветом на интерферограмме показаны поднявшиеся участки (в данном случае, на 20-30 см), а синим опустившиеся (на 15-20 см). Смотрите подробнее в статье Общедоступные данные дистанционного зондирования Земли: как получить и использовать


В заключение скажу, что сам я очень рад увидеть такую динамическую модель несмотря на более чем десятилетнюю работу с геологами и десятки построенных 3D геологических моделей, мне все еще были не очень понятны их объяснения динамики смещения, поворотов и скольжения геологических блоков Еще замечу, что данная динамическая модель построена исключительно для удовлетворения моего научного интереса, посколько для геолога здесь и так все очевидно.


В заключение, приглашаю всех посетить GitHub репозитории с множеством геологических моделей и их визуализацией в Blender и ParaView, а также примерами анализа пространственных спектров, синтеза гравитационных данных высокого разрешения на основе данных дистанционного зондирования и другими вычислениями, в том числе, выполняемыми на геоиде средствами PostgreSQL/PostGIS. Также смотрите готовые визуализации на YouTube канале.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru