Русский
Русский
English
Статистика
Реклама

Перевод ALBERT облегченный BERT для самообучения языковым представлениям

С тех пор как в 2018 году был представлен BERT, исследования в области обработки естественного языка охвачены новой парадигмой: использованием больших объемов существующего текста для предварительного обучения параметров модели на основе самообучения (self-supervision), не требующего разметки данных. Таким образом, вместо того, чтобы обучать модель для обработки естественного языка (NLP) с нуля, можно взять предобученную модель, уже имеющую некоторое знание о языке. Однако, для успешного применения этого нового подхода в NLP исследователю необходимо иметь некоторое представление о том, что же именно способствует языковому обучению модели: высота нейронной сети (т.е. количество слоев), ее ширина (размер представлений скрытых слоев), критерий обученности для самообучения или что-то совсем иное?


В статье ALBERT: облегченный BERT для самообучения языковым представлениям, принятой на ICLR 2020, была представлена обновленная версия BERTа, которая показывает более высокие результаты в 12 задачах обработки языка, включая соревнование Stanford Question Answering Dataset (SQuAD v2.0) и бенчмарк RACE для понимания текстов из экзаменов SAT. ALBERT выпускается в качестве открытого решения поверх TensorFlow и включает в себя несколько готовых к использованию предобученных языковых моделей.


Что повышает качество NLP моделей?


Выделить главный фактор улучшения качества в NLP сложно: да, одни настройки важнее других, но, как показывает данное исследование, простой перебор этих настроек независимо друг от друга не даёт правильных ответов.


Ключом к оптимизации модели, заложенным в архитектуру ALBERT, является более эффективное распределение ее ресурсов. Входные эмбеддинги (слова, суб-токены и т.д.) выучивают векторные представления, независимые от контекста: например, представление слова bank. Эмбеддинги скрытых слоев, напротив, должны уточнять значения этих векторных представлений в зависимости от конкретного контекста: например, вектор bank как финансового учреждения или как берега реки.


Это достигается путем факторизации параметризации эмбеддингов: матрица эмбеддингов разделяется между векторами входного слоя с относительно небольшой размерностью (например, 128), в то время как вектора скрытого слоя используют бОльшие размерности (768, как в случае с BERT'ом, и больше). Только с помощью этого шага, при прочих равных, ALBERT на 80% снижает количество параметров проекционного блока ценой лишь незначительного падения производительности 80.3 балла вместо 80.4 для SQuAD2.0 и 67.9 вместо 68.2 для RACE.


Другое важное изменение в архитектуре ALBERT связано с исследованием избыточности. Архитектуры нейронных сетей на основе Трансформера (такие как BERT, XLNet и RoBERTa) полагаются на независимость слоев, расположенных друг над другом. Однако было замечено, что зачастую нейросеть выучивается выполнять схожие операции на разных уровнях, используя различные параметры сети. Эта возможная избыточность устраняется в ALBERT с помощью обмена параметрами между слоями, и, таким образом, один и тот же слой применяется друг к другу. И хотя такой подход немного снижает точность (accuracy), более компактный размер самой модели оправдывает потерю в качестве. Подобный обмен обеспечивает снижение параметров для блока с механизмом внимания внимания на 90% (общее снижение на 70%), что при применении в дополнение к факторизации параметризации эмбеддингов приводит к небольшому снижению показателей: до 80.0 (-0.3) для SQuAD2.0 и до 64.0 (-3.9 балла) для RACE.


Внедрение двух представленных изменений рождает модель ALBERT-base, которая имеет всего 12 миллионов параметров, что на 89% меньше базовой модели BERT, но при этом обеспечивает достойное качество в рассмотренных бенчмарках. Вместе с тем подобное уменьшение количества параметров дает возможность и дальнейшего масштабирования. Если объем памяти позволяет, можно увеличить размер эмбеддингов скрытого слоя в 10-20 раз. При размере скрытого слоя 4096 конфигурация ALBERT-xxlarge обеспечивает как общее снижение параметров на 30% по сравнению с моделью BERT-large, так и, что более важно, значительный прирост качества: +4.2 для SQuAD2.0 (88.1 по сравнению с 83.9) и +8.5 для RACE (82.3 по сравнению с 73.8).


Полученные результаты свидетельствуют о том, что понимание языка зависит от разработки надежных и высокоёмких контекстных представлений. Контекст, смоделированный в эмбеддингах скрытого слоя, улавливает значение слов, что, в свою очередь, способствует общему пониманию, которое напрямую измеряется показателями модели в стандартных бенчмарках.


Показатели оптимизированной модели на наборе данных RACE


Чтобы оценить способность модели понимать язык, можно провести тест на понимание прочитанного (например, схожий с SAT Reading Test). Крупнейший общедоступный ресурс для этой цели набор данных RACE (2017 г.). То, как компьютер справляется с этим испытанием, хорошо отражает достижения в области языкового моделирования последних лет: модель, предварительно обученная только на контекстно-независимых представлениях слов, получает низкие баллы в этом тесте (45.9; крайний левый столбик), в то время как BERT, получивший контекстно-зависимое знание языка, справляется достаточно хорошо 72.0 балла. Усовершенствованные модели BERT, такие как XLNet и RoBERTa, установили планку еще выше в диапазоне 8283 баллов. Конфигурация ALBERT-xxlarge, упомянутая выше, дает оценку RACE в том же диапазоне (82.3) при обучении на наборе данных базового BERT'a (Википедия и Книги). Однако при обучении на том же расширенном наборе данных, что и XLNet и RoBERTa, она значительно превосходит все существующие на сегодняшний день подходы и устанавливает новую оценку в 89.4.


image1


Показатели моделей в бенчмарке RACE (задача на понимание текстов из экзаменов SAT). Оценка для случайного предсказания составляет 25.0. Максимально возможный балл 95.0.


Успех ALBERT демонстрирует важность выявления тех аспектов модели, которые помогают создать мощные контекстные представления. Сосредоточив свои усилия по улучшению на этих аспектах архитектуры, можно значительно повысить как эффективность модели, так и ее показатели в самых различных задачах обработки естественного языка. Для того, чтобы способствовать дальнейшему развитию в области NLP, авторы открыли исходный код ALBERT и приглашают сообщество исследователей к сотрудничеству.


Авторы


Источник: habr.com
К списку статей
Опубликовано: 24.10.2020 12:06:33
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Машинное обучение

Nlp

Albert

Bert

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru