Русский
Русский
English
Статистика
Реклама

Физика

Перевод Симуляция роста кристаллов ограниченная диффузией агрегация на Javascript

23.06.2020 08:06:22 | Автор: admin
Природа использует всевозможные интересные и часто простые процессы для генерации удивительных фигур, паттернов и форм любых размеров, которые никогда не перестают удивлять и вдохновлять внимательного наблюдателя. От микроскопического до космического уровня материя выстраивается, упорядочивается и преобразуется при помощи логичных наблюдаемых процессов, часто накладывающихся друг на друга сложным образом.

В этой статье мы поговорим об одном из таких процессов, называемом агрегацией, ограниченной диффузией (diffusion-limited aggregation, или DLA), создающем фрактальные ветвящиеся структуры при помощи случайного движения и липких частиц (подробнее о них позже). Свидетельства этого процесса можно найти в природе в различных масштабах и в органических, и в неорганических системах, например:



Наверху: кластер DLA, выращенный из раствора медного купороса в ячейке для электроосаждения; внизу: коллоидный диоксид кремния с площадью поверхности 130 м2



Наверху: наслоение металлической пыли от работы отрезной пилы; внизу: фигура Лихтенберга в куске оргстекла.



Наверху: пример морозных узоров на стекле; внизу: образец дендритов двуокиси марганца на известняковом осадочном слое из Зольнхофена, Германия.

Что такое агрегация, ограниченная диффузией?


Агрегация, ограниченная диффузией, впервые описанная Томасом Уиттеном и Леонардом Сэндером в их выдающейся статье 1981 года Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon это процесс слипания частиц материи (агрегации) при их хаотическом движении (диффузии) в среде, обеспечивающей некую противодействующую (ограничивающую) силу. Со временем такие частицы слипаются, образуя характерные фрактальные ветвящиеся структуры, называемые броуновскими деревьями.

Для иллюстрации процесса представьте, что у вас есть несколько теннисных мячей, покрытых особым волшебным клеем, который приклеивается только к себе, то есть эти мячи крепко соединяются друг с другом, но не прикрепляются к полу, стенам или другим объектам. Положим один мяч на пол небольшой комнаты и начнём случайным образом вбрасывать туда остальные теннисные мячи, не целясь куда-то конкретно.

Рано или поздно некоторые из этих мячей столкнутся или с первым мячом, или с другими вброшенными мячами и начнут образовывать прочные кластеры. При вбрасывании дополнительных мячей эти кластеры растут и создают сложные кустообразные структуры.

Теперь представьте, что мы повторим этот эксперимент в гораздо большем здании, например, на заводском складе, и разбросаем повсюду многие тысячи липких теннисных мячей. Со временем мы увидим, как обретают форму большие кластеры мячей, похожие на показанные выше фотографии!

У Дэна Шифмана есть отличное, более наглядное объяснение процесса:


В природе эти липкие теннисные мячи/случайные блуждатели могут быть ионизированными атомами, поляризованными молекулами, заряженными взвешенными частицами или любым количеством других частиц материи, имеющих склонность ко взаимному слипанию. Если эти частицы будут двигаться хаотичным (или полухаотичным) образом и иметь при этом склонность к слипанию, то благодаря процессу агрегации, ограниченной диффузией, будут возникать узнаваемые фрактальные ветвящиеся структуры!

Замечания о технической реализации


Чтобы реализовать этот процесс в коде, нам нужно сначала определить основные объекты и силы, которые мы хотим моделировать. Исходя из описанного выше, логично создать некую структуру данных, обозначающую частицу (теннисный мяч), таким образом, чтобы нам легко было перемещать её по экрану и определять столкновения с другими частицами, чтобы их можно было склеить. И поскольку мы будем иметь дело со множеством частиц, нам понадобится удобный способ их эффективного отслеживания.

Когда частицы перемещаются свободно, они называются блуждающими (walkers). Когда они слипаются, то вместе их называют кластерами.

Системы частиц, пространственное индексирование и распознавание коллизий


Самым грубым способом реализации был бы простой массив объектов частица, который мы постоянно обходим в цикле, применяем к нему силы, а затем проверяем каждую другую частицу на коллизии. Однако при увеличении масштаба симуляции этот способ сильно влияет на производительность, потому что при росте размеров кластеров увеличиваются затраты на необязательные вычисления.

Лучше будет использовать какую-нибудь структуру данных или пакет, способный отслеживать все частицы и позволяющий эффективно определять близкие частицы, проверяя их коллизии. Существует несколько стандартных пакетов, которые могут полностью или частично помочь в выполнении этих задач (D3.js, Matter.js, Toxiclibs.js и другие), но мне показалось, что все они гораздо сложнее, чем требуется нам на самом деле.

После кратких поисков я наткнулся на очень удобный, надёжный и лёгкий пакет под простым названием collisions, отслеживающий частицы при помощи внутреннего пространственного индекса и обеспечивающий сверхэффективное распознавание коллизий на основании формы частиц.

Движение


Чтобы вдохнуть немного жизни в систему, нам также нужно подумать о движении этих частиц и силах, производящих эти движения. Для большинства людей классическим подходом будет движение каждой неслипшейся частицы на небольшую случайную величину в каждом цикле, обеспечивающее так называемое броуновское движение. Вполне хватит чего-то простого наподобие particle.x|y += Math.random(-1,1).

На молекулярном уровне это похоже на тепловые колебания, связанные с температурой системы чем выше температура, тем быстрее колеблются частицы. В других масштабах такое движение может быть результатом множества взаимодействующих и накладывающихся друг на друга сил ветра, давления, поверхностного натяжения, гравитации, электромагнитных сил, и так далее.

Это движение не обязано быть совершенно хаотичным; на самом деле, при комбинировании броуновского движения с направленными или вращающими силами могут создаваться очень интересные эффекты, которые мы рассмотрим ниже.

Сетки использовать или нет?


В первой реализации DLA, описанной в 1981 году Т. Уиттеном и Л. Сэндером, частицы ассоциировались с отдельными пикселями экрана, то есть весь процесс происходил в равномерной сетке квадратов. В то время это было совершенно логично, потому что реализация была основана на предыдущих исследованиях в областях математики и физики, в частности, на модели роста Идена, предложенной Мюрреем Иденом в 1961 году. Также к этой тематике относятся клеточные автоматы, решётчатая модель, кристаллография/структура кристаллов/рост кристаллов и теория матриц.

Любопытно, что такая система на основе сеток значительно упрощала распознавание коллизий и устраняла необходимость в пространственном индексе и вообще в системе частиц, потому что каждый пиксель/частицу можно было проверить на коллизии простым изучением состояния 8 ближайших пикселей-соседей. На самом деле этот подход настолько быстр, что и сегодня является одной из самых быстрых техник!

Конечно, мы можем воссоздать эту реализацию сегодня и воспользоваться теми же преимуществами скорости, но она имеет некоторые компромиссы. Во-первых, хотя плотность пикселей современных экранов гораздо выше, чем в 1981 году, они всё равно имеют ограниченное количество пикселей, поэтому симуляция будет ограничена определённым масштабом. Во-вторых, из-за привязки пикселей к сетке при таком подходе всегда будут создаваться изображения с характерным растровым (блочным) внешним видом.

Первый из этих компромиссов можно компенсировать переходом к виртуальной сетке вместо пикселей экрана. Можно создать сетку произвольного, даже динамического размера, которую можно масштабировать, перемещать и поворачивать вне зависимости от размеров экрана, почти как Google Maps. Я бы с удовольствием посмотрел, как кто-нибудь попробует это сделать и поделится результатами!

Однако второй компромисс обойти сложнее. Я хотел увидеть, что процесс DLA может создать при неравномерной и неквадратной форме частиц, поэтому я решил, что для широких возможностей в экспериментах в любом случае придётся отделить частицы от структуры сетки. Однако в таком случае придётся использовать такие инструменты, как пространственное индексирование и более сложное распознавание коллизий, которые неизбежно повлияют на производительность. С моей точки зрения этот компромисс между скоростью и гибкостью эстетики стоил того, по крайней мере, для моей серии исследовательских экспериментов. Кроме того, если я найду понравившийся мне эффект, то всегда смогу потом выполнить рефакторинг кода, чтобы оптимизировать его под этот эффект!

Подготовка проекта


Хватит теории давайте что-нибудь создадим!

В основе моей реализации лежит p5.js, потому что он полезен своими функциями рисования на <canvas>, а также JavaScript в стиле ES6, транспилированный на ES5 под браузеры текущего поколения при помощи скриптов Webpack и NPM. Подробнее см. в файлах webpack.config.js и package.json.

В процессе создания моей реализации я использовал следующие пакеты, доступные через NPM:

  • collisions для надёжного и лёгкого распознавания коллизий без использования пакета полной физики. В этот пакет входит иерархия ограничивающих объёмов (bounding volume hierarchy) (BVH), используемая для пространственного индексирования.
  • svg-pathdata для парсинга информации контуров из файлов SVG, позволяющего создавать собственные формы.
  • svg-points для генерации атрибута d SVG-элементов <path> для экспорта векторных изображений.
  • file-saver для инициализации скачивания экспортированных файлов SVG на машину пользователя.

Так как я знал, что хочу провести по этой теме несколько экспериментов, то решил отделить мой относящийся к DLA код от эскизов p5.js, чтобы каждый эскиз был связан только с конфигурацией и выполнением процесса DLA, как будто он является сторонним пакетом. Для этого я создал папку ./core со следующими модулями:

  • DLA.js управляет самой симуляцией и выполняет её. Вызывает функцию iterate() для шага вперёд на один цикл и функцию draw() для отрисовки всех частиц на экране. Также раскрыта целая куча других функций, что позволяет создавать всевозможные интересные конфигурации!
  • Defaults.js объект, содержащий в себе параметры конфигурации, которые могут переопределяться отдельными эскизами.

Техническая документация этих модулей и их функций на основе JSDoc находится здесь.

Весь исходный код моих экспериментов выложен на Github:jasonwebb/2d-diffusion-limited-aggregation-experiments.

А поиграться со всеми этими экспериментами в браузере можно здесь:

2D diffusion-limited aggregation (DLA) experiments in JavaScript

Глобальные клавиатурные команды


Данные команды доступны во всех эскизах:

  • Space приостановка/продолжение симуляции
  • w переключение видимости блуждающих частиц
  • c переключение видимости частиц в кластерах
  • r сброс симуляции с текущими параметрами
  • f переключение отображения рамки
  • l переключение эффекта рендеринга линий
  • e экспорт в файл SVG того, что в данный момент находится на экране
  • 19 переключение между вариациями, если они есть

Эксперимент 01 простая DLA


Давайте сразу создадим эскиз с использованием простейшей возможной конфигурации набора случайно расположенных порождающих частиц и набора случайно расположенных и случайно движущихся блуждающих частиц, имеющих одинаковый размер и форму.

В моей реализации достаточно было использовать стандартную функциональность модуля DLA.js со стандартными функциями блуждания и создания кластеров (createDefaultWalkers() и createDefaultClusters()).






Эксперимент 02 отклонение направления


Теперь давайте добавим блуждающим частицам дополнительную силу движения (называемую отклонением), чтобы они накапливались интересным, частично прогнозируемым образом.

Эту силу отклонения можно добавить в дополнение к стандартному броуновскому движению, чтобы частицы всё равно имели характерное случайное поведение, в то же время двигаясь в каком-то конкретном направлении. Сила может прикладываться вдоль только горизонтальной или вертикальной осей (или обеих), или даже согласно заданной формуле (чтобы посмотреть на это, перейдите к эксперименту 07).

В моей реализации направленное отклонение движения можно добавить изменением значения глобального параметра BiasTowards (или в Defaults.js, или в локальном файле Settings.js) на строку, описывающую направление движения, в котором должжны перемещаться частицы. Можно использовать для BiasTowards следующие значения 'Left', 'Right', 'Up', 'Down', 'Center', 'Edges', 'Equator' и 'Meridian'.

Чтобы дать частицам то, с чем они могли бы сталкиваться и скапливаться, я добавил стенки из кластерных частиц, передавая строку 'Wall' во время создания новых кластеров при помощи createDefaultClusters(). Когда этот параметр задан, линия из кластерных частиц будет создана на стене (или стенах), противоположных направлению, заданному в BiasTowards. Например, если BiasTowards имеет значение 'Left', то createDefaultClusters('Wall') будет создавать линию из кластерных частиц вдоль правой стены.





Наверху частицы смещаются вниз; внизу частицы смещаются к центру (только по X).



Наверху частицы создаются в центре и имеют отклонение от центра; внизу частицы создаются по краям и имеют отклонение к центру.

Эксперимент 03 разные размеры


Теперь давайте посмотрим, что произойдёт, если мы будем будем варьировать размеры блуждающих частиц. Будет ли ветвящаяся структура выглядеть иначе, и сформируется ли вообще?

В этом эксперименте я придумал для интересных способа варьирования размеров блуждающих частиц пропорционально расстоянию от центра и случайно в пределах определённого интервала.

Чтобы включить эти эффекты в моём коде, задайте для или VaryDiameterByDistance, или для VaryDiameterRandomly значение true. Чтобы оба этих эффекта работали правильно, нужно также указать верхний и нижний предел диаметров частиц, передав массив из двух значений [lower, upper] в параметре CircleDiameterRange. Как это делается, можно посмотреть в файле Settings.js этого эскиза.

Как выяснилось, характерная фрактальная ветвящаяся структура броуновского дерева сама по себе возникает во всех этих вариациях! Это хорошая иллюстрация самоподобия природы фракталов, демонстрирующая, что похожие (иногда одинаковые) структуры могут возникать в разных масштабах.




Наверху: увеличение диаметра частиц в зависимости от расстояния до центра; Внизу: случайное варьирование диаметров частиц

Эксперимент 04 различные формы


Что произойдёт, если мы немного поиграемся с формой блуждающих частиц? Повлияет на ветвящуюся структуру геометрия частиц?

В моей реализации все частицы по умолчанию являются кругами, потому что я решил, что это наиболее распространённая конфигурация. Однако пакет collisions также позволяет использовать отдельные точки или произвольные многоугольники, задаваемые массивами точек. Мне так и не удалось заставить правильно работать режим отдельных точек, зато многоугольники работают замечательно!

Уверен, что если бы мне удалось заставить симуляцию работать через пакет collisions с отдельными точками, то повышение производительности оказалось бы значительным. Пакет использует для разных фигур разные алгоритмы распознавания коллизий, поэтому я не удивился бы, если бы он использовать сетку с подсчётом соседей, почти как в работе 1981 года Т. Уиттена и Л. Сэндера!

Для создания многоугольных фигур достаточно передать массивы координат модулю createWalker() алгоритма DLA. У формы этих фигур не так много ограничений, однако в документации к пакету collisions упоминается, что он не поддерживает вогнутые многоугольники (многоугольники с вмятинами).

В своих эскизах я решил использовать правильные многоугольники разных размеров и с разной величиной поворота. Так как эти многоугольники обладают радиальной симметрией, для изменения общей формы достаточно изменить количество вершин. Например, три вершины для треугольников, четыре для квадратов, и так далее.

Любопытно, что те же фрактальные ветвящиеся структуры снова возникают, опять-таки демонстрируя самоподобную природу фракталов. Можно сделать и ещё одно наблюдение с уменьшением вершин (а значит, и общего размера), ветвящиеся структуры стремятся стать более плотными, что вполне логично, ведь простые полигоны при агрегации обычно оставляют бОльшие зазоры.





image


Наверху: треугольники; второе изображение: квадраты; третье изображение: пятиугольники; внизу: случайное количество сторон, от 3 до 6.

Эксперимент 05 SVG как начальные данные


До этого момента я использовал довольно простые начальные условия для выполнения процесса DLA всего лишь отдельные точки или линии (стенки) точек. Следующим логичным шагом стало добавление произвольной геометрии при помощи внешних файлов SVG.

Для этих экспериментов я реализовал новый модуль (SVGLoader.js), считывающий очень простые файлы SVG и возвращающий массивы координат каждого контура (<path>), которые можно использовать для построения многоугольников непосредственно через пакет распознавания коллизий. После чего коллизии блуждающих частиц нужно проверять и с кластерными частицами, и с этими нарисованными фигурами.

Чтобы упростить свою жизнь, я сделал так, что модуль SVGLoader может принимать только определённые файлы SVG. Если вы захотите использовать собственные файлы SVG, то они должны отвечать следующим критериям:

1. Формат файла должен быть как можно более простым. В Inkscape нужно сохранять файл как plain SVG. Возможно, придётся открыть файл SVG и немного его упростить. Для понимания взгляните на содержимое файлов в папке ./svg.

2. Все координаты должны быть абсолютными.

3. Принимаются только прямые линии никаких дуг, окружностей, кривых и т.д. Можно аппроксимировать кривые, добавив множество дополнительных узлов и преобразовав их в прямые сегменты.

На этот раз мы получили очень красивые и органично выглядящие результаты, потому что характерные ветвящиеся структуры растут на поверхностях наших фигур естественно и случайно. Мне такие эксперименты начинают казаться по-настоящему интересными!

Во всех предыдущих экспериментах использовались очень простые, схематичные условия, которые помогали в изучении самого фундаментального процесса. Однако теперь, когда мы начали работать с произвольной геометрией, возникают действительно творческие результаты. Вот всего лишь несколько простых примеров, которые мне удалось придумать, но я бы с удовольствием посмотрел, что вы создадите самостоятельно!





Наверху: текст, преобразованный в контуры SVG; внизу: различные многоугольники, сопряжённые друг с другом булевыми операциями


Рост 2D-фигуры, сгенерированной при помощи моего веб-приложения SuperformulaSVG

Эксперимент 06 интерактивность


Проводя эти эксперименты, я захотел получить более прямой контроль над движениями блуждающих частиц, чтобы можно было увеличивать рост в определённых областях. В результате я исследовал некоторые интересные возможности, например:

  1. Эффект гравитационного колодца, притягивающий блуждающие частицы к позиции мыши при нажатии и удерживании кнопки.
  2. Эффект хвоста мыши, непрерывно испускающий блуждающие частицы вокруг курсора мыши, которые имеют отклонение к центру.
  3. Версия классической игры Asteroids, в которой игроки могут нажимать WASD для перемещения и Space для стрельбы.
  4. Радиальная версия классической игры Bust-a-Move, в которой игроки могут двигаться клавишами A и D, прицеливаться мышью и стрелять её левой кнопкой.

Мне было бы любопытно посмотреть, какие взаимодействия смогли придумать вы!





Наверху: нажмите и удерживайте кнопку мыши, чтобы создать чёрную дыру, притягивающую к себе все блуждающие частицы; внизу: режим хвоста мыши блуждающие частицы постоянно создаются вокруг текущей позиции мыши и движутся к центру



Наверху: режим asteroids двигайте треугольный корабль клавишами, удерживайте пробел для стрельбы; внизу: режим радиальной Bust a Move нажимайте A и D для вращения, удерживайте кнопку мыши для стрельбы огненными блуждающими частицами в сторону мыши.

Эксперимент 07 поля обтекания


Последнее, что я смог придумать это эксперимент, вдохновлённый Coding Challenge #24: Perlin Noise Flow Field Дэниела Шифмана, в котором для управления движением частиц на экране он использует уравнение. В частности, он использовал популярную функцию noise() Перлина, однако можно взять и множество других уравнений.

В моей реализации достаточно было задать функцию, на входе получающую ссылку на частицу и возвращающую скорость по X и Y (dx и dy), которая затем прибавляется к позиции частицы в базовой функции движения блуждающей частицы (iterate в DLA.js). Мы передаём эту функцию в модуль DLA, присвоив её переменной DLA.customMovementFunction.

Здесь можно исследовать очень многое, но должен признаться, что не очень знаком с различными уравнениями полей обтекания. Если вы знаете интересные уравнения, то поделитесь со мной!




30 000 блуждающих частиц, направляемых функцией 2D-шума Перлина


30 000 частиц, направляемых уравнением sin(x) + sin(y)

Эффекты и возможности


Во время реализации этих экспериментов я наткнулся на пару интересных визуальных эффектов, которые решил превратить в глобально доступные возможности.

Эффект рендеринга линий


В этом эффекте мы рисуем только линии между каждыми частицами, а не сами частицы. Это создаёт очень органически выглядящие ветвящиеся структуры, которые немного напоминают вены!

Этот эффект можно включить в любом из описанных выше экспериментов, нажав клавишу L.


Экспорт в SVG


Одна из наиболее полезных возможностей функция экспорта в любой момент времени рисунков SVG нажатием клавиши e. Эти файлы отлично подходят для производства цифрового контента и могут быть полезными для плоттеров, лазерных резаков, станков с ЧПУ и многих других устройств.


Цвета


Если вы знаете, как обращаться с цветовым кругом (а я, к сожалению, не знаю), то сможете настраивать цвета каждого элемента симуляции, создавая потрясающие эффекты. Зайдите в раздел COLORS файла Defaults.js, чтобы посмотреть, что можно изменять!


Дальнейшее развитие


На самом деле эта статья является просто введением в ограниченную диффузией агрегацию, и в данном разделе представлено множество других способов, которыми можно развить идею.

  1. Повысить количество частиц до 1-10 миллионов и выше, чтобы понаблюдать за возникновением интересных макроструктур (для вдохновения см. серию Aggregation Энди Ломаса). Возможно, вам удастся пойти ещё дальше и достичь в своих исследованиях нового уровня!
  2. Чтобы достичь высокого количества частиц, нужно будет использовать более производительный язык или фреймворк: Processing, openFrameworks, Cinder, vanilla C++, Go или Python. Стоит также попробовать профессиональные VFX-инструменты и игровые движки типа Houdini, Unity и Unreal!
  3. Реализовать более эффективный алгоритм, например, dlaf Майкла Фоглмена.
  4. Поэкспериментировать с Vision of Chaos сайта Softology.
  5. Развернуть симуляцию в третье измерение при помощи OpenGL
  6. Реализовать вероятностный коэффициент липкости, чтобы варьировать плотность ветвящихся структур. Эта тема хорошо рассмотрена в статье про DLA Пола Бурка.

Ресурсы


Если вы хотите глубже исследовать эту тему, то вот несколько статей и репозиториев кода, которые я нашёл в процессе выполнения исследований для этой статьи:

Статьи



Код


Подробнее..

Учиться, учить, и снова учиться

07.07.2020 02:15:33 | Автор: admin

Почитаешь иногда Хабр и гордость берёт: это же какими мы стали умными с помощью этих ИТ-технологий! С блокчейном имитируем честное голосование, нейронные сетки помогают заметить проезд на красный свет, Javascript уже рендерит Doom, async/await навели порядок в наших многопоточных приложениях, PVS-Studio в коде, Agile и DevOps в наших головах

И если бы не сотовый оператор со своими подписками и рекламой, которую он вставляет в чей-то http-траффик и не эффективные менеджеры (которые, судя по рейтингу обличающих их статей те ещё бяки!) жизнь бы окончательно наладилась.

Стоп. Прогресс в технологиях действительно огромный, но мы в нём как-то слабо участвуем. Вот где-то за границей нашей Родины, в каком-нибудь Китае, жизнь действительно налаживается. Китай скопировал советскую систему образования [4], выпускает около 5 млн. образованных инженеров ежегодно [5]. Вот эта сила и обеспечивает прогресс, производя для нас всё: от авторучки до электросамоката!

А мы? А нам действительно мешают эффективные менеджеры. Лет 30 уже. Дальше спокойно, по порядку и без юмора. Пишу молодым поколениям российских инженеров и учителей. Считаю нужным высказаться о нынешней системе среднего образования. Которая трамплин к высшему, всеобщему прогрессу и процветанию blah

Бывшему министру образования Андрею Фурсенко, ныне советнику президента рф, Википедия приписывает следующие слова:
недостатком советской системы образования была попытка формировать человека-творца, а сейчас задача заключается в том, чтобы взрастить квалифицированного потребителя.

Когда в 2006 году министр будет с успехом внедрять ЕГЭ в школах, академик Алфёров скажет, что министр образования и науки Андрей Фурсенко не имеет опыта ни в образовании, ни в науке [1]. Но будет уже поздно давать оценку своему бывшему заместителю по Ленинградскому Физтеху: министр не только успешно сломает советскую систему образования, но и вовсю будет взращивать будущих потребителей.

Я застал ещё советскую систему образования. Считаю, мне очень повезло. Глубокое уважение к личности человека, его обучение и воспитание с целью полного раскрытия заложенных Творцом способностей действительно были фундаментальными принципами Советской Школы, этого высочайшего достижения русской культуры.

Изменения, которые произошли в образовании за последние 20 лет трудно не заметить. Вот, протоиерей из Архангельска Евгений Соколов обращается на youtube к москвичам [2]:
На вашем гербе изображён Георгий Победоносец. Особая сакральная личность, которую мы сделали символом столицы, изобразив на гербе города Москвы. Какой подвиг он совершил? Чем он прославлен особо, что мы решились изобразить его на гербе?
знаете, практически никто не сказал. Поразительный дилетантизм!

Тяжело было в это поверить! Герб Москвы на каждом углу: в школе, на улице, на бланке ЖКХ. Учиться в Москве и не знать?.. При случае, задаю знакомой молодёжи вопросы Кто и за что изображён на гербе Москвы?, Кому и за что установлен памятник на Красной площади?. Практически никто не отвечает. Иногда вспоминают всадника с копьём или фамилии Минин и Пожарский но затрудняются пояснить за что. Слушайте, чему и где вы учились?

Что же, Фурсенко неплохо справился с поставленной начальством задачей. Появился человек нового склада: потребитель. С упрощённой картиной мира, но в принципе, способный сравнить два тарифа сотовой связи и оценить скидку 10%.

В этом нет вины самого человека: так устроена система, которая теперь не учит и воспитывает личность, а оказывает образовательные услуги. Результат закономерен. Опорой старой школы был советский педагог, воспитанный на сначала на христианских заповедях, а затем на моральном кодексе строителя коммунизма. Стоит заметить, что большая часть из его 12 принципов автором Бурлацким Ф.М. построена на них же![3]. Такой педагог хотел и умел вкладывать в учащихся душу, а не только натаскивать на решение задач. Помню, дополнительные уроки по математике в 11 классе у нас начинались в 7:30, и речи не было про оплату Раиса Андреевна выполнял свой долг, готовила нас к поступлению в ВУЗ. Однажды спросил своего школьного учителя физики Владимира Марковича:
У вас же университетский уровень знания предмета, почему вы преподаёте в школе?
Потому что я люблю детей ответил он.
Теперь же, все дополнительные занятия платные (кроме хора ;). С введением дистанционного обучения этой полной профанации и имитации образовательного процесса, его фактическим узакониванием пробито очередное дно.

Вот хороший приятель, выпускник ВМК МГУ присылает задачу:


Эта задачка из книги 1964 года Весёлые тайны, серия Знай и умей библиотечки пионера. В обращении к юному читателю автор книги пишет, что эта книга
о весёлых загадках, занимательных задачах и хитрых головоломках, о том, как их разгадывать и составлять самому.

И поясняет зачем их решать:
чем чаще мы задаём себе вопрос А почему это так? тем доступнее для нас тайны, тем полнее и целостнее встаёт перед нами мир.

Т.е. цель целостная, системная картина мира, которую он обретает человек изучая причины явлений. Прекрасная книга, только ответ к данной задаче даёт неверный ;) Пришлось объяснять в чём ошибка автора. Знакомый даже не постарался решить и понять почему так?! Интереса ради отправил задачку десяткам контактам в WhatsApp, в Telegram-группу. Сообщаю результат: более-менее правильный ответ даёт 1 человек из 10. А ведь задачка 7 класс средней школы, тема Равенство работ при использовании простых механизмов. Золотое правило механики. Некоторые ведущие инженеры задачку решают. Молодые инженеры и эффективные менеджеры уже с ней не справляются (хотя поиском в Google пользуются неплохо ;). Почти половина списывает всё на силу трения и ставит на ничью. Кое-кто пытается применять законы логики!

Даю ему встречную задачу. Студент выучил 70% экзаменационных билетов. Что ему выгоднее: тянуть билет первым или одним из последних?. Не хочет думать и решать, начинает моделировать на ПК. Спрашиваю: Зачем?. Ведь эта задача не на моделирование, а на понимание природы вероятности. У неё очевидный ответ, который, конечно, можно получить прямо:
P(A)=m/n.
После следующего вытянутого билета:
P(A)=m/n * (m-1)/(n-1) + (n-m)/n * m/(n-1) = m/n.

Не я один замечаю новую тенденцию к вероятностному мышлению, попыткой прикинуть вероятность или промоделировать вместо желания понять суть процесса или явления.

Что получается. Если человек не справляется с задачкой 7 класса, откуда будет навык искать и вырабатывать самостоятельные решения? Откуда у него возьмётся личное обоснованное мнение? Да это просто невозможно! Ему в жизни придётся слушать и принимать на веру чужие решения. Навязанное извне мнение он будет считать своим. И, как он посмотрит в глаза своему ребёнку после просьбы помочь со школьной задачкой?

Нужно понимать, что действующая ныне система образования обслуживает олигархическую экономику трубы, её цель безнравственный и послушный потребитель, лишённый исторической памяти и самостоятельного критического мышления. Сейчас медицина и образование построены на отношениях денежного обмена. Эти принципы гнилые и вредные.

Что делать? В истории нашей Родины уже были и безграмотность и зарубежный эффективный менеджмент (интервенция). Но наши предки выходили из положения победителями. У нас нет советской школы, но есть советские учебники, есть лозунг учиться, учиться и учиться, который снова становится актуальным. В нас жив дух и нравственные ценности, основа которых суть любовь к Творцу и человеку который есть образ и подобие Божие.

Должно учиться. Постоянно. Копать глубже и расширять горизонты. Я не про бизнес-образование (MBA), личностный рост, ТРИЗ, корпоративную стратегию и прочую второсортицу. Я про знания фундаментальные, нашу культуру и историю. Как говорил Резерфорд:
все науки делятся на физику и коллекционирование марок.
Ну, вы поняли ;)

Должно учить, воспитывать нравственность. Ведь не сложно устроиться в школу или институт на четверть ставки, или хотя бы подтягивать ЕГЭ/ОГЭ у детей знакомых?! Это послушание нужно взять на себя и достойно нести.

Учить нужно не корысти ради, а с любовью к человеку, ради самого человека. Нужно учиться любить, правильно жертвуя собой. Это духовно-нравственная основа всего процесса. Безнравственный человек, вооружённый знаниями, способен нанести колоссальный вред. Фурсенко и его демонтажная команда это прекрасно показали.

[1] ru.wikipedia.org: Фурсенко Андрей Александрович
[2] https://www.youtube.com/watch?v=ZkDXZIIv9iQ, 9:33
[3] ru.wikipedia.org: моральный кодекс строителя коммунизма
[4] link.springer.com/article/10.1007/BF03026295
[5] www.forbes.com The Countries With The Most STEM Graduates
Подробнее..

Делаем сами сцинтилляционный спектрометр из радиометра

16.06.2020 00:11:35 | Автор: admin
Весной меня отправили на карантин и появилось немного времени, что бы спаять что-нибудь интересное. Выбор пал на вот это устройство.

Конечно же хотелось расширить возможности радиометра и узнать, какие же конкретно радиоактивные изотопы подстерегают меня в повседневной жизни в г. Киев, который находится уж очень близко к ЧЗО.



В статье расскажу, как собирал прибор и что поменял в схемотехнике и прошивке.

Первым делом нужно заказать платы. В материалах к исходной статье есть гербер файлы, поэтому все просто. Заказ сделал на PCBWay и JLCPCB, чтобы сравнить качество. Первый рекомендовать не могу: доставка заняла 3 месяца, крепежные отверстия на платах оказались меньше, чем нужно. Из 5 системных плат 2 оказались бракованными (о чем они мне сообщили в письме). C JLCPCB все вышло хорошо и придраться не к чему.

Компоненты заказывал на Mouser и наборы конденсаторов и резисторов на Али (лень стало подбирать все по емкости и решил просто заказать набор). В качестве SiPM использовал MicroFC 60035 это самая дорогая часть устройства. На момент заказа стоила 70 долларов на Mouser. С более мелким и дешевым 30035 решил не связываться, испугавшись, что припаять и собрать его будет сложнее.

Вторым главным компонентом устройства, кроме фотоприемника, является сцинтилляционный кристалл. И здесь большое поле для модификаций. Найти используемый автором CsI(Tl) маленьких размеров дешевле 90 долларов мне не удалось. Поэтому остановился на NaI(Tl) 10x40мм c ебея за 32 доллара с доставкой. Поиск такого кристалла это само по себе увлекательное занятие, здесь главное не спешить. Все поисковые запросы в гугле вели меня к Евгению с Украины, но прозрачных кристаллов для спектрометрии у него просто нет. Все, что он присылал имело неприятный желтый оттенок урины.

И вот, все детальки и платы пришли, можно начинать паять. Первым делом решил спаять аналоговую плату. Здесь все без приключений, главное не забыть припаять резистор, место под которое не разведено (внимательно читаем советы по сборке к оригинальной статье).

В системную плату пришлось внести следующие изменения: По даташиту LM2733Y, выходное напряжение не зависит от входного, соответственно подстраивать нечего. Берем из того же даташита формулу R1 = R2 X (VOUT/1.23 1) и из того, что нашлось, ставим R13 = 1.8K, R12 = 12K, R11 = 300K. На выходе стабильно 28.18В (пробовал подавать 2.5В, 5В на выходе все стабильно). После подключения дисплея устройство стало выдавать намного большее число импульсов, чем есть на самом деле. Исправить удалось изменением цепи питания дисплея: вход переключателя DA6 подключаем ко входу DA3. На выходе DA6 ставим преобразователь на 5В (у меня под рукой оказался pololu cj7032) и уже от него питаем дисплей. При таком подключении все помехи сразу ушли.

В качестве дисплея взял nx4024t032: он меньше, дешевле, меньше потребляет и главное, был доступен в локальном магазине. Прошивку я все равно планировал менять, об этом ниже.

После пайки отмывал схемы изопропиловым спиртом в УЗ ванне. После спирта стоит отмыть дистиллированной водой в той же ванне и просушить в духовке при температуре около 70-80 градусов.

Теперь пришла пора сделать самое интересное: подключить датчик и посмотреть, что же получится. MicroFC 60035 почти идеально припаивается к куску макетной платы 3x3 отверстия: лудим угловые отверстия и припаиваем датчик феном. С обратной стороны макетки припаиваем провода. Вот так это выглядит.



Вот так выглядит кучка плат и деталек без корпуса.



Внимательный читатель может заметить, что процессор я взял STM32L152CBT6A чуть больше памяти и доступен локально.

Корпус сделал в Fusion 360 и напечатал на 3D принтере. Вот ссылка на проект.

Вот так все выглядит уже в сборе:



Настало время для самого интересного изменений в прошивке. Мы же хотим сделать именно сцинтилляционный детектор, а не просто радиометр. Для этого нам понадобится использовать DMA с ADC (ADC в этом процессоре один, но есть переключатель входов). А входов у нас два: SP и вольтаж батареи. DMA нужно для ускорения всего процесса. Так же хочу обратить внимание на количество циклов измерений ADC_SampleTime, при 48 и более у меня ничего не получилось. 4 цикла показали наиболее стабильный результат.

Меняем код инициализации ADC следующим образом:

void initADC(void) {/* PWR_CTRL and CHG_STAT clock enable */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);/* UBAT input pin configuration */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_15;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_40MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);/*------------------------ DMA1 configuration ------------------------------*//* Enable DMA1 clock */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);/* DMA1 channel1 configuration */DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_ADDRESS;DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADC_ConvertedValue[0];DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;DMA_InitStructure.DMA_BufferSize = 2;DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;DMA_InitStructure.DMA_Priority = DMA_Priority_High;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel1, &DMA_InitStructure);/* Enable DMA1 channel1 */DMA_Cmd(DMA1_Channel1, ENABLE);/*----------------- ADC1 configuration with DMA enabled --------------------*//* Enable The HSI (16Mhz) */RCC_HSICmd(ENABLE);/* Check that HSI oscillator is ready */while(!RCC_GetFlagStatus(RCC_FLAG_HSIRDY));/* Enable ADC1 clock */RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);/* ADC1 Configuration -----------------------------------------------------*/ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;ADC_InitStructure.ADC_ScanConvMode = ENABLE;ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;ADC_InitStructure.ADC_ExternalTrigConv = 0;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfConversion = 2;ADC_Init(ADC1, &ADC_InitStructure);/* Enable temperature sensor and Vref */ADC_TempSensorVrefintCmd(ENABLE);//ADC_TempSensorVrefintCmd(DISABLE);/* ADC1 regular channel configuration */ADC_RegularChannelConfig(ADC1, SP_ADC_CHANNEL, 1, ADC_SampleTime_4Cycles);ADC_RegularChannelConfig(ADC1, UBAT_ADC_CHANNEL, 2, ADC_SampleTime_4Cycles);/* Enable the request after last transfer for DMA Circular mode */ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); /* Causes problem.. *//* Define delay between ADC1 conversions */ADC_DelaySelectionConfig(ADC1, ADC_DelayLength_None);/* Enable ADC1 Power Down during Delay */ADC_PowerDownCmd(ADC1, ADC_PowerDown_Idle_Delay, ENABLE);/* Enable ADC1 DMA */ADC_DMACmd(ADC1, ENABLE);/* Enable ADC1 */ADC_Cmd(ADC1, ENABLE);while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS));ADC_SoftwareStartConv(ADC1);}

Теперь нам нужно попросить контроллер сделать измерения сигнала каждый раз, когда мы видим импульс на входе TRIG:

void EXTI0_IRQHandler(void) // Обработчик импульсов сцинтиллятора{uint16_t i;    /* Проверяем, откуда у нас прерывание */    if (EXTI_GetITStatus(EXTI_Line0) != RESET) {        if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_0) != 1) {            // Убеждаемся, что прерывание прилетело по нужной линии, а не с клавиатуры, например.        if(Mute == false) {        GPIOB->ODR &= ~GPIO_ODR_ODR_3;        }        if(DMA_GetFlagStatus(DMA1_FLAG_TC1)) {        ADC_SoftwareStartConv(ADC1);        }        counter++;            Delay(20); // ждем, пока не кончится дребезжащий хвост импульса            if(Mute == false) {            GPIOB->ODR |= GPIO_ODR_ODR_3;            }            if((DMA_GetFlagStatus(DMA1_FLAG_TC1))) {i = ADC_ConvertedValue[0];adcBatValue += ADC_ConvertedValue[1];if (i >= SPECTRE_START_BIT && i < (SPECTRE_RES + SPECTRE_START_BIT)) {i = i-SPECTRE_START_BIT;spectre[i] ++;if(spectre[i] > spectreMax) {spectreMax = spectre[i];}if(spectreMax > SPECTRE_MAX_VAL) {spectreMax = 0;resetSpectre();}}}        }        /* Не забываем сбросить флаг прерывания */        EXTI_ClearITPendingBit(EXTI_Line0);    }}

Здесь мы запускаем измерение, увеличиваем счетчик импульсов и сохраняем полученный результат измерения в массив для дальнейшей обработки и вывода на экран.

Кроме этого, в прошивке поменял назначение кнопок: вверх/вниз изменяет яркость дисплея, кнопка меню показывает спектр, последняя кнопка включает и выключает звук. Экрана у нас только два: основной поисковый экран с графиком интенсивности счетных импульсов и пустой экран для вывода спектрограммы. Спектрограмму выводим сразу в линейном и логарифмическом масштабе, так удобнее смотреть.

Вот такие так выглядят спектрограммы фона и америций-241 из датчика дыма.



На спектре от бананов (первое изображение в статье) можно увидеть еле заметный калиевый бугор, но без свинцового домика измерить его очень проблематично.

Модифицированные прошивка дисплея и микроконтроллера доступны на Google Drive.

При создании устройства мне пригодились следующие материалы:

habr.com/ru/post/456878
habr.com/ru/post/487510 и habr.com/ru/post/487518
misrv.com/ultra-micron-module-as
www.youtube.com/watch?v=I8-h8mLnexw
Подробнее..

Перевод Парадоксы чёрных дыр раскрывают фундаментальную связь между энергией и порядком

16.06.2020 14:11:48 | Автор: admin
Разбираясь с вопросами, которые ставят перед наукой экстремальные чёрные дыры, физики выявили удивительную и универсальную связь между энергией и энтропией.


Экстремальные чёрные дыры содержат столько электрического заряда, сколько возможно. Это привлекло пристальное внимание физиков-теоретиков.

Физики любят крайности, говорит Гарретт Гун, физик из Университета Карнеги-Меллона. Если не получается двигаться дальше, что-то изменилось, застопорилось значит, там кроется что-то интересное.
EDISON Software - web-development
Компания EDISON всегда рада помочь в исследовательских бизнес-проектах.


На протяжении многих лет мы делаем инвестиции в стартапы, помогая средствами и технической поддержкой в реализации свежих нестандартных идей.

Речь не только о том, чтобы дать взаймы. Мы готовы разделить риски и активно содействовать в создании чего-то нового.
Десятилетиями чёрные дыры играли ведущую роль в мысленных экспериментах, с помощью которых физики исследуют крайности природы. Эти невидимые сферы образуются, когда материя становится настолько сконцентрированной, что всё находящееся на определённом расстоянии, даже свет, попадает в ловушку её гравитации. Альберт Эйнштейн сравнил силу тяжести с кривыми в пространственно-временном континууме, но кривизна настолько возрастает при приближении к центру чёрной дыры, что уравнения Эйнштейна перестают работать. Таким образом, поколения физиков обращались к чёрным дырам за подсказками об истинном, квантовом происхождении гравитации, которое должно стать гармоничной красивой теорией и в целом соответствовать идеям Эйнштейна в любом месте Вселенной.

Концепцию испаряющихся чёрных дыр для познания квантовой гравитации предложил Стивен Хокинг. В 1974 году британский физик подсчитал, что квантовая рябь на поверхностях чёрных дыр заставляет их испаряться, медленно уменьшаясь в размерах с выделением тепла. С тех пор испарение чёрных дыр стало основой исследования квантовой гравитации.

Совсем недавно физики рассмотрели крайность из крайностей сущности, называемые экстремальными чёрными дырами и выявили многообещающую проблематику.

Чёрная дыра становится электрически заряженной, если в неё падает заряженная материя. Физики рассчитали, что чёрные дыры имеют так называемый экстремальный предел, точку насыщения, когда они хранят максимальное количество электрического заряда для своего размера. Когда заряженная чёрная дыра сжимается под воздействием излучения Хокинга, она в конечном итоге достигает данного экстремального предела. Он будет настолько мал, насколько это возможно, с учётом величины заряда. Дальнейшее испарение невозможно.

Но идея о том, что экстремальная чёрная дыра перестаёт испаряться и с того момента просто неизменна, неправдоподобна, утверждает Грант Реммен, физик из Калифорнийского университета в Беркли. В этом случае вселенная далёкого будущего будет усеяна крошечными неразрушимыми остатками чёрных дыр любых чёрных дыр, потому что даже лёгкое прикосновение к чёрной дыре после испарения превратит её в экстремальную. Неизвестны какие-либо фундаментальные условия, при которых эти чёрные дыры навсегда были бы защищены от окончательного разрушения, поэтому физики не думают, что такое стационарное состояние может длиться вечно.


Итак. Есть вопрос, как сказала Сера Кремонини из Университета Лихай: Что происходит со всеми этими экстремальными чёрными дырами?

Физики обоснованно полагают, что экстремальные чёрные дыры должны в конечном итоге распасться, разрешая парадокс, но каким-то иным путём, помимо испарения Хокинга. Изучение гипотетических возможностей в последние годы привело исследователей к основным подсказкам о квантовой гравитации.

Четыре физика в 2006 году пришли к выводу, что если экстремальные чёрные дыры способны распасться, это значит, что гравитация должна быть самым слабым взаимодействием в любой возможной вселенной, что являлось сильным утверждением об отношении квантовой гравитации к другим квантовым силам. Этот вывод привлёк более пристальное внимание к судьбам экстремальных чёрных дыр.

Затем, два года назад, Реммен и его коллеги Клиффорд Чунг и Джунью Лю из Калифорнийского технологического института обнаружили, что способность распадаться экстремальных чёрных дыр напрямую зависит от другого ключевого свойства черных дыр: их энтропии мере того, сколькими различными способами составные части объекта могут быть переставлены. Энтропия одна из наиболее изученных особенностей чёрных дыр, но до этого она не имела ничего общего с их экстремальным пределом. Это прям вау, отлично, что две очень крутые вещи оказались взаимосвязаны, говорит Чунг.

И что окончательно поразило, эта взаимосвязь, как оказалось, характерна для любых природных явлений. В статье, опубликованной в марте в Physical Review Letters, Гун и Риккардо Пенко обобщили выводы своей предыдущей работы, доказав простую универсальную формулу, связывающую энергию и энтропию. Новая формула была применена к газообразной системе, а также к чёрной дыре.


Риккардо Пенко (слева) и Гаррет Гун (справа) на примере экстремальных чёрных дыр доказали универсальную связь между энергией и энтропией.
Университет Карнеги Меллон; Фото Кристин Гун


Согласно последним исследованиям, мы действительно продвинулись в изучении квантовой гравитации, говорит Гун, Но, что ещё интереснее, узнаём нечто новое и о более повседневных вещах.

Экстремальность чёрных дыр


Для физиков достаточно очевидно, что заряженные чёрные дыры имеют экстремальный предел. Объединяя уравнения Эйнштейна и уравнения Максвелла, они рассчитали, что заряд Q чёрной дыры, никогда не превзойдёт её массу M, если их преобразовать в одни и те же фундаментальные единицы измерения. Вместе масса и заряд чёрной дыры определяют её размер радиус горизонта событий. Между тем, заряд чёрной дыры также создает второй внутренний горизонт, скрытый за горизонтом событий. По мере увеличения Q внутренний горизонт чёрной дыры расширяется, а горизонт событий сжимается до тех пор, пока при Q = M оба горизонта не совпадут.

Если Q увеличится ещё больше, радиус горизонта событий станет комплексным числом (содержащий квадратный корень из отрицательного числа), а не вещественным. Это нефизично (This is unphysical). Итак, согласно простому сочетанию теории электромагнетизма и эйнштейновской гравитации, состояние Q = M должно быть пределом.

Когда чёрная дыра достигнет этой точки, простым вариантом для дальнейшего разделения было бы распад на две меньшие чёрные дыры. Однако для того, чтобы подобное расщепление было возможно, законы сохранения энергии и сохранения заряда требуют, чтобы в одном из дочерних объектов в итоге заряд превалировал над массой. Исходя из уравнений Эйнштейна и Максвелла, это невозможно.


Инфографика от 5W для журнала Quanta

Но, в конце концов, разделение экстремальных чёрных дыр на две части возможно, как указали в 2006 году Нима Аркани-Хамед, Любос Мотл, Альберто Николис и Кумрун Вафа. Они отметили, что объединённые уравнения Эйнштейна и Максвелла не работают для маленьких, сильно искривлённых чёрных дыр. В меньших масштабах дополнительные нюансы, связанные с квантово-механическими свойствами гравитации, приобретают большую важность. Эти детали вносят поправки в уравнения Эйнштейна-Максвелла, корректируя прогнозируемый экстремальный предел. Четыре физика показали, что чем меньше чёрная дыра, тем весомее эти поправки, в результате чего экстремальный предел смещается всё дальше и дальше от Q = M.


Исследователи также отметили, что если корректировки имеют нужный знак положительный, а не отрицательный тогда маленькие чёрные дыры могут содержать больше заряда, чем массы. Для них Q > M, и это именно то, что нужно для распада больших экстремальных чёрных дыр.

Если это так, то не только чёрные дыры могут распасться. Аркани-Хамед, Мотл, Николис и Вафа отметили, что из этого следует еще один факт о природе: гравитация должна быть самой слабой силой. Заряд объекта Q это его чувствительность к любому взаимодействию, кроме силы тяжести. Его масса М это его чувствительность к гравитации. Таким образом, Q > M означает, что из обеих сил гравитация является слабейшей.

Исходя из своего предположения о том, что чёрные дыры способны распадаться, четыре физика обобщили гипотезу, предположив, что гравитация должна быть самой слабой силой в любой жизнеспособной вселенной. Другими словами, объекты с Q > M всегда будут существовать для любого вида заряда Q, независимо от того, являются ли эти объекты частицами, такими как электроны (которые действительно имеют гораздо большие электрические заряды, чем их масса), или маленькими чёрными дырами.

Эта гипотеза слабой гравитации получила широкое распространение, поддерживая ряд других идей о квантовой гравитации. Но Аркани-Хамед, Мотл, Николис и Вафа не доказали, что Q > M или что экстремальные чёрные дыры могут распадаться. Поправки квантовой гравитации к экстремальному пределу могут быть отрицательными, и в этом случае маленькие чёрные дыры могут нести даже меньший заряд на единицу массы, чем большие. Экстремальные чёрные дыры не распались бы, и гипотеза о слабой гравитации не оправдалась.

Все это означало, что исследователям нужно было выяснить, каков на самом деле знак корректировок квантовой гравитации.

Беспорядок повсюду


Вопрос о квантовых гравитационных корректировках поднимался и ранее, в другой, казалось бы, не связанной теме по изучению чёрных дыр.

Почти 50 лет назад ныне покойные физики Джейкоб Бекенштейн и Стивен Хокинг независимо друг от друга обнаружили, что энтропия чёрной дыры прямо пропорциональна площади её поверхности. Энтропия, обычно рассматривается как мера беспорядка, она оценивает количество способов, которыми внутренние части объекта могут быть перестроены без какого-либо изменения общего состояния. (Если комната грязная, т.е., с высокой энтропией, вы можете перемещать предметы случайным образом, и комната останется настолько же грязной; в противоположном случае, если комната чистая, т.е. с низкой энтропией, перемещение предметов сделает её менее аккуратной.) Перебросив мостик между энтропией чёрной дыры, которую определяют её внутренние микроскопические компоненты, и её геометрической площадью поверхности, закон энтропии Бекенштейна и Хокинга стал одной из самых сильных опор физиков для изучения чёрных дыр и квантовой гравитации.

Бекенштейн и Хокинг вывели свой закон, применив уравнения гравитации Эйнштейна (вместе с законами термодинамики) к поверхности чёрной дыры. Они рассматривали эту поверхность как гладкую и игнорировали любые структуры, существующие в микроскопических масштабах.

В 1993 году физик Роберт Уолд из Чикагского университета показал, что можно добиться большего. Уолд нашёл хитрые лазейки для получения небольших эффектов, получаемых от более микроскопических уровней реальности, не зная, каково полное описание этого более глубокого уровня. Его тактика, впервые применённая физиком Кеннетом Уилсоном в другом контексте, заключалась в том, чтобы описывать все возможные физические эффекты. В уравнениях Эйнштейна Уолд показал, как добавить ряд дополнительных факторов любых, имеющих правильные размерности и единицы измерения, построенные из всех физически значимых переменных, которые могли бы описывать неизвестные свойства чёрной дыры на близкой дистанции к её поверхности. Вы можете описать наиболее общий набор элементов, которые у вас могут быть в принципе, которые описывают кривизну [чёрной дыры] определённого размера, сказал Кремонини.


К счастью, этот ряд можно прервать после первых нескольких элементов, поскольку всё более сложные составные части многих переменных мало способствуют окончательному ответу. Даже многие из ведущих членов ряда могут быть вычеркнуты, потому что они имеют неправильную симметрию или нарушают условия согласованности. Это оставляет лишь несколько сущностей любого значения, которые модифицируют уравнения гравитации Эйнштейна. Решение этих новых, более сложных уравнений дает более точные свойства чёрной дыры.

Уолд проделал это в 1993 году, рассчитав, как квантовые гравитационные эффекты на малых расстояниях корректируют закон энтропии Бекенштейна-Хокинга. Эти поправки смещают энтропию чёрной дыры, таким образом, что она становится не точно пропорциональна площади. И хотя невозможно вычислить энтропийный сдвиг напрямую участвуют переменные с неизвестными значениями ясно, что поправки тем значительнее, чем меньше чёрная дыра, и, следовательно, тем больше энтропийный сдвиг.

Три года назад Чунг, Лю и Реммен применили один и тот же базовый подход Уолда к изучению заряженных чёрных дыр и экстремального предела. Они модифицировали уравнения Эйнштейна-Максвелла серией дополнительных членов, возникающих из-за эффектов на близком расстоянии, и решили новые уравнения, чтобы вычислить новый скорректированный экстремальный предел. Это привело к удивительному результату: поправки к экстремальному пределу заряженной чёрной дыры точно соответствовали поправкам к её энтропии, рассчитанным по формуле Уолда; квантовая гравитация неожиданно сдвигает обе величины одинаково.

Реммен помнит дату, когда они завершили расчет 30 ноября 2017 года потому что это было так увлекательно, вспоминает он. Это было очень захватывающе, когда мы доказали, что эти [дополнительные] элементы дают одинаковые сдвиги и энтропии и экстремальности.


Грант Реммен, Клиффорд Чунг и Джунью Лю обнаружили, что изменение экстремального предела чёрной дыры соответствует изменению её энтропии.

Но одинаковый ли знак у этих сдвигов? Обе поправки зависят от неопределённых переменных, поэтому в принципе они могут быть как положительными, так и отрицательными. В своей статье 2018 года Чунг и его коллеги подсчитали, что энтропийный сдвиг является положительным в большом классе сценариев и моделей квантовой гравитации. Они утверждают, что также интуитивно понятно, что сдвиг энтропии должен быть положительным. Напомним, что энтропия измеряет все возможные внутренние состояния чёрной дыры. Кажется разумным, что учёт более микроскопических деталей поверхности чёрной дыры выявит новые возможные состояния и, следовательно, приведет к большей энтропии, а не к меньшей. Чем больше микросостояний тем более правдоподобной будет теория, сказал Реммен.

Если это так, то сдвиг в экстремальном пределе также является положительным, что позволяет меньшим чёрным дырам хранить больше заряда по отношению к массе. В этом случае чёрные дыры всегда могут распасться на более лёгкие, сказал Чунг, добавив, что гипотеза слабой гравитации верна.

Но другие исследователи указывают на то, что эти результаты не являются прямым доказательством гипотезы о слабой гравитации. Гэри Шиу, физик-теоретик из Университета Висконсина в Мэдисоне, сказал, что вера в то, что энтропия всегда должна возрастать, когда вы принимаете во внимание квантовую гравитацию, это интуитивный вывод, с которым кто-то согласен, а кто-то нет.

Шиу привёл контрпримеры: нереалистичные модели квантовой гравитации, в которых благодаря аннулированию эффектов на коротких расстояниях уменьшается энтропия чёрных дыр. В этих моделях нарушается причинность или другие фундаментальные принципы, но, по мнению Шиу, смысл в том, что вновь найденная связь с энтропией сама по себе не доказывает, что экстремальные чёрные дыры всегда могут распадаться или что гравитация всегда является самой слабой силой.

А вообще доказать [гипотезу о слабой гравитации] это было бы просто фантастически, добавил Шиу. Именно поэтому мы всё ещё думаем об этой проблеме.


Запретное болотное царство


Гравитация является самой слабой из четырёх фундаментальных взаимодействий в нашей вселенной. Гипотеза о слабой гравитации утверждает, что иначе и быть не могло. Помимо нашей вселенной, гипотеза также, кажется, верна для любых теоретически возможных вселенных, выводимых из теории струн. Кандидат в квантовую теорию гравитации, теория струн, утверждает, что частицы это не точки, а протяженные объекты (т.н. струны), и что пространство-время в микроскопических масштабах также имеет дополнительные измерения. Когда теоретики описывают различные наборы струн, которые могут определять вселенную, они неизменно обнаруживают, что гравитация которая возникает из определённого типа струн всегда является самой слабой силой в этих модельных вселенных. Видеть, что это в конечном итоге происходит раз за разом, очень поразительно, делится Хорхе Сантос, физик из Института перспективных исследований в Принстоне, Нью-Джерси и Кембриджском университете.

Гипотеза о слабой гравитации является одной из наиболее важных в наборе гипотез болотных царств, выдвинутых физиками за последние два десятилетия. Это спекулятивные утверждения, основанные на мысленных экспериментах и примерах, о том, какие виды вселенных возможны и невозможны. Исключая невозможные варианты вселенных (помещая их в бесполезное болотное царство), болотные теоретики стремятся выяснить, почему наша вселенная такая, какая она есть.

Если бы исследователи смогли доказать, что гравитация неизбежно является самой слабой (и, как следствие, что чёрные дыры всегда могут разрушиться), то самый важный вывод, по мнению Сантоса, состоит в том, что квантовая гравитация должна стать теорией великого объединения. То есть, если Q и M должны иметь фиксированное соотношение, их связанные силы должны быть частью одной единой математической структуры. Сантос отметил, что единственной существующей теорией, которая объединяет фундаментальные силы в единую структуру, является теория струн. Конкурирующие подходы, такие как петлевая квантовая гравитация, пытаются квантовать гравитацию, разделяя пространство-время на части, не связывая гравитацию с другими силами. Если гипотеза слабой гравитации верна, то такие вещи, как петлевая квантовая гравитация, мертвы, сказал Сантос.

Хорхе Пуллин, теоретик петлевой квантовой гравитации в Университете штата Луизиана, считает что мёртвый это слишком сильно сказано. Этот подход сам по себе может быть частью более широкой объединённой теории, говорит он: Петлевая квантовая гравитация не исключает объединяющую структуру, просто мы пока не ставили это в повестку дня.


Гипотеза о слабой гравитации также взаимно усиливает некоторые другие гипотезы о болотных царствах, в том числе о роли симметрии и расстояния в квантовой гравитации. Согласно Шиу, логическая связь между этими гипотезами даёт нам некоторую уверенность в том, что, хотя эти заявления сделаны в виде предположений, за ними может скрываться универсальная истина.

Шиу сравнил наше нынешнее, приблизительное понимание квантовой гравитации с первым периодом развития квантовой механики. Было много догадок, много прыжков веры в то, что является правильной теорией субатомного мира, сказал он. В конце концов, многие из этих догадок оказались частью нынешней широкомасштабной картины.

Универсальная Энергия и Беспорядок


Новое исследование может иметь далеко идущие последствия не только в изучении чёрных дыр и квантовой гравитации.

В своей мартовской статье Гун и Пенко уточнили расчёт поправок энтропии и экстремальности чёрной дыры. Вместо того, чтобы использовать понятия, связанные с гравитацией и геометрией поверхности чёрной дыры, они рассчитали поправки исключительно в терминах универсальных термодинамических величин, таких как энергия и температура. Это позволило им обнаружить термодинамическую связь между энергией и энтропией, которая обычно наблюдается в природе.

Эта взаимосвязь просто прекрасна, говорит Сантос.

В случае с чёрными дырами формула учёного дуэта (Гун и Пенко) говорит о том же, что уже доказали Чунг, Реммен и Лю: это квантовая гравитация сдвигает экстремальный предел чёрных дыр (позволяя им хранить больше заряда по отношению к массе) и смещает их энтропию на пропорциональную величину. Другой способ описания дополнительной вместимости, обусловленной квантовой гравитацией, заключается в том, что чёрная дыра с фиксированным зарядом может иметь меньшую массу. Масса является формой энергии, и поэтому данное уменьшение массы можно рассматривать в более общем смысле как сдвиг в количестве энергии. Что обратно пропорционально сдвигу в значении энтропии.

В то время как для чёрной дыры равные и противоположные смещения в значениях энергии и энтропии происходят под влиянием неизвестных факторов квантовой гравитации, эквивалентная ситуация характерна для любой физической системы вблизи её экстремального предела.

Например, газ становится экстремальным при охлаждении до абсолютного нуля. Термодинамическая формула Гуна и Пенко говорит, что любые изменения в физике газа на микроскопическом уровне (например, когда речь идёт о типах атомов, которые его составляют) вызывают сдвиги в его энергии и энтропии, как с противоположными знаками, так с совпадающими. Гун предположил, что связь между энергией и энтропией может быть полезна в исследованиях ультрахолодных газов и других криогенных экспериментах, потому что иногда одно вычислить легче, чем второе.

Независимо от того, окажется ли эта взаимосвязь энтропия/энергия полезной в более приземлённых областях физики, у исследователей ещё очень много работы, чтобы изучить её в контексте чёрных дыр и её значение для природы гравитации.

Сможем ли мы ответить на вопрос: почему гравитация так слаба?- сказал Чунг. Тот факт, что этот вопрос один из главных, тот факт, что на этот вопрос можно чётко ответить, не вдаваясь в философские рассуждения, и тот факт, что он таким окольным путём приводит к энтропии (причём, путём, проверенным временем), в результате всего этого все эти увлекательные вещи о чёрных дырах кажутся каким-то безумием.
Подробнее..

Наша самоуверенная технологическая цивилизация и её пределы

24.06.2020 00:13:58 | Автор: admin
Господь призывает нашу самоуверенную технологическую цивилизацию, которая полагает, что ей все доступно и все возможно, оценить пределы своих возможностей и осознать свою хрупкость.
(из обращения патриарха Кирилла 22 марта 2020 года в связи с коронавирусом)

Предлагаю, вслед за церковным лидером, не предвзято произвести инвентаризацию тех пределов, которыми ограничена наша самоуверенная технологическая цивилизация. Ведь должны же мы, в конце-то концов, наконец осознать свою хрупкость.

image
иллюстрация с сайта http://corchaosis.ru

1) Предел скорости
Простейший предел нашей цивилизации следует из закона о том, что никакая скорость не может превышать скорости света. В отношении любого события или объекта например нашей цивилизации можно построить конус в прошлое, это те точки пространства-времени, из которых к нам могло прийти что-либо (информация или материальный объект), и конус в будущее, это те точки пространства-времени, которых способны достигнуть мы (не превышая скорости света).

Поскольку никакой сигнал не может распространяться быстрее света, световой конус имеет прямое отношение к причинно-следственной структуре пространства, а именно, он разделяет всё пространство-время на три части по отношению к вершине: область абсолютного прошлого (конус прошлого; все события, которые могли повлиять на событие в вершине), область абсолютного будущего (конус будущего; все события, на которые влияет событие в вершине конуса) и область абсолютно удалённого (события, не связанные с вершиной причинно-следственными связями).
https://ru.wikipedia.org/wiki/Световой конус

Мы можем увидеть лишь тот свет звёзд, каковым он был назад миллионы лет (столько лет, на сколько эти звёзды удалены от нас), и достигнуть их обладая любыми ресурсами не ранее, чем за столько же миллионов лет времени.

На самом деле я полагаю, что конечная и предельная скорость света вступающая в противоречие с нормами обычной механики (например, если вы бросили шайбу в окно поезда по ходу движения, то в правилах обычной механики скорость шайбы становится суммой скорости поезда и скорости вашего броска), защищает молодые цивилизации от поглощения старыми. Вселенная предназначена для того, чтобы человек мог в ней жить. Это основной закон, и все прочие следуют из него.

2) Предельно малое
Нет оснований полагать, что мы сможем изучить предельно малые величины. Мы путаемся на уровне кварков (составных частей элементарных частиц, таких как протон), мы не понимаем их свойств. Мы не способны их наблюдать их иначе, чем при помощи света (то есть бомбардируя их фотонами, энергия и возмущение которых выше их габаритов) да, я знаю, что для наблюдения можно применять эффект квантовой связанности (также противоречащий всему из области макро-физики). Нет оснований быть уверенными в том, что мы увидим больше из мира кварков, или в том, что увидим следующий, или в том, что способны их понять.

3) Нет способа узнать что мы в матрице
Существует способ узнать, находится ли человек в одиночном сне. Этот способ применим ко всем существам, кроме бога. Для бога не существует способа узнать, спит ли он или бодрствует.

Способ такой. (Для его применения, надо обладать верной памятью). Надо провзаимодействовать с любым внешним объектом, хоть в чём либо превышающим ваши способности, и затем проверить результат. Например, калькулятор способен умножать числа намного быстрее, чем вы. Прекрасно! Воспользуйтесь калькулятором и запомните ответ, а затем проверьте его вручную если ответ верен, то вы действительно можете воспользоваться внешним по отношению к вам объектом, а следовательно, не спите.

Но как определить, находится ли человек в коллективном сне, как в Матрице? Может ли быть так что мы действительно находимся во взаимодействии с другими людьми и некоторыми аппаратами, но условный сон скрывает от нас большую часть вселенной? Не знаю.

Ну и ряд других ограничителей возможностей цивилизации тоже есть. Напишу, если статья наберёт лайки и комментарии.
Подробнее..

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 3

19.06.2020 08:12:45 | Автор: admin
image

Сегодня мы расскажем о том, кто куда мигрирует в нефтяной отрасли, о том, что происходит с месторождением при добыче, и о том, как вода, нефть и газ взаимодействуют. Это третья часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи. В книжках всё расписано гораздо подробнее, зато здесь о нефтянке рассказывают программисты и для программистов.


Первую и вторую части серии можно прочесть здесь:
habr.com/ru/company/bashnipineft/blog/505300
habr.com/ru/company/bashnipineft/blog/506198

Осадконакопление, образование нефти, миграция

Теорий образования нефти есть несколько, я буду говорить только о той, согласно которой нефть образовалась из остатков живых существ зоопланктона и водорослей. Когда-то давным-давно, in a galaxy far far away, этот самый зоопланктон и водоросли размножался так бурно, а условия по наличию (точнее, отсутствию) кислорода и нужной температуры были такие, что он не успевал разложиться и падал на дно моря, будучи в дальнейшем засыпаем всякой осадочной породой (песочком и глиной). Сейчас даже деревья отказываются превращаться в каменный уголь, а просто, заразы, в присутствии кислорода гниют, а тогда они аналогично планктону подвергались захоронению и с течением времени погружались на всё большую и большую глубину, уплотнялись и обезвоживались. Это не означает, кстати, что вода куда-то пропадала вода всегда была и оставалась вокруг, пропитывая породу. Вода уходила из самих остатков клеток и органических соединений.

image

По мере того, как захороненное неразложившееся органическое вещество погружалось всё глубже, температура и давление росли, и наконец, попали в такое окно параметров (выше температура и давление недостаточно большие, глубже температура и давление слишком большие), где органическое вещество стало преобразовываться в углеводороды, составляющие нефть и газ такую породу называют нефтематеринской, потому что именно она рождала (и рождает до сих пор, только ооочень медленно!) нефть. Получившиеся углеводороды легче воды, поэтому они мигрируют вверх, в сторону поверхности, просачиваясь через проницаемые породы и застревая на непроницаемых.

На пути к поверхности нефть встречает много разных слоёв, и они к этому времени совсем не обязательно будут горизонтальными. Река подточила глиняный утёс, он упал в воду и его смыло, вынесло в море, и там вся эта глина упала на дно в виде протяжённого, более или менее горизонтального пятна. Процессы движения литосферы, процессы горообразования вспучили земную твердь, и вот уже когда-то горизонтальный пласт низкопроницаемой глины выпятило в виде арки ловушка для нефти готова. Где-то нефть с газом попадёт в такие ловушки и застрянет на определённой глубине, а где-то просочится практически на поверхность. В последнем случае газ и лёгкие углеводороды, конечно, большей частью опередят всех остальных, достигнут поверхности и улетучатся, и останутся битуминозные пески Альберты и бассейна реки Ориноко, но в качестве противоположных примеров предлагаю вспомнить бакинские колодцы и озера с нефтью в 19 веке, а также горящие уже тысячи лет огни Химеры выходы метана на поверхность в районе турецкой горы Олимпос.

image

Нам важнее всего то, что традиционные месторождения, в которых можно встретить подвижную нефть, чаще всего образуются под куполами из непроницаемой породы или подобными же образовавшимися в результате разломов ловушками, под которыми скопилась в процессе своей миграции наверх нефть. Если откуда-то туда смогла прийти нефть, то гораздо раньше там захватила своё место вода. Когда нефть вытесняет из породы воду, часть воды всё равно в породе остаётся в виде прилипшей к гидрофильной породе плёнки или заполняющей очень мелкие поры и держащейся там очень сильными капиллярными силами, поэтому нефть всегда в месторождении соседствует с водой, пусть даже такой связанной и отказывающейся двигаться (если бы такая вода могла двигаться, нефть бы её выдвинула из породы при своей миграции). Если нефть мигрировала вместе с газом, то они могли вместе попасть в ловушку, тогда у такого месторождения возможно будет газовая шапка насыщенная газом область проницаемой породы над насыщенной нефтью областью. И наконец, под самой нефтью может остаться область проницаемой породы, насыщенная водой, тогда говорят о месторождении с подстилающей водой. А может и не остаться.

image

Динамика свойств и технологических показателей в процессе работы скважины

С тех пор, как месторождение нефти образовалось, прошло очень много времени, процессы миграции завершились, все переходные процессы устаканились, всё смешиваемое перемешалось, всё несмешиваемое снова разделилось, система пришла в равновесие, остались активными только очень медленные процессы, которые короткоживущие белковые существа могут не учитывать. А потом вдруг раз! эти самые белковые существа изобрели паровую машину, электричество и принялись бурить скважины и добывать нефть.

Какое было начальное пластовое давление? Если забыть про все эти ловушки для нефти и вообразить, будто вся земля представляет собой проницаемый песчаник, насыщенный водой, то давление жидкости на любой глубине будет определяться только плотностью этой воды и глубиной: это известная со школы формула ро-жэ-аш. Делайте как мы, забудьте начальную школу с её задачками на перевод из дециакров в кубофуты и считайте всё только в единицах СИ, и будет вам счастье. Получаем примерно 1000*10*2000 Паскалей или примерно 200 атмосфер.

image

Если пластовое давление в месторождении примерно равно давлению столба жидкости на той же глубине, говорят о нормальном пластовом давлении; если сильно больше или сильно меньше, то говорят об аномально высоком или низком пластовом давлении. Нефтяники, конечно, любят высокое, но не аномально высокое. Если пробурить скважину до месторождения и заполнить её водой, то в случае нормального пластового давления уровень воды в скважине не будет меняться. В случае пониженного пластового давления, уровень воды в скважине начнёт падать и упадёт до высоты, соответствующей текущему пластовому давлению удобный способ для оценки пластового давления, кстати, понадобятся только два хронометра.

В случае повышенного пластового давления воду из скважины будет выталкивать со всё повышающейся скоростью, и наконец из скважины забьёт фонтан нефти! Теперь представим, что у месторождения нормальное начальное пластовое давление, не повышенное, но скважина заполнена не водой, а нефтью. У нефти плотность меньше, чем у воды, поэтому ро-жэ-аш у такого столба нефти будет меньше, чем пластовое давление, и нефть из скважины будет выталкивать! Чтобы остановить такую скважину, нужно её заглушить, заменить нефть в стволе скважины на воду, а при аномально высоком пластовом давлении ещё и с растворенными солями, чтобы плотность была побольше и ро-жэ-аш как раз равнялось пластовому давлению (и чуть-чуть его превышало). Сами понимаете, при аномально высоком пластовом давлении ещё и при бурении будут проблемы нужно пробурить скважину, создав открытую связь месторождения под давлением с поверхностью, но при этом не допустив выбросов из-за повышенного давления.

image

Что происходит с физико-химическими свойствами месторождения при добыче? В первом приближении можно считать, что пористость, проницаемость и сжимаемость не меняются, потому что порода остаётся на месте, а вот все насыщающие её флюиды начинают мигрировать, поэтому меняются давление и насыщение. Пусть скважина была заполнена нефтью и при этом находилась в равновесии с пластовым давлением. Насос начинает добывать нефть из скважины, динамический уровень нефти в скважине начинает падать, забойное давление (давление столба жидкости по ро-жэ-аш на забой, то есть нижнюю часть скважины) тоже падает. Насос может быть настроен так, чтобы работать с заданным постоянным расходом, или (если в нём есть свой манометр) поддерживать заданное постоянное забойное давление. Перепад давления (называемый депрессией) между забойным (в стволе скважины) и пластовым (в прилегающей к скважине призабойной части месторождения) давлением вызывает приток нефти к скважине. Но и одновременно при этом понижает пластовое давление в призабойной зоне месторождения! Если проницаемость достаточная, то волна падения давления распространяется дальше, вызывая приток нефти из всё более дальних частей месторождения. Теоретически, при большой проницаемости можно всю нефть месторождения выкачать одной скважиной, просто это займёт очень много времени.

image

В реальности, через некоторое время для поддержания пластового давления начнут работу нагнетательные скважины, которые наоборот, закачивают в ствол скважины воду, создавая повышенное забойное давление. Обратный перепад давления (репрессия) между стволом скважины и призабойной зоной приводит к тому, что из скважины в месторождение начинает распространяться закачиваемая вода вместе с волной повышенного давления. Это с одной стороны не даёт пластовому давлению падать, а с другой стороны как бы поршнем вытесняет нефть от нагнетательных скважин в сторону добывающих. Хотя если вместо поршневого вытеснения закачиваемая вода пробьёт себе прямые каналы от нагнетательных скважин к добывающим, на оставшейся в этой части месторождения нефти можно ставить крест.

Итак, после начала добычи и закачки на месторождении начинается невиданная за тысячи лет движуха перераспределяется пластовое давление, вызывая фильтрацию (напоминаю, слово фильтрация можно смело заменять на перетоки) содержимого от мест с большим давлением к местам с меньшим, меняя, таким образом, во всех точках нефтенасыщенность, водонасыщенность и газонасыщенность. Если вдруг добычу остановить, то через некоторое время пластовое давление выровняется, на месторождении останется только одна сила тяжести и снова начнутся те же медленные процессы восстановления равновесия: более тяжёлая вода вниз, более лёгкий газ вверх, нефть между ними. Коктейль снова расслаивается.

Физико-химические свойства нефти, воды и газа

Физико-химические свойства флюидов, то есть всего того, что в месторождении может течь и фильтроваться сквозь породу, сильно влияют на то, как эта фильтрация происходит. Мы уже видели, что скорость фильтрации прямо пропорциональна проницаемости породы и обратно пропорциональна вязкости. В условиях, когда в какой-то точке месторождения есть и вода, и газ, и нефть, они фильтруются все одновременно в соответствии с общей абсолютной проницаемостью и собственной вязкостью.

Но оказывается, когда они все находятся в одном месте, в одних и тех же порах, они друг другу начинают мешать, и скорость фильтрации их всех зависит не только от абсолютной проницаемости породы и собственной вязкости, но и от количества остальных флюидов в наличии. Так, например, опыты показывают, что когда в одних и тех же порах находятся нефть и вода, скорость фильтрации нефти при соотношении 10:1 может оказаться во много раз больше, чем скорость фильтрации нефти при соотношении 1:10.

image

Я понимаю, формулы страшные, но всё-таки, давайте я их объясню на пальцах. Вот раньше мы думали, что всё течёт пропорционально проницаемости и перепаду давления и обратно пропорционально вязкости. Оказывается, когда есть и вода, и нефть, то надо считать отдельно скорость воды и скорость нефти, каждый со своей вязкостью. При этом проницаемость в формуле, что для нефти, что для воды, состоит из какой-то общей неизменной проницаемости, определяемой породой, и дополнительного множителя, который у воды и нефти свой, и этот множитель зависит от количества воды.

Другими словами, когда воды мало, она почти не мешает нефти фильтроваться, а вот когда воды уже много, оставшаяся нефть практически перестаёт фильтроваться. Выглядит это так, будто на коэффициент проницаемости породы накладывается дополнительный множитель, называемый коэффициентом относительной фазовой проницаемости, который для каждого флюида (воды, нефти, газа) свой и ещё, более того, зависит от насыщения (доли воды, нефти и газа).

image

В итоге, есть абсолютная проницаемость породы, которая зависит только от породы, и есть относительная проницаемость для воды, нефти, газа, которая зависит и от их пропорции, и это всё отображается на графиках, подобных тому, что я привёл выше. Как такую картинку читать? Водонасыщенности меньше 20% на этом гипотетическом месторождении нет, то есть воды всегда как минимум 20%. При таком содержании воды её относительная фазовая проницаемость равна нулю, то есть вода есть, её 20%, но она не течёт никуда, течёт только нефть. С другой стороны, когда воды становится 75% (а нефти остаётся, соответственно, только 25%), относительная фазовая проницаемость нефти падает до нуля, и значит уже нефть никуда больше не течёт, и эти оставшиеся 25% из пор никак не выковырять.

Плотность нефти, воды и газа влияет на их начальное распределение в месторождении. В полном соответствии с законом Архимеда, менее плотные газ и нефть располагаются в верхней части месторождения, а более плотная вода в нижней. В процессе разработки месторождения все эти эффекты, разумеется, продолжают действовать, хотя и могут не успевать за происходящими событиями. Одно дело пузырику газа всплыть со дна стакана на поверхность, а совсем другое просочиться с нижнего пласта до верхнего через мелкие поры породы, где вода и нефть, удерживаемые капиллярными силами, не горят желанием пропускать какие-то пузыри.

Ещё одна особенность нефти заключается в её способности растворять углеводородный газ (чаще всего метан). В одном кубометре нефти могут быть растворены десятки и сотни кубометров газа, в зависимости от давления. Отношение объёма газа, выделившегося из нефти при добыче её на белый свет и в нормальные условия, к объёму той нефти, из которой он выделился, называется газосодержанием. Если вы добываете нефть с газосодержанием, равным 100, то при добыче 1 кубометра нефти вы получите попутно ещё и 100 кубометров газа, которые в ней были растворены и которые из неё при добыче выделятся.

image

Обратите внимание и никогда не путайте: газосодержание это объём газа, растворенного в единице объёма нефти, а газонасыщенность это доля объёма пор породы, занимаемая свободным газом. Ещё есть один показатель: растворимость газа это объём газа, который потенциально может раствориться в единице объёма этой нефти при заданном давлении.
Растворимость сколько газа может раствориться в нефти при заданном давлении, а газосодержание сколько газа на самом деле растворено. Понятно, что второе никогда не может превысить первое. Если вы в одну бочку поместите нефть без растворённого газа, то газосодержание у этой нефти будет равно нулю. Если вы затем начнёте в эту бочку нагнетать газ под давлением в 200 атмосфер, то газ начнёт в нефти растворяться без остатка, и газосодержание нефти станет расти. Как только газосодержание нефти достигнет растворимости газа при заданном давлении, процесс растворения прекратится, и оставшийся газ начнёт скапливаться в верхней части бочки.

Нефть, в которой при текущем давлении растворено максимальное возможное количество газа, называется насыщенной нефтью, а давление такое называется давлением насыщения. Давление насыщения для заданной нефти это такое давление, при снижении ниже которого из нефти начинает выделяться растворённый в ней газ. Если предположить, что газа больше нет, и начать повышать давление, то с нефтью ничего не будет происходить (хотя она и перестанет быть насыщенной). Если начать, наоборот, понижать давление, то как только давление станет ниже давления насыщения, из нефти начнёт выделяться растворённый в ней газ, и газосодержание начнёт падать (а газонасыщенность породы, в которой всё это происходит, начнёт расти).

image

В случае месторождения всё происходит похожим образом, но в разных направлениях в зависимости от того, что было в начале и что происходит. Если у месторождения была газовая шапка при давлении в 200 атмосфер, это значит, что нефть уже приняла весь газ, который могла растворить, и находится в насыщенном состоянии. Если начать закачивать в месторождение воду и повышать пластовое давление, то растворимость газа (способность нефти вмещать газ) начинает расти, и газ тут же пользуется этой возможностью и в нефти начинает растворяться (правда, происходит это не быстро). Так что повышая давление можно теоретически добиться, чтобы вся газовая шапка на месторождении растворилась в нефти. Допустим, что это произойдёт при 250 атмосферах, а мы продолжаем нагнетать, что будет происходить, когда пластовое давление вырастет, скажем, до 300 атмосфера? Да ничего, газа как не было, так и не будет. Но нефть как бы запомнила, при каком давлении в ней растворился последний кубометр газа, это давление и называется давлением насыщения.
Если затем начать добывать нефть и снижать давление с 300 до 290, 280, 270 атмосфер, то ничего происходить не будет, но как только давление упадёт до давления насыщения 250 атмосфер, газ начнёт снова выделяться, причём не в шапку, а по всему объёму, и быстро.
Если у месторождения с пластовым давлением в 200 атмосфер с самого начала не было газовой шапки, означает ли это, что в этой нефти нет растворённого газа? Нет, не означает растворённый газ всегда в нефти есть, просто из-за условий её образования. Для такой нефти важно знать, какое у неё газосодержание и давление насыщения, потому что если вдруг в процессе разработки пластовое давление упадёт ниже давления насыщения, то по всему объёму месторождения из нефти начнёт выделяться газ, и этот газ будет очень сильно мешать нормальной фильтрации нефти к скважинам.

image

Кому трудно понять суть всех этих происходящих процессов с растворением, растворимостью и давлением насыщения, я предлагаю представить себе только что купленную бутылку с газированной водой. В ней, очевидно, под давлением находится вода с растворённым в ней углекислым газом и небольшое количество углекислого газа под крышкой, при этом они находятся в равновесии: газ больше не растворяется, но и не выделяется из воды. Вы вряд ли можете провести этот эксперимент в реальности, поэтому придётся провести его мысленно: если бутылку сжать, повысив в ней давление, то можно добиться того, что весь газ из-под крышки растворится, и в бутылке будет только вода. А вот обратный эксперимент провести легко: если чуть-чуть отвернуть крышку, стравить часть газа и крышку обратно закрутить, то давление под крышкой и в воде уменьшится. А раз до этого вода и газ находились в равновесии, то теперь мы опустили давление ниже давления насыщения, и газ из воды начнёт выделяться, причём по всему объёму сразу, пока не установится новое равновесие.

Кроме этого, важно знать, что при растворении в нефти газа, объём этой самой нефти увеличивается. И наоборот, при добыче 1 кубометра нефти из пласта, когда мы её поднимем на поверхность и из неё выделится растворённый газ, её объем уменьшится в соответствии с так называемым объёмным коэффициентом. Когда нефть поднимают на поверхность, происходит сразу несколько явлений, в разном направлении влияющих на её объём: падает давление (нефть увеличивает объём в соответствии со своим коэффициентом сжимаемости), падает температура (нефть уменьшает объём в соответствии со своим коэффициентом температурного расширения), улетучивается растворённый газ (объём и масса нефти уменьшаются). Всё это вместе объединяют в единый объёмный коэффициент. Если он равен, например, 1.2, то чтобы получить 1 кубометр на поверхности, нужно забрать 1.2 кубометра из пласта.

И вязкость, и объёмный коэффициент, конечно, зависят от давления и газосодержания: чем больше газосодержание (при одном и том же давлении), тем больше объёмный коэффициент и тем меньше вязкость. Чем больше давление (при одном и том же газосодержании), тем больше вязкость и меньше объёмный коэффициент.

В следующей части мы коснемся вопросов математического моделирования процессов, происходящих при разработке нефтяных и газовых месторождений и наконец-то доберёмся до данных, алгоритмов и программного обеспечения.

Продолжение следует
Подробнее..

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 4

02.07.2020 08:05:44 | Автор: admin
image

Это четвертая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.

Сегодня мы расскажем о том, зачем нужны модели месторождений, и как их строить. Модель это тот самый план действий, который обязательно должен быть и предполагаемый результат этих действий.


Моделирование, прогноз, неопределённость


Все перечисленные в предыдущих статьях (раз, два, три) физические эффекты важно понимать не просто для того, чтобы знать, как устроен мир. Скорее всего их придётся учитывать при построении модели, которая умеет правильно предсказывать будущее. Зачем нам уметь предсказывать будущее в нефтедобыче, если цену нефти и коронавирус всё равно не предсказать? Да затем же, зачем и везде: чтобы принимать правильные решения.

image

В случае с месторождением мы не можем непосредственно наблюдать, что происходит под землёй между скважинами. Почти всё, что нам доступно, привязано к скважинам, то есть к редким точкам на необъятных просторах болот (все что мы можем измерить заключено примерно в 0.5% породы, о свойствах остальных 99.5% мы можем только догадываться). Это проведённые измерения на скважинах тогда, когда скважина строилась. Это показания приборов, которые на скважинах установлены (давление на забое, доля нефти воды и газа в получаемой продукции). И это измеряемые и задаваемые параметры работы скважин когда включать, когда выключать, с какой скоростью качать.

Правильная модель это такая модель, которая правильно предсказывает будущее. Но так как будущее ещё не наступило, а понять, хороша ли модель, хочется уже сейчас, то поступают так: вкладывают в модель всю имеющуюся фактическую информацию о месторождении, в соответствии с предположениями добавляют свои догадки о неизвестной информации (крылатая фраза два геолога три мнения как раз об этих догадках) и выполняют симуляцию происходивших под землей процессов фильтрации, перераспределения давления и так далее. Модель выдаёт, какие должны были наблюдаться показатели работы скважин, и они сравниваются с реально наблюдавшимися показателями. Другими словами, мы пытаемся построить такую модель, которая воспроизводит историю.
Вообще-то, можно схитрить и просто потребовать от модели, чтобы она выдавала такие данные, какие надо. Но, во-первых, так делать нельзя, а во-вторых, всё равно заметят (эксперты в тех самых гос.органах, куда модель нужно сдавать).

image

Если модель не может воспроизвести историю, необходимо менять её входные данные, но какие? Фактические данные менять нельзя: это результат наблюдения и измерения реальности данные с приборов. Приборы, конечно, имеют свою погрешность, да и используются приборы людьми, которые тоже могут и накосячить, и приврать, но неопределённость фактических данных в модели, как правило, мала. Менять можно и нужно то, что имеет наибольшую неопределённость: наши предположения о том, что происходит между скважинами. В этом смысле построение модели это попытка уменьшить неопределённость в наших знаниях о реальности (в математике этот процесс известен как решение обратной задачи, и обратных задач в нашей области как велосипедов в Пекине!).

Если модель достаточно корректно воспроизводит историю, у нас есть надежда, что наши знания о реальности, вложенные в модель, не сильно от этой самой реальности отличаются. Тогда и только тогда мы можем такую модель запустить на прогноз, в будущее, и такому прогнозу у нас будет больше оснований верить.

Что если удалось сделать не одну, а несколько разных моделей, которые все достаточно хорошо воспроизводят историю, но при этом дают разный прогноз? Нам ничего не остаётся, как жить с этой неопределённостью, принимать решения, имея её в виду. Более того, имея несколько моделей, дающих спектр возможных прогнозов, мы можем попытаться количественно оценить риски принятия того или иного решения, тогда как имея одну модель, мы будем пребывать в неоправданной уверенности в том, что всё будет так, как модель предсказывает.

Модели в жизни месторождения


Для того, чтобы принимать решения в процессе разработки месторождения, нужна целостная модель всего месторождения. Более того, сейчас без такой модели разрабатывать месторождение вообще нельзя: такую модель требуют государственные органы РФ.

image

Всё начинается с сейсмической модели, которая создаётся по результатам сейсморазведки. Такая модель позволяет увидеть под землей трехмерные поверхности специфические слои, от которых хорошо отражаются сейсмические волны. Она не даёт почти никакой информации о нужных нам свойствах (пористости, проницаемости, насыщении, и т. д.), но зато показывает, как изгибаются в пространстве некоторые слои. Если вы сделали многослойный бутерброд, а потом как-то его изогнули (ну или кто-то на него сел), то у вас есть все основания считать, что все слои изогнулись примерно одинаково. Поэтому мы можем понять, как изогнулся слоёный пирог из различных нападавших на дно океана осадков, даже если на сейсмической модели увидим только один из слоёв, по счастливой случайности хорошо отражающий сейсмические волны. На этом месте дата-сайнс инженеры оживились, потому что автоматическое выделение таких отражающих горизонтов в кубе, чем и занимались участники одного из наших хакатонов, классическая задача распознавания образов.

image

Затем начинается разведочное бурение, и по мере бурения скважин в них спускают на кабеле приборы, измеряющие всякие разные показатели вдоль ствола скважины, то есть проводят ГИС (геофизические исследования скважин). Результат такого исследования каротаж ГИС, то есть кривая определённой физической величины, измеренная с определённым шагом вдоль всего ствола скважины. Разные приборы измеряют разные величины, а обученные инженеры затем проводят интерпретацию этих кривых, получая значимую информацию. Один прибор измеряет естественную гамма-радиоактивность породы. Глины фонят сильнее, песчаник фонит слабее это знает любой инженер-интерпретатор и выделяет на каротажной кривой: тут глины, тут слой песчаника, тут что-то среднее. Другой прибор измеряет естественный электрический потенциал между соседними точками, возникающий при проникновении в породу бурового раствора. Высокий потенциал показывает наличие фильтрационной связи между точками пласта, знает инженер и подтверждает наличие проницаемой породы. Третий прибор измеряет сопротивление насыщающего породу флюида: солёная вода ток пропускает, нефть ток не пропускает и позволяет отделить нефтенасыщенные породы от водонасыщенных и так далее.
На этом месте дата-сайнс инженеры снова оживились, потому что входные данные у этой задачи это простые численные кривые, а заменить инженера-интерпретатора какой-нибудь ML-моделью, умеющей вместо инженера по форме кривой сделать вывод о свойствах породы это значит решить классическую задачу классификации. Это только потом у дата-сайнс инженеров начинает дергаться глаз, когда выясняется, что часть этих накопленных кривых со старых скважин есть только в виде длинных бумажных портянок.

image

Кроме этого, при бурении из скважины достают керн образцы более или менее целой (если повезло) и неразрушенной при бурении породы. Эти образцы отправляют в лабораторию, где определят их пористость, проницаемость, насыщение и всякие разные механические свойства. Если известно (а при правильном проведении это должно быть известно), с какой глубины был поднят конкретный образец керна, то когда придут данные из лаборатории, можно будет сопоставить, какие значения на этой глубине показывали все геофизические приборы, и какие значения пористости, проницаемости и насыщенности имела порода на этой глубине по данным лабораторных исследований керна. Таким образом можно пристрелять показания геофизических приборов и затем только по их данным, не имея керна, делать вывод о таких нужных нам для построения модели свойствах породы. Весь дьявол в деталях: приборы замеряют не совсем то, что определяют в лаборатории, но это уже совсем другая история.

Таким образом, пробурив несколько скважин и проведя исследования, мы можем достаточно уверенно утверждать, какая порода и с какими свойствами находится там, где эти скважины были пробурены. Проблема в том, что мы не знаем, что происходит между скважинами. И вот тут нам на помощь приходит сейсмическая модель.

image

На скважинах мы точно знаем, какие свойства имеет порода на какой глубине, но не знаем, как слои породы, наблюдаемые на скважинах, распространяются и изгибаются между ними. Сейсмическая модель не позволяет точно определить, какой слой на какой глубине расположен, но зато уверенно показывает характер распространения и изгиба всех сразу слоёв, характер напластования. Тогда инженеры отмечают на скважинах определённые характерные точки, ставя на определённой глубине маркеры: на этой скважине на этой глубине кровля пласта, на этой глубине подошва. А поверхность кровли и подошвы между скважинами, грубо говоря, рисуют параллельно той поверхности, которую видят в сейсмической модели. В итоге получается набор трёхмерных поверхностей, которые охватывают в пространстве интересующие нас, а нас интересуют, конечно же, пласты, содержащие нефть. То, что получилось, называется структурной моделью, потому что она описывает структуру пласта, но не его внутреннее содержание. О пористости и проницаемости, насыщении и давлении внутри пласта структурная модель не говорит ничего.

image

Затем наступает этап дискретизации, при котором область пространства, занимаемая месторождением, разбивается на такой изогнутый в соответствии с залеганием слоёв (характер которого виден ещё на сейсмической модели!) параллелепипед из ячеек. Каждая ячейка этого изогнутого параллелепипеда однозначно определяется тремя номерами, I, J и K. Все слои этого изогнутого параллелепипеда лежат согласно распространению слоёв, а количество слоёв по K и количество ячеек по I и J определяется детальностью, которую мы можем себе позволить.
Насколько детальная информация о породе у нас есть вдоль ствола скважины, то есть по вертикали? Настолько детальная, насколько часто делал замеры своей величины геофизический прибор при движении по стволу скважины, то есть, как правило, каждые 20-40 см, поэтому каждый слой может быть и 40 см, и 1 м.

Насколько детальная у нас есть информация по латерали, то есть в сторону от скважины? Ни насколько: в сторону от скважины у нас информации нет, поэтому смысла разбивать на очень маленькие ячейки по I и J, как правило, нет, и чаще всего они бывают по 50 или 100 м по обеим координатам. Выбор размера этих ячеек является одной из важных инженерных задач.

image

После того, как вся область пространства разбита на ячейки, делается ожидаемое упрощение: в пределах каждой ячейки значение любого из параметров (пористость, проницаемость, давление, насыщенность и т. д.) считается постоянным. Конечно в реальности это не так, но раз мы знаем, что напластование осадков на дно моря шло слоями, то свойства породы будут гораздо сильнее меняться по вертикали, чем по горизонтали.

image

Итак, у нас есть сетка ячеек, в каждой ячейке своё (неизвестное нам) значение каждого из важных параметров, описывающих как породу, так и её насыщение. Пока эта сетка пустая, но через некоторые ячейки проходят скважины, в которых мы прошли прибором и получили значения кривых геофизических параметров. Инженеры-интерпретаторы с помощью лабораторных исследований керна, корреляций, опыта и такой-то матери, значения кривых геофизических параметров переводят в значения нужных нам характеристик породы и насыщающего флюида, и переносят эти значения со скважины на ячейки сетки, через которые эта скважина проходит. Получается сетка, у которой в некоторых местах в ячейках есть значения, а в большинстве ячеек значений всё ещё нет. Значения во всех остальных ячейках придётся воображать с помощью интерполяции и экстраполяции. Опыт геолога, его знания о том, как свойства породы распространяются обычно, позволяют выбрать правильные алгоритмы интерполяции и правильно заполнить их параметры. Но в любом случае приходится помнить, что всё это догадки о неизвестности, которая лежит между скважинами, и не зря говорят, ещё раз эту прописную истину напомню, что у двух геологов по поводу одной и той же залежи будет три разных мнения.

Результатом этой работы будет геологическая модель трёхмерный изогнутый параллелепипед, разбитый на ячейки, описывающий структуру месторождения и несколько трёхмерных массивов свойств в этих ячейках: чаще всего это массивы пористости, проницаемости, насыщения и признака песчаник-глина.

image

Затем за работу берутся специалисты-гидродинамики. Они могут укрупнить геологическую модель, объединив несколько слоёв по вертикали и пересчитав свойства породы (это называется апскейлинг, и представляет собой отдельную непростую задачу). Потом они добавляют остальные нужные свойства для того, чтобы гидродинамический симулятор мог моделировать, что куда будет перетекать: кроме пористости, проницаемости, нефте-, водо-, газонасыщенности, это будут давление, газосодержание и так далее. Они добавят в модель скважины и внесут по ним информацию о том, когда и в каком режиме они работали. Вы ещё не забыли, что мы пытаемся воспроизвести историю, чтобы иметь надежду на корректный прогноз? Гидродинамики возьмут отчёты из лаборатории и добавят в модель физико-химические свойства нефти, воды, газа и породы, всяческие зависимости их (чаще всего от давления) и всё, что получилось, а это будет гидродинамическая модель, отправят в гидродинамический симулятор. Тот честно рассчитает, из какой ячейки в какую всё будет в какой момент времени перетекать, выдаст графики технологических показателей на каждой скважине и скрупулёзно сравнит их с реальными историческими данными. Гидродинамик вздохнёт, глядя на их расхождение, и пойдёт изменять всё неопределённые параметры, которые он пытается угадать так, чтобы при следующем запуске симулятора получить что-то близкое к реально наблюдавшимся данным. А может при следующем запуске. А может при следующем и так далее.

image

Инженер, готовящий модель поверхностного обустройства, возьмёт те дебиты, которые месторождение по результатам моделирования будет выдавать, и поместит их уже в свою модель, которая рассчитает, в каком трубопроводе будет какое давление и сможет ли имеющаяся система трубопроводов переварить добычу месторождения: очистить добытую нефть, подготовить нужный объём закачиваемой воды и так далее.

И наконец, на самом верхнем уровне, на уровне экономической модели, экономист рассчитает поток расходов на строительство и обслуживание скважин, электроэнергию на работу насосов и трубопроводов и поток дохода от сдачи добытой нефти в систему трубопроводов, умножит на нужную степень коэффициента дисконтирования и получит суммарный NPV от готового проекта разработки месторождения.

Подготовка всех этих моделей, разумеется, требует активного использования баз данных для хранения информации, специализированного инженерного программного обеспечения, реализующего обработку всей входной информации и собственно моделирования, то есть предсказания будущего по прошлому.

Для построения каждой из перечисленных выше моделей используется свой отдельный программный продукт, чаще всего буржуйский, часто практически безальтернативный и поэтому очень дорогой. Такие продукты развиваются десятилетиями, и повторить их путь силами небольшого института дело бессмысленное. Но ведь и динозавров съели не другие динозавры, а маленькие, голодные, целеустремлённые хорьки. Важно то, что, как в случае экселя для ежедневной работы нужны только 10% функциональности, и наши дубли, как у Стругацких, будут только и умеющие, что но зато уж умеющие это делать хорошо как раз эти 10%. В общем, мы полны надежд, для которых определённые основания уже есть.

В этой статье описан только один, столбовой путь жизненного цикла модели всего месторождения, и уже тут есть, где разгуляться разработчикам ПО, а с текущими моделями ценообразования у конкурентов работы хватит надолго. В следующей статье будет spin-off Изгой-один про некоторые частные задачи инженерного моделирования: моделирование гидроразрыва пласта и гибкие насосно-компрессорные трубы.

Продолжение следует
Подробнее..

Краткая история холодных цифровых излучателей звука или о том, почему мы до сих пор используем аналоговые динамики

29.06.2020 18:10:05 | Автор: admin
На протяжении столетия самым популярным типом излучателей звука являются динамические громкоговорители. Традиционные аналоговые динамики применяются повсеместно. Именно они остаются последним аналоговым устройством в привычном для современного человека тракте звуковоспроизведения. Но если бы аналоговые динамические громкоговорители обнаружили археологи какой-нибудь цивилизации далекого будущего через, они бы, вероятно, ломали голову, зачем их предкам нужны были настолько нелогичные обогревательные приборы. Большую часть энергии динамик превращает в тепло и это не единственная его проблема.



При этом достаточно давно в ограниченных количествах производятся цифровые излучатели различных типов. Последние малоизвестны широкому кругу потребителей, дороги и применяются сравнительно редко. Далее, краткая история цифровых излучателей звука, устройства в которых они применялись и применяются, а также соображения об их перспективах.


Предпосылки к появлению


С середины 20-х безраздельное доминирование в электроакустике остается за электродинамическим громкоговорителем, в его разнообразных вариациях. Потеснить его не смогли ни электростаты, которые сначала здорово горели, срывая сеансы первых звуковых фильмов в 30-х, а потом стали просто баснословно дороги. Ни ионофоны, которые не способны к адекватному воспроизведению НЧ. Ни пьезоэлектрические излучатели, которые не выдержали конкуренции в силу небольшого частотного диапазона.


сгоревшая катушка динамика сабвуфера

При этом динамики сложно назвать технически совершенным решением. Так, для ВЧ динамиков температура катушки 100 градусов Цельсия не является пределом, КПД по этой причине редко превышает 1 %, а температура катушки НЧ динамических драйверов может легко превысить 150 и даже 200 градусов, при работе с номинальной мощностью. Искажения, как частотные, так и нелинейные, как правило, оставляют желать лучшего и требуют коррекции или технологий, которые позволят их значительно их уменьшить. Аналогичная история происходит с переходной характеристикой, которая в дорогих решениях заставляет постоянно гнаться за большим частотным диапазоном, который в идеале должен выходить значительно дальше слышимого человеческим ухом спектра.

Но, несмотря на все недостатки динамика, именно он стал наиболее востребованным по совокупности достоинств. При этом неутомимые исследователи не прекращали искать нечто более производительное, энергоэффективное, а также более управляемое. Инженеры стали искать способ преобразовать цифровой сигнал в звук напрямую, без использования ЦАП.


акустические эксперименты Bell Labs в 1920-х

Теоретически, цифровые динамики были описаны в разработках Bell Labs еще в 1920-х годах. Их принцип был достаточно прост. Наименьший значащий бит управляет динамиком, в котором значение 1 приводит его в действие с максимальной амплитудой, значение 0 полностью прекращает подачу сигнала. Далее младший значащий бит удваивал начальную площадь излучения, следующий за ним удваивал его площадь и т.д в соответствии с количеством разрядов. В 20-х не было насущной необходимости в таком типе преобразования цифровых сигналов в звук и теоретически труды легли ва стол на долгие годы.

Телефонный громкоговоритель Bell Lab


В ранних вариантах площадь излучения следующего бита располагалась концентрически вокруг сегмента предыдущего бита, но это правило не является обязательным. Теория впервые воплотилась в практику в 1980-м. Разработчиком также стала компания Bell Lab. Это был дискообразный электрод, на котором закреплялась тонкая пленочная мембрана. Электрод был разделен на изолированные сегменты, с соотношением площади, описанным выше, по числу разрядов 4,3, 2,1,0. Сегменты возбуждалось цифровым сигналом прямоугольной формы, в соответствии с его значением.

Для телефонной связи верности воспроизведения хватало, но для воспроизведения музыки этот излучатель был непригоден. Дело в том, что для акустическим систем для получения достаточной громкости площадь соответствующего излучателя была неприемлемо большой. Также проблемой были искажения преобразования, которые в классических ЦАП можно устранить при помощи фильтров. Но в цифровых излучателях их применение невозможно, так как преобразование происходит напрямую и они являются конечным звеном воспроизведения.

Японские эксперименты


Следующим этапом в развитии цифровых излучателей звука стало создание электретных и пьезоэлектрических цифровых громкоговорителей компанией SONY. Принцип действия не очень сильно отличался от использовавшегося в Bell Lab, но конструкция была иной. Электроды таких излучателей представляли собой концентрические секции с равной площадью. Секции подключались группами, количество групп зависело от разрядности излучателя.

Принципиально другой метод разделения секций цифрового громкоговорителя был предложен инженерами корпорации Matsushita Electric (сегодня Panasonic Corporation). В патентах, и сегодня принадлежащих компании, предложено объединять сегменты, излучающие звук по группам, в соответствии с весовым коэффициентом разряда.

Ни одна из описанных в разделе разработок не получила развитие в виду затратности производства, высоких искажений, низкой технологичности и других специфических проблем новорожденной технологии.

Цифровые динамики


Попытки создания электродинамического цифрового излучателя начались почти сразу после появления пьезо и электретных громкоговорителей этого типа. Проблемы последних заключались в узком диапазоне частот и своеобразной АЧХ, которая не позволяла их эффективно использовать нигде, кроме устройств связи для воспроизведения голоса и ВЧ секций АС.


чертеж из патента Philips

Philips и Sony начали эксперименты по созданию цифрового динамика ещё в 1982-м. Принцип заключался в том, что количество катушек в излучателе увеличивается, число секций при этом соответствует разрядности. Результатом стал патент компании Philips 4612420 (http://personeltest.ru/aways/patents.justia.com/patent/4612420), незадолго до этого в Японии был зарегистрирован 58-31699, демонстрирующий похожую конструкцию цифрового динамика.
Можно считать, что цифровой динамик с многозвеньевой катушкой был одним из самых долгоживущих вариантов цифрового излучателя. Последнее упоминание об аналогичной разработке датируется 2000 годам, когда похожий принцип применила компания B&W, флагман аудиофильской разработки.

Университетские пьезоизлучатели


Помимо корпораций, создающих электронику, тему цифрового излучателя активно разрабатывали в университетах. Группа ученых из университета Шинцу в Нагано в 1990-х сосредоточила усилия на создании пьезоэлектрических цифровых громкоговорителей. Они получили первый результат в 1993-м году, а к 1999-му показали излучатель, рассчитанный на 16-битный сигнал с частотой дискретизации 48 кГц.
Можно говорить, что эта разработка стала первым цифровым излучателем, характеристики которой были достаточны для ограниченного мультимедийного использования. Характеристики устройства были следующими:
  • Диапазон частот: 40-10000 Гц;
  • Неравномерность АЧХ в пределах 4дБ.
  • THD 3,5% на частоте 50 Гц и 0,1% на 10000 Гц
  • Чувствительность 84 дБ

Шумы квантования и другие артефакты подобного типа цифро-аналогового преобразования, связанные с малой разрядностью, в таких излучателях были достаточно сильны, чтобы говорить о сколько-нибудь высокой верности воспроизведения. Было очевидно, что громкоговорители такого типа можно применять в мультимедийных устройствах лишь ограниченно, в основном для связи и звукового оповещения, но никак не для высококачественного воспроизведения музыки.

Брайтонская решетка или хельсинкский алгоритм


Приснопамятные британские ученые применили принципиально новый принцип. Группа исследователей из Брайтонского университета при финансовой поддержке B&W разработала АС, в которой цифровой излучатель не пытались впихнуть в один корпус, а представили в виде распределенной решетки из множества отдельных динамических излучателей, которые объединялись в группы в соответствии с разрядом сигнала. Таким образом было открыто два направления для развития цифровых громкоговорителей. Первый повышение разрядности квантования, что позволяло уменьшить шумы, второй коррекция сигнала, для компенсации искажений динамических (или иных) излучателей.

Создание нового типа цифрового излучателя вызвало живой интерес в академическом сообществе. В результате финская компания Audio Signal Processing Espoo и Хельсинкский университет создали алгоритм, оптимизирующий работу брайтонской секционной решетки. Алгоритм позволил выровнять фазу и амплитуду во всем спектре воспроизводимых частот. Алгоритм также появился в 2000-м году.

The Digital Sound Projector


Описанные выше разработки были использованы компанией 1..limited для создания The Digital Sound Projector, устройства, которое было представлено в 2002-м году. Можно сказать, это первый в истории электроакустики полноценный продукт, использующий для воспроизведения музыки с высокой верностью цифровой излучатель.



В создании The Digital Sound Projector приняли участие производители микропроцессоров ARM Ltd, междисциплинарная научная компания Cambridge Display Technology, производитель микросхем Analog Devices. Позже мелкосерийный выпуск продукта продолжила компания Pioneer.

В устройстве использовалось 256 небольших излучателей, каждый из которых воспроизводил единичный импульс. Подобно пикселям на мониторе, система складывала общую картину из множества сигналов. Процессор, в соответствии с финским алгоритмом, контролировал параметры воспроизведения и осуществлял устранение шумов и компенсацию искажений. В процессе компенсации учитывались как артефакты декодирования, так и интерференция волн от различных излучателей.



Одним из значимых достижений стал КПД, который достигал 10 %, что существенно превышало значения классических аналоговых динамиков. Принцип распределенного управляемого цифрового излучения также позволил значительно снизить гармонические и интермодуляционные искажения. Пожалуй, самым значительный и явным недостатком системы была её сложность, низкая технологичность, а соответственно, высокая стоимость. В начале нулевых мир не был готов принять нечто настолько сложное и, очевидно, что не готов принять до сих пор. Ощутимые проблемы в виде сложности и стоимости не сделали технологию решеток массовой и похоронили её на кладбище не выстреливших идей.

