Русский
Русский
English
Статистика
Реклама

Физика

Космический субботник уборка пыли на Луна

04.09.2020 10:14:53 | Автор: admin


Когда я был маленький, у моего отца была машина ВАЗ-2101. Это далеко не самая крутая тачка, но она исправно выполняла свои функции и всегда отлично выглядела. Причиной тому было то, что отец за ней ухаживал. Посему я всегда считал, что дешевый или старенький автомобиль может выглядеть намного лучше дорогого только за счет опрятности. Пыль на любой поверхности вызывает не только эстетическое разочарование в стиле Прометея (ибо сколько ты ее не убираешь, этот процесс придеться повторять снова и снова), но и негативно влияет на работоспособность некоторых предметов (кулеры в компьютерах, например), да и здоровье человека она не укрепляет. И если мы говорим про пыль на поверхностях в квартире, то средств для ее ликвидации полно. Но если это поверхность спутника Земли? Ученые из университета Колорадо в Боулдере (США) разработали методику уборки пыли с поверхности Луны. Кому мешает пыль на Луне, как от нее решили избавляться ученые и насколько эффективен их метод? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Поверхность Луны это настоящий кошмар для аллергиков и любителей чистоты. Шутки в сторону, поверхность нашего спутника покрыта слоем реголита*.
Реголит* остаточный грунт, который является результатом космического выветривания породы на поверхности Луны (и не только).
Частицы реголита могут подниматься вверх как от деятельности человека, так и ввиду природных процессов. Они легко прилипают к любым поверхностям (луноходы, скафандры, оптические линзы и т.д.). Но это не самое плохое, ибо они могут повреждать предметы, на которые оседают. К примеру, скафандры страдают от абразивности лунной пыли; лазерные ретрорефлекторы на лунной поверхности со временем показывают снижение коэффициента отражения света; радиаторы и терморегулирующие поверхности (TCS от thermal control surfaces) демонстрируют ухудшение своих характеристик; солнечные панели, покрытые пылью, дают меньшую выходную мощность и т.д. А человек, вдохнувший лунную пыль, может столкнуться с крайне серьезными проблемами со здоровьем.


В данном видео рассматривается влияние лунной пыли на скафандр участника миссии Apollo 17 Джина Сернана.

Все вышеописанные причины и привели к тому, что лунная пыль считается одной из основных технических проблем для будущих исследований поверхности Луны людьми и роботами.

За последние десятилетия было изучено и разработано несколько технологий пылеподавления. Эти методы можно разделить на четыре категории (ссылки ведут на некоторые из исследований в данных областях): гидравлические, механические, электродинамические и пассивные.

Гидравлические методы включают использование струй жидкости, пены и сжатых газов для удаления пыли с поверхностей. (Lunar Dust Degradation Effects and Removal/Prevention Concepts)

Механические методы используют щетки (например, нейлоновые щетинки) или вибрационные механизмы для очистки пыли. Такая методика использовалась во время программы Аполлон. (Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces)

Электродинамический пылезащитный экран на данный момент считается одним из самых развитых методов борьбы с лунной пылью. Основная идея состоит в том, чтобы подавать колеблющееся высокое напряжение на электроды, встроенные под поверхность оборудования, для удаления пыли. Ожидается, что этот метод будет более эффективным именно в лунной среде, поскольку лунная пыль заряжается плазмой солнечного ветра, солнечным излучением и / или трибоэлектрическими эффектами. (Practical performance of an electrostatic cleaning system for removal oflunar dust from optical elements utilizing electrostatic traveling wave)

В пассивных методах поверхности модифицируются (например, посредством ионной имплантации) для уменьшения силы сцепления пыли с данной поверхностью. (Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces)

Естественно, каждый из вышеописанных методов обладает своими достоинствами и недостатками. Выбор конкретной методики зависит от характеристик самой пыли, свойств поверхностей и условий применения этого метода.

Ученые считают, что достичь лучшего результата можно за счет гибридизации этих методов. В своем исследовании они представляют новый метод использования электронного луча для зарядки частиц пыли (< 25 мкм в диаметре), чтобы заставить их отскакивать от поверхностей в результате электростатических сил.

Подготовка к экспериментам




Изображение 1

Прежде всего стоит отметить, что запыленные поверхности обладают уникальной особенностью образования микрополостей между частицами пыли. Как видно на схеме , когда электроны или фотоны проходят через небольшой зазор и попадают в синий участок поверхности частиц пыли под поверхностью верхнего слоя, происходит испускание вторичных электронов или фотоэлектронов. Часть этих испускаемых электронов поглощается внутри микрополости и накладывает отрицательные заряды на окружающие частицы пыли (красные участки на схеме). Чрезвычайно большое электрическое поле образуется поперек полости из-за ее небольшого размера (порядка микрон), что приводит к накоплению значительных отрицательных зарядов на окружающих частицах. В результате сила отталкивания между этими отрицательно заряженными частицами достаточно велика, чтобы превзойти силу сцепление частица-частица или частица-поверхность и силу тяжести. Следовательно, происходит высвобождение частиц пыли. Практические опыты показали, что частицы пыли одного размера диаметром до 60 мкм или агрегаты диаметром до 140 мкм могут высвобождаться с поверхностей под воздействием электронного пучка 120 эВ.

Основываясь на этих данных, ученые решили провести серию опытов по определению оптимальных характеристик электронного пучка для эффективного удаления пыли с поверхностей.

Опыты проводились в вакуумной камере диаметром 50 см и высотой 28 см (1b). Имитатор лунных частиц JSC-1А (p ~ 2.9х103 кг/м3; диаметр < 25 мкм) наносился на тестовый образец (2.5 х 5 см), прикрепленный к подложке. Подложка была прикреплена к валу, повернутому так, чтобы поверхность подложки находилась под углом 45 относительно горизонтальной линии.

Вся поверхность образца была приблизительно равномерно освещена электронным пучком, испускаемым горячим филаментом (нитью) с отрицательным смещением, установленным в верхней части камеры на высоте около 20 см над поверхностью образца. В условиях вакуума испускаемые электроны создают эффекты пространственного заряда, которые ограничивают ток пучка, испускаемый из филамента. Для достижения более высоких токов пучка была создана плазма с низкой плотностью путем подачи аргона с низким давлением (~ 0.2 мТорр), ионизированного электронным пучком.

Плотность тока пучка на поверхности образца измерялась дисковым зондом Ленгмюра. А высвобожденная с поверхности пыль фиксировалась высокоскоростной камерой (2000 кадров в секунду).


Изображение 2

На изображении 2 (слева) показано, что большой поток пылевых частиц отскакивает от поверхности стекла в результате воздействия электронного пучка (230 эВ; 1.5 мкА/см2).

Для записи исходной чистоты поверхности и ее изменений в процессе пылеулавливания использовалась видеокамера (но не скоростная). Гамма-коррекция камеры была установлена равной 1, путем калибровки по яркости, полученной из изображений. На изображении 2 (справа) показаны снимки поверхности стекла до и после процесса высвобождения.

Чистота поверхности определяет степень запыленности поверхности испытательного образца (чем ниже чистота, тем выше степень запыленности). В данных опытах чистота (С) определялась в соответствии с формулой:
C = (Ls Ld) / (Lc Ld)
где Ls средняя яркость пикселей всей поверхности образца; Lc средняя яркость пикселей чистой поверхности (без пыли); Ld средняя яркость пикселей на поверхности, полностью покрытой пылью.

Для достижения контролируемого и постоянного осаждения пыли на исследуемом образце, необходимо было выполнить следующую процедуру из трех этапов:

  • загрузить имитатор лунных частиц на сито (размер ячейки: 25 мкм);
  • постучать по ситу, чтобы частицы необходимого размера упали на образец и образовали равномерный слой;
  • записать изображения и проанализировать яркость поверхности образца, чтобы определить начальную чистоту поверхности, используя вышеуказанное уравнение;

Важно отметить, что частицы пыли не всегда образуют равномерный слой на поверхности образца. В некоторых участках из-за сцепления между частицами образуется несколько слоев пыли. Таким образом, чистота поверхности также зависит от толщины слоя пыли.

После того как экспериментальная установка была готова, было проведено несколько тестов по определению оптимальных параметров плотности тока и энергии электронного пучка. Эффективность очистки проверялась на различных материалах поверхности и с разной толщиной начального слоя пыли.

Результаты экспериментов


Первым делом было решено проверить плотность тока и энергию пучка на образце скафандра, покрытом пылью JSC-1А со средней толщиной слоя (C = 37.5%). Результирующая плотность тока пучка варьировалась от 0.3 до 6.1 мА/см2. Энергия пучка была установлена на уровне ~ 230 эВ, что дает относительно высокую вторичную электронную эмиссию для большинства материалов.


Изображение 3

На графике показан процесс очистки как функция времени. Максимальная чистота достигала ~75% для всех плотностей тока пучка. Постоянная времени (определяемая как время повышения чистоты до уровня 1-1/e 63.2% между начальным и конечным значениями) процесса очистки уменьшается по мере увеличения плотности тока (3b). Постоянная времени имеет тенденцию к достижению плато ~100 секунд при плотности тока от 1.5 до 3 мА/см2.

Скорость уменьшения постоянной времени для очистки от пыли приблизительно соответствует скорости увеличения плотности тока электронного пучка, поскольку время зарядки пылевых частиц обратно пропорционально плотности тока. Более высокая плотность тока приводит к сокращению времени зарядки и, следовательно, более быстрому пылеулавливанию. Когда процесс зарядки идет быстрее, чем движение пыли, скорость выброса ограничивается движением пыли и достигает плато.

Энергетическая зависимость пучка проверялась в диапазоне от 60 до 400 эВ. Было обнаружено, что пороговая энергия для включения процесса очистки составляет ~ 80 эВ, что является минимальной энергией падающих электронов для генерации достаточного количества вторичных электронов для создания значительного эффекта зарядки микрополости.


Изображение 4

График выше демонстрирует процессы очистки с энергией пучка 80, 150 и 230 эВ. Как видно с графика, степень чистоты увеличивается при увеличении энергии пучка. Однако при 400 эВ пыль практически не удалялась. Связано это с тем, что выход вторичных электронов возрастает до максимального значения, но затем падает с увеличением энергии первичных электронов. Из этого следует, что таковой максимум в случае с имитатором лунной пыли достигается при 230 эВ.

В результате было установлено, что оптимальными показателями системы для лучшего удаления пыли является энергия 230 эВ и минимальная плотность тока от 1.5 до 3 мА/см2.


Изображение 5

Для подтверждения верности подобранных параметров (230 эВ и 1.5 мА/см2) были проведены тесты с участием образца скафандра и образца из стеклянной пластины. Как видно из графика выше, изменение степени чистоты обоих материалов соответствует одной и той же тенденции.

Помимо параметров самого электронного пучка, также необходимо было проанализировать влияние толщины слоя пыли на работу системы. Во время тестов толщина слоя с точки зрения уровня чистоты составляла: 5%, 40% и 65%.


Изображение 6

Степень чистоты однозначно зависит от начальной толщины слоя пыли: чем тоньше слой, тем выше будет чистота (до ~ 85%). Возможное объяснение состоит в том, что в более толстом слое частицы пыли ниже самого верхнего слоя более компактны из-за силы тяжести, что приводит к большим силам сцепления между частицами. Однако на поверхности Луны, по мнению ученых, этот эффект будет значительно слабее, чем в условиях лаборатории на Земле, ввиду сниженной гравитации. Также можно использовать гибридный метод удаления пыли, т.е. толстый слой удалить посредством щетки или вибраций, а оставшийся тонкий слой удалять уже с помощью электронно-лучевого метода.

Совокупность вышеописанных результатов четко говорит о том, что поверхности, покрытые средним или тонким слоем пыли, могут быль успешно очищены (до уровня чистоты 75-85%) посредством электронного луча за относительно короткий промежуток времени (меньше 1 минуты). Также стоит отметить, что накопление заряда на поверхностях, подверженных воздействию электронного луча, не привело к возникновению электростатического разряда ни в одном из проведенных тестов.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Когда начнется процесс колонизации Луны, пока точно сказать никто не может. Но ученые во всю занимаются решением всевозможных проблем, с которыми могли бы столкнуться будущие колонисты.

В данном труде был рассмотрен вопрос лунной пыли, настойчиво прилипающей и повреждающей все, что попадется ей на глаза (фигурально выражаясь, конечно). Метод очистки достаточно прост и заключается в использовании электронного луча, заряжающего частицы пыли, что приводит к их отделению друг от друга и от поверхности.

По мнению авторов данной разработки, их вариант очистки намного лучше того, что на данный момент активно разрабатывается в NASA (а именно внедрение в скафандры сети из специальных электродов), как минимум по цене и простоте изготовления.

Возможно, когда-нибудь лунные поселенцы после долгого дня на лунных грядках будут заходить в помещения через специальный шлюз, в котором будет установлен электронно-лучевой душ, очищающий их от пыли. Сами же ученые не намерены останавливаться на достигнутом, ибо степень чистоты, полученная в ходе опытов, составила всего лишь 85%. Для достижения более высоких показателей необходимо усовершенствовать систему так, чтобы она могла справляться с остаточным слоем пыли, состоящем из крайне малых частиц. Также ученые намерены рассмотреть возможность применения в их разработке коротковолнового ультрафиолетового излучения.

Пятничный офф-топ:

Поверхность Луны усыпана кратерами, каждый из которых имеет свою историю.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Из песочницы Симуляция подъёмной силы Ньютона методом частиц на CUDA

14.09.2020 14:13:59 | Автор: admin

https://www.youtube.com/playlist?list=PLwr8DnSlIMg0KABru36pg4CvbfkhBofAi


Как-то на Хабре мне попалась довольно любопытная статья Научно-технические мифы, часть 1. Почему летают самолёты?. Статья довольно подробно описывает, какие проблемы возникают при попытке объяснить подъёмную силу крыльев через закон Бернулли или модель подъёмной силы Ньютона (Newtonian lift). И хотя статья предлагает другие объяснения, мне бы всё же хотелось остановиться на модели Ньютона подробнее. Да, модель Ньютона не полна и имеет допущения, но она даёт более точное и интуитивное описание явлений, чем закон Бернулли.


Основной недостаток этой модели это отсутствие взаимодействия частиц газа друг с другом. Из-за этого при нормальных условиях она даёт некорректные результаты, хотя всё ещё может применяться для экстремальных условий, где взаимодействием можно пренебречь.


Я же решил проверить, что же произойдёт в модели Ньютона если её улучшить. Что если добавить в неё недостающий элемент межатомного взаимодействия? Исходный код и бинарники получившегося симулятора доступны на GitHub.


Computational Fluid Dynamics


Вообще, задачами точной симуляции поведений жидкостей и газов занимается вычислительная гидродинамика (Computational fluid dynamics, CFD), где жидкости и газы в общем случае хорошо описываются уравнениями Навье-Стокса.


Если вас пугает внешний вид этих уравнений, но вы хотели бы разобраться, то для вас есть очень хорошее объяснение в 7-м томе лекций Ричарда Фейнмана. Загляните в главы 38 (Упругость), 40 (Течение сухой воды) и 41 (Течение мокрой воды). Если совсем кратко и на пальцах, то система уравнений Навье-Стокса это векторное уравнение второго закона Ньютона. Эта система определяет равнодействующую всех сил (давления, вязкости и гравитации) для всех направлений. Дополнительно может быть задано второе векторное уравнение, обеспечивающее условие несжимаемости, если нужно описать жидкости.


Принципиально систему уравнений можно решать двумя подходами: методами Эйлера или Лагранжа. Эйлеров подход рассматривает среду как поля векторных и скалярных величин. Подход Лагранжа рассматривает отдельно каждую частицу среды.


Один из многих способов численно решить систему уравнений это применить Метод Конечных Элементов в связке с Адаптивным Сеточным Методом в случае подхода Эйлера. Зачем нужна адаптивность сетки и как её можно реализовать, подробно и доступно рассказали ребята из SpaceX в своём докладе. Эйлеров подход как правило, но не обязательно, применяется для моделирования замкнутых объемов неразрывных сред, т. е. тех, в которых отсутствуют пустые места и включения других сред. Для иных сред, чаще всего реализуют подход Лагранжа, через метод сглаженных частиц (Smoothed-particle hydrodynamics, SPH). Метод активно применяется для моделирования воды с полным набором явлений: брызги, капли, лужи, смачивание поверхностей и т. д. Можно даже сымитировать пену или пузыри, если включить в модель частицы воздуха. Реконструкцию поверхности, а точнее изоповерхности, можно произвести любым интересующим вас способом (screen-space meshes, dual contouring, marching tetrahedra, metaballs). Если вы знаете другие интересные подходы, добро пожаловать в комментарии.


Discrete Element Method


Моей задачей было найти такой подход, который позволит обсчитывать миллионы частиц и наблюдать за эволюцией системы практически в реальном времени.


Метод дискретного элемента (Discrete Element Method, DEM) показался мне очень привлекательным, потому что он решает практически схожую задачу. Однако он в первую очередь предназначен для сыпучих и гранулированных сред, где у каждой частицы в трёхмерном пространстве есть позиция, ориентация, произвольная форма и масса.



Чтобы упростить вычисления, я решил оставить у частиц только две степени свободы (координаты X и Y), одинаковую массу и радиус. При построении своей модели в угоду производительности я хотел отбросить параметры и факторы, которые порождают эффекты второго порядка. Однако при моделировании сложных систем, они могут быть очень существенны. Один из показательных примеров это использование NASA модели идеального газа вместо реального при проектировании космических челноков. В результате, во время миссии STS-1 проявились различные аномалии при входе в атмосферу. Подробнее в разделе Mission Anomalies.


Тем не менее у DEM есть одна важная особенность это обнаружение столкновений постфактум (Discrete Collision Detection). Разрешение столкновений происходит простым силовым воздействием по закону Гука.


В противоположность этому подходу существует априорный метод Continuous Collision Detection (CCD), который рассчитывает, когда столкновение произойдёт в будущем. Зная точное время контакта, можно скорректировать временной шаг, и избежать неприятных физических артефактов. Метод активно применяется в современных играх. Для игр CCD очень важен чтобы объекты не туннелировали друг через друга, не проваливались друг в друга и не застревали в текстурах. Метод поддерживается современными движками, в Unity и в Unreal точно.



Подробный доклад о методе Continuous Collision Detection


Но у CCD две большие проблемы. Первая это при всей своей точности он непропорционально ресурсоёмок. А для большого количества частиц он сделает расчёты совершенно непрактичными. Вторая при увеличении плотности частиц, время свободного пробега каждой уменьшается, вынуждая симулятор делать всё меньшие и меньшие шаги, чтобы не пропустить столкновения. В одном из моих проектов очень хорошо видно, как временной шаг вырождается практически в ноль по мере увеличения плотности планетарных сгустков



Поэтому, из практических соображений я решил воспользоваться апостериорной методикой обнаружения столкновений из DEM.


Искомый эффект пушечного ядра


Разработав первую версию симуляции, я обнаружил, что частицы, сталкивающиеся с фронтальной частью крыла ведут себя очень знакомо. Передняя кромка крыла за счёт своей каплевидной формы при столкновении с набегающим потоком воздуха ударяется об него, расталкивая молекулы. Отраженные частицы создают ударную волну, которая отражает следующие. А те в свою очередь воздействуют на следующий слой и так далее.


Я слышал о подобном эффекте в одном документальном фильме от National Geographic. В нём рассказывалось, что это явление напрямую эксплуатировалось конструкторами космического челнока. Они сознательно сделали нос челнока тупым, чтобы на высоких скоростях он создавал ударную волну, которая защищает выдающиеся части фюзеляжа от разрушительной плазмы.

Ударная волна создаёт щит (изображение National Geographic)


В фильме этот эффект сравнили с пушечным ядром. Летать далеко не задача ядер. Их задача ударять. Им не нужна аэродинамическая форма. Именно поэтому тупой нос челнока так хорошо защищает весь аппарат.


Подробнее по ссылке с таймкодом https://youtu.be/cx8XbaQNnxw?t=2206


Удивительно, но именно этот эффект отлично наблюдается в симуляции. Вероятно, именно это взаимодействие слоёв воздуха в сочетании с углом атаки даёт ту самую подъёмную силу. На температурной карте давления ниже отчётливо видны области высокого и низкого давления. Наличие взаимодействия между частицами сделало модель Ньютона интереснее.


Картинки ниже кликабельны и доступны в высоком разрешении.



Температурная карта давления (скалярная сумма модулей сил)



Та же карта, только при большем масштабе



Температурная карта ускорений частиц


Архитектура симулятора


Давайте теперь рассмотрим, как устроен симулятор. Приложение состоит из двух независимых модулей:


  1. Рендерер текущего состояния.
  2. Модуль симуляции на CPU или CUDA.

Модули слабо связаны друг с другом и напрямую не зависят. Существует возможность проводить симуляцию в оффлайн режиме и рендерить результаты позднее. В CUDA-версии демонстрации рендеринг, что на видео в начале статьи, происходит каждые 16 шагов.


Фазовое пространство


Концепция фазового пространства широко используется в различного рода симуляциях. Основная идея состоит в том, что все переменные системы, такие как позиция, ориентация, импульсы, и т.д., упаковываются в один большой вектор. Этот многомерный вектор обозначает точку в так называемом фазовом пространстве. Сама симуляция есть не что иное как движение точки через это пространство.


Такое представление очень удобно, потому что практически любую симуляцию можно выразить в таком виде. Движение точки состояния как правило выражается через обыкновенное дифференциальное уравнение первого порядка (Ordinary Differential Equation, ODE). Это уравнение имеет вид $inline$dx/dt = f(x, t)$inline$, где $inline$x$inline$ это позиция точки в фазовом пространстве, а $inline$f$inline$ чёрный ящик, способный определить скорость изменения состояния. Зная $inline$x_0$inline$ и $inline$dx/dt$inline$, можно посчитать следующее значение $inline$x_1 = x_0 + \frac{dx}{dt}dt = x_0 + dx$inline$.


Вне зависимости от того, как работает f, симуляция это всего лишь процесс численного интегрирования.


Подробнее по теме фазового пространства можно ознакомиться в разделах 'Differential Equation Basics' and 'Particle Dynamics' курса https://www.cs.cmu.edu/~baraff/sigcourse/


На канале 3Blue1Brown также доступны отличные материалы:
https://www.youtube.com/playlist?list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6


Интегратор


После различных экспериментов я решил остановиться на самом грубом, но в тоже время самом простом методе Эйлера (Forward Euler). Я пробовал использовать метод Рунге-Кутты 4-го порядка (RK4), в том числе и с адаптивным шагом, но для конкретно этого сценария больше подошёл метод Эйлера. Преимущество RK4 в том, что он позволяет делать огромные временные шаги ценой четырёхкратного увеличения вычислений, что в некоторых сценариях оправданно. В моём же случае оказалось, что я привязан к малым временным шагам, из-за необходимости избегать туннелирования частиц друг через друга. Кстати, как работают интеграторы с адаптивным временным шагом опираясь на ошибку, можно почитать в 'Differential Equation Basics' lecture notes, section 3, 'Adaptive Stepsizes'.


В данной симуляции, чтобы свести туннелирования к минимуму, адаптивность шага достигается следующим эвристическим правилом. Симулятор находит самую быструю частицу и вычисляет время, за которое эта частица пройдёт расстояние равное радиусу. Это время используется как временной шаг на текущей итерации.


CPU-версия основной функции симулятора. GPU-версия имеет незначительные отличия.
float CSimulationCpu::ComputeMinDeltaTime(float requestedDt) const{    auto rad = m_state.particleRad;    auto velBegin = m_curOdeState.cbegin() + m_state.particles;    auto velEnd = m_curOdeState.cend();    return std::transform_reduce(std::execution::par_unseq, velBegin, velEnd, requestedDt, [](const auto t1, const auto t2)    {        return std::min(t1, t2);    }, [&](const auto& v)    {        auto vel = glm::length(v);        auto radDt = rad / vel;        return radDt;    });}float CSimulationCpu::Update(float dt){    dt = ComputeMinDeltaTime(dt);    m_odeSolver->NextState(m_curOdeState, dt, m_nextOdeState);    ColorParticles(dt);    m_nextOdeState.swap(m_curOdeState);    return dt;}

Вычисление производной состояния


Теперь перейдём к сердцу симулятора определению той самой функции f, упомянутой в параграфе Фазовое пространство. Ниже приведён высокоуровневый код солверов производной для CPU и CUDA версий. Стоит отметить, что CPU версия исторически появилась раньше, так как на ней было проще отладить математику. В CUDA версии появились некоторые улучшения и оптимизации, но суть осталась та же. Отличие состоит в переупорядочивании частиц. Подробнее в разделе Реордеринг частиц.


Высокоуровневый алгоритм расчёта производной состояния
//CPU-версия void CDerivativeSolver::Derive(const OdeState_t& curState, OdeState_t& outDerivative) {    ResetForces();    BuildParticlesTree(curState);    ResolveParticleParticleCollisions(curState);    ResolveParticleWingCollisions(curState);    ParticleToWall(curState);     ApplyGravity();    BuildDerivative(curState, outDerivative);} //CUDA-версия void CDerivativeSolver::Derive(const OdeState_t& curState, OdeState_t& outDerivative) {     BuildParticlesTree(curState);    ReorderParticles(curState);    ResetParticlesState();    ResolveParticleParticleCollisions();    ResolveParticleWingCollisions();    ParticleToWall();    ApplyGravity();    BuildDerivative(curState, outDerivative);}

Поиск столкновений между частицами


Как вы уже, наверное, могли понять, поиск столкновений это краеугольный камень всех расчётов. В видео в самом начале статьи участвует 2097152 частиц. Среди всего этого количества нужно каким-то быстрым образом найти все сталкивающиеся пары. Интересно, но у этой проблемы нет однозначно правильного решения. Любой способ это набор компромиссов и допущений.


Один из возможных вариантов это использование Uniform Grid, то есть однородной сетки из ячеек на подобии шахматной доски. Одна из реализаций для GPU описана в статье Chapter 32. Broad-Phase Collision Detection with CUDA.



Каждая ячейка пространства содержит в себе список объектов (изображение Tero Karras, NVIDIA Corporation)


В этом случае, поиск столкновений в среднем будет занимать порядка $inline$O(1)$inline$. Каждой частице нужно обойти списки в 9 (3x3) или 27 (3x3x3) ячейках для 2D или 3D случая соответственно. Ещё один приятный плюс структуры это относительная простота распараллеливания её построения. Память под списки можно выделить либо заранее в виде массива, и вычислять выходной индекс через атомарный инкремент, либо строить классический RCU lock-free односвязный список. Nvidia в своих видеокартах уже давно добавила поддержку кучи, поэтому можно вызвать malloc()/free() прямо в device коде, выделяя и освобождая элементы списков.



CppCon 2017: Fedor Pikus Read, Copy, Update, then what? RCU for non-kernel programmers


Однако, у этой структуры есть следующий ряд фундаментальных ограничений:


  1. Множество значений координат ограничено размером самой сетки.
  2. Близкие ячейки в евклидовом пространстве как правило расположены далеко в адресном пространстве RAM/VRAM, не разделяя единую кэш-линию, что создаёт дополнительную нагрузку на шину памяти.
  3. При низкой плотности объектов или малом их количестве структура данных начинает потреблять больше памяти, чем сами данные.
  4. Возможно появление чрезмерно длинных списков при большой плотности объектов.
  5. В связи с аппаратными особенностями планирования потоков на GPU, некоторые lock-free структуры не способны работать корректно (https://youtu.be/86seb-iZCnI?t=2311, ссылка с таймкодом).

Другой вариант, который я решил использовать в этой симуляции это BVH-дерево на основе Z-кривой. Я наткнулся на эту довольно любопытную структуру данных, когда искал альтернативы однородной сетке.


Первая важная особенность этой структуры данных в её основе лежит фрактальная Z-кривая, она же Кривая Мортона.



Фрактальная Z-кривая (изображение Wikipedia)



Принцип вычисления индекса на кривой чередование битов координат
(изображение Wikipedia)


Задача этой кривой, как и любой другой space-filling curve, состоит в том, чтобы упаковать пространства высших размерностей в одномерное пространство. Если присвоить каждому объекту в 2D/3D пространстве индекс на любой такой кривой, а затем отсортировать все объекты по этому индексу, то мы увидим, что объекты, расположенные близко в геометрическом пространстве, как правило будут лежать близко и в одномерном пространстве. Это свойство позволяет существенно снизить нагрузку на шину памяти. Кстати, если вам нужно обрабатывать изображения, выполняя различные свёрточные операции и применяя фильтры, возможно, вам стоит хранить пиксели в виде одной из такой кривых, а не в виде матрицы.


Вторая главная особенность этой структуры данных состоит в том, что построение отношений между узлами дерева выполняется в параллельном режиме. В процессе построения связей потоки никак не общаются друг с другом, что позволяет достичь максимального уровня параллелизма. Это и не удивительно, потому что подход был предложен инженером Tero Karras из Nvidia, специально для решения задач поиска столкновений на видеокартах.


Детально алгоритм описан в статье Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees.
Краткое изложение:


  1. Обход дерева: https://developer.nvidia.com/blog/thinking-parallel-part-ii-tree-traversal-gpu/
  2. Построение дерева: https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/

В сухом остатке, алгоритм следующий. Для каждого из N объектов запускается отдельный поток, который вычисляет bounding box и, на основе его центра, вычисляет код Мортона (индекс на Z-кривой). После этого этапа боксы сортируются в порядке возрастания кода.

Формирование кодов Мортона (изображение Tero Karras, NVIDIA Corporation)


Затем инициализируются узлы дерева. В частности, ещё до построения самого дерева, известно, что для N листьев будет существовать N-1 промежуточных узлов. Соответственно, необходимые аллокации и первичные инициализации осуществляются на этом шаге. Далее наступает самый хитроумный этап. Алгоритм ищет различия в кодах, двигаясь от старших бит к младшим. Наличие разницы сигнализирует о том, что нужно сформировать промежуточный узел. Ниже на рисунках представлены однопоточная версия алгоритма и его распараллеленная версия.



Последовательный алгоритм построения префиксного дерева (изображение Tero Karras, NVIDIA Corporation)



Параллельный алгоритм построения префиксного дерева (изображение Tero Karras, NVIDIA Corporation)


После того, как связи между узлами выстроены, начинается этап формирования BVH-структуры.

BVH-структура (изображение Tero Karras, NVIDIA Corporation)


N потоков стартуют с листьев и, поднимаясь к корню, обновляют боксы промежуточных узлов. Так как не определено, какой из детей придёт к родителю первым, то в промежуточных узлах хранится специальный флаг, изначально установленный в ноль. Оба ребёнка с помощью атомарной функции atomicExch() устанавливают флаг в 1. Функция возвращает старое значение, которое было до модификации. Если ребёнку функция вернула 0, то значит он первый. Это также означает, что текущему потоку нельзя модифицировать бокс родителя, потому что бокс его сиблинга может быть ещё не готов. На этом этапе поток завершает своё исполнение. Если же ребёнку функция вернула 1, то можно смело модифицировать родительский бокс, объединяя боксы обоих сиблингов, и снова повторить процесс.


После этого этапа дерево готово к осуществлению запросов.


Реакция на столкновения


В симуляции существует два типа столкновений частица-частица и частица-сегмент профиля.


Реакция частица-частица использует факт того, все объекты уже сохранены в дереве, поэтому существует частная процедура рефлексивного обхода, когда листья ищут столкновения друг с другом. Эта оптимизация была предложена Tero Karras. Особенность процедуры в том, что она распознаёт столкновения A-B и B-A как одно и то же столкновение, поэтому оно детектируется только один раз. Для этого при построении дерева вводится дополнительная информация. В промежуточных узлах хранится индекс самого правого листа (rightmost leaf), до которого можно добраться. Например, на рисунке выше rightmost(N2) = 4, а rightmost(N3) = 8. Когда поток, связанный с листом, скажем, O6, будет опускаться от корня, он обратится к промежуточному узлу N2. Благодаря переменной rightmost, он увидит, что лист O6 недостижим из поддерева N2. В этом случае поток O6 должен проигнорировать всё поддерево N2. Однако, потоки, связанные с листьями из поддерева N2, будут проверять поддерево N3. В конечном итоге, если столкновение с O6 и существует, то об этом сообщит только один поток, и он будет из поддерева N2.


Для частной процедуры рефлексивного обхода прототип функции выглядит следующим образом:


template<typename TDeviceCollisionResponseSolver, size_t kTreeStackSize>void CMortonTree::TraverseReflexive(const TDeviceCollisionResponseSolver& solver);

Для случая частица-сегмент профиля, используется универсальная версия:


template<typename TDeviceCollisionResponseSolver, size_t kTreeStackSize>void CMortonTree::Traverse(const thrust::device_vector<SBoundingBox>& objects, const TDeviceCollisionResponseSolver& solver);

Здесь TDeviceCollisionResponseSolver это объект, который должен реализовать следующий интерфейс:


struct Solver{    struct SDeviceSideSolver    {        ...         __device__ SDeviceSideSolver(...);        __device__ void OnPreTraversal(TIndex curId);        __device__ void OnCollisionDetected(TIndex leafId);        __device__ void OnPostTraversal();    };    Solver(...);    __device__ SDeviceSideSolver Create();}; 

Для каждого тестируемого на столкновение объекта, или листа в случае рефлексивного подхода, создаётся отдельный поток. Каждый поток создаёт свой солвер через фабричную функцию Create(). Далее вызывается метод OnPreTraversal, куда передаётся индекс тестируемого объекта. Если бокс текущего тестируемого объекта перекрыл бокс какого-то листа, вызывается функция OnCollisionDetected с индексом листа. Эта функция отвечает за расчёт физики. После обхода дерева вызывается OnPostTraversal.


Такой формат разрешения коллизий появился неслучайно. С самого начала я реализовал его по-другому. Я разделил обход дерева и вычисление физики на две различные стадии, как это сделал Tero Karras. Однако я столкнулся с проблемой построения списков найденных столкновений. Я попробовал сохранять информацию о коллизиях в виде матрицы NxO, где N количество тестируемых объектов, O максимальный размер списка. Но я отказался от этой идеи, потому что при определенных сценариях быстро заканчивалось место в списках. А это в свою очередь создавало различные физические артефакты. К тому же я обратил внимание, что профилировщик сигнализировал о неэффективной работе с памятью (coalesced memory access). Поэтому я решил попробовать подход без списков, который был описан выше. К моему удивлению, способ оказался немного быстрее и без артефактов.


Код солвера частица-частица
struct SParticleParticleCollisionSolver{    struct SDeviceSideSolver    {        CDerivativeSolver::SIntermediateSimState& simState;        TIndex curIdx;        float2 pos1;        float2 vel1;        float2 totalForce;        float totalPressure;        __device__ SDeviceSideSolver(CDerivativeSolver::SIntermediateSimState& state) : simState(state)        {        }        __device__ void OnPreTraversal(TIndex curLeafIdx)        {            curIdx = curLeafIdx;            pos1 = simState.pos[curLeafIdx];            vel1 = simState.vel[curLeafIdx];            totalForce = make_float2(0.0f);            totalPressure = 0.0f;        }        __device__ void OnCollisionDetected(TIndex anotherLeafIdx)        {            const auto pos2 = simState.pos[anotherLeafIdx];            const auto deltaPos = pos2 - pos1;            const auto distanceSq = dot(deltaPos, deltaPos);            if (distanceSq > simState.diameterSq || distanceSq < 1e-8f)                return;            const auto vel2 = simState.vel[anotherLeafIdx];            auto dist = sqrtf(distanceSq);            auto dir = deltaPos / dist;            auto springLen = simState.diameter - dist;            auto force = SpringDamper(dir, vel1, vel2, springLen);            auto pressure = length(force);            totalForce += force;            totalPressure += pressure;            atomicAdd(&simState.force[anotherLeafIdx].x, -force.x);            atomicAdd(&simState.force[anotherLeafIdx].y, -force.y);            atomicAdd(&simState.pressure[anotherLeafIdx], pressure);        }        __device__ void OnPostTraversal()        {            atomicAdd(&simState.force[curIdx].x, totalForce.x);            atomicAdd(&simState.force[curIdx].y, totalForce.y);            atomicAdd(&simState.pressure[curIdx], totalPressure);        }    };    CDerivativeSolver::SIntermediateSimState simState;    SParticleParticleCollisionSolver(const CDerivativeSolver::SIntermediateSimState& state) : simState(state)    {    }    __device__ SDeviceSideSolver Create()    {        return SDeviceSideSolver(simState);    }};void CDerivativeSolver::ResolveParticleParticleCollisions(){    m_particlesTree.TraverseReflexive<SParticleParticleCollisionSolver, 24>(SParticleParticleCollisionSolver(m_particles.GetSimState()));    CudaCheckError();}

Во время отладки я обратил внимание, что при высокой плотности частиц, функция OnCollistionDetected как правило вызывается для одних и тех же аргументов среди потоков одного варпа. Типовой сценарий был следующий: если в какой-то области пространства есть частицы A, B, C и D, которые в указанном порядке расположены на Z кривой, то приблизительно происходило вот что:


lock-step # Thread #1 Thread #2 Thread #3
1 OnCollisionDetected
A <-> C
OnCollisionDetected
B <-> C
OnCollisionDetected
C <-> D
2 OnCollisionDetected
A <-> D
OnCollisionDetected
B <-> D
INACTIVE
3 OnPostTraversal(1) OnPostTraversal(2) OnPostTraversal(3)

Как видно из таблицы, на шаге 1 и 2 потоки #1 и #2 выполняли атомарные обращения atomicAdd с одними и тем же частицам C и D в процессе работы функции OnCollistionDetected. Это создаёт дополнительную нагрузку на atomic транзакции.


Начиная с архитектуры Volta, Nvidia добавила в чипы поддержку новых warp-vote инструкций. С помощью инструкции match_any поток может опросить весь warp, получив битовую маску потоков, у которых значение запрашиваемой переменной имеет такое же значение.

Результат работы match_any и match_all для двух кооперативных групп


Коммуникация внутри варпа тоже стала удобнее, потому что появились новые warp shuffle функции с поддержкой маски потоков.

Warp-wide редукция с помощью старых функций без маски


Благодаря этим функциям, потоки перед обращением в глобальную память могут сгруппироваться по признаку общего выходного адреса. Далее эта группа должна выполнить суммирование на уровне регистров SM и уже после этого только один поток обращается в глобальную память. К сожалению, на моём домашнем Pascal (1080 Ti) таких инструкций нет, поэтому я решил попробовать их проэмулировать. Увы, никакого прироста, как и замедления это не дало. Профилировка показала, что хоть нагрузка на atomic транзакции и упала в несколько раз, существенно возросла нагрузка на Arithmetic Workload и увеличилось количество регистров на поток. Заняться разработкой на чипах с Volta или Turing пока не представилось возможным. Хотя, мне всё же удалось протестировать симуляцию на RTX 2060 и найти баг связанной с atomic операцией. Об этом в разделе Барьер памяти.


Другие оптимизации и дополнения


В данном разделе мне бы хотелось рассказать о некоторых отличиях от оригинального алгоритма, которые дали дополнительный прирост в производительности, а также некоторые комментарии по особенностям реализации.


SoA


Structure of Arrays одна из техник, которая позволяет ускорить доступ к памяти в определённых ситуациях.



При работе с деревом на любом из этапов как правило не требуется полный набор атрибутов. А значит вместо того, чтобы хранить каждый узел в виде структуры, всё дерево храниться в виде SoA:


typedef uint32_t TIndex; struct STreeNodeSoA {    const TIndex leafs;    int* __restrict__ atomicVisits;     TIndex* __restrict__ parents;     TIndex* __restrict__ lefts;     TIndex* __restrict__ rights;     TIndex* __restrict__ rightmosts;     SBoundingBox* __restrict__ boxes;     const uint32_t* __restrict__ sortedMortonCodes; };

Тоже самое касается и внутреннего состояния солвера производной состояния:


struct SIntermediateSimState {     const TIndex particles;     const float particleRad;     const float diameter;     const float diameterSq;     float2* __restrict__ pos;     float2* __restrict__ vel;     float2* __restrict__ force;     float* __restrict__ pressure; }; 

В тоже время, массив bounding boxов нет смысла хранить в SoA стиле, потому что во всех сценариях необходимы обе точки. Поэтому боксы хранятся в виде Array of Structures (AoS):


struct SBoundingBox {     float2 min;     float2 max; }; struct SBoundingBoxesAoS {     const size_t  count;     SBoundingBox* __restrict__ boxes; }; 

Реордеринг частиц


Так как текущая реализация не строит списки столкновений, а разрешает коллизии прямо на месте, то возникает следующая проблема. После присвоения кодов Мортона центрам боксов, выполняется сортировка самих боксов. Однако остальные параметры частиц остаются неотсортированными. Если в процессе обхода дерева продолжить обращаться к данным в исходном порядке, то мы получаем uncoalesced memory access.


Такой паттерн доступа очень медленно работает на GPU. Для восстановления coalesced memory access, позиции и скорости частиц тоже упорядочиваются вдоль кривой. А после выполнения всех расчётов, силы и давления как выходные величины возвращаются к исходному порядку. Идея не нова и была позаимствована из уже упомянутого доклада SpaceX: https://youtu.be/vYA0f6R5KAI?t=1939 (ссылка с таймкодом).



Восстановление объединённого доступа к памяти (изображение SpaceX)


Такая оптимизация даёт 50% прироста производительности: с 8 FPS до 12 FPS для двух миллионов частиц.


Стек в Shared Memory


Оригинальная статья приводит пример реализации, где стек для обхода дерева реализуется в виде локального массива в скоупе функции. Проблема этого подхода в том, что задействуется локальная память потока область в глобальной памяти. А значит SM начинает выполнять долгие транзакции на чтение и запись, которые ко всему прочему могут оказаться ещё uncoalesced. Суть данной оптимизации, чтобы использовать сверхбыструю Shared Memory на кристалле самого Streaming Multiprocessorа.


Оригинальный код
__device__ void traverseIterative( CollisionList& list,                                   BVH& bvh,                                    AABB& queryAABB,                                    int queryObjectIdx){    // Allocate traversal stack from thread-local memory,    // and push NULL to indicate that there are no postponed nodes.    NodePtr stack[64]; //<---------------------------- Проблемное место    NodePtr* stackPtr = stack;    *stackPtr++ = NULL; // push    // Traverse nodes starting from the root.    NodePtr node = bvh.getRoot();    do    {        // Check each child node for overlap.        NodePtr childL = bvh.getLeftChild(node);        NodePtr childR = bvh.getRightChild(node);        bool overlapL = ( checkOverlap(queryAABB,                                        bvh.getAABB(childL)) );        bool overlapR = ( checkOverlap(queryAABB,                                        bvh.getAABB(childR)) );        // Query overlaps a leaf node => report collision.        if (overlapL && bvh.isLeaf(childL))            list.add(queryObjectIdx, bvh.getObjectIdx(childL));        if (overlapR && bvh.isLeaf(childR))            list.add(queryObjectIdx, bvh.getObjectIdx(childR));        // Query overlaps an internal node => traverse.        bool traverseL = (overlapL && !bvh.isLeaf(childL));        bool traverseR = (overlapR && !bvh.isLeaf(childR));        if (!traverseL && !traverseR)            node = *--stackPtr; // pop        else        {            node = (traverseL) ? childL : childR;            if (traverseL && traverseR)                *stackPtr++ = childR; // push        }    }    while (node != NULL);}

Стек в Shared Memory
template<typename TDeviceCollisionResponseSolver, size_t kTreeStackSize, size_t kWarpSize = 32>__global__ void TraverseMortonTreeKernel(const CMortonTree::STreeNodeSoA treeInfo, const SBoundingBoxesAoS externalObjects, TDeviceCollisionResponseSolver solver){    const auto threadId = blockIdx.x * blockDim.x + threadIdx.x;    if (threadId >= externalObjects.count)        return;    const auto objectBox = externalObjects.boxes[threadId];    const auto internalCount = treeInfo.leafs - 1;    __shared__ TIndex stack[kTreeStackSize][kWarpSize]; //Тот самый стек    unsigned top = 0;    stack[top][threadIdx.x] = 0;    auto deviceSideSolver = solver.Create();    deviceSideSolver.OnPreTraversal(threadId);    while (top < kTreeStackSize) //top == -1 also covered    {        auto cur = stack[top--][threadIdx.x];        if (!treeInfo.boxes[cur].Overlaps(objectBox))            continue;        if (cur < internalCount)        {            stack[++top][threadIdx.x] = treeInfo.lefts[cur];            if (top + 1 < kTreeStackSize)                stack[++top][threadIdx.x] = treeInfo.rights[cur];            else                printf("stack size exceeded\n");            continue;        }        deviceSideSolver.OnCollisionDetected(cur - internalCount);    }    deviceSideSolver.OnPostTraversal();}

Использование Shared Memory позволяет достичь прироста на 43%: с 14 FPS до 20 FPS. Подробнее о доступных типах памяти можно почитать в официальной документации:


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses


Барьер памяти


Когда я разрабатывал симулятор, я пользовался исключительно одной видеокартой 1080 Ti поколения Pascal. Пользоваться другими в целях разработки, к сожалению, возможности не было. Но у меня была возможность просить трёх моих знакомых запустить приложение на их игровых ноутбуках с новой на тот момент 20-й серией чипов. Все три ноутбука выдавали изображения с вот такими артефактами.



Артефакт на 20-й RTX серии. Позиции и размер артефактов каждый шаг менялись.


Сначала я думал, что это проблема визуализации, но нигде не мог найти ошибку. Проверка кода самой симуляции тоже не дала результатов. Осознание пришло через полгода после просмотра этого доклада:



Доклад об атомиках и барьерах памяти.


Половина доклада посвящена идеи барьеров памяти и почему они важны при работе с atomic-операциями и lock-free структурами. Дело в том, что процессоры имеют тенденцию переупорядочивать выполнение инструкций (Out-of-order execution), но при этом отслеживая и сохраняя зависимости между ними, чтобы гарантировать корректность. В случае с lock-free структурами для процессоров зависимость не очевидна. Поэтому, нужны барьеры памяти, которые подсказывают процессору, что инструкции не могут быть переупорядочены через барьер. Каждая платформа реализует барьеры по-своему, но, к счастью, разработчики стандарта C++ смогли построить наиболее общую модель. Подробное описание каждой семантики барьеров доступно в документации по std::memory_order.


__device__ void CMortonTree::STreeNodeSoA::BottomToTopInitialization(size_t leafId){    auto cur = leafs - 1 + leafId;    auto curBox = boxes[cur];    while (cur != 0)    {        auto parent = parents[cur];        //1. Опасная atomic операция        auto visited = atomicExch(&atomicVisits[parent], 1);        if (!visited)            return;        TIndex siblingIndex;        SBoundingBox siblingBox;        TIndex rightmostIndex;        TIndex rightmostChild;        auto leftParentChild = lefts[parent];        if (leftParentChild == cur)        {            auto rightParentChild = rights[parent];            siblingIndex = rightParentChild;            rightmostIndex = rightParentChild;        }        else        {            siblingIndex = leftParentChild;            rightmostIndex = cur;        }        siblingBox = boxes[siblingIndex];        rightmostChild = rightmosts[rightmostIndex];        SBoundingBox parentBox = SBoundingBox::ExpandBox(curBox, siblingBox);        boxes[parent] = parentBox;        rightmosts[parent] = rightmostChild;        cur = parent;        curBox = parentBox;        //2. Спасительный барьер памяти.         //Следующая итерация гарантированно увидит результаты всех записей         __threadfence();    }}

Моя ошибка была в том, что я не использовал никаких барьеров памяти в коде, который строит BVH дерево, но при этом активно использует атомарный флаг. Интересно, что оригинальная статья также не использует никаких барьеров. Скорее всего, помимо новой SIMT модели (разделы Volta SIMT Model и Starvation-Free Algorithms) Nvidia добавила в новые архитектуры начиная с Volta более агрессивную реализацию уже упомянутой Out-of-order execution. Как следствие, операции, которые должны были выполняться до atomicExch(), т.е. ещё на предыдущей итерации цикла, на Turing исполняются уже после. В результате такого агрессивного реордеринга инструкций, второй ребёнок, приходя к родителю думает, что его сиблинг уже вычислил и сохранил бокс в общую память, а на самом деле нет. В результате получается data race.


thrust::device_vector


Я слишком поздно заметил, что thurst::device_vector работает в синхронном режиме. Этот контейнер в своём конструкторе и в методе resize() выполняет полную синхронизацию с GPU через cudaDeviceSynchronize(). Видимо, разработчики руководствовались следующими рассуждениями. Раз вектор на видеокарте, то и конструкторы элементов нужно тоже вызывать на видеокарте. Но так как конструкторы могут кидать исключения, нужно дождаться их исполнения, чтобы словить все исключения. Единственный доступный способ для них полная синхронизация. Ещё одна из обнаруженных проблем редукция (reduce, sum, min, max) тоже синхронная, так как возвращает результат на хост. Библиотека Cuda UnBound (CUB) в этом плане куда продуманнее. Кстати, недавно она вошла в состав thrust как бэкенд, хотя раньше её нужно было скачивать отдельно.


Результаты профилировки


Наконец, подробный отчёт о том, что происходит во время расчёта каждого шага для двух миллионов частиц.



Картинка кликабельна, можно посмотреть в высоком разрешении


Заключение


Когда я брался за этот проект я всего лишь хотел использовать GPU как мини-суперкомпьютер, чтобы проверить жизнеспособность модели Ньютона. В итоге задача оказалась куда интереснее и плодотворнее, чем ожидалось. Симуляция показала эффект пушечного ядра, а сама работа над проектом вылилась в исследование и долгие часы работы в APOD режиме.


Надеюсь, что описанный в этой статье опыт, а также предложенные решения проблем, помогут вам в ваших проектах, пускай даже не связанные с GPU.


Если вы хотели бы начать изучать CUDA, но не знаете, с чего начать, на Youtube есть отличный курс от Udacity Intro to Parallel Programming. Рекомендую к ознакомлению.
https://www.youtube.com/playlist?list=PLAwxTw4SYaPnFKojVQrmyOGFCqHTxfdv2


На последок, ещё несколько видео симуляций:



CPU-версия, 8 потоков, 131'072 частиц



CUDA-версия, 4.2М частиц, 30 минут симуляции

Подробнее..

Перевод После 220 лет поисков ученые наконец-то нашли глобальные волны Лапласа

25.08.2020 14:18:31 | Автор: admin
Еще в XVIII веке великий французский физик предсказал существование симфонии из атмосферных волн, охватывающей всю планету. И вот, 220 лет спустя, ученые наконец-то сумели ее услышать.

image

Динамика атмосферы нашей планеты настолько сложна, что даже современные метеорологические алгоритмы не всегда могут ее разгадать и дать верные предсказания.

Но это не испугало французского ученого Пьер-Симона маркиза де Лапласа, который в 18 веке сумел предсказать одну простую, но важную особенность поведения атмосферы Земли. Пусть Лаплас ни разу за свою жизнь не видел глобальной карты погоды, он разработал теорию, которая предсказывала, что по нашей планете постоянно несутся волны с перепадами давления.

До конца 20го века моделирование атмосферы проводилось карандашом на бумаге и было довольно грубым, но Лапласу это удалось,рассказывает Дэвид Рэндалл (David Randall), ученый-специалист в области наук об атмосфере из Университета штата Колорадо.Это невероятно.

Идеи Лапласа спровоцировали вековую охоту на эти волны. Но осцилляции оказались не только огромными, но и очень слабыми. Даже лучшим физикам не удавалось их обнаружить.

И вот этот квест подошел к концу. В новом наборе метеорологических данных современные ученые обнаружили то, что не заметили миллионы барометров: симфонию из волн, которые окутывают всю Землю лоскутным одеялом из зон со слабым и сильным давлением.

Вот такое вот прекрасное подтверждение старой теории. Но давайте обо все по порядку.

Струны планеты


image

Лаплас в мундире канцлера Сената. Фрагмент портрет кисти Жана-Батиста Герена, 1838

Всё началось с того, что Лаплас заинтересовался влиянием притяжения Луны на атмосферу Земли. Он решил проанализировать, какие типы волн рождаются в результате этого взаимодействия.

Лаплас представлял атмосферу в виде тонкого слоя жидкости на гладкой сфере. Он пришел к выводу, что гравитация должна придавливать волны к земле, где они будут двигаться более-менее в горизонтальной плоскостикак двумерные (поверхностные) волны.

Он был первым, кому пришла в голову такая иллюстрация,объясняет Кевин Гамильтон (Kevin Hamilton), почетный профессор Гавайского университета в Маноа, соавтор нового исследования.Это было потрясающей догадкой.

Лаплас не дал этим волнам особого названия и не проработал их движение более подробно, но современные ученые-специалисты в области наук об атмосфере называют их нормальными колебаниями (или модами, normal modes).

Самый простой мод поднимает давление в одном полушарии и понижает его в другом. Более энергичные моды создают шахматный паттерн из мелких зон с низким и высоким давлением.

Они движутся вокруг планетыобычно с запада на восток или с востока на западпо скорости обгоняя большинство пассажирских самолетов.

image
(T. Sakazaki and K. Hamilton, doi:10.1175/JAS-D-200053.1)Красным окрашены зоны высокого давления, голубымзоны низкого. Четыре графика иллюстрируют четыре разных мода волн.

Хотя Лаплас и начинал свои рассуждения с Луны, на самом деле эти волны давления появляются из-за бурь, гроз и штормов самой Земли.

Ветер налетает на горные гряды, турбуленция возрастает, и часть этой энергии уходит на подпитку нормальных колебаний. Словно котенок ходит по клавишам пианино,объясняет Рэндалл.По его случайным нажатиям вы можете понять, какие струны есть у этого пианино.

Итак, Лаплас предложил идею существования подобных волн, математики дали физикам все необходимые инструменты для вычисления струн атмосферы. Но услышал ли кто-либо эти ноты?

Поиск звучания


Примерно в то же время, когда Лаплас продумывал свою модель, исследователи и натуралистысреди которых был и немецкий географ Александр фон Гумбольдтзаметили, что в тропиках атмосферное давление возрастает и падает каждые 12 часов.

Эти перепады совпадали с перепадами тепла от Солнца, но теоретикам не удавалось объяснить, почему эффект настолько сильный.

Ученые пытались разгадать эту тайну на протяжении почти что целого века, пока в 1882 году британский физик Томсон Уильям (лорд Кельвин) не заметил, что этот нагрев сочетается с одним из свободных колебаний Лапласа.

image
Portrait of William Thomson, Baron Kelvin, Smithsonian LibrariesЛорд Кельвин

Лорд Кельвин предположил, что именно Солнце дает толчок волнам, потому что их частота совпадала с частотой одной из осцилляций Лапласа. Его предположение оказалось невернымв 1960-х ученые определили, что влияние солнца усиливает другой, более сложный феноменно идея лорда Кельвина подтолкнула ученых к более тщательному анализу математической составляющей теории Лапласа.

В итоге они вычислили, какую частоту должны иметь эти нормальные колебания.

Неожиданная находка


Самые низкие ноты, совпадающие с предсказаниями, ученые нашли лишь в 1980-х годах. Сперва они появились в работе японского метеоролога Таро Мацуно (Taroh Matsuno) (DOI:10.2151/jmsj1965.58.4_281), а чуть позже в работе Кевина Гамильтона и Роландо Гарсии (Rolando Garcia) (DOI:10.1029/JD091iD11p11867).

Работа Гамильтона и Гарсии родилась из случайной находкиидеального набора данных с погодной станции в колониальной Индонезии, где ежечасно записывали атмосферное давление на протяжении 79 лет, пропустив лишь пару значений.

Дневник измерений оказался не только продолжительным, но и невероятно точнымисследователи измеряли длину ртутного столба через микроскоп с точностью до двух сотых миллиметра.

Сопоставив эти измерения с другими наборами данных, Гамильтон и Гарсия сумели засечь следы одного из самых длинных нормальных модов.

Новая база данных


А вот более короткие волны не поддавались до прошлого года, когда Европейский центр среднесрочных прогнозов погоды (European Center for Medium-Range Weather Forecasts) опубликовал базу данных ERA5. В базе содержатся данные от тысяч наземных станций, метеозондов и спутников. Пробелы заполнялись с помощью мощных компьютерных моделей.

В результате эта база отражает информацию, которую можно было бы собрать глобальной сетью метеорологических станций, расположенных через каждые 10 километров, которые бы снимали показания каждый час в период с 1979 по 2016 годы.

image
Запуск метеозонда.ABC Rural: Caddie Brain

Когда Такатоши Саказаки (Takatoshi Sakazaki), ассистент профессора из японского Университета Киото, взялся изучить базу, он искал в ней вовсе не волны Лапласа, а перепады температуры. Перепады давления были для него лишь шумом, от которого нужно было избавиться.

Но вскоре его осенило, что это могут быть те самые нормальные колебания. Когда Саказаки сопоставил данные с теоретическими предсказаниями, они почти идеально совпали.

Будучи не особо уверенным в важности находки, он отписался Гамильтону, который был тогда его научным руководителем.

До публикации своей работы в 1980-х Гамильтон провел несколько десятилетий, просматривая данные метеостанций в поиске самых низких атмосферных нот. И тут в его почтовый ящик упало письмо с доказательствами существования полной симфонии.

Саказаки и Гамильтон вместе провели анализ трехмерной структуры этих волн и опубликовали результаты своего исследования в июльском номере Journal of the Atmospheric Sciences. (DOI:10.1175/JAS-D-20-0053.1)
В работе максимально точно описывается поведение десятков волн, помимо тех, что были найдены в 1980-х. Оказалось, что некоторые из самых энергичных меняют давление с высокого на низкое по 12 раз за один проход по планете.

Все результаты совпали с предсказаниями, выведенными из уравнений Лапласа.



С Вами был телеграм канал Наука от Funscience, спасибо за внимание!
Подробнее..

Объединение отрицательно заряженных частиц за счет фотонов

26.08.2020 10:09:33 | Автор: admin


Противоположности притягиваются. Этот житейский принцип, касающийся отношений между людьми, далеко не всегда соответствует действительности. Но в физике все так, как говорится: противоположные электрические заряды, к примеру, всегда притягиваются, а сходные отталкиваются. Этот принцип стар, как сам мир, но и его можно подвергнуть некой модификации, если применить другие физические законы и явления. Группа ученых из Саутгемптонского университета (Великобритания) провели исследование, в котором им удалось создать новый тип материала, названный фотонно-связанный экситон. Самый смак заключается в том, что фотоны стали связующим звеном между отрицательно заряженными электронами, которые по логике должны были отталкиваться. Как именно были использованы фотоны, какие особенности изобретенного атома, и в каких областях может использоваться данная разработка? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


Как мы уже вспомнили, одноименные заряды (т.е. одинаковые: ++ или -) должны отталкиваться друг от друга, а разноименные (т.е. противоположные: +- / -+) притягиваться. Однако картина такого взаимодействия меняется, если добавить щепотку фотонов, т.е. частиц света. В таком случае добавляется влияние фотоэффекта взаимодействия света и материи, когда энергия фотонов передается материи.

В данном труде ученые создали наноустройство, которое захватывает электроны в наноразмерные квантовые ямы*. Если же фотоны вносят в устройство достаточно много энергии, то это приводит к выходу из ямы электронов. Разместив данное устройство между двумя золотыми зеркалами, можно поймать фотоны в ловушку. За счет этого энергия фотонов будет сфокусирована на электроны, усиливая взаимодействие между светом и материей. Добавление зеркал привело к тому, что отрицательно заряженные электроны оставались в яме (без зеркал фотоны вытесняли их из ямы) и начинали связываться друг с другом.
Квантовая яма* потенциальная яма, ограничивающая подвижность частиц с трех до двух измерений (т.е. частицы начинают двигаться в плоском слое).
Важнейшую роль в работоспособности всей системы, естественно, играют вышеописанные квантовые ямы (QW от quantum well). По словам ученых, на то есть ряд причин.

Во-первых, QW позволяют достичь большей силы связи между светом и материей, которую можно регулировать за счет изменения электронной плотности* в QW.
Электронная плотность* в квантовой механике мера вероятности того, что электрон займет бесконечно малый элемент пространства, окружающего любую условную точку.
Во-вторых, квантовые ямы можно сделать достаточно узкими, что позволит получить одну локализованную электронную подзону, которая не будет иметь никаких межподзонных переходов.

В-третьих, в подобной системе кулоновское взаимодействие не создает связанных состояний.

Из последних двух пунктов следует, что чистые квантовые ямы без окружающего фотонного резонатора вообще не представляют какого-либо дискретного резонанса, а только полосу непрерывного поглощения на частотах, превышающих порог ионизации.

Отсутствие кулоновского взаимодействия обосновано квазипараллельной дисперсией двух электронных подзон, что приводит к отталкивающему электронно-дырочному взаимодействию*.
Электронно-дырочное взаимодействие* (p-n взаимодействие) область соприкосновения двух частиц с разными типами проводимости дырочной (p от positive положительная) и электронной (n от negative отрицательная).
Это сильно отличается от случаев межзонных переходов на более коротких длинах волн, где электронно-дырочное взаимодействие является притягивающим и приводит к созданию узких резонансов вне электронно-дырочного континуума в отсутствие поляритонных эффектов.

Таким образом, формирование поляритонов* может изменять существующие резонансы, но не приводит к созданию новых локализованных электронных резонансов.
Поляритон* частица, являющаяся результатом взаимодействия фотона и возбуждений среды (оптические фононы, экситоны, плазмоны, магноны и т.д.).



Изображение 1: Кулоновский эффект в легированных и нелегированных квантовых ямах. межзонное поглощение нелегированной полупроводниковой квантовой ямы, в котором преобладает экситонный резонанс (EX) ниже энергии запрещенной зоны (EG) и электронно-дырочный континуум над ним; 1b стандартное электронно-дырочное картирование, позволяющее описать одиночную электронную вакансию в валентной зоне как дырку с положительным зарядом и массой; межподзонное поглощение легированной квантовой ямы, содержащей только одно локализованное состояние, и континуум состояний выше первой энергии ионизации квантовой ямы (EI); 1d первоначально заполненная подзона электронов имеет положительную эффективную массу, а электрон-дырочное картирование приводит к положительно заряженной дырке с отрицательной эффективной массой.

Изображения выше являются схемой вышеописанного явления. В случае межзонных переходов в нелегированных квантовых ямах участвующие в переходе электроны изначально занимают валентную зону с отрицательной эффективной массой. Однако в случае межподзонных переходов в легированных квантовых ямах ту же роль играет первая частично заполненная подзона проводимости, имеющая положительную эффективную массу*. При обычном электронно-дырочном картировании это приводит к положительно заряженной дырке с отрицательной эффективной массой.
Эффективная масса* величина, имеющая размерность массы и применяемая для описания движения частицы в периодическом потенциале кристалла.
Эффективная масса электронов в возбужденной подзоне m2 в квантовых ямах GaAs больше массы в первой подзоне m1. Это приводит к отрицательно сниженной массе межподзонной электронно-дырочной пары mr-1 = m2-1 m1-1.

При наличии любого притягивающего потенциала двух тел отрицательная масса приводит к отталкивающему электронно-дырочному взаимодействию, которое, в свою очередь, не может создавать связанные состояния.

Для практического подтверждения наличия связанных состояний, опосредованных фотонами, была создана система, состоящая из 13 квантовых ям GaAs / AlGaAs, встроенных в узкие решетчатые золотые микрополостные резонаторы.


Изображение 2: схема экспериментальной установки. распределение компоненты электрического поля, ортогональной металлическим слоям, для одного периода (D) структуры и для моды TM02 ленточного резонатора; 2b микроскопия набора образцов; экспериментальная установка, используемая для измерений отражательной способности (микроскоп среднего инфракрасного диапазона, подключенный к Фурье-ИК-спектроскопу.

Резонаторы представляют собой одномерные ленты, а электромагнитное поле (схема на ) почти полностью удерживается под металлическими штифтами.

Размеры квантовых ям были достаточно тонкими, чтобы была лишь одна захваченная подзона проводимости, поскольку наличие второй подзоны привело бы к созданию межподзонных поляритонов.

Если бы было две подзоны, то наличие перехода типа связь-связь привело бы к насыщению имеющейся силы осциллятора, что привело бы к подавлению связь-континуумного перехода, который и должен изучаться в данном тесте.

Для проверки этого важного параметра было изготовлено два образца HM4229 и HM4230, различающиеся шириной квантовой ямы и легированием. Образец HM4229 содержал квантовые ямы GaAs толщиной 4 нм (с шириной LQW = 4 нм), каждая из которых легирована с плотностью 5 х 1012 см-2. А образец HM4230 содержал квантовые ямы (LQW = 3.5 нм), легированные при 4.77 х 1012 см-2.


Изображение 3: связь-континуумный характер оптического перехода в чистых QW без окружающего фотонного резонатора. измерение пропускания при 300 K для образцов с QW разной ширины LQW; 3b-3e схемы связь-связь (3b и 3c) и связь-континуумных переходов (3d и 3e) в легированных квантовых ямах.
Переход связь-связь* изменение энергии электрона внутри атома или, реже, внутри молекулы, при котором электрон остается прикрепленным (связанным) к атому или молекуле как до, так и после изменения.

Связь-континуумный переход* (переход связь-континуум) возбуждают носителей в токопроводящие состояния континуума и позволяют использовать перпендикулярный транспорт (носители, движущиеся через переход).
(Infrared absorption of multiple quantum wells: bound to continuum transitions)
На схемах 3b- видно, что переходы разных типов (связь-связь и связь-континуум) в разных одночастичных состояниях QW потенциала претерпевают противоположные частотные сдвиги при уменьшении LQW: у первых возникает синее смещение*, у вторых красное смещение*.
Синее смещение* явление, когда уменьшается длина волны излучения, а частота увеличивается.

Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
Это позволило оценить природу оптического перехода за счет анализа спектра пропускания двух образцов до применения золота ().

Здесь наблюдается очень широкое поглощение, которое (будучи поперечной магнитной поляризацией) связано с легированными квантовыми ямами. Также наблюдается и более узкая область около 140 мэВ, которая является краем континуума. Ученые отмечают, что данная функция не приводит к синему смещению при уменьшении LQW, а показывает перенос спектрального веса в красную часть спектра. Связь-связь переход в таком случае привело бы к синему смещению порядка десятков миллиэлектронвольт, доказывая привязанный к континууму характер переходов в чистых QW.

Как уже упоминалось ранее, все образцы были изготовлены в рамках решетки металл-полупроводник-металл и металлических штифтов с шириной р ( и 2b). Поскольку электромагнитное поле чрезвычайно локализовано под металлическими пальцами, система по существу ведет себя как резонатор ФабриПеро*.
Резонатор ФабриПеро* оптический резонатор, в котором параллельно расположенные зеркала направлены друг на друга. Между этими зеркалами может формироваться резонансная стоячая оптическая волна.
Было изготовлено несколько устройств на основе решеток площадью 200 х 200 мкм с шагом в диапазоне от 800 нм до 5 мкм, что позволяет охватить широкий диапазон частот (2b). Данные по отражательной способности были получены для каждого устройства при температуре 78 К посредством Фурье-ИК-спектроскопа, оснащенного очень компактным криостатом (2c).


Изображение 4: экспериментальные данные по отражательной способности. данные по отражательной способности легированного образца HM4229 в зависимости от частоты резонатора; 4b данные отражательной способности для HM4229 (красный) и чистого резонатора (зеленый) для частот с = 157.8 мэВ (сплошные линии), с = 147 мэВ (пунктирные линии) и с = 141.5 мэВ (штрихпунктирные линии); ширина линий для различных колебаний как функция энергии колебаний.

Результаты данного анализа представлены на графиках выше. На представлена карта отражательной способности образца HM4229 при 78 К как функция частоты чистого резонатора. Если выше порога ионизации (показан черной горизонтальной пунктирной линией) наблюдается континуум поглощения, то ниже появляется узкий поляритонный резонанс. Он сдвинут в красную сторону более чем на 20 мэВ по отношению к чистому резонатору.

На цветовую карту были нанесены пиковые частоты, полученные с помощью множественной аппроксимации данных методом Лоренца. Красные треугольники и синие квадраты отображают соответственно частоты ниже и выше идентифицированного порога ионизации. Для сравнения зелеными кругами отмечена частота чистого резонатора, измеренная на нелегированном образце.

Ниже порога ионизации время жизни дискретной поляритонной моды в основном ограничивается временем жизни резонатора. Выше заметен спектр связь-континуум, в котором можно идентифицировать только очень расширенные и неопределенные особенности.

Сравнение спектров легированных и нелегированных образцов показало, что в легированном образце возникает дискретный резонанс ниже края континуума, тогда как в идентичном, но электромагнитно несвязанном образце его нет.

Подобное гибридное дискретное состояние можно описать как поляритон, плотность электронов которого относительно основного состояния равна:
N(z) = P [|e(z)|2 |g(z)|2]
где Р (в диапазоне 01) вес поляритонного компонента материи; g(z) нормированная волновая функция электрона в его основном состоянии; e(z) волновая функция локализованного электронного состояния, порожденного взаимодействием света и материи.


Изображение 5: расчеты P. собственные моды, полученные с помощью теоретической модели с параметрами, выбранными для соответствия экспериментальным данным отражательной способности на цветовой карте; 5b параметры, извлеченные из 5a, которые используются для расчета P для дискретной поляритонной моды.

На визуально отображен результат использования теоретической модели для моделирования наблюдаемого спектра отражательной способности и сравнения его с экспериментальными данными. Эти параметры позволили рассчитать Р (5b).

Из этого модели следует, что дискретный резонанс ниже порога ионизации четко определяется для ненулевых значений P, демонстрируя существенное заполнение генерируемой светом электронной волновой функции e(z).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Данный эксперимент позволил продемонстрировать возможность связывания ионизирующего перехода с фотонным резонатором, что приводит к непертурбативной модификации электронной структуры системы.

В результате получается гибридное поляритонное возбуждение, материальная составляющая которого представляет собой связанное состояние, порожденное взаимодействием света и материи, состоящего из электрона и дырки, удерживаемых вместе благодаря их взаимодействию с поперечным электромагнитным полем.

Как заявляют ученые, возможность настраивать свойства материала за счет связи с фотонным полем микрорезонатора является крайне перспективным направлением.

В данном труде они смогли создать устройство, ограниченное с двух сторон золотыми зеркалами, которые улавливали фотоны и фокусировали световую энергию на электроны, что резко усиливало связь между светом и материей. В ходе экспериментов было замечено, что отрицательно заряженный электрон, выброшенный фотоном, остается в ловушке в квантовой яме, связанный с другими отрицательно заряженными электронами. При этом такая конфигурация остается стабильной за счет воздействия фотонов.

Другими словами, данное исследование показывает возможность создания искусственных атомов нового типа, электронные конфигурации которых можно будет настраивать по собственному желанию.

Фотоника является достаточно молодой отраслью науки, но при этом ее влияние с каждым годом растет, что обусловлено подобного рода исследованиями. Свет, как и многие другие явления, можно сравнить с котом Шредингера: с одной стороны все понятно и очевидно, но если копнуть поглубже, то становится очевидна простая истина сколько бы ответов не получал человек, вопросов всегда будет больше. Тем не менее в поисках ответов на вопросы, по крайней мере в науке, важен не столько сам ответ, сколько путь, ведущий к нему.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Бумажный бит создание механической памяти из оригами

28.08.2020 10:04:17 | Автор: admin


Бегущий по лезвию, Воздушная тюрьма, Heavy Rain что общего между этими представителями массовой культуры? Во всех в той или иной степени присутствует древнее японское искусство по складыванию бумаги оригами. В кино, играх и в реальной жизни оригами частенько используется в качестве символа определенных чувств, каких-то воспоминаний или своеобразного послания. Это скорее эмоциональная составляющая оригами, но с точки зрения науки в бумажных фигурках сокрыто множество интересных аспектов из самых разных направлений: геометрия, математика и даже механика. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Американского института физики создали устройство хранения данных за счет складывания/раскладывания фигурок оригами. Как именно работает бумажная карта памяти, какие принципы в ней реализованы и сколько данных может хранить такое устройство? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Когда именно возникло оригами, сказать сложно. Но мы точно знаем, что не ранее 105 года н.э. Именно в этом году в Китае Цай Лунь изобрел бумагу. Конечно, до этого момента бумага уже существовала, но она изготавливалась не из древесины, а из бамбука или шелка. Первый вариант не отличался легкостью, а второй был крайне дорогой. Цай Луню поручили придумать новый рецепт бумаги, которая будет легкой, дешевой и простой в изготовлении. Задача не из простых, однако Цай Лунь обратился к самому популярному источнику вдохновения к природе. Он долгое время наблюдал за осами, чьи жилища были сделаны из древесины и растительных волокон. Цай Лунь провел множество опытов, в которых использовал самые разные материалы для будущей бумаги (кора деревьев, зола и даже рыболовные сети), перемешанные с водой. Полученная масса выкладывалась в специальную форму и сушилась на солнце. Результатом этого колоссального труда стал прозаичный для современного человека предмет бумага.


В 2001 году в городе Лэйян (Китай) был открыт парк, названный в честь Цай Луня.

Распространение бумаги по другим странам не произошло моментально, лишь в начале VII века ее рецепт достиг Кореи и Японии, а до Европы бумага добралась лишь в XIXII веке.

Самым очевидным применением бумаги, конечно же, является и рукописи и полиграфия. Однако японцы нашли ей и более изящное применение оригами, т.е. складывание фигурок из бумаги.


Коротенький экскурс в мир оригами и инженерии.

Вариантов оригами существует великое множество, как и техник их изготовления: простое оригами, кусудама (модульное), мокрое складывание, паттерн-оригами, киригами и т.д. (Иллюстрированная энциклопедия по оригами)

С точки зрения науки оригами это механический метаматериал, свойства которого определяются его геометрией, а не свойствами материала, из которого он изготовлен. Уже довольно давно было продемонстрировано, что универсальные трехмерные развертываемые структуры с уникальными свойствами могут быть созданы с использованием повторяющихся шаблонов оригами.


Изображение 1

На изображении 1b показан пример такой структуры развертываемый сильфон, построенный из одного листа бумаги по схеме на . Из имеющихся вариантов оригами ученые выделили вариант, в котором реализована мозаика из одинаковых треугольных панелей, расположенных в циклической симметрии, известной как оригами Креслинга.

Важно отметить, что структуры на базе оригами бывают двух типов: жесткие и нежесткие.

Жесткое оригами это трехмерные структуры, в которых только складки между панелями подвергаются деформации во время развертывания.

Ярким примером жестких оригами является Миура-ори, использованный для создания механических метаматериалов с отрицательным коэффициентом Пуассона. Такой материал имеет широкий спектр применения: изучения космоса, деформируемая электроника, искусственные мышцы и, естественно, перепрограммируемые механические метаматериалы.

Нежесткие оригами это трехмерные структуры, которые демонстрируют нежесткую упругую деформацию панелей между складками во время развертывания.

Примером такого варианта оригами является упомянутый ранее узор Креслинга, который успешно использовался для создания структур с настраиваемой мультистабильностью, жесткостью, деформациями, смягчением/упрочнением и/или с почти нулевой жесткостью.

Результаты исследования


Вдохновившись древним искусством, ученые решили использовать оригами Креслинга для разработки кластера механических бинарных переключателей, которые можно принудительно переключать между двумя разными статическими состояниями, используя один управляемый вход в виде гармонического возбуждения, прилагаемого к основанию переключателя.

Как видно из 1b, сильфон закреплен на одном конце и подвергается внешней нагрузке в направлении x на другом свободном конце. За счет этого он претерпевает одновременное отклонение и вращение вдоль и вокруг оси x. Энергия, накопленная в процессе деформации сильфона, высвобождается при снятии внешней нагрузки, в результате чего сильфон возвращается к своей первоначальной форме.

Проще говоря, мы видим торсионную пружину кручения, восстанавливающая способность которой зависит от формы функции потенциальной энергии сильфона. Это, в свою очередь, зависит от геометрических параметров (a0, b0, 0) составного треугольника, используемого для построения сильфона, а также от общего количества (n) этих треугольников ().

Для некоторой комбинации геометрических параметров конструкции функция потенциальной энергии сильфона имеет единственный минимум, соответствующий одной устойчивой точке равновесия. Для других комбинаций функция потенциальной энергии имеет два минимума, соответствующих двум устойчивым статическим конфигурациям сильфона, каждая из которых связана с разной равновесной высотой или, в качестве альтернативы, прогибом пружины (). Такой тип пружины часто называют бистабильной (видео ниже).


На изображении 1d показаны геометрические параметры, ведущие к формированию бистабильной пружины, и параметры, ведущие к формированию моностабильной пружины для n=12.

Бистабильная пружина может останавливаться в одном из своих положений равновесия при отсутствии внешних нагрузок и может быть активирована для переключения между ними при наличии надлежащего количества энергии. Именно это свойство и является основой данного исследования, в котором рассматривается создание механических переключателей Креслинга (KIMS от Kresling-inspired mechanical switches) с двумя двоичными состояниями.

В частности, как показано на 1c, переключатель может быть активирован для перехода между двумя его состояниями путем подачи энергии, достаточной для преодоления потенциального барьера (E). Энергия может подаваться в виде медленного квазистатического срабатывания или путем подачи гармонического сигнала на основание переключателя с частотой возбуждения, близкой к локальной резонансной частоте переключателя в его различных состояниях равновесия. В данном исследовании было решено использовать второй вариант, так как гармоническое резонансное срабатывание по некоторым параметрам превосходит квазистатическое.

Во-первых, резонансное срабатывание требует меньшего усилия для переключения и, как правило, происходит быстрее. Во-вторых, резонансное переключение нечувствительно к внешним возмущениям, которые не резонируют с переключателем в его локальных состояниях. В-третьих, поскольку потенциальная функция переключателя обычно асимметрична относительно точки неустойчивого равновесия U0, характеристики гармонического возбуждения, необходимые для переключения с S0 на S1, обычно отличаются от характеристик, необходимых для переключения с S1 на S0, что приводит к возможности селективного по возбуждению двоичного переключения.

Такая конфигурация KIMS прекрасно подходит для создания платы механической памяти из нескольких битов с использованием нескольких двоичных переключателей с разными характеристиками, размещенных на одной платформе с гармоническим возбуждением. Создание такого устройство обусловлено чувствительностью формы функции потенциальной энергии переключателя к изменениям геометрических параметров основных панелей ().

Следовательно, сразу несколько KIMS с различными конструктивными характеристиками могут быть размещены на одной платформе и возбуждены для перехода из одного состояния в другое по отдельности или в комбинации с использованием различных наборов параметров возбуждения.

На этапе практических испытаний были созданы переключатель из бумаги плотностью 180 г/м2 с геометрическими параметрами: 0 = 26.5; b0/a0 = 1.68; a0 = 40 мм и n = 12. Именно такие параметры, судя по расчетам (1d), и приводят к тому, что полученная пружина будет бистабильной. Расчеты же были выполнены посредством упрощенной модели осевой фермы (конструкция из стержней) сильфона.

Используя лазер, на листе бумаги были сделаны перфорированные линии (), которые являются местами складывания. Затем были сделаны складки по краям b0 (загнутые наружу) и 0 (загнутые внутрь), а края дальних концов были плотно соединены. Верхняя и нижняя поверхности переключателя были усилены акриловыми многоугольниками.

Кривая восстанавливающей силы переключателя была получена экспериментально посредством испытаний на сжатие и растяжение, выполненных на универсальной испытательной машине со специальной установкой, позволяющей вращать основание во время тестов (1f).

Концы акрилового многоугольника переключателя были жестко зафиксированы, а к верхнему многоугольнику применялось контролируемое смещение с заданной скоростью 0.1 мм/с. Смещения при растяжении и сжатии применялись циклически и ограничивались величиной 13 мм. Непосредственно перед фактическим тестированием устройства выключатель настраивается путем выполнения десяти таких циклов нагрузки, прежде чем восстанавливающая сила будет записана с помощью 50N датчика нагрузки. На 1g показана кривая восстанавливающей силы переключателя, полученная экспериментально.

Далее путем интегрирования средней восстанавливающей силы переключателя по диапазону срабатывания вычислялась функция потенциальной энергии (1h). Минимумы в функции потенциальной энергии представляют собой статические равновесия, связанные с двумя состояниями переключателя (S0 и S1). Для этой конкретной конфигурации S0 и S1 возникают при высоте развертывания u = 48 мм и 58.5 мм соответственно. Функция потенциальной энергии явно асимметрична с разными энергетическими барьерами E0 в точке S0 и E1 в точке S1.

Переключатели были размещены на электродинамический шейкер, который обеспечивает контролируемые возбуждения основания в осевом направлении. В ответ на возбуждение верхняя поверхность переключателя колеблется в вертикальном направлении. Положение верхней поверхности переключателя относительно основания было измерено с помощью лазерного виброметра ().


Изображение 2

Было установлено, что локальная резонансная частота переключателя для двух его состояний составляет 11.8 Гц для S0 и 9.7 Гц для S1. Чтобы инициировать переход между двумя состояниями, то есть выход из потенциальной ямы*, была проведена очень медленная (0.05 Гц/с) двунаправленная линейная развертка частоты вокруг идентифицированных частот с ускорением основания 13 мс-2. В частности, KIMS изначально был расположен на S0, а возрастающая развертка по частоте была инициирована на 6 Гц.
Потенциальная яма* область, где присутствует локальный минимум потенциальной энергии частицы.
Как видно на 2b, когда частота возбуждения достигает примерно 7.8 Гц, переключатель выходит из потенциальной ямы S0 и входит в потенциальную яму S1. Переключатель продолжал оставаться в S1 по мере дальнейшего увеличения частоты.

Затем переключатель снова был установлен на S0, но на этот раз развертка по убывающей частоте была инициирована на 16 Гц. В этом случае, когда частота приближается к 8.8 Гц, переключатель выходит из S0 и входит и остается в потенциальной яме S1.

Состояние S0 имеет полосу активации 1 Гц [7.8, 8.8] при ускорении 13 мс-2, а S1 67.7 Гц (). Из этого следует, что KIMS может выборочно переключаться между двумя состояниями за счет гармонического возбуждения основания одинаковой величины, но разной частоты.

Ширина полосы переключения KIMS имеет сложную зависимость от формы его функции потенциальной энергии, характеристик демпфирования и параметров возбуждения гармоник (частоты и величины). Кроме того, из-за смягчающего нелинейного поведения переключателя ширина полосы активации необязательно включает в себя линейную резонансную частоту. Таким образом, важно, чтобы карта активации переключателей была создана для каждого KIMS индивидуально. Эта карта используется для характеристики частоты и величины возбуждения, что приводит к переключению из одного состояния в другое и наоборот.

Такую карту можно создать экспериментально путем частотной развертки на разных уровнях возбуждения, но этот процесс весьма трудоемкий. Посему ученые решили на этом этапе перейти к моделированию переключателя, используя функцию потенциальной энергии, определенной во время опытов (1h).

Модель предполагает, что динамическое поведение переключателя может быть хорошо аппроксимировано динамикой асимметричного бистабильного осциллятора ГельмгольцаДуффинга, уравнение движения которого может быть выражено так:



где u отклонение подвижной грани акрилового многоугольника относительно неподвижной; m эффективная масса переключателя; c коэффициент вязкого демпфирования, определенный экспериментально; ais бистабильные коэффициенты восстанавливающей силы; ab и базовая величина и частота ускорения.

Основная задача моделирования состоит в использовании данной формулы для установления комбинаций ab и , которые позволяют переключаться между двумя разными состояниями.

Ученые отмечают, что критические частоты возбуждения, при которых бистабильный осциллятор переходит из одного состояния в другое, могут быть аппроксимированы двумя частотами бифуркации*: бифуркация удвоения периода (PD) и бифуркация циклической складки (CF).
Бифуркация* качественное изменение системы посредством изменения параметров, от которых она зависит.
Используя аппроксимацию были построены кривые частотной характеристики KIMS в двух его состояниях. На графике показаны кривые частотной характеристики переключателя в S0 для двух различных базовых уровней ускорения.

При базовом ускорении 5 мс-2 кривая амплитудно-частотная кривая показывает небольшое смягчение, но без нестабильности или бифуркаций. Таким образом, переключатель остается в состоянии S0, независимо от того, как меняется частота.

Однако, когда базовое ускорение увеличивается до 13 мс-2, стабильность снижается за счет PD бифуркации при уменьшении частоты возбуждения.

По такой же схеме были получены кривые частотной характеристики переключателя в S1 (2f). При ускорении 5 мс-2 наблюдаемая картина остается прежней. Однако по мере увеличения базового ускорения до 10 мс-2 появляются PD и CF бифуркации. Возбуждение переключателя на любой частоте между этими двумя бифуркациями приводит к переключению с S1 на S0.

Данные моделирования говорят о том, что на карте активации есть обширные области, в которых каждое состояние может быть активировано уникальным образом. Это позволяет избирательно переключаться между двумя состояниями в зависимости от частоты и величины срабатывания. Также видно, что есть область, где оба состояния могут переключаться одновременно.


Изображение 3

Комбинация из нескольких KIMS может быть использована для создания механической памяти из нескольких битов. Меняя геометрию переключателя таким образом, чтобы форма функции потенциальной энергии любых двух переключателей была достаточно различной, можно спроектировать ширину полосы активации переключателей так, чтобы они не перекрывались. За счет этого для каждого переключателя будут уникальные параметры возбуждения.

Для демонстрации этой техники была создана 2-битная плата на базе двух переключателей с различными характеристиками потенциала (): бит 1 0 = 28; b00 = 1.5; а0 = 40 мм и n = 12; бит 2 0 = 27; b00 = 1.7; а0 = 40 мм и n = 12.

Поскольку каждый бит имеет два состояния, всего может быть достигнуто четыре различных состояния S00, S01, S10 и S11 (3b). Цифры после S обозначают значение левого (бит 1) и правого (бит 2) переключателя.

Поведение 2-битного переключателя показано на видео ниже:










На базе данного устройства можно также создать кластер переключателей, которые могут быть основой многобитовых плат механической памяти.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Вряд ли кто-либо из создателей оригами мог себе представить, как их творение будет использоваться в современном мире. С одной стороны, это говорит о большом числе сложных элементов, сокрытых в обычных бумажных фигурках; с другой о том, что современная наука способна эти элементы применять для создания чего-то совершенно нового.

В данном труде ученые смогли использовать геометрию оригами Креслинга для создания простого механического переключателя, способного в зависимости от вводных параметров быть в двух разных состояниях. Это можно сравнить с 0 и 1, которые являются классическими единицами измерения информации.

Полученные устройства были объединены в систему механической памяти, способной хранить 2 бита. Зная, что одна буква занимает 8 бит (1 байт), возникает вопрос сколько же понадобится подобных оригами, чтобы записать Войну и мир, например.

Ученые прекрасно понимают скептицизм, который может вызывать их разработка. Однако, по их же словам, данное исследование является разведкой в области механической памяти. Кроме того, использованные в опытах оригами не должны быть большими, их габариты можно значительно уменьшить, при этом не ухудшив их свойства.

Как бы то ни было, этот труд нельзя назвать ординарным, банальным или скучным. Наука далеко не всегда используется для разработки чего-то конкретного, а ученые далеко не всегда изначально знают, что именно создают. Ведь большинство изобретений и открытий были результатом простого вопроса а что если?

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Многомировая интерпретация в картинках или Опять этот кот?

01.09.2020 12:04:25 | Автор: admin
В статье я использовал:
отрывки из видео: www.youtube.com/watch?v=kTXTPe3wahc
Книгу Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение Митио Каку
Книгу Начало бесконечности Дэвид Дойч


Из-за того, что квантовую физику нельзя полностью наблюдать и проводить эксперименты по всем возникающим вопросам, ученые делятся на несколько лагерей относительно мироустройства вселенной. Многомировая интерпретация является одной ведущих многомировых гипотез в физике и философии, наряду с копенгагенской интерпретацией и интерпретацией согласованных хронологий.

В классической физике все просто: есть пространство и время, есть материя, находящаяся в этом пространстве, есть параметры системы (как импульс или положение), и есть законы физики, которые описывают изменение этих параметров. Если точно знать начальное состояние системы, можно предсказать ее поведение в будущем с абсолютной точностью.

В квантовой физике все не так. Тут систему описывает волновая функция. Она определяет вероятность измерить систему в определенном состоянии (например, определенную координату или импульс). До измерения нельзя сказать, что система обладает определенным моментом, она обладает только волновой функцией.

image

Но проблема в том, что квантовая механика не позволяет увидеть волновую функцию частицы.

image
Когда мы пытаемся измерить волновую функцию частицы, то она покажет нам один из вариантов, а не весь возможный градиент.

Многие, кто изучают квантовую механику, привыкли к тому, что существует два свода правил:

  1. Когда мы не смотрим, то волновая функция описывается уравнением Шредингера
  2. А когда мы пытаемся ее измерить, то эта же функция мгновенно коллапсирует

Самому Шредингеру эта идея не нравилась, что они и обсуждали с Эйнштейном в их переписке. И эксперимент с котом Шредингера появился там же.

Описание эксперимента


Идея эксперимента была в том, чтобы связать незаметный квантовый эффект с чем-то осязаемым, например с котом.

Мы засовываем кота в коробку. В коробке находится источник радиации, детектор распада радиоактивных частиц и газ, который выпустится, если детектор зафиксирует распад частицы.

image

Теория говорит, что частица имеет вероятность: распасться ей или нет. И только измерения состояния этой частицы даст нам ответ на то, распалась она или нет. Пока измерения с нашей стороны не произошло, то мы ничего не знаем о состоянии частицы.

Мы можем узнать результат только тогда, когда откроем коробку и посмотрим, умер наш кот или нет то есть произведем измерения.

До момента измерения вся система находится в запутанном состоянии.

image

Хороший исход (для кота)


Атом не распадается, детектор не фиксирует распад, колба не разбивается, кот бодрствует
image

Плохой исход (для кота)


Атом распадается, детектор фиксирует распад, колба разбивается, кот мертв
image

Пока коробка закрыта, для внешнего наблюдателя кот находится в суперпозиции

$|кот>= \frac{1}{2}(|жив> + |мертв>)$


В этом эксперименте состояние кота непосредственно зависит от состояния атома то есть атом и кот запутаны между собой

Но, согласно квантовой механике, атому не обязательно находиться в каком то определенном состоянии. Большую часть времени он находится в суперпозиции.
Т.е. распавшимся и нераспавшимся одновременно

изображение атома и его волновая функция

Далее, суперпозиция атома запутывается с состоянием детектора и, как следствие, кота.

Получается, что через какое то время волновая функция всего содержимого коробки оказывается в суперпозиции.

изображение системы внутри коробки с двумя состояниями, мертвым котом и живым

  • В одном состоянии атом не распался, пробирка с газом цела, а кот жив
  • В другом состоянии атом распался, пробирка разбилась и кот умер


Далее, если мы, как наблюдатель, откроем коробку и заглянем внутрь, то сколлапсируем волновую функцию и увидим кота живым или мертвым. Да?

Не совсем


Классическая (копенгагенская) интерпретация говорит о том, что процесс наблюдения это процесс коллапса волновой функции в одно из состояний. Коллапс приводит к тому, что волновая функция продолжает эволюцию только как одна часть изначальной волновой функции (картинка 1 и 2 из начала статьи). Объект больше не находится в состоянии суперпозиции и, в итоге, принимает одно из своих возможных значений.

Как следствие всякие эффекты квантовой запутанности пропадают. Эта теория не объясняет, как происходит коллапс волновой функции, равно как и почему одни взаимодействия вызывают коллапс, а другие нет.

Многие признавали, что явление коллапса волновой функции, предложенного копенгагенской интерпретацией, является искусственным трюком и, следовательно, необходимо искать другую интерпретацию, в которой поведение при измерении трактуется с помощью более основополагающих физических принципов.

Одна из самых проработанных интерпретаций на данный момент многомировая интерпретация

Многомировая интерпретация


Есть такой термин как квантовая запутанность. Это когда два электрона, летящих к друг другу, сталкиваются и запутываются.

image

И стоит нам измерить импульс одного электрона, как мы тут же узнаем импульс другого.

image

Измерение одного электрона заставляет моментально коллапсировать волновую функцию другого электрона, пусть даже между ними расстояние в несколько миллионов световых лет

После взаимодействия друг с другом, у электронов больше нет волновых функций, их состояние теперь можно описать одной общей функцией.

Так можно продолжать до бесконечности, и в итоге мы придем к тому, что существует лишь одна волновая функция, которая описывает состояние всей вселенной вселенной

Немного деталей


В копенгагенской интерпретации считается, что когда квантовую систему наблюдают, то она описывается одним сводом правил, а когда не наблюдают, то другим сводом правил.

Согласно этому допущению, когда Шредингер открывает коробку, он коллапсирует кота в состояние либо жив, либо мертв.

$|кот>= \frac{1}{2}(|жив> + |мертв>)$



Если убрать это допущение из квантовой теории, то получится, что суперпозиция распавшегося и нераспавшегося атома запутывается с детектором и с самим котом.

Не стоит забывать, что люди тоже состоят из атомов. И если система запутывается с котом, то она запутывается и с нами.

Значит, согласно ММИ, Шредингер(Ш) оказывается в запутанном состоянии:

$$display$$|кот, Ш >= \frac{1}{2}(|жив, видит "жив"> + |мертв, видит "мертв",>)$$display$$



К этому уравнению нужно добавить окружение (окр):

$$display$$|кот, Ш>|окр>= \frac{1}{2}(|жив, видит "жив"> + |мертв, видит "мертв">)|существует>$$display$$



Окружение в результате процесса декогеренции запутывается с ними обоими:

$inline$|кот, Ш, окр> = \frac{1}{2}(|жив, видит "жив", окр "жив"> +$inline$
$inline$+ |мертв, видит "мертв", окр "мертв">)|существует>$inline$

В таком варианте у Шредингера уже нет возможности отменить измерение или сделать что-то, чтобы распутать два состояния. Два мира разделились: в одном Шредингер нашел мертвого кота, в другом живого. При этом никакого коллапса не произошло, все это по-прежнему унитарная эволюция большой волновой функции.

изображение двух состояний систем. В одной мы наблюдаем человека и мертвого кота, а в другой человека и живого кота

Выходит, когда мы открываем коробку, то никакие изменения и коллапсирующие функции не важны, мы просто запутываемся с системой внутри коробки.

Это значит, что мы видим как систему с живым котом, так и с мертвым.
Следовательно мы перед коробкой с живым котом, и мы перед коробкой с мертвым находимся в разных мирах.

Ну, фактически, не мы, а наша копия, которая появилась при распаде вселенной на две реальности, которые теперь никогда не пересекутся.

image

В итоге, вселенная разделяется и возникают две, практически идентичные реальности

image

Это и есть главная идея многомировой интерпретации. Единственный ее постулат вся Вселенная описывается одной волновой функцией. Нет классического мира, нет наблюдателей, нет коллапса все это является унитарной эволюцией одной волновой функции под действием уравнения Шредингера. То, что мы наблюдаем как коллапс исключительно процесс декогеренции, наша невозможность развязать объект и окружение, с которым он запутался.

Разные миры при этом возникают каждый раз, когда происходит коллапс взаимодействие системы с окружением. При этом один мир делится на несколько, в соответствии с ветвями волновой функции, и эти миры больше не взаимодействуют.

Итого, все это лишь частичное решение, так как сама космическая волновая функция, описывающая всю Вселенную, не имеет определенного состояния, а состоит из всех возможных вселенных. Таким образом, проблема неопределенности, впервые открытая Гейзенбергом, теперь распространена на всю Вселенную.

Наименьшая единица, которой мы можем оперировать в этих теориях, сама Вселенная, а наименьшая единица, которую можно квантовать, пространство всех возможных вселенных, в которое входят и мертвые, и живые коты. Таким образом, в одной вселенной кот действительно мертв, зато в другой жив. Однако обе вселенные находятся в одном и том же вместилище волновой функции Вселенной.
Подробнее..

Металлическая роза репликация поверхностной структуры лепестков из частиц металла

02.09.2020 10:06:10 | Автор: admin


Что общего между велокостюмом и кожей акулы, а между лепестком розы и целлофановым пакетом? На первый взгляд, общего вроде и нет, однако все эти разнородные объекты можно объединить с точки зрения свойств их поверхностей. Многие, созданные человеком предметы, тем или иным образом повторяют свойства поверхностей, имеющихся в природе. Однако процесс изготовления такого предмета по большей степени ограничен свойствами материала, лежащего в его основе. Структурно металлы и полимеры во многом отличаются от биоматериалов, посему крайне сложно имитировать их свойства. Тем не менее ученые из университета штата Айова (США) решили использовать микроструктуру лепестка розы в качестве вдохновения для преобразования металла, сильно меняющего его свойства. Как именно был изменен металл, что для этого было сделано и как лепестки благородного цветка помогли в этом? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


В природе ничего не происходит просто так. Этот же принцип применим и к различного рода поверхностям, которые мы можем встретить в природе. Представители флоры и фауны на протяжении сотен тысяч лет претерпевали всевозможные изменения, необходимые для адаптации к условиям обитания.


Phyllocrania paradoxa, Nautilus pompilius, Cataglyphis bombycina.

Благодаря эволюции кто-то приобрел способность становиться фактически невидимым для неприятелей (мимикрия у богомола Phyllocrania paradoxa, похожего на засохший лист), кто-то обзавелся прочной броней (раковина у моллюска Nautilus pompilius), а кто-то научился выживать даже в самых неблагоприятных условиях (высокая отражательная способность тела муравьев Cataglyphis bombycina, живущих в пустыне Сахара) и т.д.

Каждый из вышеперечисленных примеров адаптации является следствием структурных особенностей и свойств поверхности. Логично, что ученые были бы рады применить в нашем мире такие уникальные характеристики, но это крайне сложно. Процесс воссоздания свойств биоматериалов называют биомимикрией, и он зачастую связан с обработкой какого-либо материала химическим или физическим образом, что позволяет в какой-то степени изменить его структуру. Например, для создания ультра- или супергидрофобных поверхностей на твердых материалах применяется травление, требующее агрессивных реагентов и дорогого оборудования, не говоря уже о подготовленных и опытных специалистах.
В последние годы большой популярностью начал пользоваться процесс переохлаждения металлических частиц. Суспендированные в растворителе полидисперсные мягкие частицы (ядро-оболочка*) переохлажденного жидкого металла (ULMCS) позволяют достичь плотной упаковки и самосортировки частиц в многомасштабные текстуры поверхности, такие как у лепестков розы (-1b).
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.

Изображение 1

После осаждения и испарения растворителя мягкие частицы имеют тенденцию образовывать структуры с беспорядочной плотной упаковкой (RCP) и застревать при коэффициенте упаковки = 0.64. Коэффициент упаковки определяется соотношением = NV0 / V, где N количество частиц; V0 объем частицы; V общий объем.

Более того, учитывая существование многомасштабных структур и каналов на поверхности розы (), эти частицы будут подвергаться процессу самофильтрации, которому способствует самосборка капилляров. После высыхания и достижения маятникового состояния частицы, в конечном итоге, будут самофиксироваться и застревать в щелях текстур поверхности (1b).

Застревание происходит, когда размеры межчастичной полости, концентрация суспензии и размеры частиц удовлетворяют следующее соотношение:



где R радиус капилляра; r радиус частицы; n количество частиц.

Данное уравнение позволяет прогнозировать размер (r) или количество (n) частиц, необходимых для застревания, для установленного размера углубления (R).

Застревание также гарантирует, что осажденные частицы ULMCS механически стабилизируются и, следовательно, могут быть спечены* в конформные сети желаемого поверхностного шаблона (1c-1d).
Спекание* процесс создания пористых и твердых материалов из мелких порошкообразных или пылевидных частиц за счет повышения температуры и/или давления.
Применение химического спекания без нагрева, а также соединение и отверждение застрявших частиц ULMCS приводит к формированию затвердевшей структуры, которую можно снять с лепестка розы (или аналогичного мягкого материала-основы), не повреждая ее. Этот процесс также совместим с синтетическими, термочувствительными и мягкими мотивами*, такими как PDMS (полидиметилсилоксан / (C2H6OSi)n) (1e).
Мотив* короткая последовательность нуклеотидов или аминокислот, которая слабо меняется в процессе эволюции.
Когда инверсные биомиметические структуры наносятся на эластомерные материалы, на которых частицы ULCMS упакованы и химически спечены, реализуется точная копия естественного рисунка (1f-1h).

Таким образом, биомиметические твердые металлические конструкции могут быть изготовлены без нагрева за счет использования автономных процессов, таких как уплотнение капилляров, нарушение кинетики (переохлаждение) и самосборки/ самосортировки частиц.

Результаты исследования


Полидисперсные частицы металла ULMCS (51% In + 32.5% Bi + 16.5% Sn) были синтезированы с помощью метода SLICE (разделение жидкостей на сложные частицы от shearing liquids into complex particles).

Процесс SLICE может производить частицы < 10 нм, но для улучшения самофильтрации и простоты определения характеристик в данном исследовании было решено использовать большие размеры (мкм) и более высокую полидисперсность. Частицы, использованные в этом исследовании, имели диаметр 2.711.58 мкм, следовательно, прогнозируемый коэффициент упаковки составлял около = 0.70.

Эти мягкие деформируемые ULMCS, как и ожидалось, образуют более плотные структуры, чем случайная плотная упаковка, наблюдаемая с твердыми сферами ( = 0.64). Вероятно уплотнение связано с изменением формы под действием капиллярного давления и автономным упорядочением размеров, которое увеличивает уплотнение. Однако эти процессы могут быть нарушены внешними напряжениями во время осаждения частиц.

Чтобы исследовать влияние процесса осаждения на плотность упаковки, ученые провели несколько циклов с различной степенью приложенного напряжения сдвига (Fs). Частицы наносились на биологические шаблоны (лепестки роз) и удалялись с помощью медной ленты, создавая биомиметическую металлическую структуру, хотя и с обратным рельефом.


Изображение 2

На изображениях , 2d и 2g схематически показаны различные методы осаждения в диапазоне от низкого значения F (нанесение кистью) до высокого F (центрифугирование) и без F (распыление). Метод распыления обеспечивает минимальное количество F, поскольку частицы осаждаются перпендикулярно поверхности лепестка.

Метод прямого осаждения щеткой () вызывает низкие значения F на суспензии частиц во время осаждения, что приводит к образованию толстых (> 10 мкм), многослойных (> 7 слоев) рисунков (2b-2c). Данный метод самый простой в реализации, но не самый подходящий, так как требует непосредственного участия человека, чего ученые хотели бы избежать.

Осаждение центрифугированием при 1000 об/мин (2d) позволяет осуществлять более контролируемый и воспроизводимый процесс, поскольку скорость осаждения, следовательно, и значение Fs, могут быть фиксированными. Однако этот метод срезает самый внешний слой осажденных частиц, в результате чего получаются несколько более тонкие пленки (< 10 мкм, ~ 4-5 слоев; 2e-2f) по сравнению с пленками, полученными путем нанесения кистью.

Удивительно, но центрифугирование обеспечивает немного лучшую самофильтрацию, как показывает автономная сортировка по размеру на верхнем слое поднятой конструкции (отмечено красным на 2c и 2f).

А вот напыление (2g) дает гораздо более тонкие пленки (~ 3 слоя) со значительными дефектами / отслоениями (2h-2i). Это может быть связано с проблемами при откачке довольно плотных металлических частиц из системы ручного распыления, которая будет иметь тенденцию к осаждению все меньшего и меньшего количества частиц. Осаждение более крупных частиц в распыляемом растворе также может способствовать низкой концентрации и селективности по размеру, следовательно, образованию более тонких пленок.

В случае гранулированного материала самофильтрация может привести к лучшей упаковке в поверхностные элементы, что приведет к более конформной упаковке в различных масштабах размера. Самофильтрация проявляется в распределении частиц по размерам в самом верхнем слое захваченных частиц.

Сравнение гранулометрического состав предварительно приготовленных частиц с теми, которые осаждаются наиболее глубоко в щелях лепестков роз (т.е. представляют собой самый верхний слой металлической структуры), наблюдается значительный сдвиг. В полидисперсной исходной суспензии наблюдается большой положительный коэффициент асимметрии, тогда как в осажденных частицах более крупные частицы отфильтрованы (2j-2m).

Подгонка гауссиана к распределению размеров частиц самого верхнего слоя показала, что при использовании кисти частицы будут самые крупные (~ 5 мкм), далее следует центрифугирование (~ 4 мкм) и напыление (~ 3 мкм).

Более глубокий анализ трех методов осаждения частиц показал, что именно центрифугирование является наиболее подходящим, несмотря на небольшую относительную асимметрию. В случае же других методов наблюдался ряд проблем: низкая капиллярная упаковка в случае напыления; хорошая упаковка, но плохая масштабируемость в случае использования кисти.

Что касается выбора метода осаждения частиц на лепесток розы (т.е. метод репликации ее микроструктур частицами металла) также необходимо было оценить степень совпадения структур оригинала и пресс-формы. Сравнение показало, что все элементы, полученные от красной розы, имели средний размер в следующем порядке: кисть > центрифугирование > напыление. Однако во всех случаях размеры структурных элементов были достаточно схожи друг с другом (20 мкм), т.е. в данном аспекте любой из методов может быть использован.


Изображение 3

Далее ученые приступили к полноценной оценке характеристик BIOMAP (BIOmimetic MetAl Patterning), т.е. биомимикрической металлической системы.

Во время практических опытов использовалось два вида близкородственных роз:

  • красная роза сорта мистер Линкольн (роза 1) с диаметром частиц поверхности a1 = 21.68 3.32 мкм ();
  • розовая роза сорта Peace (роза 2) с a2 = 26.63 4.00 мкм (3b);

Нанесение центрифугированием одной и той же исходной суспензии на аналогично приготовленные лепестки было выполнено с целью уловить различия в этих шаблонах.

В результате нанесения центрифугированием частиц на розу 1 были получены узоры с диаметром отельного элемента a1= 19.85 3.82 мкм (3b-3c), что составляет ~ 2 мкм отклонения от исходного узора. Разница в размере 10% может быть вызвана деформацией поверхностных элементов лепестков под действием капиллярного давления и/или веса осажденных частиц.

Для розы 2 средний размер элементов узора нанесенных частиц составил a2= 23.23 3.98 мкм (3e-3f), т.е. отклонение от оригинала составило порядка 3 мкм. Эти различия также фиксируются как сдвиги в средних гауссовых значениях полученных гистограмм (3g-3h).

Форма распределенных частиц лепестков и поверхностям BIOMAP очень схожи, что указывает на хорошую репликацию. Однако асимметрия и эксцесс подтверждают, что вышеописанные тонкие изменения (отклонения) являются систематическими ошибками (3i).

Естественно стоит отметить, что все полученные узоры BIOMAP (отмечены "-") являются обратными по отношению к оригиналу (лепестки роз, отмечены "+"), хоть и с высокой степенью репликации. Чтобы получить такой же узор, как и на лепестке, сначала необходимо провести репликацию посредством эластомера PDMS, а потом уже с этого оттиска сделать копию посредством BIOMAP. Грубо говоря, чтобы получить идентичные (не зеркальный) оттиски лепестка розы, нужно выполнить процедуру дважды (кто знаком с кулинарией, знает как вынуть из формы пирог, используя два блюда).


Изображение 4

Изображения выше демонстрируют степень точности BIOMAP в создании синтетического узора розы. Сначала изготавливается первичный/черновой (-) шаблон путем точного оттиска PDMS с поверхности лепестка розы (). Далее форма PDMS заполняется частицами ULMCS, которые затем спекаются с помощью CUPACT, и образцы снимаются (4b-4c). В результате получается конечный образец (+) ULMCS, хотя и с большими промежутками между поверхностными элементами по сравнению с цветком розы (3a), из-за сохранения сферичности частиц после CUPACT.

Несмотря на ограничения в создании полностью непрерывной гладкой поверхности, данный метод демонстрирует ближайший аналог поверхности розы (4b), созданный с помощью принципов физической химии и химической кинетики. Помимо новой текстуры поверхности, очевидно также и то, что металлическая (-) рельефная копия поверхности лепестка может быть использована в качестве формы для создания эластомерного аналога лепестка розы, поскольку капиллярные силы будут препятствовать проникновению вязкого несшитого эластомера через сеть пор.

Для проверки этой теории металлические (-) элементы были заполнены PDMS (4d), после чего был получен рельефный узор (+), аналогичный лепестку розы (4e-4f).

Когда для получения копии использовался металл, наблюдалось отклонения размеров полученных элементов от оригинала около 10%. Но в случае, когда металл был использован в качестве формы для создания элементов PDMS значительных изменений в размерах не наблюдалось.

Несмотря на все отличия копий от оригинала, показатели смачивания* оригинальной поверхности и реплики достаточно схожи (сравнение гидрофобности на 4g).
Смачивание* взаимодействие жидкости и поверхности твердого тела или другой жидкости.
Лепесток розы был ультрагидрофобным со средним углом смачивания 133.1 5.0, тогда как биомиметическая копия, (+) образец ULMCS (4b), давала средний угол смачивания* 138.7 14.7. PDMS реплика показала меньший угол контакта.
Угол смачивания (угол контакта)* угол между касательной, проведенной к поверхности жидкости и твердой поверхностью. Данный параметр определяет межмолекулярное взаимодействие частиц поверхности твердого тела с жидкостью.
Нетекстурированные спеченные CUPACT частицы (CAP на 4g) и PDMS частицы использовались во время анализа в качестве контрольной группы (пунктирная линия на 4g).

Капли на нетекстурированных поверхностях спеченных частиц, медленно диффундирующие в пористую поверхность, проявляют временную гидрофобность. Предположительно, это небольшая гидрофобность, наблюдаемая на слое спеченных частиц, объясняется присутствием существенного поверхностного лиганда с концевыми метильными группами, используемого для стабилизации ULCMS.

Для дальнейшего сравнения смачивания между биомиметическим и природным образцами капли, расположенные на узоре BIOMAP, были наклонены (4b), что позволяет сымитировать эффект лепестка. Как и ожидалось, капли прилипают к поверхности, хотя и с большим гистерезисом угла смачивания при увеличении угла наклона (4h и видео ниже).


Демонстрация свойств смачивания лепестка розы и металлической реплики.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые смогли изготовить биомиметический металлический узор на основе мягкого субстрата (т.е. лепестка розы). Изготовленные элементы полностью имитируют биоаналог как по структуре, так и по свойствам смачивания, хоть и с небольшими отклонениями, артефактами метода обработки BIOMAP и асимметрией в свойствах материала.

Если упростить все исследование до одного предложения, то ученые смогли сделать оттиск лепестка розы из частиц металла. Полученная реплика обладает свойствами, как и оригинал. Особое внимание стоит уделить гидрофобности разработанного материала, которая ранее достигалась куда более сложными и затратными методами.

Созданная структура обладает прочностью и долговечностью металла и гидрофобностью нежного лепестка розы. Подобная гибридизация свойств позволяет создавать различные варианты материалов, расширяя спектр их применения. По мнению ученых, их разработка может быть использована в самых разных отраслях, от медицины (репликация нанометрических структур для дальнейшей замены поврежденных частей) до авиационной промышленности (обработка крыльев самолетов для снижения степени обледенения во время полета).

Как бы то ни было, природа в очередной раз показала, что она является практически неиссякаемым источником вдохновения не только для художников, создающих живописные пейзажи, но и для ученых, изобретающих невероятные устройства и системы.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Приключения немецких урановых хвостов в России. Часть 3 Риски и опасности при обращении с ОГФУ

02.09.2020 10:06:10 | Автор: admin
Это третья статья из серии моих публикаций, посвященных проблеме ввоза обедненного гексафторида урана (ОГФУ) из Европы в Россию. Напомню, что осенью прошлого года начались акции протеста против ввоза ОГФУ в Россию, активные выступления Гринпис и других экологических активистов против ввоза в СМИ, Росатом начал ответную разъяснительную кампанию встречи с экологами, в том числе с участием главы Росатома, техтуры на предприятия, встречи в регионах. Я тоже стал разбираться в проблеме, встречался со специалистами и с активистами, в т.ч. с противниками ввоза, посетил крупнейший завод по обогащению урана в Новоуральске.

В итоге я опубликовал на хабре две статьи. Первая была посвящена технологиям обогащения урана в России и мире. Вторая истории контрактов на обогащение урана, экономике вопроса и тому зачем же к нам ввозят ОГФУ. Перед чтением этого поста рекомендую сначала ознакомиться с ними. Следующие части я обещал посвятить вопросам безопасности обращения с ОГФУ и тому что же делают с остающимся после дообогащения в России дважды обедненным ураном. Однако статьи эти немного подзадержались. В дисклеймере под катом я поясню как так получилось и что произошло за это время. Ну и там же обещанное продолжение темы. Итак, поехали.


Фото крупнейшей аварии при транспортировке ОГФУ. Источник


Дисклеймер


С января этого года по теме ввоза ОГФУ произошло много важных событий.
1. Во-первых, в реактор БН-800 на Белоярской АЭС загрузили первую серийно изготовленную партию MOX-топлива. Правда об этом подробнее в следующей части.
2. Во-вторых, меня пригласили в состав рабочей группы по ОГФУ комиссии по экологии Общественного совета Росатома. До разгара эпидемии, в феврале, я успел принять участие в одном заседании группы с участием представителей Росатома и Гринписа. Это был любопытный опыт. Кроме того, группа приняла решение издать доклад по теме ОГФУ и мне предложили присоединиться к числу авторов. Однако я был вынужден отказаться из-за пункта 3.
3. С начала года у меня была длительная зарубежная командировка в разгар пандемии, карантины, рождение второго ребенка, а затем смена работы. Это все вроде бы не имеет отношения к теме, но объясняет почему у меня не было времени почти ни на что другое, в том числе и на этот блог. Но сейчас я потихоньку наверстываю упущенное.
4. Ну и наверно главное по теме. 8 июля был презентован тот самый совместный доклад Комиссии по экологии Общественного совета Росатома и экологической организации Беллона по вопросу обращения с ОГФУ. Доклад доступен по ссылке. На мой взгляд это наиболее полное и довольно простое для восприятие издание по теме на русском языке. Рекомендую всем интересующимся с ним ознакомиться, там всего 50 страниц.
5. А ОГФУ все это время продолжают завозить, ведь контракты действуют до 2022 года. И каждая новая отправляющаяся партия это новостной повод для экологов-активистов. Вот свежая новость с их подачи.

Опасность ОГФУ


1. Свойства гексафторида урана


Гексафторид урана, (ГФУ, формула UF6, независимо от изотопного состава, т.е. хоть обедненного, хоть природного или обогащенного урана) это действительно опасное, химически токсичное и очень едкое вещество, способное вызвать ожоги и тяжелое отравление, относится к веществам I класса опасности с очень низкой предельно допустимой концентрацией до 0,015 мг/м3 в воздухе рабочей зоны (не путать со смертельной концентрацией). Смертельная доза может быть получена при нахождении 10 минут в зоне с концентрацией 216 мг/м3 (так называемый параметр AEGL-3) Опасность его связаны именно с химическими свойствами.

В плане радиационной опасности активность ОГФУ, в котором меньше легких изотопов 235-го и 234-го, минимум в разы, если не на порядок ниже, чем у природного урана 2-4 кБк/г против 20-40 кБк/г (1 кБк = тысяча распадов в секунду). Уран альфа-излучатель, поэтому речь в первую очередь идет об альфа-активности, хотя с распадом урана в нем образуются и бета-активные продукты распада. Так что уран в первую очередь опасен при внутреннем облучении если его вдохнуть или проглотить. Но если вы съедите гексафторид урана, хоть обедненного, хоть обогащенного, то в первую очередь опасность будет связана с химическим отравлением, а не облучением.

Почему в промышленности используют именно такую химическую форму урана я подробно объяснял в первой статье про технологии обогащения только гексафторид урана легко переводится в газообразную форму, необходимую для обогащения. Больше ни для чего такая химическая форма урана в атомной промышленности не нужна, а сам уран нужен. Но к этому мы еще вернемся. При нормальных условиях (атмосферном давлении и температуре до 56,7 градусов) ГФУ находится в твердом виде, в таком же виде он транспортируется и хранится.

Гексафторид урана при нормальных условиях негорюч и не вступает в химические реакции с кислородом, азотом, углекислым газом и сухим воздухом. В газообразном состоянии бурно реагирует с водой, в том числе с атмосферной влагой, с образованием твердого уранилфторида (UO2F2) и газообразного фтористого водорода (HF) тоже очень токсичных веществ, последний как и ГФУ относится к 1-му классу опасности, хотя его ПДК выше. При этом выделяется много тепла.

Однако твердый гексафторид урана с водой и ее парами реагирует гораздо медленнее, так как образующийся мелкодисперсный аэрозоль уранилфторида оседает и препятствует поступлению воды к поверхности гексафторида урана. Этот эффект приводит к существенному замедлению скорости реакции. Т.е. твердый ГФУ как бы затягивается пленкой уранилфторида.

Из описанных свойств вытекает важный практический вывод. ГФУ, который транспортируют и хранят в твердом виде, в случае разгерметизации на открытом воздухе реагирует с его влагой, но не бурно как газообразный или жидкий ГФУ, а медленно, и при этом реакция эта за счет осаждения уранилфторида постепенно затухает. При этом наибольшую опасность представляет выделяющийся газообразный фтороводород HF.

2. При аварии контейнера зона смертельного поражения 32 км?


Однако с самого начала истории и шумихи вокруг ввоза ОГФУ в октябре 2019 г., Гринпис и другие активисты говорили и охотно делились этой информацией со СМИ (раз, два), что перевозка ОГФУ представляет огромную угрозу, поскольку в случае разгерметизации контейнера возможна авария с образованием смертельной зоны поражения радиусом 30-32 км. Причем, 10 лет назад, в 2009-м, когда была аналогичная борьба с ввозом ОГФУ, назывались те же самые цифры. Это не удивительно, ведь источник, на который при этом ссылаются, все тот же что и 10 лет назад это доклад Агентства по атомной энергии Организация экономического сотрудничества и развития (OECD) 1978-го года. Этот 450-страничный документ сборник докладов европейских специалистов на семинаре 27-29 июня 1978 года по вопросам обращения с гексафторидом урана.

Чаще всего противники ввоза ОГФУ цитируют из этого документа всего одну цифру про 32 км (20 миль в оригинале) потенциальную зону поражения при аварии. Реже приводят сам пункт 5.3 из доклада (показываю каким образом и с какими выделениями ее приводит Андрей Ожаровский в своей статье об ОГФУ):

Перевод: Ясно, что внезапное высвобождение большого количества UF6, при распространении по воздуху, может привести к большому количеству жертв. В теории, при некоторых погодных условиях, смертельные концентрации могут образоваться в местах, удалённых на 20 миль [32 километра] от точки выброса. Фактическое количество жертв будет зависеть от мер защиты и плотности населения.

Однако из этого абзаца непонятно о каком именно сценарии аварии идет речь и какое же количество UF6 и в каком виде внезапно высвобождается. Но активистов это не смущает цифра в 20 миль красивая и страшная, самое оно для тиражирования. Мне же хотелось разобраться и найти детали и подробности. Поэтому я посмотрел (и все желающие могут тоже это сделать) сам оригинальный документ и обнаружил интересное. Много даже искать не пришлось. Ответ есть прямо на той же самой странице и двумя идущими за ней.


Коллаж со страницами доклада 1978 (стр 116-118) года с описанием наиболее страшных сценариев аварии с ОГФУ. Зеленым выделен цитируемый экологами пункт 5.3, а так же два идущих за ним с уточнениями, где возможны такие сценарии это заводы по обращению с ОГФУ.

На картинке выше желтым выделены 13 конкретных сценариев с описанием мест возможных аварий со значительным выбросом все на производстве и все касаются обращения с жидким или газообразным ОГФУ, за исключением одного. Красным выделены два, а по сути один и тот же единственный сценарий, который касается аварии с контейнером ОГФУ, в котором тот изначально не обязательно в жидком или газообразном виде. Т.е. теоретически, это может быть и сценарий с транспортировкой ОГФУ, но с важными оговорками это сценарий аварии при его попадании в сильный длительный пожар с дальнейшим взрывом. Т.е. это не просто разгерметизация контейнера при транспортировке, а сочетание целого ряда условий.

Дальше по тексту мы поймем, что не все описанные выше сценарии одинаковы по последствиям, а тот что касается разгерметизации контейнера при нормальных условиях (не при пожаре и не при взрыве) не тянет не то что на 32 км поражения, но и на 1 км. Впрочем, к чему эти нюансы для антиядерных активистов, рассказывающих журналистам об ужасах ГФУ в случае разгерметизации контейнеров при их перевозке. Без каких-либо уточнений и пояснений они просто годами цитируют страшную цифру про 32 км


Вот свежий пример комментария Владимира Сливяка из Экозащиты по поводу недавней отправки партии ОГФУ на сайте Эха Москвы К журналистам, просто перепечатывающим мнение одной стороны без попытки разбора ситуации отдельный вопрос...

У меня такому поведению экологов-активистов лишь три варианта объяснения. Либо за 10 лет (минимум) они не прочитали цитируемый документ, либо прочитали, но не поняли, либо поняли, но намеренно избирательно его цитируют и дают вырванную из контекста цифру, которой делятся со СМИ для нагнетания опасности и по сути запугивания людей. Ни один из вариантов я бы хорошим не назвал. Ну, возможно и я ошибаюсь, конечно, но попробуйте найти этому другое объяснение.

3. А что же будет при разгерметизации контейнера? Теория


Давайте попробуем разобраться что же будет в реальности при разгерметизации контейнера с ОГФУ. Такие задачи решали моделированием в моем родном (мне повезло с темой)Институте промышленной экологии УрО РАН. Была даже разработана специальная методика оценки. Из открытых публикаций могу сослаться на тезисы конференции ВНКСФ-13 (там и мои работы есть, кстати) Ильина А.С и Поддубного В.А на стр 660 с. Численное моделирование аварийной разгерметизации контейнера хранения твёрдого гексафторида урана.

В модели процессы взаимодействия поверхности ГФУ с влажным воздухом описываются системой из восьми дифференциальных уравнений, но не будем вдаваться в детали. Выводы моделирования такие. В зависимости от влажности и температуры, скорость выхода HF (наиболее опасного продукта реакции) варьируется в диапазоне от 0,4 до 15 г. с квадратного метра в секунду. Ну т.е. ни о каком взрывном процессе речи не идет, в отличие от реакции газообразного ГФУ.

На нескольких заседаниях рабочей группы Общественного совета Росатома по ОГФУ докладывались некоторые сценарии аварии на основе такого моделирования. Сценарий первый описывает разгерметизацию контейнера как образование трещины в его верхней части, над поверхностью твердого ОГФУ. Контейнеры заполняются не под завязку (заполняются жидким ОГФУ, а потом он застывает), у них есть свободный объем вверху, где над твердой фазой ОГФУ скапливаются его пары. Т.е. трещина в этой верхней части наихудший сценарий, который приведет к наибольшему выбросу, поскольку газовая фаза легче смешается с водяным паром, а поверхность твердого ОГФУ, открывшаяся влажному воздуху, будет максимальна.


Контейнеры 48-Y с ОГФУ на площадке хранения УЭХК в г. Новоуральске, куда и везут нынешний ОГФУ. Фото автора, снято в декабре 2019.

Последствия такой аварии разовый выброс 16 (!) граммов HF и затем выделение из разрушенного контейнера по 40 г в час. Данные ниже на слайде.


Слайд из презентации Алексея Екидина, сотрудника радиационной лаборатори Института промышленной экологии УрО РАН, к его докладу на заседании Общественного совета Росатома 17 декабря 2019.

Кстати, тут же на слайде есть данные по моделированию того, каким же должен быть выброс, чтобы на расстоянии 32 км образовалась смертельная концентрация (решение обратной задачи из того самого доклада 1978 года). Вывод вы видите выше нужен выброс 2 тонны в секунду

Другой сценарий аварии, когда контейнер не просто дал трещину, а в нем образовалась пробоина и часть ГФУ высыпалась. Результат приведен в другой презентации с того же заседания. Разовый выброс фтороводорода HF в таком случае составит 700 г и примерно столько же будет выделяться каждый час далее.


Слайд из презентации со ссылкой на расчеты ИпЭ УрО РАН по выбросу при разрушении контейнера с ОГФУ.

Кстати, а есть ли что-то про повреждение транспортного контейнера в том докладе 1978 года, на который любят ссылаться Гринпис? Конечно, на 450 страницах и об этом есть. Читаем, например, сценарий на стр 252:


Мой вольный перевод: 4.1 Повреждение не нагретых контейнеров.
Механическое повреждение не нагретых контейнеров представляется возможным во время
аварии при транспортировке или в результате аварии на складе. Без нагрева UF6 в
поврежденном контейнере находится в твердом состоянии, поэтому следует ожидать только медленное выделение очень небольших количеств UF6 и HF. При этом никаких химических или радиологических последствий за пределами объекта не ожидается. К тому же, поскольку выход UF6 сопровождается выделением белого уранилфторида U02F2, место утечки может быть легко обнаружено.


4. Разгерметизация контейнера натурный эксперимент


В далекие 1990-е в США занялись программой обращения с накопленным обедненным гексафторидом урана. Мы еще к ней вернемся в следующей части. Сейчас важно то, что в ее рамках Аргоннская национальная лаборатория по заказу Министерства энергетики США создала специальный сайт Depleted UF6 Management Information Network Web Site, где доступно изложила информацию по теме и ответы на вопросы о свойствах, опасности и практике обращения с ОГФУ. Короче, грамотно поработали с общественностью и информированием. Росатом сейчас вынужден делать ту же работу, реагируя на протесты и отвечая на вопросы активистов. Но лучше, конечно, такие вещи делать заранее и на опережение, чтобы снимать будущие вопросы. Это и называется информационная открытость.

Так вот, сайт этот жутко древний, из каких-то 90-х, с ужасной навигацией и доступом к файлам, но на нем много полезной информации. В том числе подробный FAQ и самое интересное, чего я больше нигде не находил видеоролики по теме, в том числе с лабораторными и натурными экспериментами, демонстрирующими свойства ОГФУ. В том числе аварийные сценарии. Качество, правда, ужаснейшее, адаптированное видимо под интернет тех времен. Youtube тогда еще не было, так что один из роликов для удобства просмотра я залил на свой youtube-канал:


Видеоролик US DOE с демонстрацией свойств ОГФУ и аварийных сценариев (ее раз извиняюсь за качество, таков исходник).

С 9:50 в ролике можно наблюдать шокирующий эксперимент два работника завода в химзащите и противогазах намеренно разгерметизируют контейнер с ОГФУ, откручивая от него запорный клапан. Можно увидеть как постепенно оттуда начинает выделяться газообразный фтороводород. Никакого взрывного процесса. Более того, процесс выделения постепенно замедляется из-за осаждения уранилфторида. Диктор сообщает, что находиться на расстоянии более 3 метров от такого контейнера можно даже без средств защиты. А потом утечку устраняют простой клейкой лентой. Ну и там далее еще показаны эксперименты по погружению негерметичного контейнера в воду и как там он себя ведет (спойлер он там опять самозакупоривается). Переснять бы это все сейчас в хорошем качестве для наглядности

5. А если на склад упадет самолет?


Рассмотрим еще один страшный сценарий, который справедливо упоминает Гринпис, не приводя, правда, никаких его оценок и расчетов (чтобы пугать они и не нужны фантазия обывателя сама все дорисует). Это сценарий падения самолета на склады с ОГФУ, которые реально занимают значительные площади. Оставлю в стороне тот факт, что в России, в отличие от Европы, такие склады находятся на территории закрытых городов, которые, как и АЭС, находятся вне авиакоридоров.

Сценарий падения самолета неоднократно упоминается в докладе 1978 года (можно самостоятельно поискать в докладе слово plane, их там 14 штук). Вывод там такой (стр 325): в случае падения самолета на хранилище с контейнерами с ОГФУ максимальные последствия будут на расстоянии не более 1 (!) км и не выйдут за пределы промплощадки. И это при том что расчеты у них проведены для контейнеров с ОГФУ с толщиной стенок в два раза меньше, чем у современных (8 мм против 16 мм).

Вспоминаем еще раз про 32 км из того же самого доклада и снова убеждаемся, что в той гипотетической аварии речь точно не идет о контейнерах с твердым ОГФУ, и даже о их взрыве от нагрева при пожаре от падения самолета.


На снимке с Яндекс карт как раз одна из крупнейших площадок хранения ОГФУ при комбинате УЭХК в Новоуральске, куда сейчас и везут на переработку ОГФУ из Европы. Площади действительно огромные. И это только часть территории, занятой крупнейшим в мире комбинатом по обогащению урана до 20% мировых мощностей.

В России 4 завода по обогащению урана и, соответственно, 4 площадки хранения ОГФУ (далее по ссылкам указаны как раз места хранения на яндекс- и google-картах) в Новоуральске (На Урале, 80 км от моего дома), и три в Сибири в Северске, Зеленогорске и Ангарске. Только в Северске жилье располагается на расстоянии около 700 м от складов, в остальных городах минимум в 2-3 км.

Впрочем, на родине доклада 1978 года, в Европе, все гораздо камернее. В Великобритании, на заводе Urenco в г. Кейпенхерст, на расстоянии 50-100 м за забором хранилища располагаются с полдюжины гостиниц, а жилые кварталы не дальше 1 км. В следующей части мы еще вернемся к этому заводу, поскольку на него свозят ОГФУ с других европейских заводов Urenco из Германии и Нидерландов для переработки, хотя Гринпис говорит что ни одна страна кроме России к себе чужой ОГФУ не завозит ну т.е. это опять неправда. Великобритания завозит как минимум.


Размещение обогатительного завода Urenco в Кейпенхерсте (Великобритания). Куча гостиниц буквально за забором от складов. Жилые кварталы не далее 1 км на восток.

То же и в Гронау (Германия), откуда ОГФУ и везут в Россию в 300 м от хранилища популярный семейный отель, а городское жилье в 1 км. От Нидерландского завода Urenco в г. Алмело 200 м до тюрьмы, 500 м до гостиницы и около 1 км до жилых кварталов. Так что последствия падения самолета на промплощадки обогатительных комбинатов в Европе, согласно оценкам доклада 1978 года, могут быть печальнее, чем в России. При том что и самолетов у них летает побольше, и плотность населения и застройки выше.

Кстати, это видно и по оценкам вероятности такого сценария. Вероятность падения самолета в зависимости от его размера оценивается европейцами в своем докладе как от 1 до 4 случаев за миллион лет. Российская оценка для наших складов на два порядка меньше 1 случай за 100 миллионов лет.

6. Сценарий взрыва контейнера


А теперь давайте рассмотрим тот самый страшный сценарий, который может произойти с контейнером с ОГФУ, который попал в список гипотетических аварий с большими выбросами в документе 1978 года. Не думаю, что его до этого кто-то подробно публично разбирал, поскольку он не описан подробно ни в докладе 1978 года, ни попадался мне на глаза у Гринписа или других экологов-активистов, любящих цифру в 32 км. Возможно они о нем не знают. Так что не исключаю, что сейчас частично сыграю им на руку, подкинув деталей. Впрочем, этого сценария пока нет и в докладе Беллоны об ОГФУ (но доклад будет дополняться, в т.ч. раздел по возможным авариям), и в методиках ИПЭ УрО РАН (у них я уточнял им такую задачу считать и не задавали), и не упоминается нигде у Росатома. Так что и для них это наверно будет некоторым неприятным сюрпризом. Но я как раз пытаюсь разобраться в проблеме, а не занять чью-то сторону. Поэтому выкладываю то до чего докопался, а выводы делайте сами.

Итак, это сценарий, при котором контейнер с ОГФУ взрывается после длительного нагрева в большом пожаре свыше существующих нормативов по прочности для такого контейнера. Конструктивно самый популярный в мире контейнер для ОГФУ 48-Y (в нем в Россию и завозят ОГФУ из Европы) по международным требованиям должен выдерживать 30-минутное нахождение в огне с температурой 800 градусов. Но что если нагревать его больше и дольше? Постепенно гексафторид внутри расплавится, давление его паров будет расти и при превышении расчетных параметров (27 атмосфер) возможно разрушение контейнера, а при таком внутреннем давлении это будет взрывной процесс с выбросом наружу газообразного и жидкого ОГФУ. И это, конечно, гораздо опаснее чем разгерметизация контейнера с твердым гексафторидом.

Я нашел ряд статей с моделированием выброса при таком сценарии. В открытом доступе есть, например, немецкая статья M. Sogalla и W. Brcher Radiological consequence analysis in case of fire impact.. В ней разбирается массовый сценарий: сразу 10 контейнеров, по 12,5 т ОГФУ (т.е. те самые 48-Y) в каждом, нагреваются в огне при сжигании углеводородов при температуре 800-1000 градусов. Моделирование показывает величины выброса и приземные (там, где собственно находятся люди) концентрации опасных веществ при неблагоприятных погодных условиях на разном расстоянии в зависимости от разных факторов, продолжительности пожара после взрыва, например.

Так вот, в самом худшем сценарии, чисто гипотетическом и по словам авторов маловероятном, опасные (вплоть до смертельных) концентрации от одновременного взрыва 10 контейнеров возможны на расстоянии 8 км по направлению ветра от места взрыва. Скорость выхода ОГФУ из одного контейнера при этом до 12,2 кг/с. Серьезный сценарий и серьезные последствия. Но и тут нет речи о зоне смертельного поражения в 32 км.


График концентрации выброса (на самом деле меня смущает что у них указан уран, но судя по величине AEGL-3 речь все же о некоем усредненное выбросе продуктов реакции ГФУ с влагой если кто поможет разобраться будет здорово) в зависимости от времени начала пожара и расстояние на котором будет та или иная концентрация. AEGL-3 смертельный уровень. Источник.

Авторы, конечно, обсуждают сферического коня в вакууме, моделируя огонь в условном бассейне углеводородов, и не говорят о реалистичных сценариях. Но из возможных, конечно, напрашивается минимум один страшный сценарий (это моя фантазия, можете придумать другой) столкновение поезда с ОГФУ и поезда с каким-то горючим (нефть или бензин). Важные условия такой задачи горючка должна разлиться так, чтобы в ее огонь попали несколько контейнеров с ОГФУ, чтобы она горела не менее получаса равномерно прогревая весь объем контейнеров, и за это время она не должна вся выгореть (для этого слой нефти должен быть минимум 7,5 см, а бензина 30 см, см табл 1.1 в документе о скорости горения нефрепродуктов), все это дело не должны в это время тушить и разгребать. Ну и сила и область последствий будет зависит от многих факторов устойчивости и силы ветра, густонаселенности местности, близости пожарных команд и готовности реагировать на ЧП и т.д.

Так что если Гринпис и возьмет на вооружение рассказы об этом сценарии, важно, чтобы они давали при этом все вот эти подробности про случай столкновения двух поездов. А то начнутся выдумки как про 32 км от разгерметизации одного контейнера. Ну и по уму надо оценить вероятность такого сценария. Я ее пока нигде не нашел, даже любопытно она выше чем у падения самолета на склад или ниже?

При этом надо помнить, что вообще то крушение поезда с горючим это сама по себе серьезная авария, тем более в случае столкновения с чем угодно, начиная от других опасных грузов и заканчивая пассажирским поездом. Так что мне кажется более важным не бороться с конкретными грузами, которые кому-то по тем или иным причинам не нравятся (Гринпису, например, все радиоактивное и атомное), а бороться за повышение безопасности всех транспортировок вообще. Ниже я еще разовью эту мысль.

7. Свойства и прочность контейнеров для ОГФУ


Давайте теперь перейдем от теории к практике к реальным авариям. Они, конечно, были. И наверняка еще будут. Никакой транспорт, да и никакая технология вообще, не бывает 100% безопасным. Поэтому как и с перевозкой других ядерных и радиоактивных материалов, сами контейнеры делают такими (даже на случай когда ядерное топливо возят самолетами), чтобы в случае аварии они сохраняли герметичность. Даже если при этом возникнет пожар. Но бесконечной безопасности опять же не бывает, так что формулируются некоторые минимальные требования, которым тара должна отвечать.

Наиболее популярные во всем мире контейнеры для ОГФУ 48-Y (48 это диаметр в дюймах, или 1,22 м). Длина 3,81 м, объем около 4 м3, масса контейнера около 2,5 т, масса ОГФУ внутри до 12,5 т. Толщина стальных стенок почти 1,6 см. Рабочее давление 13 атмосфер, предельное 27 атмосфер (данные отсюда, стр 51).

Далее я процитирую доклад Беллоны (стр 22): После изготовления контейнеры подвергаются испытаниям на механическую прочность, герметичность, термостойкость и устойчивость к гидростатическому давлению. Для испытаний на прочность проводят сбрасывание контейнера с высоты 9 м на бетонную плиту с металлическим штырем диаметром 36 мм. Падение с такой высоты равносильно столкновению с бетонной плитой на скорости 45 км/час. Испытания на теплостойкость проводят выдержкой контейнера в открытом огне при температуре 800С в течение получаса. Испытания на герметичность проводят сопротивляемостью гидравлическому давлению, вдвое превышающему рабочее, при температуре от -40С до +40С.


А это фото контейнера 48-Y на специальном участке комплексного обслуживания на УЭХК, где их периодически обследуют. Эту процедуру раз в несколько лет в течение всего срока службы в 80-100 лет проходят все контейнеры в хранилище. При этом их проверяют на наличие дефектов и соответствие всем требованиям как внутри так и снаружи, моют и окрашивают. ОГФУ при этом, конечно, извлекается. Фото автора.

8. Реальные случаи аварий при обращении с ОГФУ


Конечно, аварии при транспортировке бывали. Однако при этом не было аварий с выходом ОГФУ из контейнеров. Вот наиболее яркие примеры:

25 августа 1984 года. Судно Монт-Луи везло 350 т гексафторида урана в 30 контейнерах 48-Y (да, они использовались уже тогда и за 20 лет до того) и затонуло в Северном море после столкновения с паромом. По аварии имеется подробный 5-страничный бюллетень МАГАТЭ, откуда можно узнать массу любопытных деталей. Груз, кстати, направлялся по похожему на нынешний контракт это была поставка европейского ГФУ и ОГФУ (Франция, Бельгия и Германия) на обогащение в СССР по контракту от 1973 года (О становлении мирового рынка обогащения я подробно писал в прошлой публикации).


Фото столкновения судна Монт-Луи и парома Олау Британия в Северном море в 10 милях от Бельгийского берега. Монт Луи затонул через 4 часа 40 минут после столкновения. Фото взято отсюда.

За полтора месяца все контейнеры были подняты, часть из них была помята и повреждена штормами, однако лишь в одном была обнаружена небольшая течь в запорном клапане. Течь, кстати, за счет разницы давлений, была внутрь контейнера, а не наружу, и была устранена при подъеме. Вода не успела заполнить свободный объем контейнера. Проведенные пробы и исследования не обнаружили никаких значительных загрязнений. Кроме того, во время спасательной операции были сделаны прогнозы по наихудшему сценарию. Расчеты показали, что даже мгновенная реакция всего ОГФУ в контейнерах с морской водой не привела бы к образованию токсичных концентраций фтористоводородной кислоты. В результате весь груз был спасен без ущерба для здоровья спасателей и окружающей среды.

Я честно искал наглядные материалы по той аварии чтобы вам показать, но их не так много. Есть совершенно эпичное цветное фото операции по подъему груза с затонувшего судна Монт-Луи, где видны поднятые контейнеры. Но известное агентство Магнум, куда я обратился за разрешением поставить его в пост, запросило с меня 6000 р. Пока я не готов тна такие траты для постов в блоге, поэтому я просто дам ссылку, где его можно посмотреть на сайте агентства в нормальном качестве вот тут.

Зато о спасательной операции есть целый документальный фильм:


13 марта 2014 года в Порту Галифакс (Канада) при погрузке на судно уронили с 6 метровой высоты 4 контейнера 30B с обогащенным гексафторидом урана. Контейнеры сохранили герметичность, утечек не было. Аналогичный инцидент был в этом порту и в 1999-м.

С десяток случаев аварий грузовиков с контейнерами с ОГФУ в США и Европе описаны по этой ссылке (см Transport accidents в самом низу). Случаев разгерметизации не было.

И данные Росатома, и данные отчета Беллоны говорят о том, что за все время транспортировки ОГФУ на территории СССР/России (более 60 лет) аварий и инцидентов не было. Можно в этом сомневаться, но указанная выше ссылка на подборку инцидентов с транспортировкой ОГФУ действительно ограничивается лишь иностранными примерами. Возможно дело в том, что у нас в основном его перевозят железнодорожным транспортом, который несколько безопаснее автомобильного.

Для наглядности того как ОГФУ разгружают с судна в порту Санкт-Петербурга и перегружают на ж/д транспорт, какая при этом радиационная обстановка и как это все показывают общественности, поставлю тут этот видеоролик от Беллоны про перегрузку урановых хвостов в Санкт-Петербурге.:


9. Смертельные случаи при обращении с гексафторидом урана


Несмотря на отсутствие жертв при авариях на транспорте, смертельные случаи при обращении с гексафторидом урана происходили. Например, в США в 1944 году на экспериментальной установке произошел выброс около 180 кг разогретого газообразного ОГФУ. Погибли два человека, еще трое пострадали. А в 1986 году на коммерческой установке по переработке урана Sequoyah Fuels Corp, США, произошла утечка UF6 при разрыве нагретого 14-тонного контейнера. От вдыхания HF погиб один человек, еще 31 работник подвергся воздействию газового облака, но долговременных последствий для здоровья не получил.


Разорванный контейнер на Sequoyah Fuels Corporation в 1986 году. Источник.

Итого за почти 75 лет обращения с ОГФУ в мире погибли трое и пострадали еще около 40 человек. Даже если предположить, что в СССР такие случаи скрывались, то вряд ли речь идет о величинах на порядки больших. Получается, что человечество действительно научилось обращаться с этим опасным веществом ОГФУ, относительно безопасно. А абсолютно безопасных технологий не бывает. Даже тяга делать селфи убила больше людей, чем ОГФУ.

10. Прочие опасные грузы или все относительно


Надо отметить, что ОГФУ, конечно, опасная субстанция и опасный груз на наших дорогах. И внимание активистов к нему приковано, конечно, не на пустом месте. Однако как я показал выше, Гринпис склонен, осознанно или нет, существенно преувеличивать опасность.

Конечно, можно добиться прекращения ввоза ОГФУ из-за границы (около 12 тыс.т до 2022 года по нынешним контрактам), но это, во-первых, не прекратит перевозку аналогичного по химическому составу гексафторида природного и обогащенного урана внутри страны между комбинатами на Урале и в Сибири. Ведь крупнейший комбинат в Новоуральске работает полностью на привозном гексафториде его везут с сублиматного завода СХК в Северске, где природный урановый концентрат для дальнейшего обогащения переводят в форму гексафторида. Производство уранового топлива для российских и существенной доли зарубежных АЭС будет продолжаться, а значит будет и перевозка ГФУ. И не только в России.

А во-вторых, ладно ОГФУ, объем его перевозок внутри страны не превышает десятков тысяч тонн в год (несколько десятков ж/д составов). Внутри России 20% всех перевозимых грузов относятся к категории опасных, это около 800 млн т. кислоты (в том числе те же продукты реакции ОГФУ типа фтороводорода), токсичные вещества, взрывчатые и пожароопасные материалы (те же горючие материалы, необходимые для реализации самого страшного сценария при перевозке ОГФУ). Т.е. их объем в сотни тысяч раз больше, чем ОГФУ. Из этих 800 млн.т. 65% перевозят автомобильным транспортом, потенциально наиболее рискованным в плане дорожных аварий.

Устранение с наших дорог европейских ОГФУ, о чем мечтает Гринпис, не решит проблему рисков связанных с перевозками опасных грузов у нас в стране вообще никак. Решит ее лишь усиление контроля за соблюдением правил перевозок и улучшение транспортной инфраструктуры. В прекрасной России будущего, на мой взгляд, надо делать упор на это, а не на борьбу с отдельными опасными грузами путем запугивания населения, при том что эти грузы перевозятся по тем же правилам и в той же таре по всему цивилизованному миру.

11. Опасности при хранении и ржавые контейнеры


Пару слов об опасности складов хранения. Ну, падение самолета мы уже рассмотрели. Но по сети часто гуляют фото ржавых контейнеров со складов. А Гринпис жалуется на то, что это все хранится под открытым небом и ссылается на несколько отчетов Ростехнадзора до 2011 года, в которых отмечалось неудовлетворительное состояние складов хранения ОГФУ. Однако после 2011 года таких замечаний не было. Помимо того что можно приветствовать наличие контролирующего органа, обнаруживающего недостатки в работе предприятий Росатома, логично задать вопрос а может после 2011 года замечаний по этой теме нет потому что их устранили?

По поводу хранение под открытым небом это общемировая практика. Выше я уже показывал фото и давал ссылки на спутниковые карты российских и европейских складов они все примерно одинаковые. Ну потому что сложно сделать такие огромные ангары. А толстостенные стальные контейнеры, рассчитанные на падения и пожары, не особо боятся дождя и снега. Главная их защита это именно толщина стенок, краска и периодическое освидетельствование, в ходе которого проверяют состояние клапанов, степень коррозии (и внутри тоже), ну и наносят новую краску. Саму территорию складов тоже регулярно осматривают, контейнеры там специально выложены для удобства визуального осмотра. В случае утечки и трещины, как мы видели выше по ролику Министерства энергетики США, во-первых, место утечки несложно обнаружить визуально по белесым выпадениям уранилфторида, а во-вторых, устранить его тоже несложно. В ролике вообще скотч наклеили, а на практике на контейнер могут поставить металлическую заплатку, а затем заменить.

И о ржавчине. В ней для толстостенных контейнеров опять же ничего особо страшного нет, если, конечно, не доводить до запущенных случаев. Огромные склады с крупнейшего завода в Новоуральске, показанные выше, явно заполнены покрашенными серыми контейнерами. Но я специально припас фото с американских хранилищ для этого раздела, а по указанным под ними ссылками можно пройти на сами гуглокарты и посмотреть все в деталях. Даже со спутника видно, что существенная часть контейнеров на складах покрыта ржавчиной:


Склад хранения ОГФУ на бывшем газодиффузионном заводе в Портсмуте (Portsmouth), штат Огайо.


Склад хранения ОГФУ на бывшем газодиффузионном заводе в Падьюке (Paducah), штат Кентукки.

Суммарно на этих складах хранится около 800 тыс. т. ОГФУ примерно столько же, сколько на всех хранилищах в России. Справедливости ради, тут надо сделать два комментария. Во-первых, в Новоуральске контейнеры скорее всего поновее потому, что они активно работают с зарубежными заказчиками и часто меняют тару. США же свой ОГФУ никуда не вывозят, а в Россию так вообще им законодательно это запрещено это же ядерный материал, как никак, тот самый стратегический ресурс, статус которого так не нравится Гринпису. Но все это конечно не извиняет такого отношения к их железякам. А во-вторых, надо отметить, что по спутниковым снимках не так хорошо видно на российских площадках состояние контейнеров отечественного производства емкостью по 2,5 м3, которые, в отличие от 48-Y, ставятся вертикально.

12. А как же онкология?


В обсуждениях темы ввоза ОГФУ в СМИ, на других площадках и в комментариях к моим предыдущим статьям периодически возникали возгласы в духе везут нам всякую гадость, а потом у нас в Новоуральске онкология растет!. Но мало кто после этого приводит цифры или другие данные в подтверждение таких заявлений. И мало кто вспоминает о том, что на самом деле канцерогенов и факторов, повышающих риск рака и без радиации хватает. То что при хранении и перевозке ОГФУ не возникает выбросов урана мы как бы попытались уже разобраться. Давайте я просто для своих родных уральцев покажу одну картинку об уровне заболеваемости раком в нашей Свердловской области.

Год назад наш губернатора подписал 100-страничную программу по борьбе с онкологическими заболеваниями на 2019-2024 годы. Там масса статистики по заболеваемости в области, в том числе по печальным районам лидерам по заболеваемости раком. Вот они:


Лидеры по заболеваемости раком в Свердловской области, чей показатель выше среднего по области, составляющего 426,4 случая на 100 тыс. человек.

Как видно, Новоуральска в этом списке нет, как нет и г. Заречного, где находится Белоярская АЭС. А ведь в Новоуральске находится крупнейший в мире комбинат по обогащению урана. Вот только на Урале помимо атомной промышленности полно не самой чистой цветной металлургии, разных карьеров, в т.ч крупнейший в мире асбестовый, грязных котельных и ТЭЦ, включая крупнейшую в России угольную Рефтинскую ГРЭС, и других источников выбросов, низкого уровня медицины и зарплат и прочих прямых и косвенных факторов, влияющих на здоровье вообще и на онкологию в частности. Вот на что надо обратить внимание в первую очередь для борьбы с онкологией в Прекрасной России Будущего. Ну и атомные предприятия тоже надо контролировать, конечно, но связывать ввоз ОГФУ с ростом онкологии, мягко говоря, не корректно.

13. В завершение 3-й части


Опасность ОГФУ весьма преувеличена антиядерными организациями. Да, это опасное вещество, однако опыт показывает, что принимаемые технические и организационные меры по обращению с ОГФУ обеспечивают его безопасное использование. Однако для дальнейшего длительного хранения предпочитают другие его химические формы, менее опасные. Об этом, а так же о иных способах использования ОГФУ помимо дообогащения в следующей, завершающей части, которую я опубликую уже через несколько часов. Там же будет мое интервью с автором доклада об ОГФУ и директором Беллоны Александром Никитиным и краткие выводы по всей теме.

Поддержать автора


Если вам понравилась моя статья, то вы можете сказать об этом в комментариях (а то обычно там только ругают), а так же поощрить будущие публикации материально на карту Тинькофф 5536 9137 7974 2317. И подписаться на мой Youtube-канал.

Использованные источники:


1.Доклад ЭПЦ Беллона ОБЕДНЕННЙ ГЕКСАФТОРИД УРАНА (современная ситуация, вопросы
безопасного обращения и перспективы)
, 2020 год.
2.Краткая версия доклада обзор ЭПЦ Беллона по теме ОГФУ
3. THE SAFETY PROBLEMS ASSOCIATED WITH THE HANDLING AND STORAGE OF UF6, OECD, 1978.
4. Урановые хвосты снова едут из Германии в Россию, Андрей Ожаровский, 29.10.2019
5. Численное моделирование аварийной разгерметизации контейнера хранения твёрдого гексафторида урана, Ильин А.С, Поддубный В.А, Материалы ВНКСФ-13, стр 660.
6. Результаты работы рабочей группы по вопросам безопасного обращения с ОГФУ, презентация Екидина А.А.
7. Depleted UF6 Management Information Network Web Site, U.S. Department of Energy (DOE)
8. Radiological consequence analysis in case of fire impact, M. Sogalla, W. Brcher, 2005.
9. Отчет об аварии судна Монт-Луи и ядерная безопасность, Бернар Огюстен, Бюллетень МАГАТЭ, 1985.
10. Uranium Hexafluoride Transport / Wise-uranium.org
11. 70 лет безопасных перевозок радиоактивных материалов. С.В. Райков, А.Е.Бучельников, В.Н. Ершов, В.В. Нащокин, 2015.
12. Программа Борьба с онкологическими заболеваниями в Свердловской области на 20192024 годы.
Подробнее..

Приключения немецких урановых хвостов в России. Часть 4 (последняя) Использование ОГФУ, протесты и выводы

02.09.2020 12:08:46 | Автор: admin
Это четвертая и финальная часть из серии моих публикаций, посвященных вопросу ввоза обедненного гексафторида урана (ОГФУ) из Европы в Россию. Первая посвящена технологиям обогащения урана в России и мире. Вторая истории контрактов на обогащение урана, экономике вопроса и тому зачем же к нам ввозят ОГФУ. Третья вопросам безопасности при обращении с ОГФУ и разбором популярных вопросов и мифов от Гринписа по этому поводу. Перед чтением этой финальной части рекомендую сначала ознакомиться с ними.

А сейчас я заканчиваю тему обзором практики и перспектив использования и возможного захоронения ОГФУ, публикацией интервью с автором доклада Беллоны об ОГФУ Александром Никитиным, обсуждением общественной составляющей этой истории и выводами по всем 4 частям. Итак, поехали.


Коллаж к 4-й части: Гринпис, ЗОУ, МОКС-топливо, А.Никитин.



СТАТУС И ИСПОЛЬЗОВАНИЕ ОГФУ


Я уже подробно рассказывал про основное назначение богатых хвостов ОГФУ с содержанием ценного изотопа U-235 в 0,2-0,25%. Его используют как вторичный источника урана для получения топлива современных АЭС. Из того объема ОГФУ, что сейчас везут из Германии, можно сделать годовой запас топлива для 10 АЭС, способных заменить половину угольных ТЭЦ в той же Германии и, соответственно, снизить выбросы CO2. Так что тут вопросов нет, ОГФУ с таким содержание U-235 это ценное сырье, просто не все могут экономически выгодно извлечь из него пользу (расчеты экономики я приводил тут).

Поэтому не удивительно, что что в большинстве международных документов (например тут) и международных организаций ОГФУ называется крупным вторичным источников урана в настоящем и потенциально ценным сырьем для будущего. Однако везде справедливо добавляется, что возможности использования этого сырья в будущем будут сильно зависеть от многих факторов, которые пока предсказать сложно, и не исключается, что он может быть захоронен.

Даже на описанном выше самом популярном примере использования ОГФУ как сырья для дообогащения урана видно, что пока далеко не все страны могут делать это технологически, не везде это оправдано экономически и не у всех такая потребность вообще есть. Поэтому практически общим местом является то, что это материал, который пока нужно безопасно и дешево долговременно (порядка 100 лет) хранить, искать ему применение, а уж вырастет на него спрос или нет в будущем там видно будет.

При этом в разных странах ситуация разная в силу исторических, технологических и экономических причин, поэтому из этой концепции на национальных уровнях вытекают разные интересные нюансы. Например, Россия, Франция, Великобритания рассматривают ОГФУ (а точнее обедненный уран) как ценный ресурс для будущего или уже используют его в настоящем. В США часть ОГФУ действительно признана отходом (ниже разберемся почему), в Германии такой сценарий наиболее вероятен (ну там вообще перспективы атома никакие, так что не удивительно).

Вариантов использования обедненного урана из ОГФУ довольно много, часть из них применялась в промышленности (утяжелители в авиации, судостроении и даже в формуле-1), часть применялась в военных целях (сердечники для снарядов и наполнители брони, а также элементы термоядерных бомб), часть перспективных направлений исследуется (как материал для радиационной защиты для разных задач, для использования в полупроводниках, катализаторах или сорбентах) и т.д. Но тем не менее объемы этого использования небольшие, а часть (военная) вообще так себе перспектива, которую не хочется рассматривать. Но давайте рассмотрим подробнее то направление, с развитием которого во многом и связаны надежды атомщиков.

МОКС-топливо


Помимо использования ОГФУ для доизвлечения 235-го изотопа урана, можно использовать его в виде топлива для АЭС и другим способом как источник 238-го изотопа урана в МОКС-топливе. МОКС это топливо, изготовленное из смеси оксидов плутония, выделенного из отработанного ядерного топлива (ОЯТ), и оксидов урана, обычно как раз обедненного, полученного из тех самых запасов ОГФУ. В типичном атомном реакторе помимо деления изотопа урана U-235 образуется плутоний Pu-239 при захвате нейтронов изотопом U-238. При этом Pu-239 ведет себя очень похоже на U-235 тоже делится тепловыми нейтронами с похожим выделением энергии. В среднем, в топливе АЭС за время его работы 2/3 энергии выделяется за счет деления U-235, и до 1/3 энергии за счет распада образующегося там Pu-239. В выгружаемом ОЯТ несгоревшего плутония до 1% по массе, примерно как и несгоревшего U-235.

Ежегодно с ОЯТ из реакторов АЭС достают около 70 т. плутония. В принципе, если его выделить и переработать в МОКС-топливо, то его хватило бы для загрузки до 20% всех АЭС. Так что вовлечение плутония в топливный цикл позволяет более эффективно использовать полезные топливные ресурсы и урана и плутония. И на самом деле отношение к ОЯТ (отход/не отход) пролегает примерно по той же границе в разных странах как и к ОГФУ, да на самом деле и ко всему остальному тоже если технологии есть и позволяют с субстанцией обращаться и извлекать полезные компоненты то это не отход, если нет то тут все сложнее. Просто перерабатывать ОЯТ, как и эффективно и в большом количестве обогащать уран, умеет очень ограниченное количество стран.

Переходя от теории к практике, надо вспомнить первую из упомянутых в дисклеймере прошлой статьи новостей. В январе в реактор БН-800 энергоблока 4 Белоярской АЭС была загружена первая серийная партия МОКС-топлива, а в июне подготовлена полная загрузка для всей активной зоны реактора, на которую он будет переведен к 2022 году.


Реактор БН-800 на Белоярской АЭС. Фото автора, живущего в 30 км от нее.

Так что рассказы о том, что Росатом накапливает запасы обедненного урана для того чтобы затем использовать их в замкнутом топливном цикле в быстрых реакторах (а в планах и в обычных тоже) не просто разговоры про будущее, как говорит Гринпис. Это уже происходит. Да, конечно, объемы использования этого топливо мизерны по сравнению с накопленными запасами ОГФУ десятки тонн в год против около миллиона тонн накопленного ОГФУ. При таких темпах использования запасов ОГФУ хватит на сотни тысяч лет. Но тем не менее это работающая технология, а не фантазия. За работающими реакторами БН-600 и БН-800 в среднесрочной перспективе светят пока лишь БН-1200 и БРЕСТ-ОД-300 и исследовательский МБИР. За границей быстрые планы пока тоже ограничиваются единицами реакторов. Планы по масштабному внедрению быстрых реакторов во второй половине 21-го века пока есть только у Китая (и частично России, но лишь по заявлениям), который и сейчас является локомотивом развития объемов атомной энергетики мира. Однако при благоприятных условиях у быстрых ректором может появиться второй шанс. В частности, минимум 4 из 6 перспективных направлений реакторостроения IV-го поколения это именно быстрые реакторы.


Тепловыделяющая сборка (ТВС) для реактора БН-800. Источник.

Впрочем, МОКС-топливо используется не только в быстрых реакторах, но и на обычных АЭС, в тепловой атомной энергетике. Сейчас до 5% нового используемого топлива АЭС мира и до 10% во Франции (в 24 реакторах) это именно МОКС-топливо.

Франция вообще тут лидер, их крупнейший завод по переработке ОЯТ в La Hague перерабатывает до 1700 т ОЯТ в год это примерно 70% всего ОЯТ Западной Европы. При этом доля атомной энергетике Франции от европейской около 55%. Так что они перерабатывают не только свое топливо, но и топливо из Германии, Щвейцарии, Бельгии, Нидерландов, Италии и даже не из Европы из Японии и Китая. Правда масштабы использования плутония из этого топлива для производства МОКС не такие большие как могли бы быть не более 200 т топлива в год. Так что когда Гринпис заявляет, что ни одна страна в мире не везет к себе ядерные отходы (а ОЯТ они тоже называют отходами, как и ОГФУ) смело можно напоминать им про переработку ОЯТ во Франции. И это при том что радиотоксичность ОЯТ несопоставимо выше, чем у ОГФУ.


Крупнейший в мире завод по переработке ОЯТ La Hague, Orano, Франция. Источник.

В России тоже планируют расширять использование МОКС-топлива при постепенном переходе к двухкомпонентной атомной энергетике (вот интересная презентация об этом) с тепловыми и быстрыми реакторами. Быстрые реакторы тут нужны для улучшения изотопного состава плутония и его расширенного производства. Правда в основном в этой двухкомпонентной системе предполагается делать упор на переработку ОЯТ для РЕМИКС-топлива (неразделенная смесь выделенного из ОЯТ урана и плутония с добавкой обогащенного урана) для реакторов ВВЭР. Опытный центр по новой технологии переработки ОЯТ сейчас вводят в Железногорске. Все это не только позволит включить в топливный цикл делящиеся изотопы урана и плутония из отработанного топлива, сократив тем самым использование ресурсов свежего урана до 20%, но и решить проблему обращения с ОЯТ, существенно уменьшив объемы захоронения высокоактивных отходов (до 100 раз) и время, которое они представляю угрозу (с сотен тысяч лет до сотен лет).

Так что это все тоже история про рациональное использование ресурсов, снижение рисков и вреда для окружающей среды, за что так выступают экологи-активисты. И при этом это история про изменение облика атомной энергетики и решение ее текущих проблем (типа обращения с ОЯТ), что антиядерным активистам уже совсем не нравится.

Всего к текущему моменту в мире использовано лишь около 2000 т МОКС-топлива, а ежегодные мощности по его производству в России, Франции, Англии и Японии составляют не более 400 тонн. А значит существующих в мире запасов ОГФУ (около 2 млн т.) при нынешнем объеме использовании хватит на десятки тысяч лет. При этом ежегодно добывается и используется около 50-60 тыс. тонн урана, большая часть которого так же переводится в гексафторид для обогащения, а значит до 90% его объема переходит в категорию ОГФУ, пополняя его мировые запасы.

Из вышеперечисленного мы должны честно констатировать минимум 3 факта:
1. Сейчас сложно однозначно сказать будет ли в будущем в мировом масштабе существенно увеличиваться или уменьшаться объем использования ОГФУ в виде МОКС-топлива. Прогнозов и факторов, на это влияющих, много. Но у России и ряда других стран планы по такому расширению есть.
2. Существующих запасов ОГФУ при нынешних темпах использования хватит на тысячи лет.
3. Темпы образования нового ОГФУ превышают темпы его использования.

Означает ли это, что объемы накопленного ОГФУ только увеличиваются? Как ни странно нет. Давайте разберемся почему.

Урану да. Гексафториду нет


Для использования в качестве ядерного топлива нужны делящиеся тяжелые элементы уран или плутоний. Их химическая форма (обычно это оксиды, либо в будущем нитриды или другая экзотика) играет свою роль определяя плотность и прочностные характеристики топлива, но вторична для его ядерно-физических свойств по сравнению изотопным составом делящегося материала. Поэтому в запасах ОГФУ ценность как топливный ресурс составляет именно уран. И несмотря на относительную безопасность обращения с ОГФУ, все же эта химически опасная фторидная форма не лучшее решение для длительного хранения.

Поэтому общемировым трендом является деконверсия, или обесфторивание запасов ОГФУ, т.е. перевод гексафторида урана в другую химическую форму в закись-окись урана (ЗОУ, или U3O8). ЗОУ это термически и химически устойчивое соединение, нерастворимое в воде и нелетучее. Самое оно для длительного хранения и даже, если такая задача возникнет, захоронения, т.к. это как раз и есть одна из наиболее распространенных в природе форм соединения урана, еще и менее радиоактивная чем природный уран. При этом при деконверсии помимо оксидов урана из гексафторида получают другие продукты с содержанием фтора. Например, тот же безводный фтороводород HF, применяющийся в промышленности. Так что гексафторид урана выступает еще и вторичным источником фтора, который сейчас в России добывают из китайского сырья.

Так вот, накопления ОГФУ в мире не происходит именно потому, что темпы его перевода в ЗОУ сопоставимы с темпами образования нового ОГФУ около 60 тыс. т. в год. И темпы деконверсии будут только нарастать, так что в ближайшие десятилетия мировые запасы ОГФУ будут переведены в более безопасную форму.


Мировые мощности по деконверсии ОГФУ в закись-окись урана. На текущий момент около 25% мировых запасов ОГФУ уже переведены в более безопасную оксидную форму. Во Франции 75%, в России и США около 10%. Источник.

Опыт Франции


Лидерами по деконверсии являются французы. У них законодательно необходимо запасы ОГФУ переводить в закись-окись для длительного хранения, и отходами они не считаются. Первая мощная установка W1 по переводу гексафторида в ЗОУ разработана и запущена у них еще аж в 1984 году. Ее производительность 10 тыс.т. ОГФУ в год. Позднее построили вторую установку W2 той же производительностью. Мощности по деконверсии во Франции уже превышают объемы образования нового ОГФУ, так что запасы их ОГФУ сокращаются. По разным оценкам до 300 тыс. т ОГФУ (не только французских) во Франции уже переведены в более безопасную форму оксидов.

Полученные запасы ЗОУ хранят в металлических контейнерах DV-70 c толщиной стенок в 5 мм, объемом по 3 м3 и вмещающих по 10 т. ЗОУ. Контейнеры хранят в несколько ярусов в ангарах на территории двух французских атомных заводов в Bessines и Tricastin. При этом из 10 т. ОГФУ получается 8 т. ЗОУ, а с учетом более компактной упаковки ЗОУ еще и занимает в 5-6 раз меньшую площадь при хранении.


Хранилища ЗОУ во Франции. Хранятся они такими штабелями в легких ангарах на атомных производствах как запас и сырье на будущее, поскольку у атомной промышленности и энергетики Франции планы на это будущее пока есть. Источники фото (1 и 2).

Опыт Urenco


Компания Urenco второй по величине игрок на мировом рынке обогащения урана после нашего ТВЭЛа (дочка Росатома). Я подробно писал о них в прошлых статьях. В Европе у них три завода в Великобритании, Нидерландах и Германии. Они работают в разных странах, а их заказчики по всему миру. Так что эта коммерческая компания работает уже почти полвека по всем международным и национальным законам. При этом это не атомная госкорпорация или чья-то национальная компания, как в России, Франции или Китае, которые помимо решения коммерческих задач занимаются составлением и реализацией стратегии развития атомных отраслей в своих странах и на мировых рынках (при всех плюсах и минуса такого подхода). Urenco это компания, чей основной бизнес это именно обогащение урана для коммерческих АЭС по их запатентованной центрифужной технологии. Остальное для них вторично. Поэтому они просто зарабатывают на том что делают хорошо и извлекают выгоду там где это возможно для них и их партнеров. Это не лучше или хуже других подходов, просто это реальность и особенность, которую надо понимать говоря про рынок ядерных материалов и обогащения урана.

Поэтому, когда Urenco было выгодно, они отправили часть своего ОГФУ на деконверсию во Францию. Из 300 тыс. т. переработанного французами гексафторида, 46 тыс.т. (в пересчете на металлический уран) это ОГФУ европейской Urenco, переработанного по контрактам с 2003 по 2014 год. Полученный ЗОУ Urenco забрала и передала нидерландской организации по обращению с радиоактивными отходам CORVA, опять же, посчитав это для себя выгодным. Ведь планов по производству в будущем МОКС-топлива у Urenco нет.

Кстати, потомки Рембрандта, Босха и прочих Брейгелей в голландской CORVA весьма творчески подошли к вопросу оформления своих хранилищ для радиоактивных отходов и материалов необходимость согласования и получения одобрения у местных общин к тому обязывала (нам бы так!). Поэтому они сделали их символически красивыми снаружи, а внутри вообще открыли филиал местных музеев и картинную галерею.


Это здание для высокоактивных отходов, образовавшихся при переработке во Франции топлива единственной в Нидерландах АЭС Borsele (мощность всего 440 МВт, и она расположена тут же неподалеку) и единственного голландского исследовательского реактора. Со временем здание будут перекрашивать в менее яркий цвет, символизируя постепенный спад тепловыделения и активности отходов.


А это картинная галерея, организованная прямо внутри хранилища РАО. Отличный способ совмещения приятного с полезным и прикоснуться к искусству и увидеть, что РАО это не страшно. И это важно как для работников, так и для посетителей.


А в этом здании (тут показан проект и рендер) около 100 лет будут хранить обедненный уран в виде ЗОУ. На фасаде размещены крупнейшие в Европе солнечные часы авторства известного голландского художника William Verstraeten. Они символизируют важность времени в вопросе обращения с радиоактивными отходами и материалами.

К 2130 году в Нидерландах должны запустить в работу глубинный пункт захоронения радиоактивных отходов. Пока проект хранилища хранилищаOPERA выглядит вот так. Если к тому времени ЗОУ не найдут применение, его тоже поместят туда. При этом цена вопроса 2 млрд евро. Что в пересчете на кг обедненного урана около 7,7 евро за кг.

Другой пример прагматичного подхода Urenco это решение в 2010-м году самой построить завод по деконверсии на площадке в Кайпенхерсте (Великобритания) Tails Management Facility (TMF). В 2020 году его должны полностью запустить. Возможно, таким образом они решили экономить на французских услугах по деконверсии (хотя технологию купили у них, как и все в мире), возможно решили зарабатывать на аналогичных услугах для английской Nuclear Decommissioning Authority (NDA), у которой есть свои запасы ОГФУ, оставшиеся от работы английского газодиффузионного завода в Кайпенхерсте, работавшего до прихода на площадку Urenco. Не случайно завод по деконверсии построен именно на английской площадке Urenco, а не в Германии или Нидерландах, где таких запасов нет. Общие запасы ОГФУ в Кайпенхерсте, от Urenco и NDA около 130 тыс.т. И нюанс в том, что теперь ОГФУ Urenco из Германии и Нидерландов тоже будут отправлять сюда на деконверсию. И где Гринпис, говорящий что никто кроме ядерной помойки России к себе чужой ОГФУ не везет? Возят, еще как, уже много лет и в полном соответствии с международными правилами и законами.

Кстати, англичане тоже ОГФУ и полученный из него ЗОУ отходом не считают. После переработки обедненный уран принадлежащий NDA останется в Кайпенхерсте на длительное хранение под управлением Unenco, как и часть ЗОУ самой Urenco. Атомная энергетика в Великобритании развивается и они вкладываются в исследования способов использования обедненного урана.

В Германии отношение к атомной энергетике самое негативное из стран, где работает Urenco. Поэтому пока их обедненный уран из Гронау будут переводить в форму ОЗУ для длительного хранения, а потом, скорее всего, будут захоранивать в качестве низкоактивных отходов, потенциально в объеме до 100 тыс.тонн. Однако пока даже в Германии ОГФУ, ОЗУ и обедненный уран не имеет статуса радиоактивных отходов.

И да, идея отправить часть ОГФУ на дообогащение в Россию это тоже прагматичное решение Urenco, взаимовыгодное и для Росатома, т.к. Urenco получает обратно 30% этого урана в виде эквивалента природному, избавляется от дважды обедненного урана (да, такая мотивация наверняка тоже присутствует), а Росатом зарабатывает на обогащении и получает то что считает ресурсом. При этом практика, когда обедненная часть урана остается у обогатительного завода общемировая, просто обычно это ОГФУ после обогащения природного урана, а в России еще и после обогащения ОГФУ.

Опыт США


В США подход к статусу ОГФУ двоякий, поскольку там есть ОГФУ, имеющий разных собственников и частных и государственных. У них есть два крупных закрытых предприятий по диффузионному обогащению урана в Падьюке и Портсмуте, принадлежащих Министерству энергетики (Department of Energy DOE). Выше я показывал фото их складов со спутников. На них скоплены основные запасы ОГФУ в США около 800 тыс.т. В 2004 году они приняли план по выводу заводов из эксплуатации, и по обращению с запасами ОГФУ (Portsmouth/Paducah Project Office Mission ). Программа предполагает деконверсию ОГФУ в ЗОУ с попутным получением фторсодержащих продуктов и высвобождением тары от ОГФУ, а это более 60 тыс. стальных контейнеров. При этом после обесфторивания ОГФУ они планируют разместить обедненный уран (ОУ) в форме оксида на долговременное хранение на трех площадках, приспособленных для хранения радиоактивных отходов (РАО). Однако что с ним делать они окончательно не определились и к РАО по умолчанию не относят, полагая его возможное дальнейшее использование. И даже запустили целую программу исследования способов его будущего применения.


Хранилище ОГФУ в США. Источник.

Любопытно, что примерно 20% их запасов ОГФУ это довольно богатые хвосты более 0,34%. Т.е. это вполне себе экономически привлекательное сырье, из которого можно получить до 40 тыс. т. эквивалента природного урана почти годовую его добычу во всем мире. Но своих свободных мощностей у них нет, а дообогащение их хвостов в России, как это делают европейцы, в США ограничено законодательно. Но они не исключают возможности дообогащения ОГФУ в случае появления у них новых технологий и желающих этим заниматься. В частности, DOE планирует в течение 40 лет передать до 300 тыс.т. ОГФУ (около 40% запасов) будущему консорциуму Global Laser Enrichment (GLE), разрабатывающему перспективную технологию лазерного разделения изотопов. Дела у GLE пока идут так себе, но важно само намерение и масштаб DOE рассматривает минимум 300 тыс. т. ОГФУ (37% запасов) как сырье для дообогащения, а не отход.

Но кроме старых федеральных запасов, в США есть и новый ОГФУ, который образуется у частных обогатительных компании. Точнее, это один обогатительный завод Urenco USA (см. предыдущую статью). И вот для таких частников (нынешних и будущих) США определили, что пусть они сами решают что делать с ОГФУ: придумают как выгодно использовать пожалуйста, а если нет, то им оставили такую опцию, что они имеют право сдать ОГФУ и обедненный уран в собственность DOE в статусе низкоактивных РАО. И Urenco решили, еще до постройки завода, что им так будет выгоднее и что они так и будут делать. И именно то, что они имеют право так делать и подтвердил меморандум 2005 года в отношении отходов завода Urenco USA (он же LOUISIANA ENERGY SERVICES, L.P.). Но Гринпис любит ссылаться на этот меморандум как подтверждение того, что якобы в США с 2005 года ОГФУ отнесли к числу радиоактивных отходов. Все, как мы видим, несколько сложнее. По крайней мере насколько я смог в этом разобраться, хотя не исключаю что я что-то не так понял.

Кстати, максимальная суммарная мощность установок по деконверсии ОГФУ в США составляет около 22 тыс.т. в год. Но пока за 9 лет они перевели в форму оксидов чуть более 70 тыс. т. ОГФУ, что даже меньше, чем в России за тот же срок. Переработка всех запасов в США по планам займет еще не менее 30 лет.

Опыт и планы России


В России на АО ПО ЭХЗ в Зеленогорске с 2009 году работает установка по деконверсии и обесфториванию ОГФУ по все той же французской технологии, и называется она W-ЭХЗ, по аналогии с французской W, на конец прошлого года на ней переведено в форму ЗОУ уже около 100 тыс.т. ОГФУ, т.е. более 10% российских запасов. При этом получены и отгружены потребителям 52 тыс. тонн фтористоводородной кислоты и более 10 тыс. тонн безводного фтористого водорода HF. Частично они идут на повторную конверсию природного урана для обогащения. Тем самым исключается необходимость закупки в Китае флюорита основного сырья для получения фтора в России.


Установка W-ЭХЗ в Зеленогорске, на которой уже 100 тыс.т. ОГФУ переведено в ЗОУ.

У Росатома существует Программа безопасного обращения с ОГФУ, которая подробно обсуждалась и даже корректировалась за последние полгода в рамках работы Общественного совета Росатома и его рабочих групп по этой теме, в том числе с участием представителей Гринпис. Согласно программе к 2024 году будет введена в эксплуатацию еще одна установка деконверсии W2-ЭХЗ. Контракт на нее с французской компанией Orano за 40 млн евро уже заключен) в декабре 2019-го. А к 2028 введут и W3-ЭХЗ, что позволит увеличить мощности по обесфториванию в Зеленогорске до 30 тыс.т./год.


Получаемые контейнеры DV-70 с ЗОУ в Зеленогорске, такие же, как в Европе.

Параллельно, до 2026 года две установки W будут размещены и в Новоуральске. Проектирование там уже тоже начато. Таким образом, общие мощности по обесфториванию ОГФУ в России составят до 50 тыс.т. в год что будет больше, чем у любой другой страны мира. При этом разрабатываются и собственные технологии обесфторивания, но пока они не нашли масштабного применения. Все эти планы позволят перевести все запасы ОГФУ в безопасную форму закиси-окиси урана к 2057 году. Первоначальный вариант программы полгода назад предполагал что ликвидация запасов будет к 2080 году, так что обсуждение пошло программе на пользу и сократило этот срок.
Кроме того, планируется ликвидировать две из четырех существующих на текущий момент площадок хранения обедненного урана в Северске и Ангарске, оставив лишь две, где будут установки обесфторивания в Новоуральске и Зеленогорске.

Как видим, программа обращения с ОГФУ у России вполне на мировом уровне. Еще бы хранилища сделать красивые как в Нидерландах и запустить серию быстрых реакторов

А сколько же это стоит?


Это важный вопрос, который к сожалению Росатом не очень хочет раскрывать, как и коммерческие подробности контрактов с Urenco. Все что они говорят это то что процесс перевода ОГФУ в ЗОУ конечно затратный, и даже продажа побочных продуктов в виде фтороводорода и плавиковой кислоты его не окупает. Но они готовы нести эти затраты из своей прибыли, закладывая ее в стоимость продукции, в рамках реализации экологической политики. Глядя на размер контракта по поставке одной установки W в 40 млн евро , общие затраты на деконверсию за почти полвека (с 2010 по 2057) составят минимум 200 млн евро. При чистой прибыли ТВЭЛ ежегодно порядка 1 млрд $ вполне подъемная сумма.

При этом вопрос стоимости дальнейшего хранения тоже не раскрывается. Однако, думаю, что он не очень большой, т.к. требования к обслуживанию тут даже ниже чем к ОГФУ из-за инертной формы ЗОУ, а расходы на охрану вряд ли вырастут, т.к. склады все равно будут на охраняемой территории режимных комбинатов в закрытых городах.

А если придется захоранивать?


Отдельный вопрос, который справедливо задает и Гринпис какова будет стоимость захоронения запасов обедненного урана в случае, если они все же не пригодятся. При этом видимо предполагается, что с учетом распада урана-238 в 4,5 млрд лет это будет вечное, а значит бесконечно дорогое удовольствие. Росатом предпочитает об этом даже не говорить, что понятно, ведь их стратегия предполагает его использование. Однако Беллона в своем докладе попыталась сделать оценки на основе немногочисленных зарубежных проектов. Если отбросить странное сравнение ЗОУ и ОЯТ, то диапазон стоимости захоронения обедненного урана в приповерхностных и глубинных пунктах захоронения (которых пока все равно нет) от 1 до 30 $ за 1 кг. Это согласуется с оценкой Нидерландов для глубинного захоронения в 7,7 евро за кг, которую я приводил выше. И это вполне сопоставимо со стоимостью захоронения РАО 1-го класса опасности (самый опасный после переработки ОЯТ) в России, предполагающих глубинное захоронение около 1,4 млн.р. за 1 м3. Но надо понимать, что верхние оценки связаны с глубинным захоронением, типичным для высокоактивных долгоживущих отходов, что не совсем применимо к обедненному урану.

Давайте попробуем понять к чему же должен относиться обедненный уран. Радиоактивные отходы классифицируются по уровню удельной активности (сколько в них радионуклидов на единицу массы) и усредненному периоду полураспада (короткоживущие, средне- и долгоживущие). Так вот, самым опасным считается то, что получается при переработке отработанного ядерного топлива там целый компот радионуклидов с огромными удельными активностями и с самыми разными периодами полураспада (до сотен тысяч лет), к тому же это все еще и тепло выделяет, что требует особого обращения. По российской классификации это уже упомянутый 1-й класс отходов, цена их захоронения почти полтора миллиона рублей за 1 м3. Цена тут связана со сложностями процесса хранения (теплоотвод) и требованиями к месту захоронения именно такой тип отходов во всем мире планируют захоранивать глубоко под землей. Про такие захоронения, в том числе проект российского, я уже писал отдельную статью.

Но для специалистов очевидно, а остальным я сейчас на цифрах покажу, что обедненный уран (ОГФУ или ЗОУ) и 1-й класс РАО это совсем разные вещи. В среднем, активность обедненного урана около 3-12 кБк/г, и это практически активность одного природного изотопа урана-238. Удельная активность РАО 1-го класса может быть в тысячи и миллионы раз выше и определяться десятками техногенных радионуклидов. Ниже даны критерии отнесения к тем или иным РАО, принятым в России:


Классификация РАО по Российскому законодательству (Постановление Правительства РФ от 19 октября 2012 г. N 1069 г.) Источник таблицы.

Видно, что по уровню содержания альфа-излучателей, а основной компонент обедненного урана уран 238, который альфа-излучатель, обсуждаемый материал относится либо к низко- (НАО) либо в крайнем случае к среднеактивным (САО) РАО, в зависимости от материала матрицы, в которой предполагается захоронение.


Классификация РАО в инфографике Национального оператора по обращению с РАО с привязкой к требованиям по организации пунктов захоронения для различных классов РАО. Всего в России все РАО делятся на 6 классов. С ростом номера класса его опасность уменьшается.

С учетом большого периода полураспада урана-238 (4,5 млрд. лет), обедненный уран скорее всего можно отнести ко 2-му или 3-му классу РАО, в зависимости от его удельной активности. Если ЗОУ перед захоронением спрессовать и/или включить в керамическую или иную матрицу и повысить его плотность, то вполне можно вписать его в 3-й класс РАО, который необходимо размещать в приповерхностном пункте захоронения на глубине не более 100 м. В США, кстати, именно приповерхностное захоронение и рассматривается как основной вариант.

Скажу сразу, таких пунктов в России пока нет. Пока работает один (в Новоуральске) и строится еще несколько для среднеживущих (до 30 лет период полураспада) РАО 3-го и 4-го класса. Насколько я понимаю, долгоживущие НАО 2-го класса (наш случай) туда сдавать нельзя.

Однако тарифы на прием разных классов РАО уже существуют. И в них заложена не только разовая передача РАО, но и обслуживание на весь срок их опасности. Стоимость захоронение 1-го м3 РАО 3-го класса около 170 тыс. р. Грубо прикинем, что объем запасов ЗОУ даже без уплотнения будет около 220 тыс. м3 (800 тыс.т. ОГФУ = 640 тыс.т ЗОУ с плотностью около 3 т/м3). Значит стоимость захоронения около 37 млрд. р. Меньше одной годовой прибыли компании ТВЭЛ. Получаются не такие большие суммы для многолетнего проекта.

Но на выбор стратегии захоронения есть еще десятки лет. И хочется все же надеяться, что в большей степени реализуется сценарий вовлечения обедненного урана в топливный цикл будущей атомной энергетики и она будет приростать быстрыми реакторами. Либо появится еще новые способы применения обедненного урана, например в термоядерной энергетике. Ну а пока его дообогащают, частично используют в МОКС-топливе, постепенно переводят в безопасную форму для длительного хранения и вкладываются в R&D по его новым видам применения.

ИНТЕРВЬЮ С АЛЕКСАНДРОМ НИКИТИНМ


Все перечисленное выше в этой и предыдущих статьях это по сути мое мнение по теме, выработанное на основе изучения многочисленных источников, бесед со специалистами и собственного опыта работы атомной сфере. Но тем не менее вопрос этот для меня во многом был новым. Поэтому я решил решил поговорить на эту и смежные темы с человеком с гораздо большим опытом в подобных вопросах. Это Александр Константинович Никитин, один из авторов доклада об ОГФУ, руководитель Беллоны и руководитель комиссии по экологии Общественного совета Росатома. А помимо этого капитан 1-го ранга в запасе и единственный человек в России, оправданный после обвинений ФСБ в разглашении государственной тайны за подготовку доклада о радиоактивных проблемах Северного флота в 1995 году.

Так что мы поговорили не только о текущей истории с ОГФУ, но и о проблеме экологических организаций в России. Ниже публикую видео нашего разговора, занявшее 1 час 20 минут, выложенное у меня на youtube-канале (подписывайтесь на него!). Полную расшифровку давать не будут, т.к. часть вопросов уже рассмотрены мной в этой и предыдущих публикациях (но я все равно рекомендую послушать разговор, поскольку нюансов там много), сделаю тут расшифровку лишь некоторых моментов разговора, не затронутых ранее в моих публикациях о том, как эта история с ОГФУ проходила через Общественный совет Росатома, как в его работе участвовал Гринпис, ну и вообще о том как живется экологическим организация в России и что делать простым людям, которых волнуют вопросы радиационной и ядерной безопасности.


Видеозапись интервью. В описании видео на Youtube указаны тайм-коды, где можно сориентироваться по обсуждаемым вопросам.

Частичная расшифровка интервью:


10 лет назад была похожая история с ввозом ОГФУ из Европы и протестами. Чем та ситуация отличалась от нынешней и чем закончилась?
Я как раз пришел в Общественный совет Росатома, когда эта дискуссия была в разгаре. И помню все слова Кириенко по тому вопросу и как он это тогда объяснял. Ввоз ОГФУ в Россию начался еще в советское время. Но 10 лет назад шум был поднят, как и сейчас, Гринписом. Это известная уважаемая организация, у них есть отделения за рубежом. Тогда Гринпис из Германии этот вопрос поднял, дал информацию Гринпису России и те стали эту информацию раскручивать. Беллона тогда тоже присоединилась к этому процессу, поскольку ОГФУ выгружали в Санкт-Петербурге, чуть ли не в центре города, как и сейчас. И этот процесс надо было каким-то образом понимать и освещать. Но когда подняли этот шум, контракт между ТВЭЛ и немцами уже заканчивался. И когда этот вопрос подняли на Общественном совете Кириенко сказал, что с завершением контракта закончится и ввоз. Но это не так было, как сейчас объясняют некоторые коллеги, что мол начался протест и поэтому закончили ввоз. Нет. Просто закончился контракт. И обещаний не ввозить больше ОГФУ Кириенко не давал.

Как развивалась история с ввозом ОГФУ в 2019 году?
Те, кто занимался этим контрактом, ТВЭЛ и ТЕНЕКС, они тогда, 10 лет назад, не очень в это вникли, поскольку это прошло быстро и мимо них. Поэтому на этот раз, когда появился новый контракт, они просто тихо начали его исполнять, никому ничего не говоря, не оповещая, считая, что это просто сделка между двумя коммерческими организациями. И опять, как и 10 лет назад, появилась информация немецкого Гринпис о том, что везут ОГФУ в Россию, российский Гринпис и некоторые другие организации поменьше и активисты, которые за этим следят, информацию подхватил и разгорелся этот скандал.

Когда разгорелся скандал, собрали специальное заседание Общественного совета Росатома по этому вопросу, пригласили руководство ТЕНЕКСА и ТВЭЛа, и попросили объяснить, что происходит. Они объяснили, и Лихачев (прим. гендиректор Росатома) сказал, чтобы вся эта информация о том насколько это законно, насколько это опасно или неопасно, насколько необходимо, в чем суть этих действий, чтобы она была достоянием общественности. Он попросил меня создать рабочую группу по обращению с ОГФУ в Общественном совете, пригласить в нее всех желающих кто хочет войти. В работе группы участвовали и представители Гринпис, РСоЭС, других организаций, несколько журналистов, члены рабочей группы ОС по обращению с РАО о ОЯТ. Еще начались дискуссии в Санкт-Петербурге, через который доставляли ОГФУ в Россию, там ряд местных депутатов выступили, в том числе оппозиционных.

И тогда начался процесс работы со всеми категориями общественности, процесс просвещения что делается, как, зачем и т.д. Были организованы технически туры на разгрузку судна с ОГФУ, куда пригласили всех желающих, показали, как все происходит, как перегружают ОГФУ на железнодорожные платформы, какие при этом уровни радиации и т.д. Поговорили с капитаном судна, ему задали массу вопросов журналисты. Короче, шел процесс ответов на вопросы об ОГФУ, причем всем желающим. Было несколько заседаний рабочей группы, где вопросы задавали и на словах и письменно. ТВЭЛ сказал, что они обновляют принятую ранее программу обращения с ОГФУ с учетом пожеланий и вопросов выставленных в этот раз. Был организован тех-тур в Зеленогорск (прим. там переводят ОГФУ в ЗОУ), куда позвали всех желающих. Правда Гринпис отказался по непонятным причинам, сказав, что им не удобно и они скажут, когда им удобно. Но так ничего и не последовало. Я думаю, что Гринпис реально просто не захотел туда ехать и смотреть. Потом они говорили, что им бы все равно ничего не показали, что они хотели. Ну, не хотят и не хотят.

На одном из заседаний рабочей группы было высказано предложение подготовить информационный ресурс по теме в виде доклада, как подробного, так и краткого. Не насколько огромный, чтобы там можно было утонуть, достаточно простой, но отражающий все стороны, связанные с обращением с ОГФУ. Вот откуда растут ноги у этого доклада, который мы подготовили и презентовали.

Как вы относитесь к Гринпис, и как объясняете их антиатомную мотивацию?

Я как правило не обсуждаю и не осуждаю различные организации, которые что-то делают. Они считают, что надо что-то делать и делают. В т.ч. Гринпис. Считают, что должны занимать такую позицию в отношении области использования атомной энергии. Я неоднократно с руководством Гринпис дискутировал по этому поводу. Просто у них есть своя стратегия по отношению к области использования атомной энергии и АЭС, и радиоактивных отходов, и ОГФУ всему. У них есть позиция, всем известная и ими не скрываемая. Как говорит мой товарищ это просто работа у них такая. Если есть повод о чем-то сообщить, пошуметь, с чем-то не согласиться они это делают.

Получается, что у них есть позиция, которая не меняется, чтобы им не говорили и не объясняли. Они были в рабочей группе Общественного совета по ОГФУ, они задавали вопросы, получали ответы. Их позиция по поводу ОГФУ как-то поменялась?

Нет, не поменялась. И я честно говоря даже немного удивился, потому что одна из их позиций в отношении атомного ведомства не принимать участия ни в каких его мероприятиях конференциях, слушания и т.д. Это одно из их правил. Поэтому, когда коллеги появились на рабочей группе, я удивился. И еще. Когда я говорю со своими коллегами экологами, то я говорю, что если вы экологи, то вас в первую очередь должны интересовать вопросы экологической безопасности, охраны окружающей среды и защиты людей. Но если вы переходите на экономику, на деньги, на политические вещи, то это уже другая работа.
Большинство вопросов, которые нам прислали из Гринписа, они касались или экономики (затраты, выгода и т.д.), или стратегически-концептуальные, типа насколько вы уверены в перспективах замкнутого ядерного цикла, или какая позиция США и почему у вас другая позиция. Т.е. это вещи, по которым конечно можно дискутировать, но если ты хочешь решить конкретный вопрос, например, который мы перед собой поставили законность и безопасность, то мы на них ответили в своем докладе. Вопросы экономики, конечно, интересны, нам не показывают контракты, да, ссылаясь на коммерческую тайну, а Гринпис говорит покажите. Ну

Но действительно, если какие-то цифры не говорят, пусть и по понятной причине, это вызывает определенные подозрения. О Гринпис мы поговорили. Расскажите, как повел себя Росатом в этой истории, на все ли вопросы ответили, как они вообще отнеслись к необходимости общаться с Гринпис?

Это был тот случай, когда их, т.е. предприятия, задействованы в ввозе ОГФУ, как говорят, немного нагнули. В первую очередь это сделал руководитель ведомства (прим. Лихачев). Если бы он не собрал заседание и не сказал работайте с общественностью и делайте это, это и это, то они скорее всего ушли бы от этого. Росатом это огромная структура, у них огромное количество организаций и предприятий, каждое из которых по тем или иным причинам старается не выдавать информацию и не отвечать на вопросы журналистов и общественников пока их не заставляют.

Вот в чем собственно важность этой работы, хотя меня многие коллеги из общественных экологических организаций критикуют за то, что я сижу в Общественном совете Росатома и руковожу комиссией по экологии. Но важность этой работы в том, что иногда и зачастую только через совет и комиссию мы можем достучаться до той информации, до которой мы иначе не можем достучаться нам или формально ответят, или вообще скажут, что это конфиденциально. И тогда мы вообще ничего не получаем. Без контактов с руководителями организаций Росатома через общественный совет иногда даже самой элементарной информации невозможно получить.

Но когда контактируешь с ними, надо понимать, что у них тоже есть ограничения. Ведь члены общественного совета не допущены к сведениям, содержащим гостайну, не допущены к закрытой коммерческой информации. Это люди, которые представляют общественные организации, но им не обязаны раскрывать вещи, которые прячутся за этими ограничениями.
Росатом каждый раз, когда надо поделиться новой информацией, и которая является в каком-то плане чувствительной, подходят к этому индивидуально, во-первых, а во-вторых, они предпочитают это делать через нашу комиссию, а не напрямую. Например, если какой-то журналист делает им запрос, по закону они должны дать ответ, но если это чувствительная информация, то с этого ответа ты ничего не узнаешь. Бюрократы научились отвечать таким образом. Но если реально надо узнать о чем-то, то иногда и коллеги из Гринписа ко мне обращаются и просят о чем-то узнать. И если я получаю информацию, то я им ее отдаю. Вот так это работает.

Экологические активисты и организации, интересующиеся не только атомными вопросами, у нас в стране сталкиваются с сопротивлением, причем даже не отрасли, а властей в целом. Та же Экозащита имеет сложности с регистрацией. Многие организации объявлены иностранными агентами. У вас тоже есть личный опыт конфликтов и противодействия властей, хоть и из 1990-х. Сейчас сложнее, чем в 1990-е? И насколько это все осложняет работу экологических организаций сейчас?

Ну Беллона тоже объявлена иностранным агентом. Тут ничего удивительного нет. Эта неразумность, с которой государство подошло к этим вопросам, она конечно очень сильно повлияла на все общественное движение. Когда-то было экологическое общественное движение, были огромные объединяющие организации, был Международный социально-экологический союз. Сейчас правда есть российский социально-экологический союз (РСоЭС), и там есть хорошие моменты, связанные с экологическим образованием. Но то что связано с областью использования атомной энергии, там все, к сожалению, очень сложно. Вот знаете, раньше были авторитеты и на самом деле специалисты, образованные в этой области. С ними можно было разговаривать, и они понимали, о чем речь. А сейчас есть активисты, в том числе в РСоЭС, они просто называют себя активистами по жизни. Активист по жизни это значит, что некоторые из них даже школу не закончили, не говоря уже о высшем образовании, с детства такой стоял с плакатом против всего и вот он так и живет, ему 40 лет, а он все с плакатом стоит под забором. И сложно с таким разговаривать, потому что он даже не понимает, о чем речь и как можно решить вопрос стратегически.

И потом, сама концепция. Надо определяться. Вот ты что хочешь сделать? С плакатом постоять или вопрос решить? Если с плакатом, то пожалуйста, там и образования не надо. А если решить какой-то вопрос то это немножко по-другому надо делать. Т.е. нужны подходы, контакты, понимание, предложения, аналитика, ну т.е. это вот такая работа, которая требует и образования, и опыта, и понимания того чего ты хочешь, самое главное. И у меня иногда складывается впечатление, что очень многие, что вот это движение антиядерное, которое было раньше там были очень большие авторитеты, но одни уехали за границу, другие умерли, третьи прекратили вообще деятельность, т.е. нету того что было лет 20-25 назад, когда все это начиналось, нет этого антиядерного сообщества. А новое не пришло.

Я всех экологов знаю, активистов, организации, движения, начиная с Владивостока и заканчивая Калининградом, но я затрудняюсь сейчас назвать группу какую-нибудь, которая в области использования атомной энергии была бы той группой, которую можно было уважать за эту работу, и понимать, самое главное, что они хотят и что они делают. Не просто против, мы против и все, вот пожалуйста. Это другой вопрос. Это грустно, но это так.

Что тогда делать простым людям, не входящим в какие-то организации? У которых есть вопросы, есть беспокойство. Тема ОГФУ сложная, во-многом спорная. Я сам общаюсь с людьми и наталкивают на стену непонимания, на некий образовательный барьер, в том числе. Но людей нельзя обвинять в том, что у них нет каких-то знаний в атомной области. Что же им делать? Куда обращаться со своими вопросами?

Вот эти вопросы, которые возникают в области использования атомной энергии, они не то чтобы постоянно висят на повестке дня, но они возникают постоянно. Вот возник вопрос по ОГФУ, его закончат или все объяснят и он пройдет. Или, условно, начинают стоить новую АЭС, вопрос возникает. Такой ситуационный вопрос. Или вот на Урале, или в Красноярске, возникают периодически такие долгоиграющие вопросы по строительству пунктов захоронения радиоактивных отходов.

На самом деле у людей всегда есть три основных вопроса. Вот я за эти годы, пока я в Общественном совете, ни одних общественных слушаний по вопросу радиоактивных отходов не пропустил. Так вот, у простых людей в зале, когда ты с ними встречаешься, всегда есть три вопроса, которые требует объяснения. Первый вопрос почему это у нас? Почему строят объект у нас, почему везут, там, ОГФУ, к нам, а не куда-нибудь в другое место, и т.д. Второй вопрос, особенно от жителей ближайших районов а что мы будем от этого иметь? Этот вопрос летит не только от простых людей, но и от местных администраций. Хотим новый мост, новый стадион, новую школу, хотим добавку к пенсии вот это вот все. Мы делали большой доклад об этом. О том, что, допустим, когда на Западе куда-то приходит компания подобная Росатому что-то строить, то вот эти территории получают бонусы им добавляют бюджет, еще что-то. Поэтому они соглашаются и даже конкурируют между собой, как это было в Швеции, когда выбирали место для хранилища отработавшего ядерного топлива там был огромная конкуренция между коммунами.

И третий вопрос хотим контролировать. Хотя я это слово, контроль, не очень люблю, мне нравится слово участие. Это более широкое понятие. Это допустим, какие-то экспертизы, совместная работа над предложениями. Действительно заинтересованные люди в регионе, где-что-то происходит, должны организовываться в какие-то общественные группы или советы, которые, во-первых, должны признать местные власти муниципальные или региональные. Эти группы должны, во-первых, взаимодействовать с властями, во-вторых, власти взаимодействуют с Росатомом, в- третьих, это все прилетает нам, мы туда едем и видим эту заинтересованную группу. Которая заинтересована хотя бы в той же информации. И мы работаем над тем чтобы они получали информацию, возможность техтуров, возможность задавать вопросы и получать ответы, давать свои оценки по тому или иному проекту. Вот Нацоператор по обращению с РАО, который занимается строительством хранилищ РАО. Он очень активно создает такие группы. В Красноярске, на Урале.

Вы рассказываете правильные вещи, я с ними согласен. Но в Российской действительности они звучат немножко необычно. Есть ли реальные примеры в Росатоме, кроме Нацоператора, когда люди могут взять, собраться, задать свои вопросы, и с ними буду говорить?

Кроме Нацоператора есть РосРАО, чья деятельность тоже связана с РАО, есть Росэнергоатом там все что связано с производством атомной элеткроэнергии. Есть ТВЭЛ, который только сейчас пришел к нам, и создает сейчас в регионах свои информационные центры. Они говорят если у вас есть вопросы, приходите в эти центры, там есть люди, которые могут ответить на вопросы, или знают кому их направить. Т.е. Росатом пошел по пути создания таких вот информационных центров. В атомных городах создают общественные приемные. Туда человек может прийти. По крайней мере начинать свои поиски оттуда. Если его не удовлетворяют ответы, то можно идти дальше, в том числе к нам, в Общественный совет.



Выводы по всем 4 -частям и теме вообще:


1. Гексафторид урана, как и различные другие формы обедненного урана вообще, рассматриваются не как отход а как ресурс не только в России, но и во многих странах мира. Обращение с ним, его хранение, переработка, перевод в разные формы, также осуществляется в разных странах, включая Европу и США, а его международные перевозки для переработки, не только в Россию, обычная практика. Хранение на предприятии обедненной фракции урана после его обогащения тоже обычная международная практика. Конечно, в каждой стране и компании есть свои особенности и нюансы. Одной из особенностей России и Росатома является возможность (и потребность) дообогащения больших объемов ОГФУ.

2. Гринпис и другие экологические организации и активисты протестуя простив ввоза ОГФУ в Россию подают информацию по теме как минимум неточно, с элементами неосознанных или преднамеренных манипуляций и искажений. Хотя и достоверные факты и справедливые вопросы в их словах есть. Они руководствуются своими установками, что атом это плохо, и от него надо отказываться, и пытаются навязать это мнение как единственно верный вариант при любом удобном случае. Однако даже разбор практики обращения с ОГФУ в мире, который я сделал в своих статьях, показывает, что их идея о том что это отход далеко не доминирующая и как минимум не единственно возможная. Да и отходом кроме антиядерных активистов и организаций ОГФУ мало кто называет. В документах немецкого и нидерландского правительств, на которые ссылается Гринпис и Экозащита говоря о транспортировке отходов, ОГФУ называют ядерным или делящимся материалом.

3. Росатом в ситуации с ввозом ОГФУ, на мой взгляд, провалил информационную кампанию и потом лишь пытался наверстать упущенное. Его традиционная закрытость, нежелание и неготовность своевременно делиться информацией, приводят к плачевным результатам. Вообще, Росатом большой, и в его структуре топливная компания ТВЭЛ и экспортная ТЕНЕКС, которые и занимаются ввозом и переработкой ОГФУ, далеко не самые открытые. Единственный полезный результат Гринпис в этой истории то что ТВЭЛу дали указание идти на контакт с возмущенной общественностью и делиться информацией. Пусть они и не ответили на все вопросы, да и доклад об ОГФУ написали не они, а Беллона и Общественный совет. Однако и негатива от действий Гринпис много в виде подогревания радиофобии в обществе и навязывания неверного мнения о том, что Россия ядерная свалка. Целям Гринписа это, конечно, отвечает, но стратегически это ложный навязываемый выбор.

4. С учетом пункта 1, молчание Росатома по ряду вопросов еще не означает, что имеет место прикрытие деятельности по ввозу в Россию чужих радиоактивных отходов. Равно как и антиядерная деятельность Гринпис в России по любому поводу не означает, что это происки врагов и конкурентов. И то и другое в общем случае это домыслы и конспирология, приводящая к неверным выводам и действиям.

5. Но главный мой вывод вот в чем. В Прекрасной России будущего нужна и открытость крупных атомных корпораций и предприятий (а сама она не возникнет), и развитый общественный контроль за опасными производствами и технологиями (любыми, а не только теми которые кто-то назначил плохими), и компетентные СМИ, суды и надзорные органы, и сильные и грамотные независимые экологические НКО, в том числе грамотные в атомных вопросах, и больше доверия между условными властями и обществом, которое без всего вышеперечисленного не возникнет. В атомной отрасли полно проблем, и специалисты их знают не хуже активистов, хотя понимают под ними они обычно совершенно разное. Но для их решения нужна не только политическая воля, ресурсы, технологии, опыт и специалисты, но и наличие работающих механизмов достижения общественного консенсуса. Пусть это все и далеко за рамками рассмотренной темы, и я многое на себя беру рассуждая об этом будучи специалистом лишь в ряде атомных вопросов, но мне кажется что общественный резонанс по ОГФУ и по многим ядерным вопросам вызван именно этим клубком общественных проблем в нашей стране, а не одними лишь техническими вопросами. Как говорится в старом советском анекдоте про сантехника тут всю систему менять надо.

Поддержать автора


Если вам понравилась моя статья, то вы можете сказать об этом в комментариях (критики то обязательно мне понапишут), а также поощрить будущие публикации материально на карту Тинькофф 5536 9137 7974 2317. И подписаться на мой Youtube-канал.
Подробнее..

Когда будет термояд 500-мегаваттный проект ITER глазами участника

02.09.2020 16:16:09 | Автор: admin
Если объяснять на пальцах, термоядерный реактор это когда в магнитном поле удерживают плазму с температурой в 150 раз выше, чем на Солнце, а в трех метрах от нее находится охлаждающий контур гигантских катушек с температурой почти абсолютный ноль по Кельвину. По факту получаем самую горячую и самую холодную точки в галактике под одним колпаком. В реакторе два изотопа водорода сплавляются в гелий, высвобождая нейтрон, обладающий огромной энергией. По сути, это Солнце на Земле.


ITER международный проект по строительству опытного реактора мощностью 500 МВт, который официально перешел из стадии строительства на стадию сборки.

Виталий Красильников наш рассказчик, работает на проекте уже семь лет.

Виталий родом из Троицка. Закончил троцикую школу 3 (теперь это лицей), отучился на физтехе в МИФИ, выбрав по примеру отца и друзей семьи тему токамаков, а после работал в научном центре ТРИНИТИ. Откликнулся на интересную вакансию в ITER и в данный момент участвует в строительстве самого большого токамака из когда-либо спроектированных человеком. С конца прошлого года Виталий вместе с коллегами курирует разработку нейтронных диагностик.

В августе при поддержке троицкой Точки Кипения он провел вебинар Когда будет термояд?. Эту статью мы сделали вместе с Виталием на основе его лекции и сессии вопросов ответов, которая за ней последовала.


Итак, давайте поговорим о термоядерном синтезе.

Была такая шутка: в каком бы году вы ни спросили, вам отвечают, что термояд будет через 10 лет. Сегодня эти прогнозы по срокам мы формулируем на основе проекта ITER International Thermonuclear Experimental Reactor (Международного экспериментального термоядерного реактора). Сейчас это знамя, под которым ведутся все основные разработки в данной области.

В пике ITER должен производить 500 МВт ядерной мощности в 10 раз больше, чем требуется для его работы. Это один из самых амбициозных энергетических проектов. Сегодня в нем участвуют семь стран-партнеров, представляющих больше 50% населения планеты: страны ЕС (выступают как единый участник), Китай, Индия, Япония, Россия, Корея и США. Со стороны проект поддерживают Австралия и Казахстан.

Базовые принципы работы термоядерной установки


Для неподготовленной части аудитории сделаю небольшое отступление об основных идеях, заложенных в ITER.

Экспериментальный реактор строится для изотопов водорода дейтерия и трития. Если у обычного водорода ядро состоит из одного протона, то ядро дейтерия содержит один протон и один нейтрон, а ядро трития один протон и два нейтрона. В результате реакции дейтерия и трития получается сложное ядро из пяти элементов, которое разваливается на гелий и нейтрон.


Ядерная реакция дейтерия и трития с образованием гелия и свободного нейтрона

Гелий инертный газ, который ничем не вредит. У свободного нейтрона короткое время жизни, он сам по себе не опасен. Но он обладает большой энергией, поэтому нейтрон необходимо каким-то образом поймать и затормозить, а его кинетическую энергию применить с пользой. Один из вариантов нагреть воду, создать турбину и преобразовать эту энергию в электричество.

Чтобы соединить дейтерий и тритий, их нужно разогнать навстречу друг другу. В больших объемах это можно сделать, нагрев смесь двух газов. Но чтобы реализовать эту реакцию в масштабах ITER (получив заданное отношение затрачиваемой и полезной мощности), по предварительным расчетам, придется нагреть смесь до 100200 млн градусов (по Кельвину или Цельсию уже не важно). Для сравнения: на Солнце всего 10 млн градусов, т.е. температура внутри экспериментального реактора должна быть в 1020 раз выше.

Чтобы удержать плазму такой температуры в замкнутом объеме, можно использовать электрические и магнитные поля.
Один из подходящих инструментов предложили еще в Советском Союзе это тороидальная камера, получившая название токамак.
Термоядерный реактор ITER в разрезе

Токамак представляют собой магнитную катушку, где магнитные поля сформированы таким образом, что удерживают плазму в неком объеме внутри бублика.

Огромные перспективы термоядерного синтеза стоят на трех столпах.

  • Топливо для описанной реакции, по сути, бесконечно, существующих запасов землянам хватит на миллионы лет: дейтерий доступен в Мировом океане, а тритий можно производить в неограниченном количестве из лития.
  • Взрыв или ядерное разрушение в результате неконтролируемой термоядерной реакции невозможны в принципе. Если что-то идет не так, реакция просто затухает.
  • И третий это отсутствие выбросов. На выходе мы имеем гелий, который остается в плазме и подогревает ее, а также нейтрон с большой кинетической энергией, который нужно просто поймать. Сама установка, конечно, облучается нейтронами, но не производит ядерные отходы.

Токамаки строились и раньше, в том числе в России. Но даже самый крупный токамак, находящийся в Англии (Jet), пока потребляет больше энергии, чем производит: сейчас отношение полученной мощности к затраченной от 0,8 до 0,9. В ITER планируют улучшить результаты на порядок, добившись отношения 10 за счет другой физики плазмы, которая должна сама себя подпитывать. Правда, предстоит еще понять, как управлять этими процессами.

С ростом масштабов и температур инженерные проблемы растут нелинейно. Увеличился объем плазмы в два раза катушка нужна в четыре раза больше. Нужны сверхпроводники, которые придется обернуть в некий термос и обеспечить внутри температуру -270 градусов. Все это нетривиальные инженерные задачи.


ITER: диаметр 28 метров, высота 30 метров. Масса 30 тысяч тонн

Вот так выглядит ITER. Токамак размещен в колбе, она называется криостат. Это внешняя оболочка, которая охлаждает сверхпроводники катушек, создающих магнитное поле.
Внутри токамака необходимо создать температуру в 100 раз выше температуры Солнца это будет самая горячая точка нашей Галактики. А снаружи будет одна из самых холодных точек 4 градуса по Кельвину.
Расстояние между самой горячей и самой холодной точками всего несколько метров.

Когда технологии не поспевают за теорией


Практически по всем направлениям разработки ITER мы сталкиваемся с проблемами, которые еще никто никогда не решал.

К примеру возьмем электронику, предназначенную для работы в вакууме и использующуюся для космических целей. Однако у нее нет защиты от радиации, которой в космосе почти нет. Существуют радиационно стойкая сталь и электроника для атомных реакторов, но они неспособны работать в вакууме (таких требований в реакторах просто не было). А значит, нужны новые, устойчивые и к вакууму, и к радиации материалы.

Еще пример нейтронные детекторы, которыми я занимаюсь. Для ITER нам нужно несколько сотен детекторов, по 10 кристаллов в каждом. Нынешними темпами мир выращивает примерно 1050 кристаллов в год, а к 2025-му нужно будет получить около 2000 кристаллов. Этот спрос неспособны удовлетворить имеющиеся установки. Несколько западных лабораторий работают над тем, чтобы доработать технологию.

И подобные примеры можно приводить бесконечно.

Краткая история ITER


Впервые о проекте ITER публично заговорили в 1985 году на саммите в Женеве на пике оттепели международных отношений. США и СССР в лице Горбачева и Рейгана договорились о совместных разработках в области термоядерного синтеза. А крестным отцом ITER, пожалуй, можно назвать Е.П. Велихова советского ученого, который предложил эту идею Горбачеву.


Встреча Рейгана и Горбачева на саммите в Женеве, 1985 г.

Некоторое время достигнутая договоренность существовала в эдаком вакууме, но в начале 2000-х к ней вернулись.

Когда в ноябре 2006 года в Елисейском дворце было подписано соглашение между семью странами-участниками, стало понятно, что проект ITER будет реализован.

Строительные работы на площадке начались в 2007 году. К 2010-му на территории уже вырубили лес, выровняли землю, построили несколько зданий. Начали рыть котлован под токамак-комплекс. На фото видны автомобили и домики. Площадь вырытого котлована размером с городской квартал.



В 2011-м начали заливать фундамент.


Ниже на фото активные сейсмические подставки. Они заменяемые: если одна из них выйдет из строя, специальный робот залезет под здание и произведет замену.


Сверху бетонной плиты специальная противосейсмическая раскладка арматуры, которая будет заливаться бетоном.


Я приехал на проект в 2013 году. Тогда все строительство шло под землей и выглядело примерно так:


С конца 2014 года началось возведение стен над землей. На фото ниже Assembly Building. В него для предварительной сборки будут попадать все крупные компоненты системы, а в здание токамака их перенесут с помощью большого крана.



А это подстанция высокого напряжения и трансформаторы.


В 2015 году Assembly Building обернули во внешние стены.


А это фото 2016 года:


А на фото ниже хорошо виден прогресс с 2014 года по весну 2020-го. Фото сделаны с разных ракурсов, но на них заметны существенные улучшения.



А вот так проект выглядит сегодня:


Здание токамака из бетона со стенами толщиной 1-1,5 м закончили 18 июня 2020-го (металлическая конструкция сверху временная)

Еще несколько фото прогресса. Первый кадр снят внутри токамак-здания. Под этой крышкой будет размещаться токамак ITER. Вдали видно здание сборки и перемещаемый кран.


А это основание криостата. Оно уже установлено туда, где будет собираться токамак.


В начале лета 2020-го проект ITER официально перешел из стадии строительства на стадию сборки. Мы чуть ли не каждую неделю принимаем на стройплощадке большие элементы токамака: катушки, части вакуумной камеры. И это новый вызов. Огромные компоненты предстоит подгонять с точностью часового механизма. К примеру, допуски изготовления вакуумной камеры (30-метровой конструкции весом чуть меньше килотонны) 1 мм. Возможно, оборудование придется подгонять под неточные размеры компонентов.

А параллельно идет постоянное уточнение конструкции, переделка чертежей.
Например, электрики выяснили, что нужно использовать более толстые провода. Те, в свою очередь, не помещаются в трубопроводы, плюс придется увеличивать отверстия в стенах. А значит, вырастет поток нейтронов наружу. Итог: придется разрабатывать более стойкую к радиации электронику.
Есть такая шутка, что каждые два года проект строят заново. Но при этом ни один шаг нельзя пропустить: нельзя восемь лет ничего не делать, включившись только на финальном этапе. Необходимо пройти весь путь от начала и до конца.

Структура проекта


Как я сказал, в проекте семь участников. В соответствии с базовой договоренностью Европейский союз вкладывает 45%, остальные страны по 9%. Вкладывают деньги в центральную организацию на юге Франции. А также оборудование (части установки) и лучшие умы.

На гистограмме ниже показано, как страны-участницы вкладываются в отдельные направления.


Под восьмой аббревиатурой JF, по всей видимости, скрывается доля других стран (Казахстан и Австралия). Это распределение довольно плоское. Направления не разделены между странами, и это осознанный шаг, чтобы знания в каждой из областей не концентрировались в одних руках. Все делают понемногу. Например, Россия отвечает за верхние патрубки вакуумной камеры. Также она делает несколько диагностических систем.


Тут видно, что Россия поставляет катушки тороидального поля, часть диверторов, несколько модулей термозащиты, часть вакуумной камеры

Важный момент, на котором я хотел бы остановиться, это организация процессов в ITER.


В центре структуры генеральный директор ITER Organization, над ним совет ITER, в который входят представители всех партнеров, участвующих в проекте. Правительства стран участниц проекта на схеме показаны зеленым.

Совет управляет всем процессом, диктуя свои решения директору. Тот, в свою очередь, воплощает их в реальность, управляя рядом департаментов. На схеме их всего три, в реальности же их намного больше.

Департаменты общаются с локальными агентствами стран-участниц (иногда их называют домашними агентствами), а те взаимодействуют с лабораториями и индустрией именно они строят компоненты токамака и поддерживающих систем.

Некоторые подсистемы изготавливает ITER напрямую, но большая часть все же проходит через всю цепочку от директора до завода в конкретной стране.

Как видно из схемы, линейное управление проектом отсутствует. Локальные агентства имеют выход на свои правительства, и цепь замыкается. Эта нелинейность важная особенность ITER: в любом вопросе участвуют разные стороны.

Для ITER определено четыре основных этапа.


Таймлайн проекта. Выход на полную мощность запланирован на 2035 год. После система будет использоваться только в научных целях и для обкатки технологий
Так называемая Stage Approach Configuration должна дать первую плазму к декабрю 2025 года. Эту дату установили несколько лет назад, и она не сдвигается, несмотря на коронавирус и политические изменения.
В этой конфигурации ITER будет функционировать всего полгода. Мы называем эту стадию политической плазмой: на малой мощности она поможет нам проверить вакуумную камеру, систему нагрева, магниты. В итоге мы должны понять, что вакуумная камера работает и плазма создается.

Далее начнется досборка тонких систем, в том числе системы нагрева плазмы. По мере сборки запланированы Prefusion power operation 1 и 2 на 2028 и 2032 годы соответственно.
Выход на максимальную мощность в декабре 2035 года. После 2035 года ITER будет функционировать в научных целях еще 10 лет. Планируется 5,5 тыс. разрядов в 500 МВт по 500 секунд.

Вместо итогов


На данном этапе речь не идет о коммерческом производстве электроэнергии путем термоядерного синтеза. Нейтроны не будут захватываться, а их энергия не будет преобразовываться в электричество. Нейтроны будут выходить из установки, и их будут задерживать бетонные стены здания. Частицы будут проникать в комнаты и ячейки, поэтому во время работы установки людей в здании не будет. А механические свойства материалов, подвергающихся постоянной бомбардировке нейтронами, конечно, рассчитывают с учетом планируемого срока эксплуатации установки (полный выход нейтронов за все время работы установки порядка 1021).

В теории есть несколько способов использовать кинетическую энергию нейтронов во благо. Один я уже упоминал нагреть воду и поставить турбину. Второй путь гибридный. Небольшой токамак можно обложить ураном-238 и использовать нейтроны для поддержания реакции распада урана. Масса урана при этом может быть много меньше критической, т.е. взрыва не произойдет ни при каких условиях. Если что-то пойдет не так в такой гибридной установке, реакция просто затухнет. Уран будет работать только за счет того, что его бомбардируют нейтроны, которые появляются, когда идет термоядерная реакция. И хотя такая станция производит радиоактивные отходы, она безопасна не может взорваться.
Но финальная цель это, конечно, чистый термояд, где нет урана и ядерных отходов. Это единственно правильная цель, но путь к ней долгий и сложный. Если ITER выполнит свою функцию и к 20352045 годам ответит на вопрос, можно ли получить выход энергии в 10 раз больше, чем затрачено, мы начнем строить демонстрационную станцию. В лучшем случае к 2050-му она даст ответ, будет ли коммерческий старт у проекта.
Однако двигаться в этом направлении надо. И ITER это выгодная сделка. Каждый участник вкладывает 9%, но получает 100% разработок. По сути, это большой учебный проект для всех стран, который стоит намного дороже, чем любые коммерческие разработки. Но, несмотря на это, проект идет согласно графику и не обманывает ожидания. С каждым годом ему все больше доверяют, а значит, дальше работа должна пойти лучше и быстрее.


Основной этап строительства ITER завершен. Настал черед сборки реактора (фото март 2020-го)

В общем, это будет подарок нашим внукам. О том, как продвигается проект, рассказывают на YouTube-канале ITER Organization.
Подробнее..

Все есть бит

04.09.2020 20:08:16 | Автор: admin
Бог это вечная и бесконечная истина, не имеющая ценности и смысла.
Барух Бенедикт Спиноза

Сегодня я хочу рассказать вам о самой смелой и красивой гипотезе в современной теоретической физике. Многие ученые относятся к ней крайне скептически, некоторые называют ее откровенно шизофреническим бредом, а другие находят крайне интересной. Давайте же пустимся в путешествие, которое может навсегда изменить ваше представление о Вселенной.



В поисках теории всего


Начиная с середины 20-ого века самой сложной и перспективной задачей теоретической физики является поиск так называемой теории всего, которая объединит в себе общую теорию относительности и квантовую механику, тем самым дав точное объяснение всем наблюдаемым физическим явлениям. На роль такой теории претендуют многочисленные теории струн, теория квантовой петлевой гравитации и многие другие. Но мы будем говорить не о них. Мы сделаем шаг еще дальше.

Профессор MIT Макс Тегмарк в своей книге Наша математическая Вселенная призывает нас задуматься о самом удивительном свойстве всех существующих физических теорий, которое обычно люди считают само собой разумеющимся все наши физические теории описываются математикой.

С точки зрения эмпиризма (философия первичности материи по отношению к идее) в этом нет ничего удивительного, человек изобретал язык математики, наблюдая за реальным миром.Мы изобрели цифры и счет, чтобы считать предметы, мы изобрели геометрию, чтобы строить прочные здания. Со временем наши математические инструменты становились все более сложными и отдаленными от повседневных нужд мы изобретали дифференциалы, интегралы, математический анализ, теорию групп, топологию. Но в конце концов мы всегда находили физические явления, которые поразительно хорошо описывались с помощью этих самых инструментов.

Но давайте взглянем на математичность физических законов с точки зрения идеализма (философия первичности идеи по отношению к материи). Все математические законы живут в пространстве идей и не зависят даже от существования нашей Вселенной. Если даже ничего не существовало бы, дважды два все также равнялось бы четырем. Рождение галактик и звезд, движение планет, химические реакции и генетические мутации строго следовали математическим формулам задолго до появления людей. Мы лишь открыли эти законы, но не изобрели их.

Так что же будет с теорией относительности, квантовой механикой или пресловутой теорией всего, если мы выкинем из них всю словесную шелуху, вроде слов квант, пространство, свет. Там останутся только формулы, и ничего больше. И в этом месте рассуждений Макс Тегмарк задает интереснейший вопрос: что может полностью описываться чистой математикой? И он дает на него единственно разумный ответ. Чистой математикой может быть описана лишь сама чистая математика. Таким образом Тегмарк приходит к самой поразительной из возможных гипотез: вся наша Вселенная это математическая структура.

Все из бита


Макс Тегмарк не был первым, кто пришел к такой идее. Задолго до него эту идею выдвигал знаменитый американский физик, научный руководитель Ричарда Фейнмана, Хью Эверетта и Кипа Торна, а также автор терминов черная дыра и кротовая нора Джон Уилер.

В своей статье it from bit Джон Уилер задумывался над тем фактом, что все свойства элементарных частиц вроде массы, заряда, спина, цвета, странности и красоты не имеют никакого собственного смысла, а лишь проявляются при взаимодействиях с другими частицами. Таким образом, все эти свойства являются по сути битом информации в некоторой математической структуре. Уилер писал:
Все сущее каждая частица, каждое силовое поле, даже сам пространственно-временной континуум получают свою функцию, свой смысл и, в конечном счёте, самое своё существование даже если в каких-то ситуациях не напрямую из ответов, извлекаемых нами с помощью физических приборов, на вопросы, предполагающие ответ да или нет, из бинарных альтернатив, из битов. Всё из бита символизирует идею, что всякий предмет и событие физического мира имеет в своей основе в большинстве случаев в весьма глубокой основе нематериальный источник и объяснение; то, что мы называем реальностью, вырастает в конечном счёте из постановки да-нет-вопросов и регистрации ответов на них при помощи аппаратуры

Чтобы вы лучше поняли, что имел в виду Джон Уилер, я приведу вам в пример картинку из книги Макса Тегмарка о том, как отношения между точками пространства (ребра куба) можно представить в виде матрицы битов:



Сами вершины этого куба, обозначенные индексом от 1 до 8, не несут никакого смысла, а вот матрица отношений между ними (ребер куба) уже обладает некоторыми уникальными свойствами: например, вращательной симметрией. Наша Вселенная, конечно же, устроена на порядки сложнее куба, но в ее основе лежат те же самые принципы. Поняв это, мы можем двигаться дальше.

Инфляционная модель Вселенной и фракталы


Если мы все-таки живем в математической модели, то в какой?

Давайте посмотрим на нашу Вселенную: она состоит из множества скоплений миллиардов галактик, галактики состоят из миллиардов звезд, у многих звезд есть несколько планет, а у многих планет есть некоторое количество спутников. Более того, согласно гипотезе вечной инфляции, являющейся объяснением и расширением инфляционной модели развития вселенной, в отдаленном от нас пространстве ежесекундно происходят миллионы больших взрывов, порождающих свои пузыри Вселенных.

Но вернемся к нашему миру: все скопления, галактики, звезды и планеты, в какой бы части Вселенной они не находились, очень похожи между собой, но все же уникальны. Какая математическая структура обладает такими свойствами? Это фрактал.



Фрактал порождается простейшей рекуррентной формулой, но развивается в красивейшую циклическую картину, каждый маленький кусочек которой одновременно и уникален, и похож на общую структуру.

Асимметрия времени и вычисление рекурсивной функции


И как раз фрактальная структура нашей Вселенной открывает нам глаза на самую главную загадку современной физики время. Идет ли время только вперед? Линейно ли оно?

Современная физика говорит о существовании так называемой асимметрий времени или стрел времени. Первая стрела времени психологическая: мы помним прошлое, но не будущее. Эта ассиметрия является частным случаем более общей второй стрелы времени причинно-следственной. Причины порождают следствия, но не наоборот. С другой стороны это может быть лишь частью нашего восприятия и при обратном ходе времени мы бы приняли причины за следствия, а следствия за причины. Но существуют третья абсолютно объективная асимметрия времени, также называемая вторым законом термодинамики энтропия в замкнутой системе со временем всегда растет. То есть, при обратном ходе времени она бы падала.

Как это можно объяснить? Одним из первых объяснение, согласующееся с гипотезой математической Вселенной, дал немецкий пионер компьютеростроения и автор первого языка программирования высокого уровня Конрад Цузе. Он предположил, что наша Вселенная является не статичной математической моделью, а постоянно вычисляющийся чистой рекурсивной функцией. На вход такой функции поступает результат вычисления предыдущей итерации. Каждый тик такой функции является планковским временем, а проще говоря мгновением. Такая гипотеза очень хорошо объясняет все стрелы времени. Результат вычисления такой функции зависит от ее входа будущее зависит от прошлого, но не наоборот. Со временем количество информации в такой системе будет расти, а значит будет расти и энтропия. И главное, эта гипотеза очень хорошо согласуется с фрактальностью нашей Вселенной, ведь фрактал результат вычисления рекуррентной функции.

Таким образом, мы можем дать определение времени таким образом: время это процесс вычисления чистой рекурсивной функции расчета развития нашей Вселенной.

Вы можете возразить, что наша Вселенная недетерминирована и при коллапсе волновой функции Шредингера результат выхода кванта из суперпозиции непредсказуем. Но согласно многомировой интерпретации квантовой механики Эверетта в момент коллапса волновой функции наша Вселенная просто разделяется на две параллельных реальности, в одной из которых суперпозиция переходит в одно состояние, а в другой в противоположное.

Также стоит учесть, что это время не то же самое, что описывается в общей теории относительности Эйнштейна. Это абсолютное время тики процессора вычисляющего нашу Вселенную.

Матрица и антропный принцип


Но если вся наша Вселенная это вычислительная машина, то как определить, что мы живем не в Матрице? С одной стороны это недоказуемо и неопровергаемо. С другой стороны, если мы живем в Матрице и крутимся на компе у какого-то программиста из реальной вселенной, то его вселенная тоже будет подчинятся законам математики и тоже может оказаться Матрицей второго уровня, которая существует в реальном мире. Этот ряд можно продолжать до бесконечности и ни в одном уровне Матрицы не будет возможности доказать, существует или нет реальный мир более высокого уровня.

В любом случае, у Макса Тегмарка есть более красивое объяснение математичности нашей Вселенной. Для начала зададимся вопросом: почему мы живем именно в такой математической структуре, а не в какой-то другой? Тегмарк находит ответ на этот вопрос в антропном принципе: все непротиворечивые математические структуры существуют, но лишь в немногих из них может зародится такая тонко настроенная Вселенная, которая позволяет существовать нейронным сетям, способным осознать причинно-следственные связи.

Заключение



У гипотезы математической вычислимой Вселенной существуют интересные последствия: герои книг, фильмов, историй и даже ваш выдуманный друг столь же реальны, как и вы сами, так как точно так же являются математическими структурами, придуманными другой математической структурой внутри громадной математической структуры. Это заставляет задуматься над самим значением слова реальность.

Для более глубокого ознакомления с данной темой я рекомендую книгу Макса Тегмарка "Наша математическая Вселенная" и статью в википедии про цифровую физику.
Подробнее..

Увидеть своими глазами вселенная и Большой взрыв

06.09.2020 10:13:38 | Автор: admin

Метаматериалы композиты со структурными элементами, размерами много меньше длины волны излучения, обладают не только необычными свойствами, такими как отрицательный коэффициент преломления, но и способностью имитировать космологические уравнения. Они открывают новые возможности старым добрым аналоговым компьютерам. А чем хороши аналоговые вычисления? Результат виден практически сразу. Итак, на картинке ниже мы видим Большой взрыв! Читаем, как это получилось.


Большой взрыв и путешествия во времени


image
В своём исследовании, Игорь Смолянинов и Юй-Юу Хунг из Университета Мэриленда построили метаматериал путем нанесения на золотую подложку полосок оргстекла. Математическое описание поведения электромагнитных волн в метаматериале имеет много общего с общей теорией относительности (далее ОТО), которая описывает пространство-время. Следовательно, путь распространения света в метаматериале аналогичен пути массивной частицы в (2+1)-размерном пространстве-времени.


В немагнитном анизотропном материале с диэлектрическими константами $\epsilon_x=\epsilon_y=\epsilon_1$ и $\epsilon_z=\epsilon_2$ волна с компонентой $E_z=\phi$ согласно уравнениям Максвелла:


$ -\frac{\omega^2}{c^2}\phi = \frac{\partial^2\phi}{\epsilon_1\partial z^2}+\frac{1}{\epsilon_2}\left(\frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}\right) $


У метаматериала с $\epsilon_1>0$ и $\epsilon_2<0$ это уравнение можно переписать в форме уравнения Клейна-Гордона:


$ -\frac{\partial^2\phi}{\epsilon_1\partial z^2}+\frac{1}{|\epsilon_2|}\left(\frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}\right)=\frac{\omega^2}{c^2}\phi=\frac{m^2 c^2}{\hbar^2}\phi $


для массивного скалярного поля. Тогда координата $z$ в уравнении Максвелла подобна времени $t$ в уравнении Клейна-Гордона. При освещении метаматериала лазером, появляющийся световой узор представляет собой историю (2+1)-мерного пространства-времени, населённого частицами с массой $m$. Этот узор составлен из мировых линий частиц, живущих в двумерном пространстве $x,y$ и временем $z$.


Расположение полосок концентрическими окружностями, а не параллельными полосками, приводит к уравнению в цилиндрических координатах:


$ -\frac{\partial^2\phi}{\epsilon_\theta\partial r^2}+\frac{1}{|\epsilon_r|}\left(\frac{\partial^2 \phi}{\partial z^2}+\frac{\partial^2 \phi}{r^2\partial \theta^2}\right)=\frac{\omega^2}{c^2}\phi==\frac{m^2 c^2}{\hbar^2}\phi $


Роль времени теперь играет координата $r$, а условие $\epsilon_\theta > 0$ и $\epsilon_r<0$ реализует аналоговую модель расширяющейся вселенной. Точка $r=0$ соответствует моменту Большого взрыва. Действительно, судя по полученной световой картинке, мировые линии частиц в самом деле расходятся в пространстве с течением времени (по мере удаления от $r=0$).


В статье Смолянинова и Хунг также разбирается вопрос о существовании замкнутых времениподобных кривых. Существование замкнутых времениподобных кривых позволяет путешествия во времени со всеми связанными с ними парадоксами. На метаматериале они бы проявились как световые петли это достаточно очевидно. Однако, в силу разных причин их реализовать не удалось, и, как заключают авторы, скорее всего не удастся. Увы.


Общая теория относительности для инженеров-электриков


Аналогия между электромагнитными полями в метаматериалах и космологией работает в обе стороны. В самом деле, для дизайна метаматериала выполняющего функцию, например, "шапки-невидимки", нужно использовать аппарат общей теории относительности (ОТО). Суть уравнений Эйнштейна ОТО можно сформулировать таким образом: пространство-время указывает материи как ей двигаться, а материя указывает пространству-времени как ему искривляться. Решить уравнение Эйнштейна значит найти вид метрического тензора пространства-времени, т.е. определить его кривизну исходя из распределения материи.

Шапка-невидимка, скрывающая помещенный внутрь объект, должна так искривлять/преломлять лучи света, чтобы они обходили объект. Искривление световых лучей эквивалентно искривлению пространства-времени, а распределение материи эквивалентно распределению диэлектрической проницаемости (и связанному с ней индексу преломления) в метаматериале. Подробнее с примерами взаимосвязь ОТО и разработки метаматериалов разобрана в статье Ульфа Леонхардта и Томаса Филбина General relativity in electrical engineering.


Также по этой теме:


  1. Novello M., Visser M., Volovik G. E. Artificial black holes. World Scientific, 2002. (особенно глава 3: Slow light)
  2. Ralf Schutzhold. Recreating Fundamental Effects in the Laboratory?
Подробнее..

Ядерное наследие первенца атомной энергетики СССР

11.09.2020 08:20:52 | Автор: admin
В 1954 году в СССР, в Обнинске, построили и запустили Первую в мире атомную станцию. Ее реактор АМ (Атом мирный) был небольшой мощности, вся станция выдавала всего 5 МВт электроэнергии, но ее запуск положил начало освоению мирной атомной энергии. Через 4 года, в 1958 г., был введён в эксплуатацию первый энергоблок Сибирской атомной электростанции мощностью 100 МВт, на Сибирском химическом комбинате. Однако, эта станция была двойного назначения. Ее реактор ЭИ-2 стали использовать для производства электроэнергии и тепла, но основной его задачей было производство оружейного плутония. Первой же гражданской атомной станцией большой мощности стала Белоярская АЭС. Сейчас ее первые реакторы уже остановлены. Эта статья как раз об их истории, о сложностях обращения с накопленным отработанным ядерным топливом и путях решения связанных с ним проблем.


Белоярская АЭС. На переднем плане первая очередь станции с реакторами АМБ. Источник.

Реакторы АМБ
В 1964 году в СССР заработали первенцы сразу двух направлений мирной атомной энергетики. В сентябре был пущен первый водо-водяной реактор ВВЭР-440 на Нововоронежской АЭС. Но за полгода до него, в апреле 1964 года, заработал водо-графитовый реактор АМБ-100 на Белоярской АЭС. Таким образом, первой мирной атомной станцией промышленной мощности в СССР стала Белоярская АЭС с реакторной установкой АМБ-100 (Атом мирный большой) мощностью 100 МВт. Этот реактор уже не нарабатывал плутоний для оружия, а сама станция располагалась не на территории оружейного комбината. Тем не менее, конструкция реактора была похожа и на своего мирного (АМ) и полувоенных (ЭИ и АДЭ) предшественников это водо-графитовый канальный реактор с трубчатыми тепловыделяющими элементами. Второй, в два раза более мощный, блок с реактором АМБ-200 заработал в декабре 1967 г. Они проработали 17 и 21 год и остановлены в 1984 г. и в 1989 г, соответственно.


О строительстве и устройстве Белоярской АЭС в 1960-е можно посмотреть вот этот документальный ролик Белоярская АЭС им. И. В Курчатова, 1965

Во-многом, работа этих реакторов носила исследовательский характер, полученные данные по ее работе послужили основой для создания в десятки раз более мощных реакторов РБМК, составивших основу советской атомной энергетики 1970-х-1980-х годов.
На реакторах АМБ впервые в промышленном масштабе апробировалась схема ядерного перегрева пара в целях повышения коэффициента полезного действия (достигнуто значение в 37 %). Однако эксплуатация энергоблоков АМБ сопровождалась и значительным количеством отклонений и нарушений в работе. Бывали и аварии.

Так, 25 мая 1976 года на втором блоке при выходе на мощность, после срабатывания аварийной защиты, произошло повреждение нескольких десятков тепловыделяющих сборок (ТВС). Эта авария относилась к наиболее тяжелым по последствиям и восстановительные работы продолжались около 9 месяцев.

Белоярская АЭС и сегодня остается особенной, новаторской и экспериментальной на ней эксплуатируются новые для отрасли решения. Сейчас тут работают единственные в мире промышленные энергоблоки с реакторами на быстрых нейтронах БН-600 и БН-800.


Самый мощный из действующих в мире промышленных реакторов на быстрых нейтронах БН-800. Фото автора.

Первая очередь АЭС с блоками АМБ находится в режиме длительной консервации. Энергоблоки окончательно остановлены уже более 30 лет, но, по международным нормам не могут выводиться из эксплуатации пока на них осталось отработавшее топливо. Оставшееся ОЯТ из них выгрузили в бассейны выдержки, технологические отверстия в самих реакторах закрыты с использованием особой смолы-консерванта.


Блочный щит управления реактора АМБ-200. Пульт до сих пор частично используется для управления подачей тепла со станции в город Заречный и обеспечение собственных нужд БАЭС. Фото автора.

Для полного вывода из эксплуатации этих блоков необходимо в первую очередь решить вопрос с отработанным ядерным топливом (ОЯТ), которого накопилось чуть менее 300 тонн, и большая часть которого находится на станции в неудовлетворительном состоянии.
Накопленное ОЯТ реакторов АМБ относится к так называемому ядерному наследию СССР, для решения проблем которого в последние годы предпринимаются немалые усилия.

Особенности топлива АМБ
Одна из главных проблем, связанным с тем, почему переработка или безопасное хранение ОЯТ АМБ не было организовано ранее это большое разнообразие видов этого топлива и его нестандартные габариты. За почти 38 реакторо-лет эксплуатации АМБ было испытано более 40 типов тепловыделяющих сборок (ТВС) для испарительных и пароперегревательных каналов реакторов.

Сборки с топливом имеют нестандартные размеры 14 м в длину, что на 4 м больше, чем у ТВС самого крупного отечественного реактора РБМК. При этом топливо размещалось лишь в центральных 6 метрах, соответствовавших высоте активной зоны, а 4 метровые концевики были заполнены пирографитом. Само гранулированное топливо было тоже нетиповым оно находилось в наполнительном материале (медь, магний или кальций), масса которого доходила до 16%. Урановое топливо с обогащением от 2 до 20% по U-235 по составу делилось на несколько групп оксидное (близкое к современному диоксиду урана), металлический сплав с добавлением 3-9% магния, карбидное (UC).

За период эксплуатации из реакторов было извлечено 7196 топливных каналов (около 285 т ОЯТ), из которых 2227 (около 95 т ОЯТ) были отправлены на завод РТ-1 на ПО Маяк, г. Озерск, а остальные до 2016 года оставались в приреакторных хранилищах на Белоярской АЭС. В 1970-х и 1980-х гг. исследовалась возможность переработки топлива на ПО Маяк. Была показана принципиальная возможность организации начальных стадий процесса. Но основные проблемы были связаны с разделкой сборок и их подготовкой к растворению. До практической переработки ОЯТ дело так и не дошло, так что проблема обращения с топливом АМБ ждала своего отложенного решения.

Хранилось ОЯТ АМБ на Белоярской АЭС в двух бассейнах выдержки в 17- и 35-местных чехлах (кассетах) и в одноместных пеналах. 35-местные чехлы были изготовлены из нержавеющей стали, 17-местные из углеродистой стали, и перед установкой в бассейн изнутри и снаружи покрывались суриком. Изначально планировалось кратковременное хранение чехлов в двух бассейнах выдержки, а затем их отправка на радиохимическую переработку на ПО Маяк. Но в связи с распадом СССР процесс затянулся на два десятилетия.

Уже в начале 2000-х гг. наибольшую проблему представляло топливо в 17-местных кассетах. Большинство этих кассет к тому времени находилось в бассейнах выдержки более 20 лет, что превышает их расчетный 15-летний срок эксплуатации. Поэтому предполагалось, что все они потеряли свою герметичность и заполнены водой бассейнов выдержки. При этом в них были загружены облученные ТВС более ранних и несовершенных конструкций со значительно большим выгоранием, а также практически все поврежденное топливо. Всего в кассетах содержится порядка 20% поврежденных при эксплуатации ТВС. Вероятное состояние продуктов коррозии топлива это смесь в виде пульпы из продуктов коррозии компонентов топливной композиции с фрагментами графитовых втулок. Значительное количество топлива имело магниевую матрицу, которая при повреждении герметичности оболочки твэла подвержена коррозии в воде. Топливо также может оказаться на дне бассейна.

На заводе РТ-1 ПО Маяк находится на хранении 131 кассета К-17 (около 95 тонн ОЯТ), которые поставлялись туда в течение 10 лет, начиная с 1972 г. Кассеты размещены в глубоководной части бассейна выдержки. Кассеты из коррозионной стали в количестве 103 шт. и 28 кассет из черной конструкционной стали хранятся в подвешенном состоянии на консолях бассейна. Для исключения коррозии они помещены в нержавеющие пеналы. Применяемый способ обеспечивает безопасное хранение ОЯТ и предотвращает загрязнение вод бассейна продуктами деления ОТВС, но не дает гарантии, что в будущем не возникнут проблемы, которые приведут в дальнейшем к разрушению топлива в кассетах, а также к необходимости отказа от хранения кассет в подвешенном состоянии.

Выбор вариантов обращения с топливом
С учетом сложности ситуации с топливом АМБ, рассматривались самые разные варианты обращения с ним: отправка на временное хранение с последующим решением вопроса о переработке; отправка на длительное хранение с последующим захоронением; разделка и помещение в пеналы на самой АЭС, а затем отправка на переработку в ПО Маяк; доставка ОТВС на ПО Маяк, разделка и переработка.

Однако, из-за большого количества аварийного топлива, его продолжающейся деградации и из-за дороговизны строительства современного хранилища для столько нестандартного топлива, было решено переработать ОЯТ АМБ на ПО Маяк. Для этого нужно было провести ряд неотложных мероприятий по устранению угроз безопасному хранению ОЯТ на Белоярской АЭС (например, с 2001 года была организована система очистки воды бассейна выдержки), и в то же время подготовить решение двух задач транспортировки топлива и его дальнейшей переработке на заводе РТ-1.

Транспортировка топлива
Для безопасного вывоза топлива с БАЭС на ФГУП ПО Маяк требовалась разработка специального транспортно-упаковочного комплекта (ТУК) для длинномерных ТВС длиной около 14 м и специального вагона-контейнера, провести обоснование безопасности транспортирования и хранения поврежденного топлива, а также отработки обращения с длинномерными ТВС.

В итоге РФЯЦ-ВНИИТФ совместно с ОАО Уралхиммаш к 2006 году разработали и запатентовали два варианта транспортно-упаковочного контейнера ТУК-84 для загрузки 17- и 35-местных кассет с ОЯТ АМБ. Контейнер ТУК-84 имеет длину более 15 метров, диаметр до 1,4 м. Кассеты с топливом загружаются в металлический герметичный пенал, а он уже размещается в прочном контейнере толщиной более 20 см. ТУК снабжен системами контроля температуры и давления внутри пенала с топливом.


Один из вариантов конструкции для транспортирования 35-местных кассет с ТВС. Масса контейнера 86600 кг, пенала 3820 кг и 35-местной кассеты 9650 кг.

Корпус ТУК-84 изготавливают по особой рулонной технике витого сосуда, когда стальные полосы толщиной 5 мм и шириной 1,4 м навиваются и свариваются в цилиндр переменной толщины. Подобная технология применяется в создании сосудов высокого давления в химической промышленности. В сочетании с переменным сечением она позволяет создать особо прочный корпус с минимальной массой. В итоге ТУК для перевозки длинномерного топлива АМБ имеет массу менее 90 тонн, что позволяет транспортировать его по железной дороге на специальных вагонах без ограничений.


Механические испытания ТУК-84 на падение с высоты.

К 2014 году на ОАО Уралхиммаш в Екатеринбурге было изготовлено 6 унифицированных ТУК-84, позволяющих транспортировать всю номенклатуру хранящихся на БАЭС чехлов с топливом АМБ. ТУК был испытан на все виды аварийного воздействия, в том числе на падение с высоты 9 м на плоскость и с 1 м на штырь.

Контейнеры приспособлены для транспортировки как автомобилем, так и железнодорожным вагоном. В 2008 году шесть вагон-контейнеров для перевозки ТУКов были произведены на вагоностроительном заводе в г. Тверь.


Внешний вид вагон-контейнеров для перевозки ТУК-84. Его длина более 28 м. Источник.

В итоге в ноябре 2016 года на ПО Маяк прибыл первый опытный вагон-контейнер, доставивший на радиохимический завод кассету с ОЯТ реакторов АМБ, которая была извлечена из транспортно-упаковочного комплекта и помещена в бассейн-хранилище завода РТ-1. С 30 октября 2017 такие поставки осуществляются на регулярной основе в штатном режиме. В концу 2019 года был завершен первый этап вывоза ОЯТ было вывезено 124 кассеты с ТВС АМБ.


Посмотреть как происходит доставка топлива и его выгрузка можно вот в этом видеосюжете от информационного центра ПО Маяк.

Переработка ОЯТ на ПО Маяк
На ПО Маяк с 1977 года работает единственный в России завод по переработке ОЯТ РТ-1. На нем перерабатывается широкий спектр топлива энергетических и исследовательских реакторов, топлива ледокольного и подводного атомного флота. Однако линии по переработке топлива АМБ в силу его специфичности и небольшой серии, на РТ-1 никогда не было. Тем не менее, ряд исследований, проведенных ранее, показал принципиальную возможность переработки ОЯТ АМБ по технологии классического ПУРЕКС-процесса с растворением топлива в кислотах и выделением ценных компонентов (урана и плутония), но без привязки таких работ к технологии завода РТ-1. Проведенные позже исследования показали, что эта переработка возможна на недозагруженной второй линии переработки топлива быстрых реакторов на РТ-1. Так что принципиальных сложностей с самой переработкой нет. Однако необходимо создание инфраструктуры и цехов по приему и разделке ОЯТ АМБ. Для этих задач на ПО Маяк проектируется специальное здание отделение разделки и пеналирования (ОРП) для подготовки к переработке топлива, как уже размещенного на Маяке, так и топлива в кассетах при их дальнейшей поставке с Белоярской АЭС.


Проект отделение разделки и пеналирования (ОРП) на ФГУП ПО МАЯК. Источник.

В рамках ФЦП ЯРБ-1 (Федеральная целевая программа Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года) в 2012 году началось сооружение первой очереди комплекса по обращению с ОЯТ АМБ. В рамках той же программы финансировались работы по созданию ТУК-84 и необходимой инфраструктуры на самой Белоярской АЭС. В 2015 году завершен первый этап проекта подготовки отделения разделки и пеналирования ОЯТ, в том числе опытный стенд по разделке ТВС и реконструкция бассейна выдержки Б-4, позволившие с 2016 начать прием топлива на ПО Маяк.


Опытный стенд по разделке ТВС на ПО Маяк

В конце 2019-го были разыграны конкурсные процедуры по достройке второго этапа ОРП (объекта 630), стоимостью около 2 млрд рублей. Финансирование работ осуществляется уже в рамках ФЦП ЯРБ-2 (Федеральная целевая программа Обеспечение ядерной и радиационной безопасности на 2016 2020 годы и на период до 2030 года). В 2024 году планируется приступить к переработке топлива реакторов АМБ-100 и АМБ-200. До этого момента уже вывезенное топливо будет храниться на ПО Маяк, а вывоз оставшегося ОЯТ будет произведен в 2026-2027 годах.

Стоит отметить, что решение проблемы топлива реакторов АМБ это лишь один из примеров проблем ядерного наследия в виде накопленного топлива. Помимо него, многие реакторные установки накопили пусть небольшое по количеству, но разнообразное в силу исследовательских работ по качеству топливо, которое ранее не перерабатывалось топливо некоторых исследовательских реакторов, экспериментальное топливо реакторов атомных подводных лодок. Часть из этого топлива дефектное. Кроме того, в большом количестве уже накопилось топливо мощных серийных реакторов АЭС РБМК и ВВЭР-1000.

В рамках ликвидации этого ядерного наследия, на заводе РТ-1 ПО Маяк не только задействовали вторую технологическую нитку для переработки ОЯТ реакторов АМБ, но в 2016 году уже завершили реконструкцию и ввели в работу третью технологическую нитку. На ней можно перерабатывать топливо нескольких видов, включая то, которое раньше никогда и нигде не перерабатывалось. Например, первой операцией на модернизированной нитке стала переработка уран-бериллиевого топлива с атомных подводных лодок. На данной нитке стала возможной переработка длинномерного ОЯТ, такого как ВВЭР-1000, которого в России накоплено более шести тысяч тонн. В результате всех запланированных модернизаций, завод РТ-1 на ПО Маяк сможет перерабатывать практически всю номенклатуру отечественного ядерного топлива, как уже накопленного, так и вновь образующегося.


Доставка отработавшего ядерного топлива реакторов ВВЭР-1000 с Ростовской АЭС в декабре 2016. Источник.

После запуска участка разделки и переработки топлива АМБ на Маяке, первую очередь Белоярской АЭС можно будет окончательно вывести из эксплуатации, разобрать и очистить площадку для нового промышленного строительства. Таким образом должен безопасно завершится жизненный цикл самых первых из реакторов российских АЭС промышленной мощности.

Использованные источники:
1. Проблемы ядерного наследия и пути их решения (том 1), 2012 г.
2. Вывоз ОЯТ реакторов АМБ-100 и АМБ-200 Белоярской АЭС на ФГУП ПО МАЯК. Анфалова О.В и др. Вопросы радиационной безопасности, Номер: 2 (94) год: 2019
3. Конструкция транспортного упаковочного комплекта ТУК-84. Атомная энергия (Том 100, 6 (2006)), Анфалова О.В. и др.
4. Создание технологий обращения с ОЯТ АМБ Белоярской АЭС. Кудрявцев Е.Г. Безопасность Окружающей Среды 1-2010: Обращение с ОЯТ.
5. Комплектация отработавшего ядерного топлива реакторов АМБ и ВВЭР-440 для обеспечения их совместной радиохимической переработки на ПО МАЯК. Кудинов А.С. Автореферат диссертации, 2015 г.
6. Возможности и перспективы переработки ОЯТ на заводе РТ-1. Презентация главного инженера ФГУП ПО Маяк Д. Колупаева на форуме Атомэко-2017.
Подробнее..

Вечный двигатель?

11.09.2020 16:15:38 | Автор: admin

Про "супер-долгую" атомную батарейку с повышенной в 10 раз мощностью

Это история про инновационный автономный источник питания компактную атомную батарейку, которая может работать до 20 лет. За счет оригинальной 3D-структуры бетавольтаического элемента ее размеры уменьшились втрое, удельная мощность повысилась на порядок, а себестоимость снизилась на 50%. Да, вот такое чудо техники. Российское - суровое и оригинальное. За подробностями сюда...

Ученые НИТУ МИСиС под руководством профессора кафедры полупроводниковой электроники и физики полупроводников Виктора Мурашова представили инновационный автономный источник питания компактную атомную батарейку, которая может работать десятилетиями. За счет оригинальной 3D-структуры бетавольтаического элемента ее размеры уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%. Результаты опубликованы в международном научном журнале Applied Radiation and Isotopes.

Соавторы - доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ МИСиС, к.т.н. Сергей Леготин, аспирант Андрей КрасновСоавторы - доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ МИСиС, к.т.н. Сергей Леготин, аспирант Андрей Краснов

В конструкции устройства используется оригинальная, запатентованная микроканальная 3D-структура никелевого бетавольтаического элемента. Ее особенность в том, что радиоактивный элемент наносится с двух сторон планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который крадет мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

Выходные электрические параметры предложенной конструкции составили: ток короткого замыкания IКЗ 230нА/см2 (вобычной планарной 24нА), итоговая мощность 31нВт/см2, (впланарной 3нВт). Конструкция позволяет напорядок повысить эффективность преобразования энергии, выделяющейся при распаде -источника, вэлектроэнергию, что вперспективе снизит себестоимость источника примерно на50% засчет рационального расходования дорогостоящего радиоизотопа,рассказывает один изразработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники ифизики полупроводников НИТУ МИСиС.

Определены оптимальные параметры конструкции преобразователя и рассчитаны его основные характеристики. На основании проведенных расчетов можно сделать вывод, что 3D-структура позволит увеличить площадь активной поверхности в 14 раз (при глубине микроканалов 80 мкм), а также вероятность проникновения бета-частиц в p-n переход по сравнению с планарной структурой преобразователя. И, как следствие, растет плотность неравновесных носителей заряда и выходная мощность устройства. Выходные электрические параметры предложенной конструкции при удельной активности Ni-63 2,7 мКи составили:

  • ток короткого замыкания IКЗ = 276 мкА/см2 (в планарной - 24 нА);

  • напряжение холостого хода UХХ = 149 мВ (125 мВ на планарный);

  • мощность P = 23,7 мкВт/см2;

  • КПД: = 1,4 %. 3D бетавольтаического элемента с двусторонним преобразованием., - поясняет Сергей Леготин.

При этом разработка позволит на порядок увеличить удельную мощность, за счет чего в три раза снизятся массогабаритные показатели элементов питания батарей на их основе с сохранением требуемого уровня выходной мощности.

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

Уникальные свойства источника питания - в рекордно высокой удельной энергоемкости, надежности, способности работать без обслуживания и беспрецедентно большом сроке службы. Бетавольтаические преобразователи станут незаменимы в ситуациях, где химические элементы питания не могут обеспечить длительной и стабильной работы, например, в задачах, связанных с освоением космоса или с электропитанием приборов в условиях критически низких температур в Арктике и Заполярье

В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами. В частности, в обзоре международного агентства маркетинговых исследований Research and Markets НИТУ МИСиС назван одним из ключевых участников мирового рынка бетавольтаических батарей. Университет вошел в один ряд с такими компаниями, как City Labs, BetaBatt, Qynergy Corp и Widetronix.

В обзоре указано, что разработка ученых НИТУ МИСиС батарейка на основе бетавольтаических элементов (БВЭ) имеет большой потенциал, так как потребности в надежных элементах питания с длительным сроком службы растут во всех отраслях промышленности. С учетом уникальных характеристик небольшого размера и безопасности разработка НИТУ МИСиС, сможет занять существенную долю рынка источников питания.

Подробнее..

Перевод Простое и строгое доказательство 2610 измерений в теории струн

14.09.2020 08:09:56 | Автор: admin


вы нигде не найдете.


По крайней мере, у меня не получилось сделать его таковым. Требование определенного и большого числа пространственно-временных измерений (26 для более простой бозонной теории струн и 10 для более сложных суперструн) это один из наиболее неправильно понимаемых аспектов, который, собственно, является основным источником негативных чувств к данной теории. Придется очень постараться, чтобы объяснить происхождение этих странных чисел неспециалистам.


Строго говоря, действительно магическим числом является не сама D-мерность пространства-времени, а D2 измерений, поперечных струне, в которых она может колебаться (минус один для измерения времени и минус один для измерения, продольного струне). Другими словами, 1D-струна образует в пространстве-времени 2D-поверхность, называемую мировым слоем. Магическое число это число оставшихся направлений, доступных для струны. Так и выходит D-2.



Эта картинка была плохо нарисована по крайней мере тысячу раз, так что пусть будет еще одной плохой картинкой больше


24-поистине мистическое число. Джон Баэз дает фантастический отчет о том, почему его любимое число именно 24 которое является одним из драгоценных камней разбросанных по математике. Некоторые из них выглядят абсолютно ничем иным, как чистой нумерологией:


$ 1^2 + 2^2 + 3^2 + \ldots + 23^2 + 24^2 = 70^2 $


и это работает только для 24, за исключением 0 и 1, конечно. (Если вы любите сложные математические головоломки, попробуйте доказать это. А я не буду). И уж совсем невероятно, как это забавное тождество связано с неожиданно сложной и увлекательной (чудовищно вздорной) математикой и теорией струн (которая действует как клей для чудовищного вздора). Немаловажное значение имеет рождение 24/2 из ряда:


$$display$$ 1 + 2 + 3 + 4 + \ldots "=" -\frac{1}{12} $$display$$


Собственно, именно поэтому в бозонной теории струн D-2=24. В суперструнах эквивалентным безумием будет:


$$display$$ 1 - 2 + 3 - 4 + \ldots "=" \frac{1}{4} $$display$$


что дает D-2=8. В конце концов, это звучит как случайные несвязанные факты (и факты в кавычках), и хотя каждый из них может быть легко объяснен непрофессионалу, я на самом деле не объясняю, какова должна быть связь с числом измерений в теории струн. Я кажусь сумасшедшим не потому, что говорю что-то неправильное, а потому, что эти вещи непоследовательны и бессвязны. Проблема в том, что соединительная ткань слишком сложна с технической точки зрения, и с математической, и с физической, и с психологической, чтобы я мог ее просто объяснить.


Как с наименьшими возможными усилиями убедить когото, что D-2 = 24? Это намного проще, если этот кто-то принимает сумасшедшее уравнение 1+2+3+... = -1/12; но это явно не удовлетворительно строго. Даже если это можно понять, например, с помощью -регуляризации, то есть с регуляризацией теплового ядра + аналитической перенормировкой (и на этот счет уже есть много материала), то это все равно будет неудовлетворительно, поскольку нет никакой причины, по которой все эти манипуляции должны иметь какое-либо отношение к физике. Возможно ли прийти к правильным результатам без этого сумасшедшего уравнения; то есть, по сути, не сталкиваясь с какой-либо нерегулярностью для регуляризации? Да, конечно. Но как именно кратко и элементарно такое проделать?


Я обнаружил, что доказательства D=26 можно примерно классифицировать как:


  1. Квантование светового конуса
    • с сумасшедшим уравнением. Требуется немного знаний о поляризациях массивных / безмассовых векторных бозонов.
    • без сумасшедшего уравнения. Требуется, по существу, изучить все о квантовании струн / алгебре Вирасоро.
  2. Конформная теория поля
    • без сумасшедшего уравнения. Требуется знание конформных теорий поля и конформных аномалий.
  3. Модулярная инвариантность
    • с сумасшедшим уравнением. Требует довольно элементарной квантовой механики и математики.
    • без сумасшедшего уравнения. Требуется элементарная КМ, но с базовым нудным комплексным анализом.

Доказательство 1.1, я недавно привел здесь. Это довольно просто, но вы должны доверять сумасшедшему уравнению. Другое доказательство с сумасшедшим уравнением 3.1, находится в слайдах Баэза.


Доказательства, свободные от безумия, любопытным образом образуют нечестивую Троицу. Каждое из них требует знания только из одной вершины треугольника, который образуют:


  • Теория струн
  • Теоретическая физика
  • Математика

Доказательство 1.2 является наиболее распространенным во введении в теорию струн, так как вы уже изучаете необходимую физику струн в любом случае, и это математически не пугает. Доказательство 2.1 предназначено для более углубленного изучения и дает очень четкую физическую интерпретацию критического числа измерений, поскольку оно непосредственно связано с отменой конформной аномалии. Доказательство 3.2 я никогда раньше не видел оно кажется идеальным для людей, которые знают что-то из базового комплексного анализа (теорема вычетов и все такое) и некоторые азы квантовой механики, что не требует почти никаких знаний о физике струн.


Я очень старался выжать простое доказательство, которое является "строгим" (не использует сумасшедшее уравнение), но у меня ничего не вышло. Я пришел к убеждению, что три вершины треугольника следует понимать как перевод на разные языки одного и того же концептуального ядра, и это ядро нередуцируемо. Так что если два звена в цепи доведены до минимальной сложности, то третьему приходится все это съедать.


Все, что у меня вышло это следующая реализация доказательства 3.2. Оно отодвинет теоретическую и струнную физику на задний план и сосредоточит внимание на математике, то есть будет максимально строгим с математической стороны (хотя иногда будут замахи и на физику). Доказательство будет довольно длинным, но я нахожу его удовлетворительным. Мы соберем 24 по частям (как 2, умноженное на 3, умноженное на 4). Считайте это письмом с извинениями за освобождение 1+2+3+...=-1/12 в дикую природу.


Пруф


Мы уже говорили о мировой поверхности, которую струна образует в пространстве-времени. На этой поверхности мы можем установить систему координат $(\sigma^1,\sigma^2)$. Очевидно, что, хотя наблюдаемые могут быть записаны в терминах этих координат, они должны быть инвариантны при изменениях координат $(\sigma^1,\sigma^2) \rightarrow (\sigma^{1}\prime,\sigma^2 \prime)$. В конце концов, координаты изначально произвольны. Простым примером (локального) изменения координат является растяжение/масштабирование:


$ (\sigma^1, \sigma^2) \rightarrow (\lambda \sigma^1, \lambda\sigma^2) $


Итак, мы понимаем, что наблюдаемые в нашей теории должны быть инвариантны при таких масштабированиях. Это легко сделать классически, но становится очень нетривиальным, когда проблема переходит в удел квантовой механики. Эта масштабная симметрия является частью так называемой конформной симметрии мировой поверхности теории струн.


Представьте себе ситуацию, в которой струна делает петлю во времени, оставляя торовидный след в пространстве-времени. Конечно, множество возможных форм торов это все равно правильный выбор. Мы хотим вычислить вероятность того, что этот процесс произойдет с определенной формой тора, или лучше, квантовой амплитудой, квадрат модуля которой является вероятностью. Основной момент квантовой механики состоит в том, что мы можем вычислить амплитуду, суммируя $exp(iE_it)$ по всем возможным состояниям i, каждое из которых имеет энергию $E_i$, через время t. таким образом,


$ Z = \sum_i e^{i E_i t} $


это общая амплитуда. Z должна удовлетворять нашим симметриям.


Важным моментом является то, что составная система AB из двух невзаимодействующих подсистем A и B имеет вид $Z_{AB} = Z_A Z_B$. Благодаря этому хорошему свойству мы можем сначала сосредоточиться на вычислении Z струны, колеблющейся в одном поперечном измерении, а затем возвести ее в степени D-2, чтобы заставить ее колебаться в поперечных измерениях D-2.



Подобно реальным вибрирующим струнам, струны теории струн имеют гармоники, которые являются целыми кратными фундаментальной.


Таким образом, струна почти точно похожа на настоящие гитарные струны и имеет бесконечные режимы колебаний, или гармоники, или обертоны. Каждая из них представляет собой гармонический осциллятор, который в квантовом варианте имеет энергетические уровни


$ E_n = \omega \left( \frac{1}{2} + n \right) $


Так ведь? Таким образом, Z одного квантового гармонического осциллятора будет


$ Z_{QHO} = \sum_{n=0}^\infty e^{i E_n t} = e^{\frac{i}{2}\omega t} \sum_{n=0}^\infty e^{i n \omega t} = \frac{e^{\frac{i}{2} \omega t}}{1 - e^{i\omega t}} $


Геометрический ряд, который я только что суммировал, кажется, имеет отношение |r| = 1, что означает, что он на самом деле не сходится. Давайте сорвем повязку прямо сейчас: такие вот Z, определенные наивно как у нас, почти никогда не сходятся в лоренцевой (то есть пространственно-временной) теории. Часто мы, физики, говорим, что они осциллирующие, потому что мы суммируем кучу множителей exp(ix), а затем махаем руками, дескать, они каким-то волшебным образом отменяются, но это дешевая ложь мы просто имеем в виду, что они не сходятся. Это справедливо не только в теории струн, но и для всей квантовой теории поля, или для стандартной квантовой механики, или даже для низкочастотного квантового гармонического осциллятора.


И что дальше? Правильней будет сделать время комплексной переменной. Придавая ему мнимую часть, мы заставим Z сходиться. Мало того: когда вы вычисляете из этого непосредственно наблюдаемые величины, а затем возвращаете t обратно к реальной оси, вы восстанавливаете разумные ответы (которые соответствуют эксперименту, когда это возможно). Итак, это не трюк; этот рецепт наше определение того, что значит иметь квантовую теорию в пространстве-времени (не волнуйтесь, предположим, что t является сложным и в верхней полуплоскости Im t > 0.).


Чтобы вернуться в нужное русло, мы предположили, что одна струна в одном измерении имеет бесконечные моды колебаний, которые явно имеют частоты, кратные фундаментальной. На самом деле =1,2,3,... и поэтому Z для нашей 1D-струны является произведением


$ Z_{1,L} = \prod_{k=1}^\infty \frac{e^{\frac{i}{2}k t}}{1- e^{ikt}} = e^{\frac{i}{2} (1+2+3+\ldots)t } \left(\prod_k 1- e^{ikt}\right)^{-1} $


и со всего размаху бухаемся на дно. Безумие 1+2+3+ ... вновь настигло нас. Если бы мы были слабы духом, мы бы поддались и заменили его 1+2+3+...-1/12, и получили бы правильный ответ, пропустив почти всю математику в этой статье. Но мы здесь не для этого, мы здесь для того, чтобы выдавить 24 без использования колдовства. Поэтому давайте продолжим.


Почему расходящаяся сумма вообще появилась в этом показателе? Если вы проследите наши расчеты назад, то увидите, как оно вылазит из нулевых энергий КГО $ E_0 = \frac{\omega}{2} $. Однако энергии нулевого уровня произвольны, и это был просто полезный традиционный выбор. В конечном счете существует двусмысленность в построении квантового ГО из классического ГО, называемая упорядочивающей двусмысленностью, поскольку вам нужно преобразовать коммутирующие переменные p, q в некоммутирующие операторы $\hat p, \hat q$, и нет никакого предпочтительного квантования таких вещей, как pq. Нужно квантование $\hat p, \hat q$? Или $\hat p, \hat q$? Разницей будет константа произвол в энергии нулевой точки. Таким образом, наш самый консервативный заклад заключается в том, что нулевые колебания здесь фактически суммируются до конечного, но неизвестного значения:


$ Z_{1,L}^{-1} = e^{-irt} \; \prod_k 1 - e^{ikt} $


где r неизвестное вещественное число. Обратите внимание, что безумный расчет дал бы магическое значение r = 1/24. Итак, потребуется парочка трюков:


  • Я собираюсь показать, используя симметрию, что 1 / r это число поперечных измерений.
  • Я собираюсь показать, используя другую симметрию, что r = 1/24 в любом случае, даже без 1+2+3+...=-1/12

Чтобы начать говорить об этих симметриях, мне нужно связать мою переменную t с формой тора. Связь заключается в том, что тор строится путем склеивания одноцветных ребер в этом параллелограмме:



где t представляется в виде точки на комплексной плоскости. (Сторону 2 выбрали чтоб частоты =1,2,3,... были целыми числами). Или для чистоты нотации примем =t/2 (+ простое масштабирование, которое, я напоминаю, является симметрией):



Заметим, что при приближении к вещественной оси тор вырождается. Это имеет физический смысл: может ли струна действительно замкнуться в себе в реальном времени? Это было бы путешествие во времени. Такое может произойти только во мнимом времени (по крайней мере, в верхней полуплоскости).


При определении $q:=e^{i2\pi\tau}$, наша $Z_{1, L}$ становится


$ Z_{1,L}^{-1}(\tau) = q^r \; \prod_k (1-q^k) $


Трюк первый


Прежде всего, если мы сдвинем +1, то получим разные параллелограммы



но они образуют один и тот же тор после склеивания (проверьте это!). Если форма на самом деле не меняется, то и физические величины не должны меняться.


Однако при этом преобразовании наша амплитуда действительно преобразуется:


$ Z_{1,L}^{-1} \rightarrow e^{2\pi i r} \, Z_{1,L}^{-1} $


Это не имеет смысла пока мы не вспомним, что это только для одного измерения. Для поперечных размеров D2 полная амплитуда равна $Z^{D-2}_{1, L}$, и она останется инвариантной, если


$ r(D-2) = 1 $


это уравнение определяет критическое измерение теории струн. Если мы найдем целое значение 1 / r, то теория будет иметь смысл только в D = 1/r+2 пространственно-временных измерениях.


Теперь доказать, что r = 1/24, будет не так просто. Чтож, попробуем.


Второй трюк


Другая симметрия, которую мы будем рассматривать, это -1/. Полученные торы не идентичны, но они похожи это масштабированные версии друг друга. Вы можете проверить, что исходная сторона 1 совпадает с новой стороной -1 / , а исходная сторона совпадает с новой стороной 1. Как мы уже говорили, масштабирование мирового пласта должно быть симметрией.


Таким образом, полная амплитуда должна быть инвариантной; однако мы не должны ожидать этого от $Z^{D-2}_{1, L}$. А? Разве $Z^{D-2}_{1, L}$ не является полной амплитудой? Нет, я солгал, чтобы защитить вас от суровой правды. Истина (часть ее) состоит в том, что колебания на струне всегда происходят парами. Существует множество возможных характеристик этой дихотомии: левые и правые движущие силы, голоморфные и антиголоморфные, синус и косинус


Важно то, что для нашего $Z_{1, L}$ (L теперь понимается как левый) также будет парный $Z_{1, R}$ для сестринских колебаний. К счастью, я просто махну рукой, что $Z_{1, R} = Z_{1, L}^*$ так, чтобы общая амплитуда была произведением $|Z^{D-2}_{1, L}|^2$.


Однако это еще не все: хотя мы и учитывали колебания струны относительно опорного положения, нам также необходимо учитывать общее движение центра масс в пространстве. Мы хотим, чтобы струна вернулась в исходную точку через время , если мы хотим, чтобы она замкнулась в тор; но мы не можем просто хотеть этого, нам нужно включить амплитуду вероятности, чтобы это заработало.


Какова амплитуда вероятности того, что квантовая частица в 1D останется в одном и том же месте через определенное время? Намек состоит в том, что для чисто мнимых времен уравнение Шредингера является уравнением теплопроводности. И бесконечно концентрированное пятнышко тепла эволюционирует в соответствии с уравнением теплопроводности в 1D, распространяясь в гауссовский пик, пик которого уменьшается как $(time)^{-1/2}$. Таким образом, позвольте мне предположить, что амплитуда для центра масс примерно такова


$ (\Im \tau)^{-1/2} $


Если это так, то, общая амплитуда должна быть примерно такой


$ Z \sim (\Im \tau)^{-\frac{D-2}{2}} \, | Z_{1,L} |^{2(D-2)} $


и для 1/:


$ \Im \tau \rightarrow \frac{1}{ | \tau |^2} \Im \tau $


поэтому, если бы $Z_{1, L}$ была трансформирована как-то так


$ Z_{1,L} \rightarrow \tau^{-1/2} Z_{1,L} $


наша общая амплитуда была бы инвариантной, и тогда теория имела бы смысл. Теперь я собираюсь доказать, что это может произойти только в том случае, если r=1/24.


Колдовство


Давайте сделаем некоторые предварительные переобозначения


$ Z_{1,L}^{-1} (\tau) = q^r P(\tau)\,,\quad P(\tau) := \prod_{\ell=1}^\infty (1-q^\ell) $


Тогда, наиболее удобным вариантом представления произведения P() будет:


$-\log P(\tau) = - \sum_{\ell=1}^\infty \log(1-q^\ell) = \sum_{l,k = 1}^\infty \frac{1}{k} q^{k\ell} = \sum_{k = 1} \frac{1}{k} \frac{q^k}{1-q^k} = \sum_{k=1} \frac{1}{k} \frac{1}{q^{-k} -1} $


Я использовал разложение Тейлора для -log(1-x) и геометрический ряд. Если вы не уверены, вы можете более тщательно проверить, разумны ли эти шаги (включая своп суммы) для Im >0.


Следующий психоделический аргумент принадлежит Зигелю (да, именно Зигелю). Мы начинаем без видимой причины вот с такой функции комплексной переменной w, с в качестве параметра:


$ f(w) = \cot w \cot \frac{w}{\tau} $


а затем, вводя еще один реальный параметр $\nu$ (наш завершающий ход будет заключаться в том, чтобы устремить его в бесконечность), мы строим комбинацию


$ g(w) = \frac{f(\nu w)}{w} $


Давайте посчитаем полюса g. Быстрый осмотр показывает, что существует набор простых полюсов при w=nkv и еще один при w=nktv, для k=1,2,3,...; плюс тройной полюс при w=0. Вычеты легко вычисляются следующим образом:


$ \operatorname{Res}_{\pm\frac{\pi k}{\nu}} g = \frac{1}{\pi k}\cot \left( \frac{\pi k}{\tau} \right)\\ \operatorname{Res}_{\pm\frac{\pi k \tau}{\nu}} g = \frac{1}{\pi k}\cot \left( \pi k \tau \right)\\ \operatorname{Res}_{0} g = - \frac{1}{3} (\tau + \tau^{-1}) $


Если вычет в тройной точке (полюс третьего порядка) не кажется очевидным, вспомним, что разложение Тейлора котангенса в нуле начинается $\cot s \sim \frac 1 s - \frac s 3$.



График g (w), для ( = i), ( = 1). Белые пятнышки это полюса, и порядок таков, сколько раз цвета повторяются вокруг них.


Теперь должно быть ясно, что g нам для применения теоремы вычетов. Рассмотрим траекторию бегущую против часовой стрелки вокруг параллелограмма с вершинами 1,,1,.


Теорема вычетов гласит:


$ \frac{1}{2\pi i} \int_\gamma \frac{f(\nu w)}{w} d\omega = \sum_{p \in \operatorname{poles}} \operatorname{Res}_p g $


Сумма на самом деле пробегает по полюсам, которые находятся внутри параллелограмма, но мы скоро увидим, что это не то, о чем нам следует беспокоиться.


Теперь я хотел бы использовать это уравнение, чтобы доказать тождество, которое нам действительно нужно. Однако я докажу это только для на мнимой оси, потому что это проще, но на самом деле это будет верно для всех Im >0. Поскольку обе части уравнения, которое я выведу, голоморфны в над верхней полуплоскостью, их согласия на прямой достаточно, чтобы доказать, что они всегда равны. Короче говоря, предположим, что пока чисто мнимое, но в конце мы можем просто отбросить это предположение.


Заделаем же интеграл на параллелограмме, который теперь ромб. Для $g(w)=f(\nu w)w^{1}$, кажется, первообразную сходу не отгадаешь. Итак, возьмем предел . Нетрудно заметить, что f(vw) сходится к константе (1,-1,1,-1) соответственно на четырех отрезках (если вы ее не видите, запишите ее с помощью комплексных экспонент). Таким образом, в пределе интеграл равен


$ \left( \int_1^\tau - \int_\tau^{-1} + \int_{-1}^{-\tau} - \int_{-\tau}^{1} \right) \frac{dw}{w} $


Легкотня! Интеграл от 1/w это log w, так что позвольте мне просто приписать его и ААА! Контур обхода! Нам нужно выбрать обход для логарифма и убедиться, что он не перепрыгивает через берег разреза. Мы можем использовать симметрию чтоб переписать


$ 2\left( \int_1^\tau + \int_1^{-\tau} \right) \frac{dw}{w} $


и теперь, когда весь путь находится справа, мы можем использовать отрицательную действительную ось в качестве берега разреза и, таким образом, использовать главную ветвь логарифма. Просматривая весь путь, получаем


$ 4 \log \left(\frac{\tau}{i} \right) $


Славненько. Теперь о вычетах. Если , то все полюса сжимаются и приближаются к началу координат; таким образом, в пределе все они находятся внутри ромба, а сумма идет по всем полюсам. Таким образом, сумма равна


$ -\frac{1}{3} (\tau + \tau^{-1}) + 2 \sum_{k=1}^\infty \left( \frac{1}{\pi k} \cot(\frac{\pi k}{\tau}) + \frac{1}{\pi k} \cot(\pi k \tau) \right) $


на случай, если кто не помнит


$ \cot s = \frac{ e^{is} + e^{-is} }{e^{is} - e^{-is} } = \frac{1 + e^{-2is}}{1 - e^{-2is}} = -1 + \frac{2}{1-e^{-2is}} $


и наша сумма вычетов:


$ -\frac{1}{3} (\tau + \tau^{-1}) + \frac{4}\pi \sum_{k=1}^\infty \frac{1}{k} \left( \frac{1}{1-e^{-\frac{2\pi i k}{\tau}} } - \frac{1}{ 1- e^{-2 \pi i k \tau} } \right) \\ =-\frac{1}{3} (\tau + \tau^{-1}) + \frac{2}{\pi} \left(\log P(-1/\tau) - \log P(\tau) \right) $


Наконец-то мы возвращаемся на Землю. Это начинает выглядеть как теорема о нашем произведении P(). Теперь, когда у нас есть обе части равенства, давайте воспользуемся теоремой вычетов.


$ \frac{1}{2} \log\left(\frac{\tau}{i} \right) = - \frac{\pi i}{12} (\tau + \tau^{-1}) - \left(\log P(\tau) - \log(P(-1/\tau) \right) $


А вот и наше магическое число! По крайней мере, половина. Это все еще выглядит как тарабарщина, хотя давайте для пущей наглядности перейдем к экспонентам:


$ e^{\frac{2\pi i / \tau}{24}} P(-1/\tau) = \sqrt{\tau/i} \; e^{\frac{2 \pi i \tau}{24}} P(\tau) $


Казалось бы, ничего особенного, но комбинация


$ \eta(\tau) := e^{\frac{2\pi i \tau}{24}} P(\tau) = q^{\frac{1}{24}} \prod_{k=1}^\infty (1-q^k) $


как мы недавно доказали, красиво трансформируется при преобразовании -1/:


$ \eta(-1/\tau) = \sqrt{\frac{\tau}{i}} \eta(\tau) $


И это все! Именно это мы и искали! Чтоб преобразовать $Z^{-1}_{1, L}(\tau)$ во что надо, замечаем, что оно должно быть самим (), и поэтому r=1/24, и поэтому, наконец


$ D = 26 $


Выводы


Из-за философии, лежащей в основе всего этого поста, чтобы использовать математику как можно более элементарно и чтобы она была самодостаточной, мы ускорили то, что на самом деле является невероятно увлекательной (и, конечно же, гораздо более элегантной) математикой. () это, конечно, функция Дедекинда, и мы доказали ее свойства преобразования в модулярной группе; точнее, что модулярный дискриминант $\Delta(\tau):=(2\pi)^{12}\eta^{24}$ является модулярной формой веса 12. Теория струн тесно связана с этой областью математики; на самом деле я надеюсь, что для тех, кто уже знает этот материал, это послужило беглым взглядом на то, что струны даже имеют отношение к модульным формам. В любом случае, я не думаю, что могу судить предмет, который я на самом деле едва знаю по-верхам, так что тут попримолкну.


Иногда всплывает интересный вопрос: если это так неправильно, то почему 1+2+3+...=-1/12, или -регуляризация / тепловое ядро / суммирование Абеля или как бы вы это ни называли, дают малой кровью тот же правильный результат, что и более строгие пути?


У меня нет ни малейшего представления, почему оно так выходит.


Инстинктивно я бы пробормотал что-нибудь о физическом резоне или аналитичности, но, честно говоря, это просто чистое безумие. Это определенно не совпадение, потому что тот же трюк работает и для суперструн. На самом деле я даже не уверен, какова точная взаимосвязь между тремя различными классами доказательств, они выглядят как совершенно разные рассуждения. В квантовании светового конуса при первом чтении вы даже не понимаете, как масштабная / конформная инвариантность вписывается она очень глубоко зарыта. И если вы случайно знаете какую-то конформную теорию поля, посмотрите, как это доказательство строит 24. Они звучат совсем не как переводы одного и того же, хотя должны.


Удивительно, как много информации о содержании теории несут доказательства D=26 (или D=10), и как много вы уже узнаете о струнах, просто пытаясь объяснить то, что по существу является самым основным фактом теории. Это наглядный пример того, что в теории струн все сходится, ничего не бросается туда просто так, все существенно.


Дополнение


Возможно, существует более быстрое доказательство, если принять теорему Эйлера о пятиугольных числах


$ P(\tau) = \prod_{k=1}^\infty (1-q^n) = \sum_{k=-\infty}^{\infty} (-1)^k q^{k(3k-1)/2} $


Если вы выделите квадрат в экспоненте вы можете переписать


$ P(\tau) = q^{-1/24} \sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{3}{2}(k-\frac{1}{6})^2} $


таким образом


$ \eta(\tau) = q^{1/24} P(\tau) = \sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{3}{2}(k-\frac{1}{6})^2} $


С в таком виде уже реально доказать $\eta(1/\tau)=\sqrt{\tau/i}\eta(\tau)$ используя суммирование Пуассона.


Тем не менее, обращение к теореме Эйлера определенно похоже на мошенничество, поэтому я не пошел по этому пути.

Подробнее..

Математика палитры почему не бывает красного структурного цвета

16.09.2020 10:17:24 | Автор: admin


Многие считают, что основными инструментами художника являются кисточка, мольберт и палитра. Однако это лишь средства, позволяющие использовать истинный инструмент цвет. Наш мир полон красок всех мастей, от огненно-красного до морозно-синего. Цвет предметов и окрас живых организмов является результатом ряда физических и/или химических процессов. Учитывая разнообразие цветов, порой сложно понять разницу в механизмах из происхождения. Ученые из Кембриджского университета решили выяснить, почему структурные цвета, зависящие от наноразмерной архитектуры поверхностей, а не от химических пигментов, не бывают красных оттенков, а лишь синих или реже зеленых. В чем секрет такого цветового ограничения и как именно удалось установить истину? Пролить свет на эти вопросы нам поможет доклад ученых. Поехали.

Основа исследования



Примеры структурных цветов в природе: А гибискус тройчатый (Hibiscus trionum); В жук тамамуси (Chrysochroa fulgidissima); С бабочка вида Morpho rhetenor; D комар обыкновенный (Culex pipiens); Е морская мышь (Aphrodita aculeata); F жук вида Pachyrhynchus argus; G бабочка вида Parides sesostris

Структурный цвет является результатом интерференции света, который рассеивается наноразмерными непоглощающими элементами поверхности. Это более физический процесс, нежели химический, как в случае с пигментацией, где цвет зависит от избирательного поглощения по длине волны.

У структурных цветов имеется множество преимуществ по сравнению с пигментными:

  • не обесцвечиваются, так как цветообразование определяется архитектурой, а не составом;
  • могут быть изготовлены из экологически чистых материалов;
  • достигают нетрадиционных цветовых эффектов, от яркого металлического до изотропного оптического отклика.


Изображение 1

Учитывая положительные свойства структурных цветов, было разработано множество методик по их воссозданию, а точнее методик создания иерархических структур или структур ближнего упорядочения с независимыми от угла цветами. Результатом таких разработок стало фотонное стекло (PG от photonic glass), которое имеет биологический эквивалент в виде оперения многих птиц (изображение выше).

Нюанс в том, что в природе структурные цвета бывают лишь синих оттенков. Красные и зеленые цвета, как правило, достигаются с помощью структур с дальним упорядочением или с использованием пигментации. Конечно, существуют техники, позволяющие создать искусственный структурный красный оттенок. Однако, как заявляют авторы сего труда, оптические свойства у материала такого цвета крайне плохи.

Возникает вопрос можно ли в принципе создать полноценный структурный красный цвет? Дабы ответить на этот вопрос, ученые решили использовать численный подход, который обеспечивает прямой доступ к спектру отражения произвольной структуры и позволяет исследовать промежуточные режимы рассеяния, то есть между однократным рассеянием и диффузионным поведением.

Результаты исследования


Для начала посредством численного алгоритма были созданы варианты фотонного стекла (прямое и инверсивное) с различными свойствами рассеивания и структурной корреляцией (структурным фактором*).
Структурный фактор* математическое описание того, как материал рассеивает падающее излучение.
Следом были проведены расчеты оптических свойств сгенерированных структур с использованием метода конечных разностей во временной области. Созданная модель была намеренно ограничена двумерным пространством, так как подобные структуры чаще всего встречаются в природе (изображение выше). Концентрация внимания на двумерной структуре также позволяет расширить спектр изучаемых параметров, при этом ограничивая вычислительные затраты. Тем не менее ученые уверены, что полученные результаты можно применить и для описания трехмерных структур.

Если поглощение отсутствует, то рассеяние в фотонном стекле возникает в результате взаимодействия между характеристиками индивидуальных частиц (размер, форма и показатель преломления) или за счет взаимодействия между свойствами группы частиц (доля заполнения и структурные корреляции).


Изображение 2

В случае прямых PG в отражении преобладают резонансы Ми*, определяемые свойствами рассеивателя (). Таким образом, отраженный цвет можно изменить на видимый, изменив размеры рассеивателя.
Резонанс Ми* увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы (назван в честь Густава Ми, 1868-1957).
Однако по мере увеличения размера частиц пик резонанса Ми смещается в красную сторону, и второй пик появляется в синей части спектра, что соответствует резонансной моде более высокого порядка. А вот в рассеянии света в инверсивных PG преобладают структурные корреляции (2B). Пик отражения, положение которого хорошо соответствует предсказаниям закона Брэгга*, более выражен, чем в прямых структурах.
Дифракция Брэгга* явление сильного рассеяния волн на периодической решетке рассеивателей при определенных углах падения и длинах волн.

Формула закона Брэгга: n = 2d sin , где d период решетки; угол падения волны; длина волны излучения; n число волн.
Появление отдельного пика в видимом спектре демонстрирует, что использование инверсных PG является эффективной стратегией для минимизации форм-фактора в общем оптическом отклике системы в пользу структурных вкладов.


Зависимость изотропного структурного цвета от показателя преломления для прямого (сверху) и инверсивного (снизу) PG соответственно.

Изменение показателя преломления влияет на взаимосвязь между вкладами формы и структуры. В системах с высоким показателем преломления преобладают резонансы форм-фактора, которые не позволяют им достичь хорошей чистоты цвета в красной области спектра как для прямых, так и для инверсных PG. Для прямых систем, даже когда контраст показателя преломления низкий, резонансы форм-фактора приводят к усиленному отражению на коротковолновой стороне структурного пика. Напротив, в случае инверсивных PG видно, что структурный фактор формирует хорошо разделенный пик в видимом спектре, даже в красной области длин волн.

Из этого следует вывод, что инверсивные PG с низким показателем преломления могут превосходить прямые PG с точки зрения чистоты цвета и насыщенности.


Изображение 3

Уменьшение контраста показателя преломления между матрицей рассеяния (nm) и центрами рассеяния (np) может еще больше способствовать структурному вкладу. На видно, что увеличение np приводит к широкополосному снижению коэффициента отражения и красному смещению структурного пика. Структурный пик уменьшается по ширине и имеет более высокую интенсивность по сравнению с его фоном, что приводит к лучшей чистоте цвета.

Уменьшение контраста показателя преломления снижает роль многократного рассеяния, которое так или иначе присутствует в неупорядоченных системах. Это ограничивает изотропные структурные цвета режимом распространения света между диффузным рассеянием* и баллистическим переносом*.
Диффузное рассеяние* рассеяние, возникающее в результате любого отклонения структуры материала от структуры идеально правильной решетки.
Баллистический перенос* беспрепятственный поток носителей заряда (обычно электронов) или несущих энергию частиц на относительно большие расстояния в материале.
Многократное рассеяние становится преобладающим при увеличении толщины образца, что приводит к широкополосному ненасыщенному отклику.

Соответствующие наблюдения также можно применить и к рассеивателям со сложной геометрией. Как уточняют ученые, в их предыдущих работах была представлена идея использования частиц ядро-оболочка* для разделения вкладов форм-фактора и структурного фактора и достижения отдельного пика в длинноволновой области спектра.
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.
На изображении показано, что уменьшение размера центра рассеяния (ядра) при сохранении длины структурной корреляции приводит к увеличению интенсивности и ширины длинноволнового (структурного) пика. В то же время коротковолновый вклад резонансов Ми смещается в сторону ультрафиолета.

На показано, что пониженный контраст показателя преломления может подавить многократное рассеяние, в то время как разделение вкладов форм-фактора и структурного фактора возможно через частицы ядро-оболочка ().

Объединение обоих методов показано на . Это позволяет получить более высокие значения чистоты и насыщенности цвета за счет хорошо разделенных пиков в длинноволновой части видимого спектра.

На следующем этапе исследования ученые уделили внимание оценке насыщенности и чистоты цвета. Для количественной оценки этих параметров спектры отражения прямых, инверсивных PG и ядер-оболочек были преобразованы в цветовые оттенки. Чистоту цвета можно определить как нормализованное расстояние от белой точки на диаграмме цветности по отношению к красной точке (в случае красных цветов). Насыщенность количественно определяет, насколько интенсивность отраженного света распределяется по спектру с разными длинами волн.


Изображение 4

На 4A различные системы для оттенков красного нанесены на диаграмму цветового пространства CIE XYZ. На 4В вычислены соответствующие значения чистоты и насыщения.

Стоит отметить, что все инверсивные PG демонстрируют более высокие значения чистоты и насыщенности цвета, чем красные оттенки прямых PG. Однако включение в систему частиц ядро-оболочка не приводит к значительному улучшению по сравнению со стандартным инверсивным PG. Если же объединить оба подхода, то можно получить более высокие показатели чистоты и насыщенности. Тем не менее они будут гораздо ниже, чем у реального красного цвета (т.е. из модели КЗС красный, зеленый, синий).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученым удалось продемонстрировать, что фотонные стекла имеют внутренние ограничения в достижении насыщенных красных оттенков. Это обусловлено взаимодействием между резонансом, связанным со структурным фактором, рассеянием, связанным с форм-фактором, и фоном многократного рассеяния. Подобный фундамент позволяет легко достичь структурного цвета в УФ-синем диапазоне, но не в случае больших длин волн.

Также было доказано, что высокая чистота и насыщенность цвета для красных оттенков не могут быть достигнуты в изотропных структурах ближнего упорядочения, даже в случае сложных морфологий рассеивателя.

По словам ученых, подобные наблюдения могут свидетельствовать о том, что природа была вынуждена (образно выражаясь) создать альтернативные пути формирования красных оттенков (например, многослойные или алмазные структуры).

Объединение нескольких подходов по созданию структурного цвета красных оттенков может улучшить показатели чистоты и насыщенности, но их все же недостаточно для достижения реального красного цвета.

Также было установлено, что из-за сложного взаимодействия между однократным и многократным рассеянием, желтый и оранжевый, помимо красного, также сложно получить в аспекте структурных цветов.

Подобные исследования позволяют лучше понять структурные цвета, а также выработать новые методики по созданию материалов, способных быть основой для тех оттенков, что не встречаются в естественных структурных цветах. Помочь в этом, по мнению авторов исследования, могут новые типы наноструктур (например, сетевые или многослойные иерархические структуры).

Как бы то ни было, работа над структурными цветами будет продолжаться и дальше. Современные методики изучения наноразмерных структур и средства их воссоздания позволяют детальнее описать процессы, протекающее в материале, что, естественно, способствует достижению контроля над этими процессами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Сверхскоростная съемка 15 триллионов кадров в секунду

23.09.2020 10:08:04 | Автор: admin


Каждую секунду вокруг нас протекает множество физических и химических процессов, которые крайне сложно зафиксировать. Сложность заключается не только в габаритах участвующих объектов, но и в скорости самих процессов. В современных исследованиях большую роль играет скоростная съемка, позволяющая запечатлеть сверхбыстрые динамические явления. Но даже у такой технологии есть свой предел, который утрировано можно обозначить кадрами в секунду. Ученые из университета Шэньчжэня (Китай) смогли создать исключительно оптическую систему, способную достичь 15 триллионов кадров в секунду. Какие техники и явления были использованы в данной разработке, что показали практические опыты, и где данное творение может найти свое применение? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Высокоскоростная визуализация является неотъемлемым инструментом изучения таких шустрых динамических процессов как фемтосекундная лазерная абляция, распространение лазерных филаментов, молекулярная динамика, взаимодействие ударных волн в живых клетках и т.д.

Вполне ожидаемо, что сверхбыстрая оптическая визуализация, которая может обеспечить визуализацию переходных процессов без размытия, является желанным инструментом для ученых из самых разных областей науки (химия, физика, оптическая инженерия, материаловедение, биомедицина и т.д.).

На данный момент уже существует ряд методик, позволяющих достичь вполне неплохих результатов в области оптической визуализации. К примеру, визуализация с временным разрешением, основанная на методах накачки и зондирования, отлично справляется с воспроизводимой переходной динамики с высокой частотой повторения. Однако данная методика теряет свои преимущества при работе с процессами, которые имеют низкую частоту повторения или не повторяются вовсе.

Заменить метод накачки-зондирования можно однократной оптической визуализацией. В некоторых работах удавалось даже достичь 25 миллионов кадров в секунду (Mfps). А вот сжатая сверхбыстрая фотография (CUP от compressed ultrafast photography) может работать с частотой кадров 0.1 триллиона кадров в секунду (Tfps) с временным разрешением ~ 50 пс за счет применения алгоритма на основе алгоритма компрессионного зондирования* (compressive sensing).
Компрессионное зондирование (compressive sensing)* методика получения и восстановления сигнала за счет знания о его предыдущих значениях, которые разрежены или сжаты.
Пространственное разрешение такого метода может быть масштабировано до 7 lp/mm (пар линий на миллиметр, далее пл/мм). Если же добавить 20х объектив, то получится фазочувствительная сжатая сверхбыстрая фотография (pCUP), способная выдать пространственное разрешение в несколько микрометров и скорость визуализации в 1 Tfps.

В такой методики можно достичь хороших показателей пространственного разрешения, чего нельзя сказать о временном разрешении. Следовательно, необходим метод, который сможет объединить сильные стороны вышеописанных методов воедино.

По заверению ученых, отличным кандидатом на эту роль подходит оптическое параметрическое усиление (OPA от optical parametric amplification). Применяя OPA к оптическому изображению, информацию, содержащуюся в сигнале, можно скопировать на холостое изображение. Данная особенность вдохновила ученых на создание нового метода однократной сверхбыстрой оптической визуализации, названного формированием изображения посредством неколлинеарного оптического параметрического усиления (FINCOPA от framing imaging based on noncollinear optical parametric amplification; NCOPA от noncollinear optical parametric amplification).

Неколлинеарное устройство позволяет преобразовывать информацию в последовательных кадрах в пространственно разделенные холостые изображения с помощью многокаскадных оптических параметрических усилителей, накачиваемых последовательной серией лазерных импульсов.

Данный полностью оптический метод также лишен каких-либо узких мест, связанных с активными механическими и электронными компонентами для быстрого сканирования, что критично для высокой частоты кадров.

Принцип работы системы FINCOPA




Изображение 1

Схема выше является иллюстрацией работы системы FINCOPA. Был использован импульс выборки с достаточно большой временной шириной, чтобы охватить всю информацию в целевом переходном процессе. Кроме того, последовательность ультракоротких импульсов (обозначенных как trigger-1, 2, 3 и 4) была использована для запуска и переключения информации изображения с разных временных срезов импульса выборки на другую последовательность ультракоротких импульсов (помеченных как recorded-1, 2, 3 и 4) с использованием каскадных преобразователей оптических изображений. Поскольку записанные изображения пространственно разделены друг от друга, их можно принимать разными CCD (ПЗС от прибор с зарядовой связью) камерами.

Кадровые интервалы определяются относительными задержками между импульсом выборки и импульсами запуска, тогда как время экспозиции изображений можно оценить, используя длительность импульсов запуска. Таким образом, время экспозиции, эффективная частота кадров и номер кадра не зависят друг от друга.

Для реализации этой идеи необходима фемтосекундная лазерная система с фемтосекундным временным разрешением. Как отмечают ученые, тут крайне важна точная временная синхронизация между импульсами запуска и импульсом выборки. Достичь этого удалось за счет получения как импульса выборки, так и импульсов запуска от одного и того же лазерного источника, что снижает временные колебания между синхронизированными импульсами до нескольких фемтосекунд. Номер кадра (N) определяется отношением полной доступной мощности импульса запуска к мощности, необходимой для запуска каждого преобразователя оптического изображения.

OPA может отображать информацию о сигнале в холостом изображении, поэтому оптические параметрические усилители могут служить преобразователями изображения. Кроме того, использование ультракоротких импульсов в качестве накачки для OPA означает короткое время экспозиции при визуализации OPA, то есть высокое временное разрешение.

В оптическом параметрическом усилителе OPA возникает только во время взаимодействия между накачкой и сигналом, а это означает, что информация об изображении отображается в холостом только под действием накачки. Накачка имеет гораздо меньшую длительность импульса, чем сигнал, поэтому она может действовать как оптический затвор. Выдержку можно оценить по длительности импульса накачки, а временное разрешение в основном определяется длительностью холостого импульса. Обе длительности будут равны друг другу, если толщина кристаллов OPA будет достаточно тонкой для подавления временного отклонения между сигналом и импульсами накачки.

Кроме того, сверхкороткая длительность импульса накачки способствует высокой интенсивности накачки (например, > 100 ГВт/см2), что также положительно влияет на усиление OPA и позволят достичь большой пространственно-временной полосы пропускания.

Другими словами, интенсивность накачки для OPA определяется требуемым усилением OPA и полосой пропускания, но также ограничивается требуемыми размерами изображения и доступной мощностью накачки для OPA.

Для конкретных интенсивности накачки и размеров изображения или площади накачки каждого усилителя количество усилителей или количество кадров можно оценить, поделив общую мощность накачки на мощность накачки каждого усилителя. Кроме того, время задержки между импульсом накачки и сигнальным импульсом определяет экспонированные временные срезы сигнала в каждом усилителе ().

Из различий между каждым значением можно определить интервалы кадров. В системе FINCOPA значение ограничивается только минимально доступными размерами шага линий временной задержки (DL от delay lines) и флуктуациями траекторий луча лазера. Как правило, интервал кадров больше, чем продолжительность импульса накачки.

На изображении 1b показана экспериментальная установка FINCOPA.

Используемый фемтосекундный титан-сапфировый лазер имеет следующие параметры: 1 кГц; 800 нм; 3.5 мДж; длительностью импульса ~ 40 фс. Выход лазера сначала проходит через генератор второй гармоники (ГВГ): 0.2 мм -BBO кристалл. Временное разрешение экспериментальной установки составляет около 50 фс.

Примерно 30% лазерного импульса преобразуется во вторую гармонику (т.е. импульс 400 нм) с длительностью импульса ~ 40 фс. После прохождения через разделитель длин волн (WS от wavelength separator) импульс 400 нм разделяется на четыре дочерних импульса группой делителей луча (BSG от beam splitter group), включая три 50:50 делителя, для накачки четырех оптических параметрических усилителей (NCOPA-1NCOPA-4). Количество усилителей или количество кадров равно четырем, что в основном ограничено выходной мощностью импульса фемтосекундной лазерной системы (~ 3.5 Вт на частоте 1 кГц). Если энергия фемтосекундного лазера достигает 7 Вт, количество кадров можно оценить в 4 х 7/ 3.5 = 8.

Непреобразованный основной импульс 800 нм отражается WS. Около 1% лазерного импульса с длиной волны 800 нм направляется в расширитель импульсов (PS от pulse stretcher) распределитель импульсов, который увеличивает длительность импульса до 50 пс. Затем расширенный импульс работает как выборка для освещения целевого сверхбыстрого события, а также как сигнал последующих оптических параметрических усилителей.

В описанной выше установке между целевым объектом и оптическими параметрическими усилителями используются четыре оптических системы формирования изображений (от OIS-1 до OIS-4), так что плоскости цели и плоскости усилителей сопряжены друг с другом. OIS-1 отображает цель на NCOPA-1 с помощью оптического увеличения, чтобы соответствовать пространственной полосе пропускания усилителя, таким образом оптимизируя качество изображения. OIS-2, OIS-3 и OIS-4 используются для 1х релейной визуализации. Четыре части кристаллов -BBO толщиной 0.5 мм и сечением 29.2 градуса работают для OPA при фазовом согласовании типа I.

В каждом усилителе накачка и сигнал расположены с небольшим углом пересечения (~ 2 градуса) внутри кристаллов -BBO, так что генерируемое холостое изображение пространственно отклоняется от них обоих. Время задержки между ними можно независимо регулировать с помощью DL (от DL-1 до DL-4).

На каждом пути холостого изображения используется линза для отображения -BBO кристалла на CCD камере для оптимизации качества изображения.

Характеристики системы FINCOPA


Использование фемтосекундного лазерного импульса в качестве накачки для получения изображений с помощью OPA имеет несколько преимуществ. Во-первых, более сильный импульс накачки может обеспечить более высокий прирост оптического параметрического усиления. Во-вторых, такой импульс позволяет получить большую пространственную полосу пропускания.

Доступная интенсивность накачки в основном ограничена повреждением OPA кристалла от лазерного воздействия, которое также зависит от длительности импульса накачки: чем короче длительность накачки, тем выше доступная интенсивность. Для фемтосекундных импульсов интенсивность накачки может достигать сотен ГВт/см2. А вот наносекундные импульсы обычно имеют интенсивность ниже 10 ГВт/см2. В проводимых экспериментах накачка была установлена на уровне 15 ГВт/см2, а коэффициент усиления OPA составлял около 30.

Перед проведением фактических испытаний необходимо было произвести пространственную и временную калибровку.

Для начала необходимо было откалибровать поперечное положение четырех CCD (ПЗС) и увеличение оптической системы формирования изображения. Это было сделано путем одновременного захвата тестовых изображений с CCD.

Далее определялось начальное время, т.е. нулевой момент времени, когда сигнал взаимодействует с системой накачки NCOPA-1 (накачка-1). Этот параметр можно менять, настраивая задержку первого импульса накачки через DL-1. Соответственно, нулевые позиции NCOPA-2, NCOPA-3 и NCOPA-4 могут быть зафиксированы путем настройки временных задержек их систем накачки так, чтобы сигнал, усиленный NCOPA-1, также был максимизирован за счет NCOPA-2, NCOPA-3, и NCOPA-4 одновременно.

Кадровое изображение, которое было перенесено с помощью холостого импульса (idler-1) и снято камерой CCD-1, является первым изображением. Последующие три холостых изображения с CCD-2, CCD-3 и CCD-4 стали вторым, третьим и четвертым изображениями соответственно. Их моменты относительно нулевого времени были отрегулированы с помощью DL-2, DL-3 и DL-4, чтобы изменить временные задержки лучей накачки.

Сверхбыстрая визуализация плазменной решетки


Чтобы проверить производительность FINCOPA, была сконструирована плазменная решетка в качестве первого образца. Это связано с тем, что такая решетка имеет регулируемые структуры с пространственным периодом до 10 мкм и сроком службы, измеримом в пикосекундах. Следовательно, для визуализации такого образца необходимо субпикосекундное временное разрешение и пространственное разрешение на уровне микрометров.

Решетка возбуждалась двумя неколлинеарными ультракороткими импульсами с длиной волны 800 нм с помощью неколлинеарного интерферометра (NCI от noncollinear interferometer). Полная энергия возбуждающего импульса составляла 2.4 мДж, а фокусное расстояние линзы (L) 250 мм. Период решетки регулируется за счет изменения угла пересечения двух лучей (2).


Изображение 2

На представлена структура решетки для 2 = 3.8 градуса, а 2b показывает одномерный профиль интенсивности, записанный вдоль вертикальной белой линии на .

Было установлено, что период модуляции решетки составляет 12 мкм, что соответствует плотности штрихов около 83 пл/мм в вертикальном направлении. Согласно концепции устройства, NCOPA могут разрешать пространственные структуры с пространственной частотой до 36 пл/мм, посему в OIS-1 было настроено 3х увеличение для визуализации образца на NCOPA для 83 плмм решетки.

Два импульса возбуждения для образца поступали от лазерной системы Ti:S с частотой 1 кГц вместе с селектором одиночных импульсов. В отсутствие селектора одиночных импульсов событие повторялось с частотой 1 кГц, поэтому оно было зарегистрировано методом накачки-зондирования.

Накачка-зондирование использовалось для регистрации эволюции плазменной решетки с NCOPA-1 и CCD-1, которая, как видно на , включает 16 фрагментов изображения.

Каждый из фрагментов имеет вертикальную белую линию для калибровки пространственного положения в горизонтальном направлении. На каждом фрагменте изображения плазменная решетка распространяется слева направо. А нулевой момент времени был определен как момент, когда плазма пересекает белую линию на первом фрагменте изображения ().

График 2d демонстрирует изменение модуляции в зависимости от задержки. Анализ этих данных позволяет предположить, что после прохождения импульса накачки через белую линию плазменная решетка становится монотонно сильнее, но начинает исчезать через 4 пс.

Для покадровой визуализации был установлен селектор одиночных импульсов на выходе системы Ti:S для создания однокадровой плазменной решетки.


Изображение 3

На изображении выше представлены четыре группы снимков, каждая из которых включает четыре кадра видеозаписи решетки, полученной с помощью системы FINCOPA (видео 1).


Видео 1

На интервалы времени между соседними холостыми изображениями составляют 100 фс. Это означает, что FINCOPA работает с частотой кадров 10 Tfps (видео 2).


Видео 2

На также видно, что полосы плазменной решетки слева направо постепенно становятся видимыми с течением времени, что означает, что плотность электронной плазмы монотонно увеличивается от 0 до 300 фс.

На 3b представлены кадры в период времени 0, 200, 400 и 600 фс, т.е. с интервалом между кадрами 200 фс (видео 3).


Видео 3

Полосы на плазменной решетке становятся все более четкими, что можно проверить по изменению модуляции вдоль белых линий (3f).

Основываясь на данных из и 3f, интервал между кадрами был увеличен до 1 пс, а зафиксированный момент NCOPA-1 был перенесен из нулевого временного момента на 1 пс (видео 4).


Видео 4

На и 3g показаны изображения и кривая модуляции, отражающие тенденцию к увеличению плазменной решетки ( и 3b).

На 3d показаны кадры при 5, 8, 20 и 30 пс (видео 5). Видимость полос со временем уменьшается, а это означает, что плазменная решетка начинает постепенно исчезать начиная с 5 до 30 пс. В результате в отличие от 3e3g, модуляция на 3h со временем уменьшается.


Видео 5

Для сбора полной информации со снимков -3h были получены временные характеристики нормализованной модуляции решетки по белым линиям каждого изображения (синие метки на ; красные метки соответствуют 2d, полученному накачкой-зондированием).


Изображение 4

Сравнение результатов работы обоих методов (т.е. сравнение красных и синих меток) показало, что результаты обоих методов совпадают, т.е. система FINCOPA работает исправно.

В случае, когда 2 = 2.5 градусов, период плазменной решетки становится около 18 мкм (т.е. плотность штриховки составляет 56 пл/мм).

Были проведены такие же эксперименты, как и на изображении 3, но уже с 2 = 2.5, а не 3.8 градусов. Результаты (4b) показывают хорошее совпадение нормированных модуляций между методом накачки-зондирования и методом FINCOPA.

Далее была рассмотрена эволюция решетки вдоль направления ее распространения. Из 4х4 кадров был получен коэффициент модуляции в зависимости от пространственной координаты вдоль направления распространения при различных значениях , например 0.8, 1, 2 и 4 пс ().


Изображение 5

Пик модуляции смещается вправо с увеличением , что объясняется тем, что пара импульсов накачки распространялась слева направо. Поскольку плазменная решетка представляет собой объект с низкой модуляцией интенсивности, измеренный контраст изображения относительно низкий. Используя пространственную фильтрацию, удалось удалить фон и увеличить контраст изображения.

Другое наблюдаемое явление заключалось в том, что пиковые значения модуляций уменьшались с удалением от центра вдоль направления x. На 5b представлена эволюция модуляции решетки в зависимости от времени от 0 до 30 пс в четырех положениях вдоль направления x (т.е. х = 15, 60, 90 и 500 мкм). Все положения показывают аналогичную эволюцию модуляции, но максимумы уменьшаются при сдвиге положения от центра влево. Таким образом, 5b подразумевает зависимость модуляции решетки от x, которая может быть результатом зависимости интенсивности возбуждающего импульса от x.

Сверхбыстрая визуализация вращающегося оптического поля



Изображение 6

Для дополнительной проверки временного разрешения FINCOPA было выполнена визуализация (схема установки на 7b) сверхбыстрого вращающегося оптического поля с частотой 20 Гц и скоростью вращения более 10 триллионов радиан в секунду (Tрад/с).


Изображение 7

Низкая частота повторения (20 Гц) означает, что этот вид оптического поля может быть усилен до чрезвычайно высокой мощности (например, до десятков тераватт и даже выше). Однако для лазерной системы низкая частота повторения обычно сопровождается большой скачкообразной флуктуацией ее выходных импульсов, так что метод накачки-зондирования может привести к значительной неточности измерения.

Изучаемое поле было создано путем двух чирпированных вихревых импульсов с разными топологическими зарядами (l) и временной задержкой (t). Если настроить временную задержку пары чирпированных импульсов на 1 пс, оптическое поле поворачивается с разностью угловых частот = 27 Трад/с (т.е. цикл вращение равен 466 фс).

Система FINCOPA визуализировала это событие с интервалом кадров t = 66.7 фс, т.е. с частотой в 15 триллионов кадров в секунду (видео 6). На изображении 6 показано поле, поворачивающееся на угол 0.9 рад за 200 фс.


Видео 6

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Часто говорят, что мастер ничто без своих инструментов. Возможно это и преувеличение, ведь талант, навыки и знания никто не отменял. Однако в аспекте исследования каких-либо процессов инструменты играют далеко не последнюю роль.

В данном труде ученые продемонстрировали работоспособную систему скоростной визуализации, которая способна запечатлеть что-либо с частотой кадров до 15 триллионов. Подобных показателей доныне не было, потому смело можно говорить про установление нового рекорда.

Сами авторы уверены, что их детище позволит познать очень много нового как в явлениях и процессах, которые уже изучены, так и в тех, что пока не могли быть рассмотрены из-за отсутствия необходимой аппаратуры.

Конечно, авторы исследования не намерены поддаваться бахвальству, ибо их система требует улучшений и доработок, которые в будущем смогут привести к тому, что метод FINCOPA станет столь же обыденным и распространенным, как и обычная микроскопия. По крайней мере, это мечта ученых. Станет ли она реальностью, покажет время.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Геометрическое представление кривизны пространства в метрике Шварцшильда

25.09.2020 14:16:06 | Автор: admin
или два плюс два равно четыре.

Для понимания статьи достаточно школьного курса математики.

Форма множителя в метрике Шварцшильда давно не давала мне покоя своей изысканной двуличностью, и я решил уделить некоторое время изысканиям возможностей её преобразования. Сама метрика Шварцшильда получается в результате решения ОТО для вакуумного случая (тензор энергии-импульса равен нулю):

$ds^2 = - \left(1- 2 \frac{GM}{c^2 r}\right) c^2 dt^2 + \left(1- 2 \frac{GM}{c^2 r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Она описывает пространственно-временной континуум в окрестностях произвольного компактного массивного объекта. Компактного, значит, девиации формы незначительны в отношении к массе. Проще говоря, круглый и плотный. Обычно здесь приводят в пример чёрную дыру. Никто почему-то не приводит примеров некомпактных объектов. Герметичная палка из пенопласта в открытом космосе на бесконечном удалении от массивных объектов, например, некомпактный объект. Кубический конь на расстоянии, с которого можно разглядеть печаль в его глазах тоже.

Через объём 3-сферы


Произведём замену:

$M=\frac{E}{c^2}$


Тогда метрика станет такой:

$$display$$ds^2 = - \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right) c^2 dt^2 + \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$$display$$


Замена была нужна только для того, чтобы обратить внимание на четвёртую степень у скорости света, потому что все циферки в формулах имеют значение. Об этом говорит вся история физики любая эмпирически полученная формула со временем получает теоретическое основание, объясняющее значения всех математических форм, которые в ней содеражатся.
Обычно в представлении этой метрики часть, связанную с физическими константами и массой тела, создающего поле, выражают через радиус Шварцшильда:

$r_s = 2 \cdot \frac{GE}{c^4}$


потому что метрика имеет особенность в этой точке. Здесь время, буквально, останавливается.
Вот так, в таком случае, выглядит вся метрика:

$ds^2 = - \left(1- \frac{r_s}{ r}\right) c^2 dt^2 + \left(1- \frac{r_s}{r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Но в продолжение рассуждений о физической сути явлений эта двойка:

$r_s = \color{red}{2} \cdot \frac{GE}{c^4}$


тоже должна быть осмыслена. Поэтому представим так:

$u = \frac{GE}{c^4}$


Это просто половина гравитационного радиуса $r_s$, и размерность у него такая же. Получим:

$ 1 - 2\frac{GE}{c^4r} = 1 - 2\frac{u}{r} $


Напрашивается:

$= \left( 1 - 2\frac{u}{r} + \frac{u^2}{r^2} \right) - \frac{u^2}{r^2} = \left( 1 - \frac{u}{r} \right)^2 - \frac{u^2}{r^2} = \left( \frac{r - u}{r} \right)^2 - \frac{u^2}{r^2} = $


$= \frac{(r-u)^2 - u^2}{r^2} \qquad \qquad (1)$


Уже неплохо. Зарисуем. Представим $r = OB$ конечным отрезком, $u = OA$ его частью, как показано на рисунке ниже. Очевидно, что $(r-u) = AB$.
image
Любопытно, кстати, что из $r_s = 2u$ следует, что точка $A$ находится за (под) горизонтом событий объекта энергии $E$. Вот так легко она находится, а мы не можем.
Теперь покажем, что отношение вида $(1)$ будет выполняться для всех точек, имеющих геометрическое место на перпендикуляре к $OB$ в точке $A$:

$\frac{(r-u)^2 - u^2}{r^2} = \frac{((r-u)^2 + a^2) - (u^2 + a^2)}{r^2} = \frac{b^2 - d^2}{r^2} \qquad \qquad (2) $


image
для любых $b = CB$ и $d = OC$.
Говоря проще, разность квадратов $(r-u)^2 - u^2$ эквивалентна разности любых величин, проекциями которых на $OB$ являются $AB$ и $OA$ соответственно, при условии, что точка $C$ у них общая.
Дальше предположим, что $u = u(E)$ и $(r-u)$, наоборот, проекции $r = OB$ на какие-то оси, то есть пифагорова сумма двух величин, в исходном виде перпендикулярных друг другу. Переводя это в требование, рассмотрим случай $\angle{OCB} = \pi/2$, для которого верно:

$b^2 = r^2 - d^2 \rightarrow (2) \rightarrow \frac{b^2 - d^2}{r^2} = 1 - 2\frac{d^2}{r^2} \qquad \qquad (3)$


image
Доработаем $(3)$ аналогично начальной итерации:

$1 - 2\frac{d^2}{r^2} = \left( 1 - 2\frac{d^2}{r^2} + \frac{d^4}{r^4} \right) - \frac{d^4}{r^4} = \frac{(r^2-d^2)^2 - d^4}{r^4} =$


$= \frac{b^4 - d^4}{\sqrt{b^2 + d^2}^4} = \frac{b^4 - d^4}{r^4}\qquad \qquad (4)$


Вот и четвёртая степень. Формула объёма 3-сферы:

$V = \frac{\pi^2 \cdot R^4}{2}$


Это я к тому, что если домножить и разделить $(4)$ на $\pi^2/2$:

$\frac{b^4 - d^4}{r^4} = \frac{\pi^2}{2} \cdot \frac{2}{\pi^2} \cdot \frac{b^4 - d^4}{r^4} = \frac{V_b - V_d}{V_r} \qquad \qquad (5)$


то множитель в метрике Шварцшильда превращается в разность объёмов двух 3-сфер, построенных вокруг двух радиальных проекций точки относительно центра поля, соотнесённой к объёму 3-сферы, образуемой полным расстоянием между точкой и центром поля.
С учётом того, что полный радиус задаётся проекциями, всю эту конструкцию весьма лаконично задают два параметра, один из которых связан с энергией, а второй нет. Там точно две координаты.

Выводы


Замечательными следствиями такого представления являются:
1. Из формы множителя видно, что поведение фотона ограничивает видимую зону пятимерного пространства-времени. За её пределами можно спрятать нечто гравитирующее, но невидимое.
2. Наличие второй спрятанной координаты избавляет от парадокса нулевого времени.
3. Раз кривизна пространства вокруг массивного тела может быть всегда разложена на две компоненты, одна из которых связана с энергией тела, а вторая исключительно с пространством, то следующим шагом надо решить уравнения ОТО для вакуумного случая пятимерного пространства-времени. Об этом в следующей статье.

Бонус. Через угол


Очевидно, что можно выразить значимость поля в точке через плоский угол, выражающий отклонение траектории движения от плоского пространства (в отсутствие гравитационных полей).
Выразим величины $b$ и $d$ через угол $\alpha = \angle{OBC}$: $b = r \cdot \cos\alpha; \ d = r \cdot \sin\alpha$. Назовём его угол кривизны траектории. Тогда множитель можно выразить очень по-разному:

$1 - 2\frac{GE}{c^4r} = \cos^2\alpha - \sin^2\alpha = \cos^4\alpha - \sin^4\alpha = 1 - 2 \sin^2\alpha = $


$= \frac{1-\tan^2\alpha}{1 + \tan^2\alpha} = \cos2\alpha \qquad \qquad (6) $


Особенно мне нравится вариант с тангенсами.
image
Подставим в исходный интервал:

$ ds^2 = -\cos 2\alpha \cdot c^2dt^2 + \cos^{-1} 2\alpha \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2 $


Всё, как и должно, превращается в плоскую метрику Минковского при $\alpha = 0$.
Здесь точно должен быть пятый
Продолжение следует.
Подробнее..

Как писать книгу в LaTeXe по физике. Cтатья 1

08.09.2020 18:17:15 | Автор: admin
Это моя первая статья на Хабре.

Глава 1. Введение



1.1 Позвольте представиться и почему я это пишу
Я научный сотрудник, физик. Недавно выпустил книгу по спектроскопии объемом 880 страниц и весом 1560 грамм. Эту книгу я писал 9 лет, параллельно читая лекции по ее содержимому. Она отняла у меня очень много времени, что естественно. Что не естественно это то, что громадная часть потраченного времени ушла на оформление, то есть на изучение языка Латех. И это при том, что я на Латехе пишу всю жизнь, лично написал и опубликовал около 50-ти статей в разных издательствах.
В этой статье (планируется продолжение, но это как пойдет) я хотел бы поделиться с читателями своими, с большими затратами полученными знаниями. Если читатель пишет только статьи, то моя статья ему не очень нужна в ней собрано то, что требуется авторам больших книг.
После публикации книги (пока, увы, только на русском языке) у меня возникло громадное желание написать еще книгу "Как написать книгу по физике в Латехе"


1.2 А почему на Хабре?
Если бы в России существовал некий Главный Форум для пользователей Латеха, я был бы там. Но его нет, увы. Есть ли в мире не знаю. Есть очень достойные форумы, вроде latex.org/forum или tex.stackexchange.com, но там в основном вопросы и ответы.
Есть в России хорошие авторы, а большого общеизвестного форума нет. Жалко.
Знакомая студентка СПбГУ недавно сказала мне, что их заставляют писать текcты в Латехе, но не рекомендуют ни книг, ни хороших сайтов. При таком подходе наши крокодилы может и взлетят, но только очень низенько.

1.3 А почему Латех?
Да я просто не знаю других редакторов. Ни разу в жизни не написал ни одной серьёзной работы в Word или OpenOffice. Поэтому сравнивать редакторы я не могу. Латех это как старая жена. Была любовь, были ссоры, всё было Вот только без него я уже не смогу.
Часто встречается мнение, что Латех лучше, легче и красивее форматирует текст, чем любой другой редактор. Что он как-бы говорит автору: "Отойди в сторонку, ты все равно ничего не понимаешь в оформлении текста, дай поработать профессионалу".
Я думаю, что это так только частично. Я убил море времени на оформление текста, и это очень печально. Я не собираюсь описывать правила работы с Латехом, для этого есть хорошие книги,* как раз наоборот я собираюсь писать о том, чего в этих книгах нет.
В деле оформления текста и создания рисунков есть очень много хитрых приемов, которые я хочу хотя бы кратко описать, если мой текст заинтересует кого-нибудь здесь, на Хабре.

1.4 Есть ли у меня цель
Я, разумеется, понимаю, что в Латехе пишет ничтожное количество людей. Как правило, математики и физики, да и то далеко не все. Из пишущих в Латехе авторов доля пишущих книги очень и очень мала. Наконец, пишущих на русском языке пренебрежимо мала.
Логика этой заметки состоит не в том, чтобы дать читателю широкий взгляд на применения Латеха для книгописательства. У меня нет для этого достаточного кругозора: я уверен, что тот, кто копает везде, копает неглубоко. Логика заметки такая: "я не знаю, какие тропинки куда ведут в нашем дремучем лесу. Я прошёл по густому лесу по одной тропинке, о ней я и собираюсь вам рассказать."

Если говорить о тенденциях, то повсеместное введение наукометрии в России, то есть индексов Хирша (и ему подобных) и количества цитирований, должно полностью уничтожить научную книгу. Я имею в виду прежде всего учёт этой наукометрии при назначении на должности, а также при распределении грантов и других видов финансирования. Напоминаю, что в индексе Хирша книги вообще не учитываются.
Если наши научные руководители будут во всем последовательными, они в будущем должны запретить русский язык, особенно письменный, за написание книг наказывать, а за написание книг на русском языке жестоко наказывать, вплоть до увольнения. За крайне неэффективное использование казёного рабочего времени.
Поэтому мой труд, эта книга, мне самому иногда кажется чем-то дурацким и ненужным. Но ведь без чудаков (дураков?) жить скучно
К тому же здесь, на Хабре, люди часто пишут статьи про всякое старьё, вроде грамплатинок или кассетных магнитофонов. Чем моя тема хуже?

1.5 Лучшие современные книги
В процессе написания своего учебника я перебрал громадное количество иностранных книг и учебников, и пришел к выводу, что самые лучшие учебники в моей области написаны Аткинсом (P. W. Atkins) из Оксфорда с разными соавторами. См., например, "Molecular Quantum Mechanics " (2005). Есть ещё очень хорошие книги Демтрёдера (W. Demtroder, "Laser spectroscopy: basic concepts and instrumentation", 2003; Electrodynamics and Optics ", 2019; ...)
Что интересно в у Демтрёдера автор благодарит специальную службу, которая помогла ему оформить книгу в ЛаТехе. В Германии такая служба есть, а в России нет.
Причем эти книги являются лучшими не столько по содержанию, сколько по оформлению. Невооруженным глазом видно, что все они сделаны в Латехе с активным использованием пакета TikZ. В результате у меня сложилось чувство, что связка Латех--TikZ наилучший способ создать книгу, оформленную на лучшем мировом уровне. Именно поэтому в моей книге активно использовался TikZ (даже там, где можно обойтись и без него).

1.6 Идеальная книга будущего
Хотелось бы порассуждать об идеальной книге будущего. То есть от том, куда неизбежно придёт (ну должно прийти) научное издательское дело. То есть о том, к чему нам, учёным, надо стремиться для повышения своей конкурентноспособности и привлекательности.
Естественно, книга будущего существовать в двух вариантах: бумажном и электронном. Кроме того, она будет цветной. Причем цветом будут выделяться не только рисунки.
Чёткое современное разделение содержимого на текст, рисунки, таблицы и формулы уйдёт в прошлое. Например, есть потребность в стрелочках, которые связывают какие-то места в текстах, рисунках, таблицах и.т.д. Почему надо разделять рисунки и таблицы? Почему я не могу разместить рисунки внутри таблицы или наоборот? Разве не удобнее иногда иметь смесь из них?
На рисунке 1 показаны две страницы моей книги (Интернет-версия), чтобы было понятно, что текст и рисунок могут плавно перетекать друг в друга.


Рис. 1. Пример оформления моей книги. Показано перетекание таблицы в рисунок

Другие идеи, навскидку.
1) Ссылки на формулы, рисунки, таблицы, главы и т.д. выделяются шрифтом и цветом (и, естественно, должна быть гиперссылкой).
2) Каждая глава имеет свой аватар. Аватары различаются цветом. На каждой странице на полях показан аватар и номер главы.
3) Краешек страницы рядом с аватаром окрашен в цвет аватара так читателю удобнее искать нужную главу. Эта идея используется во многих каталогах и справочниках.
4) А, может быть, из Интернета в научные тексты переберутся спецсимволы. Например, смайлики то есть символы, выражающие эмоции.
Когда-то давно мои преподаватели-математики использовали чёрный квадратик в конце доказательств теорем вместо фразы "что и требовалось доказать". Почему бы не возродить?
5) Наконец, очень отдалённое будущее: электронная версия книги может содержать картинки с анимацией. Причём это далеко не фантастика: эта возможность уже сейчас есть в том же TikZ.

Конечно, все эти мечты расцветали в моей голове только до встречи с живым редактором, который считает все это дорогой и ненужной блажью, но это уже другая тема.

1.7 Про компиляторы, редакторы, диалекты Латеха
Это очень большая и больная тема.
Я использую связку Windows/MikTeX/WinEdt (=ОС/компилятор/редактор), но даже в рамках этой связки есть большой выбор версий.
Редактор WinEdt я считаю лучшим (хотя иногда пользуюсь и TexStudio), но и он после версии 5.6 стал эволюционировать в неприятную для меня сторону (взлом WinEdt я здесь не описываю, но это не проблема для любой версии).
Например, потому, что я консервативен и подслеповат, поэтому признаю только свою расцветку синтаксиса, а не ту, которую предлагает создатель WinEdt, см. рис. 2 и рис. 3.


Рис. 2. Расцветка синтаксиса в WinEdt v.10


Рис. 3. Здесь будет моя расцветка синтаксиса в WinEdt v.5.6

Но главная неприятность новые компиляторы делают вид, что умеют работать с 8-мибитным шрифтами в кодировках типа UTF-8, для чего разработаны и активно внедряются диалекты типа LuaLatex, XeLatex, и др. Кажется прогрессом, что эти новые диалекты умеют создавать текст с любыми шрифтами, хоть со старославянскими. Но сколько тут издержек
Одна из моих главных претензий если я перенесу из Интернета какой-нибудь текст, то там наверняка будет смесь кодировок, часть символов мне редактор не покажет, а компилятор выдаст ошибку, которую будет трудно найти.
Для русскоязычного текста я признаю только 7-мибитные шрифты и кодировку ANSI/Windows1251, а тексты из Интернета переношу не напрямую, а через какой-нибудь упрощённый редактор (например, Notepad++), в котором можно все кодировки настроить, как надо.
И только под самый конец, занимаясь окончательным форматированием текста, можно перейти на UTF-8. Это большая работа.
Единственное простое улучшение шрифта Латеха, никак не влияющее на форматирование текста, это переход с CM на CM-super.

Напоминаю, что всегда можно поиграть с настройками форматирования, например,
\clubpenalty=400   % Эти числа -- разрешение на запрет висячих строчек. Подразумеваемость = 300, абсолютный запрет = 10000.\widowpenalty=400  %% Увеличиваем эти числа до тех пор, пока не начнет увеличиваться количество страниц.\righthyphenmin=2 % сколько букв можно переносить. Если используется Babel, то команда немного другая.\tolerance=500   %max=10000, default=200 (выбор между разрежением и переполнением).% лучше разрядить, чем переполнить!\looseness=-1 % иногда можно удлинять страницу на одну строку.\hfuzz=2.5pt % иногда можно вылезти за край строки на 2.5 pt.


Глава 2. Свои стандарты


2.1 Советы начинающему автору
Вот список основных советов начинающему автору большого текста. Большой текст это текст, который очень утомительно листать, его можно править только командами поиска и замены.
Как выразились бы военные люди, каждый совет написан кровью. Ну ладно, не кровью Но затраченное время, нервы, головная боль, и т.д. Сначала кажется, что потом будет время всё поправить. А потом окажется. что работы по переделке книги под вкусы редакции это очень времязатратное дело.
2.1.1 Узнайте формат страницы Вашей будущей книги и с самого начала внесите его в преамбулу. Это избавит Вас от мучительного переформатирования. С самого начала задайте в преамбуле конечный макет страницы (размеры колонтитулов, полей, и т.д.), а также размер и вид шрифта. Это тоже сэкономит вам время потом.
Например, формат моей книги 70x100 1/16, и поэтому в преамбуле стоят такие настройки:
\special{papersize=170mm,240mm}\textheight 187mm % 200-(12+25)*0.35146 = 186.99598\textwidth 130mm\headheight13.6pt % = 0.48 mm\oddsidemargin -5.4mm\evensidemargin -5.4mm\topmargin -5.4mm\usepackage{setspace}\singlespacing

здесь команда
\singlespacing
задаёт во всём документе одинарный интервал, а сама является частью пакета setspace.
Понимать это надо так. Поля, сверху и снизу, равны 20 мм. Поэтому доступна площадь 130*200 мм. Запись
\topmargin -5.4mm
означает, что расстояние от верхнего края колонтитула h до верхнего края страницы равно h= = 1 дюйм + topmargin = 2 см, что и требуется. Ширина текста равна 130 мм, а вот из высоты 200 мм надо вычесть высоту колонтитула (headheight) и расстояние от колонтитула до текста (headsep).
Подразумевается, что есть ещё три команды:
\voffset=0 \headheight12pt \headsep25pt % 1 pt = 0.3528 мм

и общая формула:
240= y-papersize = 2*(2.54 см + topmargin) + y-textheight + headheight + headsep = 40+ 186.99598 + (12+25)*0.35146 мм.
Всё, казалось бы, понятно. Но компилятор на каждой странице выдаёт сообщение:
Package Fancyhdr Warning: \headheight is too small (12.5pt):
Make it at least 13.59999pt.
We now make it that large for the rest of the document.
This may cause the page layout to be inconsistent, however.

Значит, переделываем, теперь
\headheight13.6pt
.
Полезно помнить, что родные, то есть встроенные шрифты Латеха это 10, 11 и 12 пт. Для получения других размеров нужно подключать специальные пакеты. Я хотел, чтобы шрифт был поменьше, чтобы на страницу влезло побольше текста. Но в в редакции мне сказали, что латеховский шрифт 11 пт смотрится как 10.5 пт в редакторе Microsoft Word. И поэтому я выбрал 11 пт. А зря. Надо было 10 пт, как делают в большинстве издательств за границей.

Большое серьезное издательство имеет свой стиль, и тогда автору не надо думать, но к России это (обычно) не относится.
Написал, и подумал, что это может быть хорошо, что наши редко выпендриваются со своим стилем. Совсем недавно посылал статью в журнал AIP Conference Proceedings, его стиль документа
\documentclass[aip,cp,amsmath,amssymb,reprint]{revtex4-2}
, и получаю ответ: " Ваше оформление не соответствует Электронные адреса должны быть сразу после фамилий авторов, а не в сносках..."
А как он может не соответствовать, если и стиль, и шаблон документа я взял у них на сайте?
В ходе переписке со службой поддержки выяснилось, что, как они считают, у меня какие-то пакеты устарели, и поэтому мне лучше компилировать свои статьи у них на сайте, служба www.overleaf.com/latex
Я, во-первых, терпеть не могу эти модные попытки упростить мой компьютер до интерфейса к программам, расположенным у них в Интернете, a во-вторых, каким надо быть креативным, чтобы привязать стиль статей к каким-то глубоко запрятанными настройками моего компилятора?
Меняйте стиль журнала (cp), меняйте стиль издательства (revtex4-2), но зачем делать их зависящими от компилятора ?!

2.1.2 Выбор шрифта
Шрифт в редакторе обязательно должен быть моноширинный (Consolas, Lucida Console, Courier, Courier New, ), а редактор текста должен легко переходить между блочным и строчным режимами. Это позволяет, переставлять колонки в таблицах, если они правильно приготовлены.
Другой пример. Когда мне нужно оставить для компиляции только один файл (одну главу из двадцати), я выделяю столбец из знаков % и переношу его в начало абзаца. Потом руками убираю знак % перед нужным мне файлом, и в результате все файлы оказываются комментариями, кроме нужного.
2.1.3 У человека хорошо работает зрительная память. Он узнает знакомые места в тексте и грех не пользоваться этой способностью. Поэтому мой стандарт: одно предложение = один абзац. Никакого автоматического выравнивания строк (отключить Wrap). В результате расположение текста в строке не изменится, если я что-то изменю в предшествующих предложениях.
2.1.4 Имя файла с рисунком должно совпадать с его меткой. Это удобно, и, кроме того, экономит одну переменную в макросе, вызывающим рисунок.
2.1.5 Имя статьи составляется по стандарту. Страшно удобно, но на вкус и цвет товарищей нет.
Мой стандарт: ссылка Purcell46_681 означает (автор)-(год публикации)-(номер страницы).
2.1.6 Раскраска синтаксиса. Для меня это почему-то очень важно.Пример моей раскраски и стандартной раскраски WinEdt показаны на рис. 2.
Раскраска синтаксиса от производителя WinEdt убога, и никак не соответствует моим вкусам.
Правильные (мои) принципы раскраски состоят в следующем:
комментарии: бледный наклонный текст на сером фоне.
текст ссылок (\ref, \cite): яркий фон, но разный для ссылок на литературу и уравнения
скобки: жирный шрифт, яркий фон, задняя скобка должна быть подчеркнута.
латеховские команды (\begin ): светлый фон.
служебные символы ($, _, ): жирные и выделяются в тексте цветом,
конец строки в таблице (\\) жирный белый на черном фоне.
2.1.7 Простейшая "правильная" структура книги это две директории: одна для текста книги, другая это мастерская для изготовления векторных рисунков в пакете TikZ.
Внутри каждой есть поддиректория \Figs для готовых рисунков.
Про мастерскую в этой статье я рассказывать не буду.

Глава 3. Свои обозначения


3.1 Малые замены
которые я привык называть макросами, хотя это, вероятно, неправильно.
Когда-то, лет 30 назад, я был сильно впечатлён тем, что я могу набивать математические формулы с пулеметной скоростью, не глядя на монитор. Мне и сейчас это нравится. Но особенно полюбил я набивать тексты, используя свои обозначения. Все они, само собой, собраны в файле с преамбулой.
Всегда ли можно ввести аббревиатуры? Да нет, к сожалению, не всегда. Многие из них компилятор понимать не хочет. Например, я пока не нашел аббревиатуры для страшно полезных окружений типа
\begin{split}--\end{split}, \begin{align}--\end{align}
и т.д.
Простейшие примеры.
\newcommand*{\BE}{\begin{equation}} %\newcommand*{\EN}{\end{equation}} %\newcommand*{\BEA}{\begin{subequations} \begin{eqnarray}} %\newcommand*{\ENA}{\end{eqnarray} \end{subequations}} 

Набивать текст вроде
\begin{equation}
очень лень.Поэтому я давно ввел аббревиатуру \BE. Почему с большими буквами? До потому что лет 30 назад досовский Латех (=EmTex) с маленькими буквами работать не захотел.
\newcommand*{\hs}{\hspace*{\parindent}}

В английском языке первый абзац начинается без красной строки. Чтобы отменить это правило, обычно используется команда \hs
\newcommand*{\nn}{\nonumber}

Отмена автоматической нумерации формулы
\newcommand*{\ea}{{\it et al\/}\xspace}

Для списка авторов, аналог русского и др. Особенно полезно, если вам хочется аббревиатуру et al напечатать курсивом. Обратите внимание на команду \xspace, она разбирается, нужно ли делать пробел (если дальше идут слова) или не нужно (если дальше идут знаки препинания).
Если вы часто пишите химические формулы, то подходят замены типа
\newcommand*{\1}{$_1$}\newcommand*{\2}{$_2$}\newcommand*{\3}{$_3$}\newcommand*{\4}{$_4$}\newcommand*{\5}{$_5$}\newcommand*{\6}{$_6$}\newcommand*{\7}{$_7$}\newcommand*{\8}{$_8$}\newcommand*{\9}{$_9$}

Например, вместо C$_2$H$_5$OH я пишу C\2H\5OH. Это чуть-чуть быстрее.
Для вставки текста в математические формулы я использую
\newcommand*{\T}[1]{\text{#1}}

В моей науке часто используются волновые числа (это единицы измерения частоты, они равны обратным сантиметрам),
\newcommand*{\ic}{cm $^{-1}$\xspace}

Были времена, когда я сокращал буквально все. Например, если мне было лень писать слова типа "photodissociation", я вводил аббревиатуру \pd.
Если надо писать числа, то я понаделал сокращений типа
\newcommand*{\po}[1]{$\times \! $10$^{#1}$} % *10(-n)\newcommand*{\vp}[2]{#1$ \times \! $10$^{#2}$\xspace} % v*10(n)\newcommand*{\ve}[2]{#1$\pm$#2\xspace} % v+-e\newcommand*{\vep}[3]{$(#1 \pm #2)\times \! 10^{#3}$\xspace} % (v+-e)*10^n

Например, \vep это число v с погрешностью e, помноженное на 10 в степени p, т.е. (v+-e)*10^p.

3.2 Обращение к таблицам и рисункам
Немножко о другом: латеховское обращение к ссылке \ref не различает рисунки, таблицы, разделы, и т.д. Когда их очень много, это раздражает.

3.3 Большие замены
Постепенно выработался стиль для сложных манипуляций никогда не использовать латеховские стандарты напрямую, а только через макросы.
Вот макрос для создания рисунка, который обтекается текстом:
\newcommand*{\EpsWrapD}[7]{%\begin{wrapfigure}[#5]{#3}{#2 \textwidth} % #3=l,r,L,R\begin{center} \sffamily\includegraphics*[width= #2 \textwidth ]{#1} % 1-имя файла и метка заодно,% 2-ширина рисунка (доля от ширины страницы)\vspace{-#7mm} % #7: сократить расстояние между подписью снизу и рисунком\caption{\label{fig:#1}#4} % #4 - подпись под рисунком\vspace{-#6pt}\end{center}% #6: сократить расстояние между подписью снизу и текстом после таблицы \end{wrapfigure}}

Вот макрос для создания таблицы, который обтекается текстом:
\newcommand*{\TableBE}[5]{\begin{table}[#1] %\captionabove\vspace*{-#5mm}\centering \sffamily \caption{\label{tab:#2}#3} \begin{tabular}{#4} \toprule }\newcommand*{\TableEN}[3]{\bottomrule \end{tabular}\vspace{-#2mm} \small \begin{flushleft} #1 \end{flushleft}\vspace{-#3mm}\end{table}}

А вот текст простой таблицы
\TableBE{H}{RS_Ham_2pi}{\TableBE{H}{RS_Ham_2pi}{Гамильтониан линейной молекулы в состоянии $^2\Pi $}{G LL}{2} $^2\Pi $ }{G LL}{2}\CR & |^2\Pi_{1/2} JM_J \pm \rangle & |^2\Pi_{3/2} JM_J \pm \rangle \\\midrule|^2\Pi_{1/2} JM_J \pm \rangle & B[J_{\perp}^2+1] -A/2 & -B J_{\perp} \\|^2\Pi_{3/2} JM_J \pm \rangle & -B J_{\perp} & B[J_{\perp}^2-1] +A/2 \\\TableEN{}{0}{0}

и ее откомпилированный вид:


Макрос \TableBE имеет 5 переменных:
#1) как и где поставить таблицу. Напрмер, h="хотелось бы таблицу здесь",
h!="очень хочу таблицу здесь", H="хочу таблицу именно здесь и баста",
t!=поместить таблицу вверху страницы и т.д.
#2) ссылка на таблицу,
#3) заглавие таблицы,
#4) Описание столбцов. Например, {G LL} означает: выравнивание по левому краю, математическая мода, первый столбец подкрасить.
#5) Эстетство: иногда хочется уменьшить расстояние между заголовком и таблицей.
Макрос \TableEN имеет 3 переменные:
#1) текст под таблицей.
#2) Эстетство: иногда хочется уменьшить расстояние между текстом и таблицей.
#3) Эстетство: иногда хочется уменьшить расстояние между таблицей и последующим текстом.

Часто бывает удобно создавать семейства макросов. Например, у меня есть главный макрос для вставки рисунка в текст.
\newcommand*{\RisEpsLarge}[7]{\begin{figure}[#5] \begin{center}\includegraphics*[width= #2 \textwidth,#6]{#1} %#6: scale=2, bb=10 20 100 200\vspace{-#3mm}\sansmath\caption{ \label{fig:#1}#4}\vspace{-#7mm}\end{center} \end{figure}}

У него 7 параметров, для меня это много. Поэтому я создал семейство макросов, показанное ниже. Основная идея уменьшить количество параметров, чтобы можно было как можно меньше думать при создании таблицы. Читатель легко догадается, что они отличаются правилом расположения рисунка и его поворотом на +-90 градусов (иногда это нужно, потому что эта умная бестолочь, Латех, имеет свои представления, как поворачивать рисунки).
\newcommand*{\RisEpsPos}[5]{\RisEpsLarge{#1}{#2}{#3}{#5}{#4}{angle=0}{0}}\newcommand*{\RisEps}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!tbhp}{angle=0}{0}}\newcommand*{\RisEpsTop}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!t}{angle=0}{0}}\newcommand*{\RisEpsBot}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!b}{angle=0}{0}}\newcommand*{\RisEpsPlace}[5]{\RisEpsLarge{#1}{#2}{#3}{#5}{#4}{angle=0}{0}}\newcommand*{\RisEpsRot}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{tbhp}{angle=90}{0}}\newcommand*{\RisEpsRotTop}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!t}{angle=90}{0}}\newcommand*{\RisEpsRotBot}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!b}{angle=90}{0}}\newcommand*{\RisEpsRotBotPlace}[5]{\RisEpsLarge{#1}{#2}{#3}{#5}{#4}{angle=90}{0}}\newcommand*{\RisEpsRotClock}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{tbhp}{angle=-90}{0}}\newcommand*{\RisEpsRotClockTop}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!t}{angle=-90}{0}}\newcommand*{\RisEpsRotClockBot}[4]{\RisEpsLarge{#1}{#2}{#3}{#4}{!b}{angle=-90}{0}}\newcommand*{\RisEpsRotClockBotPlace}[5]{\RisEpsLarge{#1}{#2}{#3}{#5}{#4}{angle=-90}{0}}

Наконец, в примере к этой статье используется макрос для вставления таблицы в текст
\WrapTableBE<\source>:<source lang="tex">\newcommand*{\WrapTableBE}[6]{\renewcommand{\baselinestretch}{0.75}\small\normalsize\begin{wraptable}{#1}{#5\textwidth} \sffamily\begin{center} \vspace*{-#6mm}\caption{\label{tab:#2}#3} \begin{tabular}{#4} \toprule }% #1 : l, r #2 : label #3 : caption #4 : cc|cc|rr|ll #5 : 4 #6: 5% вставить в текст таблицу, окончание\newcommand*{\WrapTableEN}[2]{\bottomrule \end{tabular} \end{center} \vspace{-#2pt} \small #1 \end{wraptable}\renewcommand{\baselinestretch}{1}\small\normalsize}


Глава 4. Экспорт текста в разные части книги или в другие книги


В конце каждой главы я помещаю список задач и список вопросов на экзамене. В конце книге размещены эти задачи с решениями, а также полный список экзаменационных вопросов.
Я также параллельно пишу вторую книгу "решебник", в которой приведены решения задач из учебника.Это значит, что в процессе компиляции книги происходит добавление текста в "решебник".
Таким образом, одни и те же тексты должны появиться в двух совершенно разных местах. В дальнейшем для краткости будем обсуждать только задачи с решениями в конце книги. Я хочу, чтобы условие каждой задачи было напечатано дважды, в конце главы и в конце книги перед решением.
Но я категорически не хочу иметь две версии одного и того же текста в разных местах, потому что это источник бесконечного количества ошибок. И значит, компилятор должен сам дублировать фрагменты текста, копируя их в разные места разных книг.
Как я решаю эту задачу. В конце преамбулы у меня стоит команда:

\usepackage{newfile} % загрузить пакет newfile\newoutputstream{ZO} % создать поток по имени ZO\openoutputfile{Zadachi.tex}{ZO} % направить поток в файл по имени Zadachi.tex\newcommand*{\PutNumberZO}{\addtostream{ZO}{$\{$\thechapter.\theenumi$\}$}} % в файл Zadachi.tex % добавить номер главы и номер задачи.

Она открывает файл Zadachi.tex и во время компиляции направляет туда текстовый поток.
Файл Zadachi.tex до начала работы пустой, а еще есть файл Zadachi_Head.tex который потом будет компилироваться, и который выглядит, например, так:
\chapter{Задачи и решения}\Epigraf{0.68}{Отплякиваясь от сурых пляк, каждый хамсик шмыряет на глын по 5 гнусиков. Сколько гнусиков шмырнут на глын 12 гнусиков, отплякивающихся от сурых пляк?}{"Задачи по математике"\ , Г.Остер}\bigskip\input{Zadachi}\endinput   После компиляции всех глав идёт команда закрыть поток и начать компилировать  файл \closeoutputstream{ZO}  % закрыть поток ZO\include{Zadachi_Head} % компилировать файл Zadachi_Head.tex 


Здесь появился новый пакет clipboard, который имеет всего четыре команды:
\newclipboard{myclipboard}
открытие файла myclipboard.cpy для записи,
\openclipboard{myclipboard}
открытие файла myclipboard.cpy для чтения,
\Copy{item_name}
запись в файл myclipboard.cpy фрагмента с меткой item_name,
\Paste{item_name}
чтение их файла myclipboard.cpy фрагмента с меткой item_name.
Важная особенность этого пакета запоминая фрагмент текста во внешнем файле, он не забывает откомпилировать фрагмент в исходном файле. Так возникает процедура копирования. Большой недостаток этого решения состоит в том, что мы должны сначала открыть файл myclipboard.cpy для записи, записать в него условия задач, закрыть, и только потом открыть его для чтения. Я, к сожалению, не нашёл простого способа закрыть и открыть, поэтому использую более громоздкое решение: введена булевская переменная FR (FR= First Run) значение которой при первой компиляции равно FR=true, а при последующих FR=false. И если FR=true, то файл myclipboard.cpy открывается для записи, а если FR=false, то файл myclipboard.cpy открывается для чтения.
К сожалению, перед первой и второй компиляциями надо вручную устанавливать значение переменной FR. Это неприятно, но не будет ничего страшного, если Вы забудете это делать. Если у Вас всегда будет FR=true или FR=false, то в задачнике просто не будет условия задач, что вполне допустимо при работе над текстами глав.
Мне было лень решать эту проблему, всё равно текст надо компилировать минимум трижды.

Глава 5. Работа со ссылками


5.1 Создание списка литературы
Допустим, я пишу большой обзор. Это значит, что я выдергиваю куски из своих текстов вместе с ссылками на литературу. В конце я прошу компилятор (BibTex) пересмотреть мои предыдущие списки литературы, разбросанные по файлам Bib_File1.bib, Bib_File2.bib, и т.д., используя, например, команду
\bibliography{Bib_File1,Bib_File2,...Bib_FileN}

Компилятор ссылок, конечно, сделает мне макет моего обзора, но мне этого мало.
При написании книг и обзоров очень полезно иметь продвинутый сортировщик библиографических ссылок. Для этого существует пакет bibMacros гражданина R. Schlicht. В результате установки этого пакета в меню WinEdt в разделе BibTex появятся куча команд для работы с ссылками.
В частности, я получаю возможность создать новый файл с ссылками из нового обзора, Bib_FileN+1.bib, причем по моему желанию ссылки могут быть расставлены в правильном порядке (например, в порядке упоминания в тексте, как принято в физике).
Напоминаю, что файлы типа bib содержат список литературы в виде записей вроде этой:
@article{Levchenko01_7485,year=2001, title={Electronic structure of halogen-substituted methyl radicals: excited states of {CH$_2$Cl and CH$_2$F}}, author={S{ergey} V. Levchenko and A{nna} I. Krylov}, journal=JCP,volume=115,pages=7485,numpages=10, abstract={Electronically excited states in CH2Cl and CH2F radicals are...}}


5.2 Змей Горыныч ГОСТ
Дальше у англоязычных товарищей проблем, по-моему, не бывает. А у нас, русскоязычных, есть большая головная боль. Она называется ГОСТ.
Российский ГОСТ разабатывал, несомненно, очень высокоэффективный диверсант какой-нибудь абсолютно враждебной России страны. Вот пример его творчества



Рис. 4. Змей Горыныч ГОСТ (2008).

Как видим, русскоязычный автор должен писать фамилии по два раза, лихо переставлять инициалы и фамилии и использовать пять разных стилей оформления в зависимости от количества авторов. Потренеруйтесь переставить инициалы и фамилию, например, у господ H. Ford III и W. S. Stoner Jr.
И это только книги. В статьях диверсант ввёл разные наклонные и даже двойные палочки чтобы стало так, как нету ни у кого в мире.
В диссертации, например, следование стандартам обязательно. Во всяком случае, многие соискатели так думают. В мое время, в 2008 году, пакет для форматирования по ГОСТу написал хороший человек Поляков, и я его использовал для форматирования списка литературы. Я молодец, но и белая ворона одновременно, потому что соискатели массово этот ГОСТ игнорировали. Но в стране все с тех пор только ужесточалось, так что я не знаю, как там сейчас.
А сейчас я закончил книгу, а в ней ссылки тоже должны быть отформатированы по ГОСТу. Но, как я понял, ГОСТы в диссертации и в книге разные, в книге он менее уродский. Идем в Интернет, скачиваем пакет Котельникова gost, вставляем в преамбулу строчку
\bibliographystyle{gost2008}

после чего форматируем список литератулы. Дело сделано, все ГОСТы соблюдены.
Но даже Котельников иногда ошибается. Так, в его пакете есть мелкие ошибочки.**
Например, пусть надо напечатать "Vol. 115". Правило хорошего тона состоит в том, чтобы не было разрыва строки между "Vol." и "115". А пакет Котельникова этот разрыв иногда допускает, см. рис. 5.


Рис. 5. Плохо отформатированаая запись.

5.3 Доработка напильником
Значит, надо доработать напильником (Тем более, что не только в этом месте. Авторский указатель со смесью английских и русских имен тоже.) В процессе компиляции bib-файлов создается файл P_bibs.bbl, содержащий записи типа
\bibitem{Levchenko01_7485}\selectlanguageifdefined{english}\BibEmph{Levchenko~S.~V., Krylov~A.~I.} Electronic structure of halogen-substituted methyl radicals: excited states of {CH$_2$Cl and CH$_2$F}~// \BibEmph{J. Chem. Phys.} \BibDash\newblock 2001. \BibDash\newblock Vol. 115. \BibDash\newblock P.~7485.

Так вот, находим все неправильности и исправляем их руками. В данном примере вместо "Vol. 115" делаем "Vol.~115". Этот исправленный файл прячем в укромном месте. Перед последней, окончательной компиляцией заменяем текущий файл P_bibs.bbl на исправленный, и все получится хорошо.

Глава 6. Минимальный работающий пример


6.1 Список файлов
Привожу минимальный шаблон книги, в котором можно найти перечисленные выше
идеи. В главной директории должны быть файлы:
P_main.tex % главный в проекте
P_preamble.tex % преамбула
Ch1.tex % часть 1
Ch2.tex % часть 1
Figs\P_ABC.eps % В поддиректорию Figs положите свой рисунок P_ABC.eps.
Zadachi.tex % до начала работы пустой
Zadachi_Head.tex % Заголовок части с задачами и решениями

6.2 Файлы маленькой книги, можно компилировать
Скрытый текст
% Файл P_main.tex  % главный в проекте\documentclass[10pt,twoside,openany]{book}\usepackage{etoolbox}   % this package introduces operations: \newbool,...\newbool{For_Internet}\booltrue{For_Internet}    % % Цветная книга для Интерента%\boolfalse{For_Internet}  % или черно-белая для бумаги\newbool{FR} %FR= First Run%\booltrue{FR}  %  --  make  FR = true\boolfalse{FR}  %  --  make  FR = false\input{P_Preamble}       % загрузить преамбулу\includeonly{             % какие главы включаем в книгуP_Ch1,        %%%P_Ch2,        %%%Zadachi_Head  %%%}\begin{document}         % начало документа\tableofcontents         % Оглавление\ifbool{FR}{\newclipboard{myclipboard}}{}                          % какие главы компилируем\include{P_Ch1}          %%%\include{P_Ch2}          %%%\closeoutputstream{ZO}  % закрыть поток в файл Zadachi.tex\ifbool{FR}{}{\openclipboard{myclipboard}}\include{Zadachi_Head} % загрузить Файл с задачами с решениями%\bibliography{P_Bibs}  % создать список литературы, убираем простоты ради\end{document}         % конец документа\endinput              % конец текста, дальше только комментарии%+++++++++++++++++% Файл P_preamble.tex  % преамбула\usepackage[warn]{mathtext} %(до задания inputenc, fontenc, babel)% русские буквы в формулах, с предупреждением%---- основной язык -- русский\usepackage[T2A]{fontenc}\usepackage[cp1251]{inputenc}\usepackage[english,russian]{babel}   % load Babel setup for English                                      % and Russian languages;                                      % the latter is the default.% Поскольку опция russian стоит последней, основным языком документа будет russian.%-- форматирование страницы\textheight 187mm\textwidth 130mm\headheight13.6pt\special{papersize=170mm,240mm}\oddsidemargin -5.4mm\evensidemargin -5.4mm\topmargin -5.4mm%--- стиль заполнения таблицы\clubpenalty=400\widowpenalty=400\tolerance=500  %max=10000, default=200 (выбор между разрежением и переполнением).\looseness=-1 %(можно удлинять страницу на одну строку)\hfuzz=2.5pt % можно вылезти за край строки на 2.5%--- полезные пакеты\usepackage{amssymb,amsmath} % почти стандарт Латеха\usepackage{xspace}\usepackage{enumerate} % списки\usepackage{booktabs}\usepackage[dotinlabels]{titletoc}%-- включение рисунков\usepackage{graphicx}  % Пакет для включения рисунков%\usepackage[dvips]{color} % есть цветные фотографии!\graphicspath{{figs/}} % В этой директории хранятся все рисунки *.eps,\usepackage[usenames,dvipsnames]{xcolor,colortbl}%--- мой цвет для таблиц, и для ссылок на рисунки и формулы\definecolor{lightcyan}{rgb}{0.88,1,1} % обычно: ( 0.88, 1, 1)\ifbool{For_Internet}{\newcolumntype{g}{>{\columncolor{lightcyan}}c}}%{\newcolumntype{g}{>{\columncolor{light-gray}}c}}\newcommand*{\red}[1]{\textcolor[rgb]{1.00,0.00,0.00}{#1}}\newcommand*{\blue}[1]{\textcolor[rgb]{0.00,0.00,1.00}{#1}}\ifbool{For_Internet}%{\renewcommand{\thetable}{\red{{\it\arabic{chapter}.\arabic{table}\,}\normalfont}}}%{\renewcommand{\thetable}{{\it\arabic{chapter}.\arabic{table}\,}\normalfont}}\ifbool{For_Internet}%{\renewcommand{\thefigure}{{\blue{\bfseries{\arabic{chapter}.\arabic{figure}}\normalfont}}}}%{\renewcommand{\thefigure}{{\bfseries{\arabic{chapter}.\arabic{figure}}\normalfont}}}% Чтобы окрасить названия глав в оглавлении \ifbool{For_Internet}{ \titlecontents{chapter}[1.8em] % distance to page margin   {\vspace{3mm} \bfseries\color{blue}} % \sffamily   {\contentslabel[\thecontentslabel. ]{1.5em}} % distance between 1. and Title of chapter   {\hspace*{-2.3em}}{\color{blue}   {\titlerule*[1pc]{}\contentspage}\color{blue}}[\vspace{0.5mm}] }{}\definecolor{light-gray}{gray}{0.95}\ifbool{For_Internet}{\newcommand*{\CR}{\rowcolor{lightcyan}}}%{\newcommand*{\CR}{\rowcolor{light-gray}}}%---- оформление ссылок в виде \label{fig:name} \fref{fig:name}\usepackage[vario]{fancyref} % plain is also possible\renewcommand*{\fancyrefdefaultspacing}{\fancyreftightspacing}\frefformat{vario}{\fancyreffiglabelprefix}{\bfseries{#1}\normalfont }\frefformat{vario}{\fancyreftablabelprefix}{\textit{#1}\normalfont}\frefformat{vario}{\fancyrefenumlabelprefix}{\textrm{#1}\normalfont}% Если это убрать, то пакет fancyref начинает вставлять много отсебятины.%--- мои макросы\newcommand*{\mb}[1]{\mbox{\boldmath$#1$}}  % жирный мат. курсив\newcommand*{\BE}{\begin{equation}}        %\newcommand*{\EN}{\end{equation}}          %\newcommand*{\BEA}{\begin{subequations} \begin{eqnarray}} %\newcommand*{\ENA}{\end{eqnarray} \end{subequations}}   %\newcommand*{\hs}{\hspace*{\parindent}}    %\newcommand*{\nn}{\nonumber}        %\newcommand*{\1}{$_1$}\newcommand*{\2}{$_2$}\newcommand*{\3}{$_3$}\newcommand*{\4}{$_4$}\newcommand*{\5}{$_5$}\newcommand*{\6}{$_6$}\newcommand*{\7}{$_7$}\newcommand*{\8}{$_8$}\newcommand*{\9}{$_9$}%\newcommand*{\T}[1]{\text{#1}}%\newcommand*{\vep}[3]{$(#1 \pm #2) \times \! 10 ^{#3} $\xspace} % (v+-e)*10^n%\newcommand*{\ic}{см$^{-1}$\xspace}                 % inverse centimeters%----  Переопределение математических символов в русских традициях\renewcommand{\le}{\leqslant}\renewcommand{\leq}{\leqslant}\renewcommand{\ge}{\geqslant}\renewcommand{\geq}{\geqslant}%---- вставить простую таблицу\newcommand*{\TableBE}[5]{\begin{table}[#1] %\captionabove\vspace*{-#5mm}\centering \sffamily \caption{\label{tab:#2}#3} \begin{tabular}{#4} \toprule }\newcommand*{\TableEN}[3]{\bottomrule \end{tabular}\vspace{-#2mm}  \small \begin{flushleft}  #1 \end{flushleft}\vspace{-#3mm}\end{table}}%---- вставить в текст таблицу%  начало\newcommand*{\WrapTableBE}[6]{\renewcommand{\baselinestretch}{0.75}\small\normalsize\begin{wraptable}{#1}{#5\textwidth} \sffamily\begin{center} \vspace*{-#6mm}\caption{\label{tab:#2}#3} \begin{tabular}{#4} \toprule }% #1 : l, r   #2 : label   #3 : caption  #4 : cc|cc|rr|ll  #5 : 40mm% вставить в текст таблицу, окончание\newcommand*{\WrapTableEN}[2]{\bottomrule \end{tabular} \end{center} \vspace{-#2pt} \small #1  \end{wraptable}\renewcommand{\baselinestretch}{1}\small\normalsize}%---- вставить рисунок внутрь текста\usepackage{wrapfig} % нужен для RisEpsRight\newcommand*{\EpsWrapD}[7]{%\begin{wrapfigure}[#5]{#3}{#2 \textwidth} %\begin{center} \sffamily\includegraphics*[width= #2 \textwidth ]{#1}\vspace{-#7mm}\caption{\label{fig:#1}#4}\vspace{-#6pt}\end{center}\end{wrapfigure}}%---- потоки в другие файлы\usepackage{clipboard} % It is used to |copy and \HL\Paste the texts with tasks\usepackage{newfile}\newoutputstream{ZO}\openoutputfile{Zadachi.tex}{ZO}\newcommand*{\itemZO}[2]{\item  \label{enum:#1}%\Copy{#1}{\emph{\ifbool{For_Internet}{\blue{ #2 }}{#2}}}%\addtostream{ZO}{$\{$\thechapter.\theenumi $\}$}}\endinput%+++++++++++++++++% Файл \Ch1.tex  % глава 1\chapter{\label{ch:Chast1}Про сжатие текста}\section{Маленькие рисунки}\hs   Латех охотно отдаёт под плавающий объект (рисунок, таблицу) целые строчки, но очень не любитобтекание плавающих объектов текстом.   Печальный факт состоитьв том, что вписать в текст рисунок с подписьюснизу или сверху в Латехе до сих пор проблема.   Это делают пакеты wrapfig и floatflt, но оба капризны.   Так что выбор есть, но он плохой.   Если вы видите маленький красивый векторный рисунок иподпись к нему расположена слева или справа,так что рисунок и подпись занимают всю ширину страницы,то знайте -- это фирменный стиль пакета TikZ.%   Люблю его, как тёщу.  То есть совсем не очень.   Одна из его поганых особенностей состоит в том, что получение pdf-файлапо схеме tex$\to$dvi$\to$ps$\to$pdf очень сильно отличаетсяот результатов, полученных по схеме tex$\to$dvi$\to$pdf.\section{Как форматировать текст}\hs   Представим себе, что вам нужно ужать текст.   Например, чтобы убрать висящую в начале страницы строку, после которой начинается новая глава.   Пример внизу показывает один из полезных трюков -- разное размещение индексов в знаке суммы.   Заодно показано введение текста в формулу в математической и в текстовой моде.\BEA   \sum_{\varkappa=0,...}(1/2)^{\varkappa} \leq {\mb 2}, & \T{скобка справа от text, $e^x$, \vep{2}{1}{3}   },\\   \sum\nolimits_{\phi=0,...}(1/2)^{\phi} \le {\mb 2},   & {\text скобка слева от text, \tg(x) }.\ENA\section{Задачи к главе \thechapter}\begin{enumerate}[$\{$\thechapter.1$\}$]\begin{writeverbatim}{ZO}\section{Задачи и решения к главе~\ref{ch:Chast1}}\end{writeverbatim}%---------------------\itemZO{Zadacha11}{Докажите, как физик физику, что $f= \int_0^{\infty} \cos(x/a) \; dx =0$.}\begin{writeverbatim}{ZO}\Paste{Zadacha11}\smallskip\\\hs   Доказательство.   Пусть математики думают, что $f = \lim_{R \to \infty} \sin(R/a) = ??$, это их дело.   А мы добавим какую-нибудь физическую причину, меняющую определение:\BE \nnf = \int_0^{\infty} e^{-bx}\; \cos(x/a) \; dx = \frac{b}{b^2+1/a^2}.\EN   Теперь надо перейти к частным случаям.   Например, пренебречь физической причиной, положив  $b=0$.   Получим $f = 0$, что и требовалось доказать.\end{writeverbatim}\end{enumerate}%+++++++++++++++++% Файл \Ch2.tex  % глава 2\chapter{\label{ch:Chast2}Про букву ё и кавычки}\section{Передохнём или передохнем?}\hs   Для тех, кто протестует против ничем не заслуженной дискриминации буквы \emph{ё},есть специальная программа Yo.   Скачайте её и вы сможете ёфицировать свой текст!   Долой дискриминацию буквы \emph{ё}!\section{Русские кавычки}\hs   В английском языке приняты одинарные и двойные кавычки в виде ... и ....   В России приняты французские (...) и немецкие (...) кавычки, они называются ёлочки и лапки соответственно.\WrapTableBE{r}{C2_parties}{Ответы политпартий на вопросы}{g llll}{0.3}{8}\CR   & I  & II  & III  & IV   \\\midruleЕдРо  & 0 & 0 & 1 & 1  \\ЛДПР  & 1 & 1 & 0 & 1  \\КПРФ  & 0 & 1 & 1 & 0  \\\WrapTableEN{I, II, III, IV -- номера вопросов, 0 и 1 -- ответы (да, нет)}{5} %%   Лапки используются внутри ёлочек (Что тебе снится, крейсер Аврора).   Для набора лапок можно использовать команды \verb|\glqq|  и \verb|\grqq|,а для ёлочек -- \verb|\flqq|  и \verb|\frqq|.   Они определены в пакете babel.   Но это не обязательно.   Например, лапок на клавиатуре нет, а скопировать их откуда-нибудь можно и компилятор их понимает.\section{Задачи к главе \thechapter}\begin{enumerate}[$\{$\thechapter.1$\}$]\begin{writeverbatim}{ZO}\section{Задачи и решения к главе~\ref{ch:Chast2}}\end{writeverbatim}%---------------------\itemZO{Zadacha21}{В табл.~\fref{tab:C2_parties} показаны ответы на важные вопросы трёх политических партий.   По этим ответам можно вычислить коэффициенты антикорреляции (КА) между любыми двумя партиями, $0 \le$КА$\le 1$.   Всегда ли можно нанести эти партии на плоскость в виде трёх точек, чтобы расстояние между любыми двумя партиями было пропорционально КА между ними? }\begin{writeverbatim}{ZO}\Paste{Zadacha21}\hs\EpsWrapD{P_ABC}{0.28}{r}{Три партии}{8}{0}{6}   Ответ.   Для построения треугольника нужно, чтобы выполнялось неравенство треугольника $a+b \ge c$, где($a,b,c$) -- любая выборка из трёх длин, см. рис. \fref{fig:P_ABC}.   Представим себе крайний случай -- у одной партии все нули, а у другой все единицы.   Расстояние между ними равно 1.   Тогда у третьей партии сумма коэффициентов будет тоже равна 1, то есть она располагаетсяна отрезке, соединяющем первые две партии.   Все остальные ситуации проще.\end{writeverbatim}\end{enumerate}\endinput% Программа (TikZ) для этого рисунка:\tikzsetnextfilename{P_ABC}\begin{tikzpicture}\coordinate(a) at (1,0);\coordinate(b) at (-1.3,0);\coordinate(c) at (0,1);\draw[very thick] (a) --node[below]{$a$} (b)--node[above left]{$b$} (c)--node[above right]{$c$} (a);\shade[ball color=blue] (a) circle(0.3) node[below=3mm]{ЛДПР};\shade[ball color=red]  (b) circle(0.4) node[below=4mm]{КПРФ};\shade[ball color=green](c) circle(0.5) node[above=5mm]{ЕдРо};\end{tikzpicture}%+++++++++++++++++% Файл Figs\P_ABC.eps  % рисунок, поставьте какой-нибудь свой%+++++++++++++++++% Файл Zadachi.tex до начала работы пустой%+++++++++++++++++% Файл Zadachi_Head.tex % Заголовок части с задачами и решениями\chapter{\label{ZiR_Open} Решения задач}\input{Zadachi}\endinput


6.3 Результат компиляции этих файлов





Примечания
* Я считаю лучшим русскоязычным учебником по Латеху книгу Чеботаева и Котельникова
"LaTeX по-русски&quot, см., напрмер, здесь: studlab.com/pdf/book/LaTeX-po-russki.pdf. Насколько я знаю, срок авторских прав на неё уже истек, и теперь ничто не мешает читателям скачать бесплатную электронную версию.

** Я сообщил об этом И. Котельникову, он обещал исправить.

(Продолжение может быть а может и не быть)
Подробнее..
Категории: Физика , Latex

Физики из Германии нашли способ объединить квантовую криптографию с полупроводниковыми технологиями

19.09.2020 16:20:36 | Автор: admin

Немецкие ученые создали новый способ генерировать инфракрасные одиночные фотоны на основе кремния. Источник создает до 100 тыс. фотонов в секунду. Подход может объединить квантовую криптографию с популярными полупроводниковыми технологиями.

Квантовое распределение ключей используют для обеспечения безопасности данных. Суть способа в выработке общего секретного ключа шифрования для двух удаленных пользователей, используя только открытый канал связи. В основе метода законы квантовой механики. Третью сторону, которая пытается расшифровать ключ, всегда можно обнаружить. Собственно процесс измерения квантовой состояния приводит к аномалиям квантовому индетерменизму. При этом ключ успешно создается только в том случае, когда аномалии не превышают заданного порога.

Протоколы передачи квантовой криптографии основаны на передаче одиночных фотонов. Фотоны это кванты света в виде поперечных электромагнитных волн. Однофотонная система обеспечивает безопасность способу. Если фотонов будет несколько, то их можно перехватить и подобрать ключ таким же путем, как это делают допущенные пользователи. Но есть особенности у источников одиночных фотонов. Несмотря на достигнутый прогресс при их создании применяют слабые лазерные импульсы. И другая фундаментальная проблема шум. Оптоволокно по-разному нагревается из-за передачи отдельными фотонами, а потому может быть изогнуто. Из-за этих ограничений сейчас существуют пределы пропускной способности квантовой связи. По стандартному кабелю передается 1,26 мегабита в секунду на расстояние 50 км. И 1,16 бита в час на расстояние 404 км по специальному кабелю с ультранизкими потерями данных.

Однофотонная система. Источник
Физики из Дрезденского технического университета под руководством Михаэля Холленбаха (Michael Hollenbach) и ученые из Центра им.Гельмгольца Дрезден-Россендорф создали систему источников одиночных фотонов на основе пластин SOI из кремния. Кремниевые чипы лежат в основе всех современных устройств, включая процессоры и микроконтроллеры. Как правило, микросхемы изготавливают из монокристаллического кремния.

Схема кристаллической структуры кремния с одним G-центром
При помощи ускорителя немецкие ученые поместили в кремний атомы углерода. Два соседних атома C вместе с атомом кремния Si образовали отдельную молекулу, называемую G-центром. G-центр излучает фотоны, находясь под фокусируемым лазером длиной 1,3 микрона. Фотоны данного вида без препятствий распространяются по оптоволокну.

Прототип генератора, созданный немецкими физиками, может создавать порядка 100 тыс. одиночных фотонов. Все научные испытания проводили на пластине SOI, установленной в криостат замкнутого цикла Attocube 800, который обеспечивал базовую температуру в 4,6К.


Авторы исследования сообщают, что впервые продемонстрировали допустимость размещения в промышленных пластинах SOI однофотонных излучателей. Они также представили концепцию реализации фотонной платформы, совместимой с современными кремниевыми технологиями.

Открытие поможет внедрить квантовые процессоры и ретрансляторы в существующие системы, использующие кремниевые компоненты.

Результаты исследования опубликованы в журнале Optiсs Express.

Подробнее..

Категории

Последние комментарии

© 2006-2020, personeltest.ru