Современный этап развития


Несмотря на очевидные сложности, технология цифрового излучения получила неожиданное развитие. Так в 2015-м году было заявлено о создании MEMS-излучателя, в основе которого лежит комплементарная структура металл-оксид-полупроводник (CMOS). Мы привыкли к MEMS-микрофонам и MEMS-акселерометрам, пришла очередь громкоговорителей.


О создании MEMS излучателей сообщила компания Audio Pixels, которая заявила о том, что близка к созданию цифровых излучателей, способных превзойти аналоговые динамики. Ограничителями является небольшая амплитуда, а также ограничение низкочастотного диапазона, с которым сталкиваются большинство новаторов в области излучателей звука.



Ещё одним примером использования цифровых излучателей являются наушники Audio-Technica ATH-DSR9BT, которые лишены привычного ЦАПа и оснащены цифровыми громкоговорителями Pure Digital Drive. Суть технологии производитель подробно не раскрывает, однако, судя по доступной информации, это реинкарнация цифрового динамика с множеством катушек, однако в отличие от излучателей Philips середины 80-х, Pure Digital Drive оперирует мультибитным сигналом.



Каким образом решены проблемы ультразвукового излучения, шумов квантования, а также коррекции искажений, вносимых механическими частями устройства, мне неизвестно. Но, судя по тому, что устройство позиционируют как беспроводной флагман компании, есть вероятность, что решение является эффективным. Известно также, что динамик создавался в партнерстве с Trigence Semiconductor.



Теплое аналоговое ближайшее будущее


Попробую поиграть в бабушку вангу и резюмировать всё изложенное выше. Надеждой цифрового излучения является MEMS, однако он имеет сложнопреодолимые физические ограничения, вангую, что это ограничит их использование преимущественно носимым форм-фактором. Ещё одной проблемой является скорость развития MEMS-технологий, которые строят планы, как шутят в среде разработчиков, в собачьих годах, т.е. там, где другим отраслям условно нужен год, для MEMS понадобится семь лет.

Ещё одной проблемой является стоимость. И пока не вырастет технологичность, стоимость не уменьшится, а она не вырастет быстро по причине уже упомянутой скорости развития MEMS. Простота и откатанность производства динамиков настолько полюбились производителям, что для того, чтобы их на что-то поменять нужны очень веские аргументы, и повышение КПД явно не один из них. Поэтому сторонники технооархаики и прочего аналогового аудиофильского стимпанка могут не беспокоится. Ламповые усилители, конечно, не вернутся вслед за воскресшим винилом, но теплые и даже горячие (в прямом смысле) true-аналоговые динамики поживут ещё десяток другой лет. К сожалению, удел цифровых громкоговорителей сегодня это всё ещё сравнительно дорогие редкие экспериментальные продукты и научные изыскания.

Подробнее..

Ученые создали Lamphone используя фотодиод и телескоп исследователи превратили лампочки в жучки для прослушки

01.07.2020 02:19:17 | Автор: admin
Если вы впечатляетесь оригинальностью разработок Льва Термена в области скрытого съема звуковой информации, иными словами, прослушки, такими как Буран и Златоуст, вас, наверняка, впечатлит описанный ниже опыт израильских исследователей. Бен Насси (Ben Nassi), Аарон Пирутин (Yaron Pirutin), Ювл Эловици (Yuval Elovici), Борис Задов (Boris Zadov) из университета Бен-Гуриона в Негеве (Ben-Gurion University of the Negev), а также Ади Шамир (Adi Shamir) из Вайзмановского научного института (Weizmann Institute of Science) разработали устройство, способное дистанционно прослушивать речь и другие звуки по вибрациям лампочки, висящей под потолком. Устройство расшифровывает данные в реальном времени и позволяет получать информацию практически мгновенно.


Немного об истории фотоакустической прослушки


Корнями методы прослушки такого типа уходят в глубь вековисследования инженера закрытого туполевского КБ и пионера электронной музыки, Льва Термена. Который ещё в середине сороковых годов прошлого столетия разработал систему Буран, которая при помощи отраженных ИК-лучей была способна осуществлять прослушку по вибрации оконных стекол. Этот же принцип в дальнейшем лег в основу лазерных микрофонов. Однако метод был не совершенен. Наличие звукопоглотительных преград перед источником звука предотвратило достаточное дрожание стекла для того, чтобы осуществлять сколько-нибудь полезный съём информации.


лазерный микрофон конца 80-х

Появление видеокамер с высоким разрешением и частотой обновления кадров открыли новые возможности для прослушки. Звуковые волны, сталкиваясь с поверхностью предметов, вызывают незаметные глазу колебания.



Для их распознания может применятся камера с высоким разрешением и частотой обновления кадров от 60 fps. Три года назад группа исследователей из Массачусетского технологического смогли преобразовать видео, снятое с частотой 2200 fps в звук мелодии, которая проигрывалась в помещении в момент съемки. В дальнейшем было обнаружено, что с меньшей эффективностью метод можно применять даже с частотой обновления 60 fps.



У этого метода также были ограничения. Во первых это стоимость камер с высокой и сверхвысокой частотой обновления. Во вторых есть проблемы со скоростью обработки изображения, снятого с такой частотой кадров, объемные видеофайлы требуют долгой обработки, длительность которой напрямую зависит от аппаратных мощностей. Это ограничивает возможность использования метода realtime.
Камеры с существующим разрешением практически не позволяют использовать съём на значительном расстоянии, ограничивая его 5-6 метрами до объекта.

Суть нового метода


Израильские ученые решили усовершенствовать метод американцев, сфокусировали съем на конкретном объекте при помощи телескопа и заменили дорогую камеру на недорогой фотодиод. Дрожание воздуха при разговоре вызывает микровибрации лампочки, что в свою очередь вызывает не заметные, но существенные для чувствительной аппаратуры изменения освещённости. Свет улавливается телескопом и преобразуется фотодиодом в электрический сигнал. При помощи программного аналогово-цифрового преобразователя сигнал записывают в виде спектрограммы, которая обрабатывается написанным исследователями алгоритмом и затем конвертируется в звук.

Работоспособность метода исследователи проверили лабораторным опытом, в котором прикрепили к лампочке гироскоп и воспроизводили звуки с частотой от 100 до 400 Гц в одном сантиметре от объекта. Колебания лампочки были небольшими и составляли от 0,005 до 0,06 градуса (отклонение составляла в среднем от 300 до 950 микрон), но главное было в том, что они значительно отличались в зависимости от частоты и уровня звукового давления, а соответственно, существует зависимость колебаний от характеристик распространяющихся звуковых волн.



Колебания в вертикальной и горизонтальной плоскости были очень маленькими (300950 микрон), но изменялись в зависимости от частоты и громкости подаваемого звука, что означает, что лампочка, пусть и едва заметно, но все же колеблется от распространяющихся рядом звуковых волн, а ее колебания зависят от их характеристик.

Измерения и эксперимент


Измерения данных с фотодиода показали приблизительные изменения тока при колебаниях лампочки на разных расстояниях между ней и телескопом. Выяснили, что при использовании 24-битного преобразования колебания лампочки на 300 микрон в плоскости вызывают изменение напряжения на 54 микровольта, чего вполне достаточно для передачи тестового спектра (100 400 Гц) на значительном (несколько десятков метров) расстоянии при помощи оптики использованного телескопа. Также отсутствие звука отражается на спектрограмме оптического сигнала от лампочки в виде пика в 100 Герц (что вызвано её частотой мерцания). Эту особенность также внесли в алгоритм.



Сам алгоритм действует последовательно. На первом этапе он работает как фильтр информационно не значимых частот, таких как частота мерцания, а затем выделяет спектр, соответствующий речи. После этого устраняет частотные признаки посторонних шумов, подобно стандартным денойзерам в диктофонах и студийных рекордерах. Обработанная таким образом спектрограмма конвертируется в звук сторонней программой.



Созданный учеными Lamphone в текущей версии позволяет в реальном времени восстанавливать речь и музыку из помещения, находящегося в 25 метрах от места наблюдения. Это объективно доказано следующим экспериментом, установку, оснащенную любительским телескопом с 20-см объективом установили на мосту, в 25 метрах от окна в комнату, где размещалась лампа. Неподалеку от лампы воспроизвели песни The Beatles Let It Be и Coldplay Clocks, а также запись фрагмента речи Д.Трампа с фразой We will make America great again.



В итоге, записи звука, восстановленные по спектрограммам оказались вполне различимыми, мелодии без труда угадывались сервисом Shazam, а слова распознавались открытым API Google для распознавания текста.

Сухие остатки


Устройство работает. Ни о чем подобном раньше никем не сообщалось. Это в чем-то упростит работы спецслужб, а всем, кому есть чего опасаться, следует принимать новые меры предосторожности. Пока не ясно, сможет ли работать система с чем-то кроме подвижного источника света. Израильские исследователи планируют продолжить свои изыскания.

Использован визуальный контент и материалы
Подробнее..

Из песочницы Расчеты переходных процессов в электрических сетях

15.06.2020 14:21:28 | Автор: admin
Энергетика обширная сфера деятельности, и расчеты в ней производятся разные: расчет рентабельности строительства новых станций, расчет перенапряжений, расчет оставшегося времени до конца рабочего дня в пятницу вечером. Все эти темы в одной статье не уместить, поэтому сконцентрируюсь на той, которой занимался в течение последних лет, расчеты переходных процессов в электрических сетях. Кому интересно, что это такое и как оно происходит в современном мире, прошу под кат.

Оглавление


  • Зачем вообще что-то рассчитывать в энергетике?
  • Переходные процессы это
  • Переходные процессы и режим реального времени
  • Нельзя просто так взять и рассчитать переходный процесс
  • Куда и как запустить модель?
  • Управление по управлению всеми управлениями
  • Все уже сделано до нас
  • Заключение

Зачем вообще что-то рассчитывать в энергетике?


Причины довольно стандартны для любой технической/инженерной сферы: экономия, безопасность, нормативы и прочие банальности. Несколько примеров:

  • Чем точнее мы знаем, какие перенапряжения могут возникнуть, тем меньше денег можно затратить на изоляционный материал, имеющий достаточный запас прочности.
  • Чем больше информации имеется о резонансных частотах в сети, тем точнее можно настроить систему управления и эффективнее справляться с воздействием внешних факторов.
  • Чем детальнее изучено поведение оборудования в тех или иных режимах, тем проще соблюсти нормативы, пройти сертификацию или приёмку.
  • И т. д.
  • И т. п.

Что объединяет приведенные выше примеры? То, каким образом можно получить всю эту интересующую нас информацию. Те, кто помнит название статьи, уже догадались: это можно сделать, рассчитав переходные процессы.

Впрочем, если у вас есть деньги и время для проведения экспериментов, то можно одними расчетами не ограничиваться, ведь теория это хорошо, а теория, подкрепленная экспериментами, еще лучше. Правда это может быть долго, дорого и не всегда возможно, ведь ставить эксперименты на работающей энергосистеме это, выражаясь местным сленгом, сродни запуску тестов на продакшн сервере если что-то пойдет не так, то мало не покажется.

Ну а если нет ни времени, ни денег, ни желания проводить расчеты
то придется либо везде закладывать значительный запас прочности, либо подвергать риску человеческие жизни.

Переходные процессы это


Если по-простому, переходный процесс это когда токи и напряжения в электрической сети изменяются во времени вследствие различных событий, таких как короткие замыкания, отключения выключателей, удары молнии и проч. и проч. Переходные процессы явления чаще всего временные. В электроэнергетике они могут длиться как нано- и микросекунды (переключение транзисторов, удары молнии), так и несколько минут или часов (межсистемные колебания, электромагнитные бури).

Рассчитать переходный процесс значит узнать, как именно изменяются токи и напряжения.

Переходные процессы обычно плавно перетекают в установившиеся. В установившемся процессе, если опять же по-простому, величины токов и напряжений постоянны. А как же напряжение в розетке, которое меняется 50 раз в секунду? спросите вы. В принципе, это тоже можно рассматривать как непрекращающийся переходный процесс, но если амплитуда, частота и фаза синусоидального сигнала постоянны, то гораздо удобнее рассматривать как установившийся. Для этого существуют свои методы, но об этом как-нибудь в другой раз.

Кто круче, переходные или установившиеся процессы?
Все самое интересное происходит во время переходных процессов. Если при изучении установившихся меня посещают мысли типа Шок! В номинальных условиях оборудование выдает номинальный ток, то при расчете переходных можно, например, узнать, что недостаточная нагрузка на линии электропередач может привести к феррорезонансу и перенапряжениям, из-за чего многомиллионное оборудование сгорит или взорвется (события вымышлены, совпадения случайны).

Вот, например, напряжения на конденсаторе при подключении его к трехфазной сети 10 кВ (если что, конденсаторов на самом деле три по одному на каждую фазу):


Где-то сейчас замигали лампочки

Вопрос: когда начинается переходный процесс?

Вопрос со звездочкой: когда заканчивается переходный процесс и начинается установившийся?

Ответы
Начинается переходный процесс в 0.05 с и переходит в установившийся примерно в 0.13 с.
Но если к вопросу подходить с математической точностью, то переходный процесс здесь вообще никогда не заканчивается, так как описывается дифференциальными уравнениями с решениями в виде экспонент. А экспоненты, даже затухающие, к нулю только стремятся. Но об этом чуть позже.

Переходные процессы и режим реального времени


Есть еще одна область применения расчетов переходных процессов это расчеты в реальном времени. Если обычно все гонятся за уменьшением времени расчетов, то здесь, наоборот, очень важно, чтобы расчет одной секунды проходил ровно за одну секунду. Это применяется, например, для прототипирования, тестирования и отладки устройств, предназначенных для взаимодействия с реальным миром: систем управления, защиты и т.д.

Поясню на примере: система управления электростанцией знает, что для реакции на событие X электростанции понадобится две секунды, а на событие Y три. Чтобы дебажить эту систему управления, её подключают не к реальной электростанции, а к так называемому симулятору, имитирующему поведение электростанции. Симулятор в реальном времени рассчитывает переходные процессы, которые происходили бы в электростанции, и ведет себя соответствующе: отвечает на событие X за две секунды, а на Y за три вне зависимости от количества ядер процессора и тактовой частоты. Система управления при этом думает, что работает с реальной электростанцией.


Слева: система управления и электростанция дружно работают на благо родины.
Справа: ничего не подозревающая система управления коварно обманута и подключена к симулятору


Нельзя просто так взять и рассчитать переходный процесс


В рассчитываемой электрической сети могут иметься тысячи различных компонентов, поэтому ручной расчет переходных процессов практически неприменим к реальным задачам в электроэнергетике все считается на компьютере. Расчеты переходных процессов в реальном времени производить вручную еще сложнее, ведь вам понадобится еще и секундомер.

Ну и
сверхчеловеческая скорость тоже не помешает, т. к. новые данные надо выдавать раз в несколько микросекунд.

В начале расчета стоит определиться, какая от него требуется информация. Например, нам нужно узнать перенапряжения, возникающие при коротком замыкании в преобразователе постоянного тока на морской ветроэлектростанции. С типом расчетов всё и так понятно из названия статьи нужно рассчитывать переходные процессы.


Вот так схематично эта система может выглядеть

Затем нужно разработать математическую модель рассчитываемой системы: ветровой электростанции, преобразователей, кабеля и прилегающей электрической сети. Этот этап может быть довольно сложным, ведь не всегда сразу ясно, насколько детальны должны быть модели. Чем больше деталей, тем точнее результат, но тем больше времени надо потратить на расчеты. Никто не любит долго ждать, поэтому приходится искать компромисс. Часто для удовлетворительной точности требуются многие десятки дифференциальных и не очень уравнений для каждого устройства.

Как только модель системы у нас появилась, можно запустить её в солвер (об этом чуть дальше), задать начальные условия и все рассчитать. Как происходит типичный расчет:

  • Интересующий период времени разбивается на отрезки с шагом интегрирования t. Чем меньше шаг интегрирования, тем медленнее процесс расчета и точнее результаты. Часто используются величины t от единиц до десятков микросекунд.
  • Величины токов и напряжений в момент времени (t-t) используются для расчета величин на следующем моменте времени (t).
  • Начальные условия, т. е. начальные величины токов и напряжений, находятся из предположения, что в момент времени t=0 был установившийся режим.

Когда расчет закончен, можно использовать результаты по назначению (ну или обнаружить перенапряжения в миллиарды вольт и понять, что кто-то перепутал плюс с минусом).

Куда и как запустить модель?


Основу ПО для расчета переходных процессов составляет солвер программа, решающая систему уравнений. Особую популярность в области переходных процессов имеют солверы, основанные либо на методе узловых потенциалов, либо на методе пространства состояний. Метод пространства состояний подходит для практически любых систем дифференциальных уравнений, а в методе узловых потенциалов используются законы Ома и Кирхгофа, что делает его удобным именно для электрических систем.

Дифференциальные уравнения математических моделей нужно привести к удобоваримому для солвера виду, т. е. к превратить их в систему линейных алгебраических уравнений. Для этого применяется численное интегрирование. Часто используется метод трапеций, его и рассмотрим. Все уравнения ветровой электростанции из предыдущей главы здесь писать не буду, ограничусь одним скромным конденсатором. Ток и напряжение на нем связывает дифференциальное уравнение вида

$$display$$i=C \frac{du}{dt}$$display$$


Пошаговый расчет методом трапеций для любопытных
Сначала перейдем к конечным разностям:

$$display$$i=C\frac{\Delta u}{\Delta t}$$display$$


Применим суть метода трапеций на двух последовательных моментах времени (t-t) и (t):

$$display$$\frac{i(t)+i(t-t)}{2}=C \frac{u(t)-u(t-\Delta t)}{\Delta t}$$display$$


А теперь вынесем величины для момента времени (t-t) в отдельное слагаемое:

$$display$$i(t)=u(t) \frac{2C}{\Delta t} - \left[i (t-\Delta t) + u(t-t) \frac{2C}{\Delta t} \right]$$display$$


Тем, кому хочется попробовать свои силы самостоятельно, предлагаю разделаться таким же образом с уравнением для индуктивности.

Уравнение конденсатора после метода трапеций:

$$display$$i(t)=u(t) \frac{2C}{\Delta t} - \left[i (t-\Delta t) + u(t-t) \frac{2C}{\Delta t} \right]$$display$$


Величины для момента времени (t-t) вынесены в отдельное слагаемое, т. к. известны из расчета предыдущего момента времени. Теперь вместо дифференциального у нас есть обычное линейное алгебраическое уравнение. Если подключить фантазию, то можно заметить, что финальное уравнение очень похоже на резистор, подключенный параллельно с источником тока.

Не вижу тут никаких резисторов, одни формулы!
Если что, величина резистора равна $inline$\frac{\Delta t}{2C}$inline$, а источника тока $inline$\left[- i(t-\Delta t) - u(t-t) \frac{2C}{\Delta t} \right]$inline$.

Аналогичным образом уравнения других элементов приводятся к комбинациям резисторов и источников тока. А такие электрические схемы умеет решать каждый уважающий себя солвер, основанный на методе узловых потенциалов.


Легким движением руки схема превращается

Не все элементы в электрических сетях представляются в виде резисторов и источников тока, но все в итоге представляются в виде линейных алгебраических уравнений, которые можно скормить солверу. А если не представляются в виде линейных, то можно линеаризовать, рассчитать якобиан, применить метод Ньютона, но все равно решить, пусть и с итерациями. Но не будем сильно углубляться, об этом тоже как-нибудь в другой раз.

Управление по управлению всеми управлениями


В реальных электрических сетях очень часто используются системы управления: в электроприводе, в ветровых генераторах, в преобразователях постоянного/переменного тока и т. д. Они оказывают сильное влияние на переходные процессы, поэтому их тоже приходится учитывать в расчетах.

Сложность уравнений в системах управления теоретически ограничена лишь фантазией инженеров: дискретные передаточные функции пятого порядка? Пожалуйста. Синус от логарифма? Дайте два, один гиперболический. Из-за этого солвер для систем управления часто приходится использовать отдельный, посложнее.

Впрочем, часто системы управления однонаправлены, т. е. сигналы приходят с датчиков, проходят обработку и отправляются в управляющие устройства (типа транзисторов) без каких-либо самозацикливаний. Расчет такой системы управления относительно прост, ведь можно последовательно применять всякие алгебраические операции и горя не знать.


Два сложения, два умножения и один интеграл. Легкотня!

Про направление систем управления
К сожалению, иногда выходные сигналы приходится подавать себе самому на вход, что называется алгебраической петлей (algebraic loop). Это усложняет расчеты, так как вместо последовательных операций теперь надо решать систему уравнений, возможно даже нелинейных. Этого особо никто не любит, т. к. приходится либо итерировать, либо как-то разрывать этот порочный loop. Например, вставляя задержки между выходом и входом. Все это может негативно сказываться на точности и/или скорости расчетов.

Все уже сделано до нас


Ну а если не хочется самому разрабатывать модели и солверы, можно воспользоваться уже существующими программными продуктами. Приведу лишь широко известные в узких кругах энергетиков программы, ибо составить исчерпывающий список задача не из простых. У меня бэкграунд скорее энергетика, чем электронщика, поэтому некоторые популярные программы со схожим функционалом из области электроники наверняка пропустил. Если знаете что-то похожее поделитесь в комментариях.

  • EMTP: специализированное ПО для расчета переходных процессов в электрических сетях. Может использоваться и для расчета установившихся процессов
  • ATP: то же самое
  • PSCAD: то же самое
  • PowerFactory: то же самое
  • Simulink: популярен, знаменит, много методов интегрирования. Но для электрических сетей с большим количеством элементов подходит с трудом. А для прототипирования очень даже.
  • SimPowerSystems: надстройка над Simulinkом специально для электрических систем.
  • Hypersim: расчеты в реальном времени
  • RTDS: тоже расчеты в реальном времени
  • PSS/E: может как и в установившиеся, так и в переходные процессы
  • LTspice: с упором на электронику

Половина этих продуктов из Канады: EMTP, PSCAD, SimPowerSystems, Hypersim, RTDS. Не скажу, с чем связан такой интерес канадцев к переходным процессам, но разбираются они в них не хуже, чем в хоккее.

Заключение


Надеюсь, было познавательно. Ну или хотя бы не очень скучно целых пять картинок в статье, как-никак.
Подробнее..

Из песочницы МРЭМ 200. Электронный микроскоп родом из СССР

15.06.2020 20:17:21 | Автор: admin

Неоценимую помощь в размещении статьи оказал ZEvS_Poisk с Habr.
К написанию этой статьи меня подтолкнула статья Алексея Брагина Растровый микроскоп в гараже. С Алексеем я немного знаком по переписке и по совместному пребыванию на сайте microscopist.ru.

Итак Растровый настольный малогабаритный электронный микроскоп МРЭМ 200. Год выпуск 1987. Заводской номер 8704. Место обитания Северо-Осетинский государственный университет имени К. Л. Хетагурова. г. Владикавказ.


Вид спереди


Вид сзади

Как заметил один из моих студентов Кабелей, как в серверной стойке.


Так выглядит в процессе работы. На экране вид поверхности древесного угля при увеличении 5000 крат


Вакуумная колонна с магнитной оптикой и 5-ти координатным манипулятором образцов


Манипулятор образцов с предметным столиком

Краткие технические характеристики:

  • Максимальное увеличение 50000х.
  • Предельная разрешающая способность 10 нм.
  • Телевизионный режим сканирования.
  • Быстрый режим сканирования. Разрешение 400х300 точек.
  • Медленный режим сканирования. Разрешение 1280х1024 точки.
  • Дифференциальные режимы построения изображения.
  • Режим Y модуляции. Изображение выглядит рельефным. Типа 3D.
  • Режим дополнительного электронного увеличения. Электронная лупа.
  • Детектор отраженных электронов.
  • Детектор вторичных электронов.
  • Детектор катодолюминесценции.
  • Детектор поглощенных электронов.
  • Возможность объединения в произвольных пропорциях сигналов с нескольких детекторов на одном изображении.
  • Цифровая система управления режимами.

К микроскопу была полная техническая документация. Два гроссбуха с инструкцией по эксплуатации, описанием, как и что там работает. Полный комплект принципиальных электрических схем. Что меня поразило большинство электронных блоков имеют собственное инверторное питание с обратной связью минимум по двум параметрам для поддержания стабильности рабочих режимов. Из расходных материалов микроскоп требует только электричество, воду и иногда замену термоэмиссионного катода. Отличается не убиваемостью и ремонтопригодностью. На нашем факультете он выполняет функцию рабочей лошади лабораторных работ и фотографирования всего подряд, что покажется интересным.


Так выглядит термоэмиссионный катод. Время работы от 40 до 80 часов

Самое интересно, что при попытке купить новые, выяснилось, что цена за 1 штуку 18000 руб (восемнадцать тысяч рублей). Продавец из Ростова просто берега потерял. В результате он был послан, и пришлось изготовить установку для наварки катодов на держатели. Теперь этих катодов как грязи. Хотя про запас есть еще около 30 штук родных заводских. Катушка вольфрамовой проволоки, диаметром 0.1 мм и длинной 2 км для катодов обошлась в 400 рублей.

В этом году к микроскопу был изготовлен новый усовершенствованный детектор Эверхарта-Торнли, который проходит испытания с различными видами сцинтилляторов.


Детектор вторичных/отраженных электронов Эверхарта Торнли

В завершении некоторые фотографии, полученные с помощью этого микроскопа.


Сожженный дипломником катод микроскопа. Увеличение 300х


Парашют одуванчика. Увеличение 200х


Чешуйка крыла бабочки. Увеличение 10 000х


Чешуйка крыла той же бабочки. Увеличение 25000х


Дыхательная трубка мучного хрущака. Увеличение 7500х


Когти на лапке того же жука. Увеличение 2000х


Глаз неизвестного мелкого жука. Увеличение 10000х


Поверхность катализатора оксида титана TiO2. Увеличение 50000х


Поверхность древесного угля. Увеличение 500х


Отдельный участок поверхности древесного угля. Увеличение 10000х

Больше всего людей впечатляют фотографии биологических объектов. Потому, что растровый микроскоп превосходит оптический, который видели все по глубине резкости. Благодаря этому биологические объекты получаются особо выразительными.

Остается только грустить, что когда-то мы умели делать и такую технику. А в настоящий момент отечественных растровых микроскопов больше нет. Профессиональные компетенции утрачены. Мне этот микроскоп очень нравится. Надеюсь, что и кому то из прочитавших эту статью он так же понравится. Как кто-то метко выразился Остатки древней высокоразвитой цивилизации.
Подробнее..

Самая реалистичная интерпретация квантовой механики

16.06.2020 16:14:27 | Автор: admin


В середине прошлого века при моделировании физических систем возникла концепция клеточных автоматов, порождающих удивительное многообразие из простых правил. Совершенно естественен соблазн обобщить подобными структурами фундаментальные законы природы. И, казалось бы, нарушение неравенств Белла закрыло подобным моделям путь в квантовую механику. Но только если не брать во внимание одну лазейку...


The Holographic Principle


Идея, что Вселенная развивается по правилам клеточного автомата не нова. В 1967 году Конрад Цузе в книге "Вычисление пространства" высказал предположение, что вся Вселенная является результатом детерминированного закона вычисления в автомате. Постепенно эту идею подхватывали и развивали представители разных направлений так или иначе связанных с вычислениями: Стивен Вольфрам, Дэвид Дойч, Ллойд Сет и др.



Также за развитие темы основательно взялся лауреат Нобелевской премии по физике Герард т Хоофт. Он известен тем, что сформулировал голографический принцип постулат теории струн, призванный разрешить информационный парадокс черной дыры. Большую часть идей своих предыдущих статей он обобщил в книге The Cellular Automaton Interpretation of Quantum Mechanics. Судя по количеству цитат и скачиваний, мысль очень даже пошла в народ. Как вариант, можно предложить самодельный перевод на русский: в облаке или на файлообменнике. Как оказалось, с наскоку такой труд не осилить, особенно техническую часть. Автор признает свой сложный английский, ну а главное, по ходу изложения используется терминология и техники из квантовой теории поля, так что там еще придется побуксовать некоторое время.


The Quantum Enigma


Постоянное появление новых интерпретаций в квантмехе у стороннего наблюдателя должно вызывать недоумение. Но кому как ни программистам, регулярно участвующих в священных походах под знаменем очередного языка, понимать, что эти споры полезны разве что для общего развития и углубления в тему (вставить шутку про гомозиготную истину). Для прода в квантовой механике сойдет и Копенгагенская интерпретация. То есть, достаточно принять, что запутанные частицы взаимодействуют на пугающе дальних расстояниях, что взаимодействие чистой системы со сложным измерительным прибором неким образом превращает гладкую волновую функцию в иглоподобный дельта-источник, и что балом правит непостижимая случайность, а потом, закрыв рот, считать, проводить эксперименты и получать действенные предсказания о поведении микромира.


Но когда исследователь лезет в мутные области, ему могут пригодиться специфичные инструменты, а то и придется собирать всё самому. Так что это следует воспринимать не как кризис науки (современные философы любят такое дело), а как производственную рутину. Так или иначе, людям удобно оперировать привычными и милыми сердцу образами. На этой почве и проросла спора между Бором и Эйнштейном.


Собственно, Эйнштейн видел квантовую теорию неполной и отстаивал мысль, что на фундаментальном уровне физика должна быть детерминистичной. Действительно, введение объективной случайности похоже на заметание мусора под ковёр. Ну, хотя бы на этой идее можно хорошо поспекулировать: чтоб не нарушался принцип причинности, достаточно ввести воздействие внешнее по отношению к нашей Вселенной, что должно импонировать товарищам придерживающимся теистических взглядов. А вот детерминизм подобные рычаги ломает (что не расстраивает деистов и пантеистов). Дальше уже вопрос веры и вкуса, так что условимся, что нас пока интересует, как работает окружающий мир, и какие модели можно построить, чтобы наименьшими усилиями получить достоверные предсказания поведения этого самого мира. Это позволит обезопасить и наполнить комфортом нашу жизнедеятельность, а извечные вопросы выходят за рамки прагматизма, по той простой причине, что они не разрешимы в принципе.


The Phantom Agony


Многие консервативно настроенные ученые разделяли взгляды Эйнштейна, и одним из них был Дэвид Бом, чьи идеи повлияли на Джона Белла. Последний, несмотря на то, что вопросы об основах квантовой механики в то время были дурным тоном, провел детальный анализ ЭПР-парадокса, что и привело к знаменитым неравенствам. Историю Белла и Бома отложим на потом, а вот с неравенствами поработаем сейчас же.


На хабре уже есть неплохое описание этого эксперимента, ну а если сравнивать с точными и сухими выкладками из литературы, то вот одно из самых хорошо проработанных объяснений. Далее представлена сжатая версия тамошних соображений.



Для измерения спина квантовой системы используем установку Штерна-Герлаха. В тривиальнейшем случае она ведет себя как сортировочная машина: на вход поступают частицы из печки, на выходе же два потока: условно, частицы "+" и "-".



Для наших маленьких кубитов важен измерительный базис конфигурация установки, заключающаяся в ее ориентации. При измерении в одинаковом базисе, результаты вполне согласуются с повседневными представлениями:



Здесь детекторы будут срабатывать с вероятностями 50%, 0%, 0%, 50% соответственно.


Но вот если поиграть с наклонами, то есть при измерении в разных базисах, частицы будут вести себя так, будто на каждую ориентацию у них есть свои индивидуальные предпочтения: отклоняться по или против поля.



Здесь уже соотношение срабатывания детекторов зависит от угла наклона второго прибора.



На рис. 1.9 ориентация второго прибора ортогональна первому. А третий первому сонаправлен. И на каждый прибор поступает с равной вероятностью одна восьмая всех частиц. Странно, ведь если судить с позиций реализма, то выходит, что каждая частица носит с собой по три бита информации, в которых записаны ее предпочтения для прохождения каждой установки. Либо же частицы это кубиты, взбалтывающиеся после каждого измерения. Пока эксперименты наталкивают на мысль, что объективных свойств нет как таковых, и результаты разыгрываются чистой случайностью при каждом элементарном взаимодействии.


Усложняем эксперимент. Источник теперь генерирует спутанные частицы, результаты измерения которых антикоррелируют. То есть, если первый детектор отловит "плюс", то второй покажет "минус".



А приборы можно ориентировать в одном из трех направлений каждый. Теперь наши кубиты меряются в ортогональном базисе, причем ориентация каждой установки задается случайно. На рисунке показана конфигурация {A,B}. После выпуска каждой пары мы получаем результат измерения. К примеру [A+,B] значит что в первой сортировочной машине сработал плюс-детектор, а во второй минус-детектор.


Так, для нашего эксперимента, любая частица должна быть готова к измерению в каждом из трех базисов, посему ей придется таскать с собой три бита скрытых переменных. Скажем, частица, у которой в паспорте указано (+ - +), пройдет через установку, ориентированную в A-направлении, как положительная, по В как отрицательная, и по С снова как положительная. А у ее антикоррелирующей роднульки соответственно по документам будет значиться (- + -). Итого, в источнике выдается восемь вариантов паспортов.


Прикинем какова вероятность, что выпадет [A+,B]. Такой расклад выйдет для частицы с (+ + -) или
с (+ + +), у которой соучастник будет иметь соответственно (- - +) или (- - -). К тому же, учитываем вероятность выставления на приборах нужной конфигурации P{A,B}. Тогда


P[A+, B-] = P{A,B} * ( P(+ + -) + P(+ + +) )


Для пары приборов возможно девять равноправных настроек базиса, так что с первым множителем никаких проблем. Припишем к нашей конфигурации еще парочку:


P[A+, B-] = 1/9 * ( P(+ + -) + P(+ + +) )
P[A+, C+] = 1/9 * ( P(+ + -) + P(+ - -) )
P[B+, C-] = 1/9 * ( P(+ + +) + P(- + +) )


Сложим вторую и третью формулы и заметим, что в ответе будет содержаться первая формула


P[B+, C-] + P[A+, C+] = P[A+, B-] + 1/9 * P(+ - -) + 1/9 * P(- + +)


Что наталкивает на неравенство:


$ P[B^+, C^-] + P[A^+, C^+] \geq P[A^+, B^-] $


А если перевести вероятности в штуки:


$ N[B^+, C^-] + N[A^+, C^+] \geq N[A^+, B^-] $


Вот и все! Собираем установку и считаем количество срабатываний детекторов. И такого рода эксперименты проводились неоднократно. Постепенно закрывая всевозможные лазейки, эксперименты демонстрировали, что квантовые системы нарушают эти неравенства, тем самым фальсифицируя локальные теории со скрытыми переменными. А ведь Вселенная-клеточный автомат как раз такая теория. И дело может спасти грязный хак супердетерминизм.


Design Your Universe


Критично настроенные читатели возразят: конечно, эта теория не является квантовой механикой, поэтому она не разделяет ни одной из ее проблем. Верно, но наша теория должна порождать квантовую механику, не создавая связанных с ней проблем.
Герард т Хоофт

Супердетерминизм заключается в предположении, что не существует никакой объективной случайности. Это довольно категоричная форма реализма, согласно которой, Вселенная существует независимо от разумных наблюдателей и подчиняется только своим фундаментальным законам, строго следуя принципу причинности. То есть всякое событие предопределено еще в первые мгновения существования Вселенной.


Это позволяет рассматривать естество как результат работы клеточного автомата. Герард т Хоофт, отталкиваясь от этого предположения, показывает в своей книге, как можно попытаться добраться до стыка квантовой механики и классической физики, начинай путь с одной либо с другой стороны.


По ходу дела Хоофт вводит такое понятие как онтологический базис. Это особый базис, с точки зрения которого, волновая функция может принимать только два значения: 1 и 0. Состояние фактически реализуется, когда волновая функция равна 1, и оно не описывает наш мир, когда волновая функция равна нулю. Именно такую "волновую функцию Вселенной" можно назвать онтологической. Любопытно, что онтологическая волновая функция выглядит как one-hot вектор, т.е. единица и куча нулей. И с точки зрения онтологического базиса, оператор эволюции для достаточно плотной сетки временных переменных представлен не более чем перестановкой состояний.



Но до онтологии нам, макрообъектам ограниченным в пространстве, не добраться. Для этого мы используем удобные нам, но "неправильные" базисы. Там мы можем оперировать только шаблонными состояниями состояниями представленными суперпозициями, включающими, в лучшем случае, онтологическое состояние лишь как слагаемое с определенным весом.


Вселенная находится в одном онтологическом состоянии, а не в суперпозиции таких состояний, но всякий раз, когда мы используем наши шаблоны (то есть, когда мы выполняем обычные квантово-механические вычисления), мы используем суперпозиции только потому, что они математически удобны. Стоит заметить, что поскольку суперпозиции являются линейными, наши шаблоны подчиняются тому же уравнению Шредингера, что и онтологические состояния.


Такая модель предполагает, что Эйнштейн, возможно, был прав, когда возражал против выводов, сделанных Бором и Гейзенбергом. Вполне возможно, что на самом базовом уровне в природе нет случайности, нет фундаментально статистического аспекта законов эволюции. Все, вплоть до мельчайших деталей, управляется неизменными законами. Каждое значительное событие в нашей Вселенной происходит по какой-то причине, и оно пустило корни на миллиарды лет назад, развиваясь по единственно возможному пути.


The Divine Conspiracy


Собственно, вот что: беспрерывно вертящиеся полупрозрачные зубчатые колеса. Это случалось со мной и раньше. Зубчатых колес обычно становилось все больше, они наполовину заполняли мое поле зрения, но длилось это недолго, вскоре они пропадали, а следом начиналась головная боль всегда было одно и то же.
Р. Акутагава

В описанном выше эксперименте по проверке неравенств Белла стоило обратить внимание на независимость выбора конфигураций установок. Чтобы считать настройки равновероятными нужно менять состояние каждого прибора независимо. Как вариант, Алёнушка и Братец-Иванушка разносят свои установки подальше и настройки базиса выбирают с помощью бросков монеты. Но такое ощущение, что измеряемые частицы устроили некий заговор и знают какие настройки будут выбраны.



В книге предложен еще такой вариант: у каждого участника есть клетка с мышью, и они выбирают свои настройки в зависимости от четности или некой кратности количества мышиных какулек. Тут уж заговор приобретает довольно мерзкий характер: частицы знают об особенностях рациона мышей и работы их кишочков. Ну или к черту мышей, можно попробовать взвалить право выбора базиса на удаленные квазары (сравнительно недавно такой эксперимент реально провели). Или же придется Алёнушке с Братцем полагаться на себя ведь они могут придумать случайные настройки. Или нет?



Насколько человек хорошо справляется с ролью генератора случайных чисел (см. стр. 12)? И есть ли у него свобода воли в том смысле, что выбор не продиктован законами Вселенной? Согласно супердетерминизму нет. Для многих неприемлема мысль, что нечто может развиваться без их участия, а тем более всецело и полностью управлять их миром. Но прогресс в области молекулярной биологии и нейронаук все меньше оставляет сомнений в нашей зависимости от законов физики. Наверное, отрицание отсутствия свободы воли как таковой это самый главный предрассудок против реализма и супердетерминизма.


Consign to Oblivion


Но и если откинуть лишние эмоции, все равно разработка интерпретации клеточных автоматов представляется довольно сложным проектом. Это сравнительно молодая теория, и автором предоставлены, хоть и элегантные, но довольно игрушечные примеры.


Казалось бы, кот гарантировано жив или мертв, частица пролетает точно через конкретную щель, измерение становится лишь лавинообразным развитием нескольких бит в макросостояние, правило Борна органично следует из требования, чтобы базис используемых шаблонных состояний был связан с базисом онтологических состояний посредством ортонормированного или унитарного преобразования не интерпретация, а сказка! Но так это и другие могут. А дьявол как всегда в деталях.


Квантово-механическая теория, описывающая релятивистские субатомные частицы, называется квантовой теорией поля, и она подчиняется таким фундаментальным условиям, как причинность, локальность и унитарность. Требование всех этих желательных свойств было ядром успехов квантовой теории поля, и это в конечном счете дало нам стандартную модель субатомных частиц. Если же пытаться воспроизвести результаты квантовой теории поля в терминах некоторой детерминированной базовой теории, то, по-видимому, придется отказаться по крайней мере от одного из этих требований, что снимет большую часть красоты общепринятой теории; гораздо проще этого не делать, и поэтому легче пожертвовать "классичностью". Либо ситуацию спасет проработанная теория квантовой гравитации многие авторы грезят, что она сдружит именно его интерпретацию с теорией поля.


Большинство моделей клеточных автоматов будут сильно отличаться от квантованных теорий поля для элементарных частиц. Однако основной вопрос, обсуждаемый в книге т' Хоофта заключается не в том, легко ли имитировать Стандартную модель в клеточном автомате, а в том, можно ли получить квантовую механику и нечто, похожее на квантовую теорию поля, по крайней мере, в принципе. Происхождение непрерывных симметрий стандартной модели остается за пределами рассмотренных примеров, но автор задавался целью обсудить вопрос, в какой степени клеточные автоматы могут использоваться для аппроксимации и понимания квантовой природы этого мира.


Может ли быть так, что наш мир это всего лишь один мир, где все происходит, согласно уравнениям эволюции, которые могут быть существенно проще, чем уравнение Шредингера, и есть ли способы узнать об этом? Можно ли убрать элемент статистического распределения вероятностей из основных законов квантовой механики?
Так что реальная мотивация заключается не в том, чтобы лучше предсказать результаты экспериментов, которые могут произойти не скоро, а скорее в том, чтобы предсказать, какой класс моделей стоит тщательно изучить, то есть вообще, в какую сторону копать.



Похоже, что Эйнштейн и Бор сошлись на важности роли наблюдателя. Действительно,
это был важный урок, извлеченный в 20-м веке: если что-то не может наблюдаться, это, возможно, не является четко определенной концепцией оно может даже не существовать вообще.


Интересный удар подобному подходу был нанесен, когда была предложена теория кварков, поставив под сомнение, что наблюдаемость является центральным аспектом. Кварки не могут быть изолированы, чтобы их можно было наблюдать по отдельности, и по этой причине идея о том, что кварки будут физическими частицами, подверглась критике. К счастью, в этом случае теоретическая согласованность доказательств в пользу кварков стала настолько подавляющей, и экспериментальные методы их наблюдения, даже если они не были полностью разделены, настолько улучшились, что все сомнения испарились.


Это важная составляющая реанимируемого детерминизма: вещи, которые непосредственно ненаблюдаемы, могут все еще существовать и как таковые, играть решающую роль в наблюдаемых свойствах объекта. Они также могут помочь нам построить реалистичные модели мира.


Requiem for the Indifferent


В целом возникает спорное впечатление. С одной стороны, ортодоксальный подход уже проверен временем. Как показывает практика, незаморачиваясь на конфликты с повседневным опытом и на вой философов, причитающих о крахе познания, вполне можно использовать проработанный матаппарат квантмеха для прикладных исследований. С другой стороны, эпоха требует новые и удобные инструменты для конкретных целей.


Так многомировая интерпретация ближе для тех, кто занимается квантовой теорией информации. Ведь удобно считать, что квантовые компьютеры производят параллельные вычисления во многих изолированных мирах. А бонусом получаем удобную интуицию для понятия вероятности: вероятность события доля миров, в которых это событие происходит.


Идеи, использующие фишки родственные теории волны-пилота, находят отклики в моделировании на грани классической физики и квантовой механики, например в химической динамике, где сложные вычисления можно сдобрить квазиклассическими приближениями.


Ну а теория клеточных автоматов это довольно упреждающая работа. Она может принести полезные абстракции для тех, кто занимается фундаментальной физикой, и стать инструментом для изучения эффектов возникающих на поверхностях черных дыр и на планковских масштабах.



Основополагающая идея теории клеточных автоматов, а именно что скрытые переменные действительно содержат "скрытую информацию" о будущем, в частности настройки, которые будут выбраны экспериментаторами, при этом принципиально нелокальную информацию, которую невозможно собрать даже в принципе, может хорошо так взбодрить философов оглушенных безвучным падением дерева в лесу.


Герард т' Хоофт хочет вдохновить больше физиков серьезно рассмотреть возможность того, что квантовая механика, как мы ее знаем, не является фундаментальной, таинственной, непроницаемой особенностью нашего физического мира, а скорее инструментом для статистического описания мира, где физические законы, в своих самых основных корнях, вовсе не являются квантово-механическими. Конечно, никто не знает, как сформулировать самые основные законы в настоящее время, но стоит начать собирать указания на то, что классический мир, лежащий в основе квантовой механики, действительно существует.


P.S.


Подобные идеи нашлись у одного русскоязычного автора


Воксельные автоматы можно строить с помощью crysral или Visions of Chaos


P.P.S.


Если кому интересно, как осуществлялся перевод книги. Использовалась софтинка mathpix. Она распознает нейросеткой изображения и собирает латех-код. Работа была доверена макросу, который листал книгу и оцифровывал по пол страницы, закидывая все в один документ. Так как гугл переводит все без разбора, а глупенький яндекс, так вообще транслитизирует даже аббревиатуры и греческие буквы, то все с помощью питон-скрипта запоминалось в словарь, оставляя в документе лишь нумерованные флаги. А уже потом, переведенный документ раскидывался по файлам, с последующим нудным допиливанием ссылок и ошибок перевода. Автор книги ввел свои названия, среди которых часто использовались beable операторы. Яндекс перевел их как "библейские" и, хотя автор такое точно не одобрит, очень трудно побороть соблазн, и не оставить их в релизной версии книги. То-то было бы раздолье для желтющих изданий и диванных ученых \_()_/

Подробнее..

Из песочницы Как выбрать оптимальный материал на ранних этапах проектирования?

16.06.2020 16:14:27 | Автор: admin
Казалось бы, есть наработанные годами сферы применения материалов. Есть рекомендации от производителя материалов бери и делай. Но в современном мире потребителям доступны сотни тысяч различных материалов со своими особенностями. Как разобраться в этом хаосе? Как понять, что выбранный материал обладает наилучшими свойствами для конкретной детали? И главное, как процесс выбора материала сделать алгоритмизированным, повторяемым и обоснованным? Давайте разберёмся.

Диаграмма Эшби с индексами эффективности

Состояние вопроса в России


Собственно, написать эту статью меня заставила как раз скудность информации по этой теме в отечественной литературе. Есть малое число источников, где рассматривается строгая методология выбора материала для конкретных применений. Методология в отечественной литературе относится к рекомендациям и не обладает математической строгостью, от чего не так прекрасна, как могла бы быть. Есть и хорошие новости. Если методология не распространена в России это не означает что её нет в мире. И сразу оговорюсь, что эта методика не заменяет уже сложившееся представление о выборе материалов, а дополняет его и вносит системность в подход к выбору материала.

Про эту методологию я узнал, когда у меня появился доступ к Ansys GRANTA Selector. Немного поломав мозг и прочитав пару книг делюсь информацией, что я накопал.

На рисунке ниже показан алгоритм принятия решения при выборе материала из учебника Кондакова А.И. из МГТУ им. Н.Э. Баумана [1]. Данная методика предлагает определить наиболее важные для материала свойства, задаться критериями выбора этих свойств и произвести отсев материала по этим свойствам. Если произвести отсев не получается, то необходимо обратиться к изделиям-аналогам и материалам, из которых они изготовлены. После определения перечня материалов на него накладываются ограничения по технологичности и стоимости. И заканчивается всё некоторым кратким перечнем материалов и их характеристик, по которым уже можно определить финального кандидата.



Это прекрасный метод. И в нем всё логично. Но он не отвечает на вопрос какими критериями свойств материалов нужно задаться?. Вы, конечно, можете сказать, что если мы проектируем самолёт, то детали должны быть прочными и лёгкими, ещё, желательно, дешёвыми. И воспользоваться таким параметром как удельная прочность отношение прочности к плотности. И вы будете правы. Частично. Точнее, только в том случае, если ваш самолёт это стержень, работающий на растяжение. Почему? А потому что в таком подходе вы не учитываете форму объекта и вид нагрузки.

Соотношения должны быть чуть сложнее, как в книге Расчёт, проектирование и постройка сверхлёгких самолётов (выдержка показана в таблице ниже) [2].



В этой же книге приводится пример сравнения применения древесины с распространёнными в авиации металлическими материалами: при работе на растяжение древесина не уступает материалам из таблицы. При работе на изгиб даже лучше. А вот при работе на сжатие древесина уже в 2-3 раза хуже.



И даже эти соотношения покрывают только малую часть возможных видов нагрузок, форм и вообще физических приложений. И тут остаются вопросы как быть с остальными применениями?, как собрать это в единую методологию?.

Методология из Кембриджа


Михаэль Эшби, материаловед и профессор из Кембриджа, как раз и занялся исследованиями в этой области. По результатам своих изысканий издал ряд книг, в которых описана данная методология. Дальше этот раздел написан по книге Materials Selection in Mechanical Design [3], которая есть в открытом доступе.

В данной книге приводится более простая схема принятия решения по выбору материала (рисунок ниже).



Схема предлагает сначала отсеять материалы по наиболее ярким свойствам. Например, если у проектируемой детали есть требования по прозрачности или по возможности производить деталь только штамповкой, то это сразу сильно сужает перечень потенциальных кандидатов в материалы. В данном подходе в начале поиска рассматривается весь перечень из существующих материалов. Как ни странно, это может привести к неожиданным результатам. Если в схожих по назначению деталях годами использовался алюминий, то неожиданным может стать применение стеклонаполненного полиамида.

Далее, уже более узкий перечень, предлагается проранжировать в зависимости от необходимых свойств. Для этого нужно задаться некоторым оптимизационным критерием, вроде тех, что представлены в книге про сверхлёгкие летательные аппараты. На этом мы сосредоточим внимание чуть ниже.

При использовании этой схемы предполагается, что на входе в процесс выбора материала информация о потенциальных материалах представлена в общем виде. То есть мы можем использовать даже некоторые оценочные свойства или диапазоны свойств для марки материала. Например, полиамид-6 выпускает огромное количество предприятий. У всех из них материал, получается немного разным, с уникальным набором свойств. Для определения перечня потенциальных кандидатов нам не важно знать точные свойства для каждого производителя. Нам достаточно понимать, что материал полиамид-6 может иметь некоторый разброс свойств и знать этот разброс. Отсюда получается, что у нас должен появится этап, на котором мы уточняем свойства материалов. Это может быть информация из ГОСТов, DINов, информация из научных журналов, листков данных производителей и так далее.

С учётом этой информации у нас остаётся ещё более узкий перечень. Но было бы странно не учесть такие показатели как доступность материала на локальном рынке, действующие договора с поставщиками, потенциальные риски из-за санкций и другие локальные особенности.

Ну и наконец, принятие решение о применении конкретного материала или группы материалов.

Теперь вернёмся к основному этапу ранжированию. Данный этап можно применять не только в методологии Эшби, а использовать, например, при выборе из имеющихся на предприятии 20 материалов.

Мы должны получить некоторые критерии, по которым было бы удобно ранжировать материалы. Для этого зададимся несколькими условиями: функцией, целью и ограничениями.

Любая деталь создаётся, чтобы выполнять какую-то функцию или несколько функций: способность держать давление, передавать тепло, выдерживать изгибающую нагрузку, передавать электрический заряд и так далее. При проектировании инженер ставит цель сделать деталь лёгкой, прочной, дешёвой, эффективной или ещё какой-нибудь. Может и их сочетанием. Но при этом всегда есть ограничения: деталь должна иметь фиксированные размеры, работать в определённом диапазоне температур. Этот перечень определяет условия выбора материала.



Далее мы можем поставить вопрос каким образом достичь поставленной цели?. Если речь идёт о жёсткой балке, то можно выбрать материал с высоким модулем упругости, можно увеличить площадь поперечного сечения, можно сделать балку с малой длиной. Если балка должна быть лёгкой, то можно выбрать материал с наименьшей плотностью, сократить длину, уменьшить площадь поперечного сечения. Как-то слишком много вариантов для раннего этапа, не так ли?

Это подталкивает к мысли, что можно вывести некоторые соотношения, которые будут учитывать вид нагружения и поставленные цели. Такие соотношения будем называть индексом эффективности.

В общем смысле, индекс эффективности это комбинация свойств материала, характеризующая применение материала в конкретной области.

Формализуем эту мысль. Заметим, что эффективность каждого конкретного применения будет зависеть от функциональных требований (выдерживать нагрузку, передавать тепло), геометрических параметров (размеры, форма) и свойств материала (относящихся к конкретному применению):

$$display$$p=f\left(F,G,M\right)$$display$$

где $inline$p$inline$ эффективность, $inline$f()$inline$ функция (в математическом смысле), $inline$F$inline$ функциональные требования, $inline$G$inline$ геометрические параметры, $inline$M$inline$ свойства материала.

При такой формулировке целью становится минимизация или максимизация $inline$p$inline$.

Функцию $inline$p=f(F,G,M)$inline$ можно выразить таким образом, чтобы она состояла из произведения трёх функций, каждая из которых определялась бы набором параметров $inline$F$inline$, $inline$G$inline$ и $inline$M$inline$ (почему будет ясно на примере чуть ниже):

$$display$$p=f_1(F) f_2(G) f_3(M)$$display$$

При таком разделении функция $inline$p$inline$ пропорциональна $inline$f_3(M)$inline$, определяющейся свойствами материалов, и независимой от функциональных требований $inline$F$inline$ и геометрических параметров $inline$G$inline$. Очевидно, что при увеличении функции $inline$f_3(M)$inline$ будет возрастать и $inline$p$inline$. В таком случае функцию $inline$f_3(M)$inline$ можно рассматривать отдельно и именно она будет определять индекс эффективности материалов. То есть можно оптимизировать функцию $inline$f_3(M)$inline$ не зная всех функциональных требований $inline$F$inline$ и геометрических параметров $inline$G$inline$ и рассматривать их отдельно, уже при самом конструировании. То есть мы сначала подбираем оптимальный материал, а затем уже занимаемся конструированием и оптимизацией конструкции.

Рассмотрим на нескольких примерах.

Предположим, что мы выбираем материал для цилиндрического стержня, работающего на растяжение. У нас определена длина $inline$L$inline$ и растягивающее усилие $inline$F$inline$. Цель минимизировать массу при соблюдении условий прочности. Функцию, цель и ограничения соберём в таблицу ниже.





В данном случае максимизация эффективности означает минимизацию массы при способности нести нагрузку $inline$F$inline$. Сначала мы ищем функцию, значения которой можно минимизировать или максимизировать. В данном примере речь идёт о минимизации массы $inline$m$inline$. Уравнение, называемое целевой функцией, имеет вид:

$$display$$m=AL\rho$$display$$

где $inline$A$inline$ площадь сечения, $inline$L$inline$ длина, $inline$$inline$ плотность.

В данной задаче длина $inline$L$inline$ и нагрузка $inline$F$inline$ определены и фиксированы, а площадь сечения $inline$A$inline$ может изменяться в процессе конструирования. Уменьшение $inline$A$inline$ будет приводить к уменьшению $inline$m$inline$, но в тоже время $inline$A$inline$ будет участвовать в соотношении для напряжений:

$$display$$\frac{F}{A}\le\sigma$$display$$

Отсюда можно выразить $inline$A$inline$ и подставить его в уравнение выше и сразу разделить переменные по их типам:

$$display$$m\geq\left(F\right)\left(L\right)\left(\frac{\rho}{\sigma}\right)$$display$$

В первой скобке присутствует $inline$F$inline$ функциональная переменная; во второй $inline$L$inline$ геометрическая переменная; в третьей константы материала. Отсюда можно выразить индекс эффективности:

$$display$$M=\frac{\sigma}{\rho}$$display$$

Сразу установим правило, по которому индекс эффективности стоит выражать так, чтобы его необходимо было максимизировать. То есть чем выше этот индекс тем лучше для конкретного применения материала.

Рассмотрим второй пример балка, нагруженная сосредоточенной силой $inline$F$inline$, с квадратным сечением $inline$b \times b$inline$ и длиной $inline$L$inline$. Балка подвержена изгибу. Длина фиксирована. Необходимо ограничить прогиб балки некоторой величиной $inline$$inline$, то есть ограничением является жёсткость балки. Также необходимо чтобы балка имела минимальную массу. Функцию, цель и ограничения соберём в таблицу ниже.





Выразим жёсткость величиной $inline$ S=F/$inline$, которая должна быть больше либо равной соотношения, определяемого из уравнения прогиба:

$$display$$S=\frac{F}{\delta}\geq\frac{C_1EI}{L^3}$$display$$

где $inline$E$inline$ модуль упругости, $inline$C_1$inline$ константа, определяемая из граничных условий и $inline$I$inline$ момент инерции, определяемый для квадратного сечения как:

$$display$$I=\frac{b^4}{12}=\frac{A^2}{12}$$display$$

Напомню, что наша целевая функция имеет вид:

$$display$$m=AL\rho$$display$$

Получаем, как и в прошлом примере, противоречие между уменьшением массы и увеличением жёсткости при увеличении размеров поперечного сечения будет увеличиваться жёсткость, а вместе с ней и масса, которую мы вообще-то хотим снизить.

Соберём теперь все в целевую функцию:

$$display$$m\geq\left(\frac{12S}{C_1L}\right)^{1/2}\left(L^3\right)\left(\frac{\rho}{E^{1/2}}\right)$$display$$

Тут, как и в прошлом примере, нас интересует только часть, отвечающая за свойства материала, то есть последний член уравнения. Выразим индекс эффективности:

$$display$$M=\frac{E^{1/2}}{\rho}$$display$$

Мы рассмотрели два примера, характерных только для механических задач. Вообще данных подход содержит в себе не только массовые, упругие и прочностные свойства. В нем также можно учесть стоимость материалов, тепловые, электрические и другие характеристики. Если классифицировать применения данного подхода, то получится вот такая структура:



К счастью, для каждого случая нам не нужно решать такие задачи. Их уже посчитали за нас:















Для учёта нескольких критериев, значения наносятся на пузырьковую диаграмму Эшби (рисунок ниже). Овалы на диаграмме отображают разброс свойств для каждого типа материала. Данная диаграмма построена для балки, работающей на изгиб. По оси $inline$X$inline$ отложен индекс эффективности, определяющий стоимость за единицу жёсткости. По оси $inline$Y$inline$ отложен индекс эффективности, определяющий отношение массы и жёсткости. Критерии на диаграмме преобразованы таким образом, что чем меньше значение критерия, тем дешевле и легче будет получаться конструкция при той же жёсткости.



Отсюда получается, что чем ближе материал находится к левому нижнему углу, тем эффективнее будет его применение для легкой, дешёвой и жёсткой балки, работающей на изгиб.

Есть и другой способ отображения диаграммы Эшби. Он описан на странице Википедии.

Пример в Excel


Для примера я составил таблицу в Excel. Предположим, что у нас на предприятии применяют всего 6 материалов. Нужно из этих 6 материалов выбрать наилучшие, для следующих случаев:

  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть лёгкой и прочной. По ТЗ определена длина. Можно изменять сечение;
  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть лёгкой и прочной. По ТЗ определена длина, сечение и его ширина. Можно изменять высоту сечения;
  • Необходимо спроектировать конструкцию, которую можно свести к балке. Балка должна быть дешёвой и прочной. По ТЗ определена длина, сечение и его ширина. Можно изменять высоту сечения;
  • Лёгкая пружина, способная запасать как можно больше упругой энергии без разрушения.

Ответы в таблице:



Сравнение первого и второго примеров показывает, что полностью вольное изменение площади сечения и изменение только ширины, при заданной высоте, будет приводить к разным результатам. При изменяемой ширине сечения обоснованным будет применение более прочного, но и более тяжёлого материала. А все потому, что прочности в формулах индексов эффективности будут отличаться степенью.

Сравнение второго и третьего примеров показывает, что стремление к лёгкой или дешёвой конструкции будут давать разные результаты. Но это не означает, что конструкция не может быть и лёгкой, и дешёвой. Для решения такой задачи необходимо ещё одно измерение. Нужно построить график Эшби, на котором отложить массовый индекс эффективности по одной оси и ценовой индекс эффективности по другой оси.

В последнем примере показан выбор материала для элемента, запасающего энергию. Стоит обратить внимание на то, что для всех четырёх применений мы получили разные оптимальные материалы.

Литература


  1. Кондаков А.И., Васильев А.С. Обоснование выбора материалов при технической подготовке производства деталей машин. Москва: МГТУ имени Н. Э. Баумана, 2008.
  2. Чумак П.И., Кривокрысенко В.Ф. Расчёт, проектирование и постройка сверхлёгких самолётов. Москва: Патриот, 1991.
  3. Ashby M. Materials selection in mechanical design. 2nd ed. Oxford: Butterworth-Heinemann, 1999.
  4. Википедия: Выбор материала
Подробнее..

Карусель из 16 атомов самый маленький молекулярный ротор в мире

19.06.2020 10:21:33 | Автор: admin


На микро- и нанометровом уровне происходит множество интереснейших процессов, о которых мы даже не подозреваем, ибо их не так и просто увидеть. Чего стоит наше собственное тело: миллионы клеток из разных подсистем слаженно выполняют свои функции, поддерживая жизнедеятельность организма. Среди великого разнообразия необычных молекулярных образований стоит выделить молекулярные моторы, к которым причисляют моторные белки (например, кинезин). Концепция искусственных молекулярных моторов существует еще с середины прошлого века, а попыток создать нечто подобное было очень много, и все они чем-то отличались от других. Сегодня мы с вами познакомимся с исследованием, в котором ученые из EMPA (Швейцарская федеральная лаборатория материаловедения и технологий) создали молекулярный двигатель из 16 атомов, что делает его самым маленьким на данный момент. Как именно ученые создавали нано-двигатель, какие его особенности и возможности, и как эта разработка может быть применена на практике? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


В 1959 году американский ученый Ричард Фейнман (1918-1988) высказал теорию о том, что когда-то мы сможем создавать молекулярные моторы. Кому-то эта идея на то время могла показаться безумной, но скептическое отношение к науке еще никогда никого не останавливало.

Основной механизм молекулярных моторов это вращение, за что их еще именуют молекулярными роторами. В 1999 году Т. Росс Келли и его коллеги опубликовали доклад (Unidirectional rotary motion in a molecular system), в котором описывалось ротационное движение молекулярной системы посредством химических процессов.


Профессор органической химии Бостонского колледжа Т. Росс Келли.

Система состоит из трехлопастного триптиценового ротора и геликена и может выполнять однонаправленное вращение на 120. Чтобы выполнить это вращение, системе необходимо пройти 5 этапов.


Молекулярный ротор Келли (схема 5-этапного вращения).

Основная проблема данного метода заключается в том, что вращение происходит однократно. Келли и его коллеги долгое время пытались найти решение этой проблемы, однако безуспешно.

Тем не менее, метод Келли показывает, что химическая энергия может быть использована для создания искусственных молекулярных моторов.

В том же 1999 году в университете Гронингена (Нидерланды) под руководством Бена Феринга был создан еще один молекулярный мотор (Light-driven monodirectional molecular rotor). Их вариант мог вращаться на 360 градусов и состоял из бис-хелицина, соединенного двойной аксиальной связью и имеющий два стереоцентра.


Молекулярный ротор Феринга (схема 4-этапного вращения).

В этот раз этапов для полного вращения было четыре. Но и тут не обошлось без недостатков: мотор Феринги был крайне медленный. Другими словами, на осуществление вращения требовалось больше времени, чем у природных эквивалентов.

В 2008 году в университете штата Иллинойс (США) Петр Крал с коллегами разработали молекулярный мотор, движение которого осуществляется за счет резонансного или нерезонансного туннелирования электронов (Nanoscale Rotary Motors Driven by Electron Tunneling).


Молекулярный мотор Крала (схема вращения за счет туннелирования электронов).

Туннелирование электронов обеспечивает мотор энергией, необходимой ему для движения. Сам мотор состоит из 3 (или 6) лопастей, образованных на основе полимеризированного ицеана. В качестве оси мотора используется углеродная нанотрубка.

Данный метод достаточно эффективен в условиях лаборатории, однако его показатели могут снизиться из-за шума и структурных дефектов, которые неминуемо присутствуют в природных условиях.

Каждый из вышеперечисленных вариантов молекулярного мотора является уникальным и в чем-то превосходящим другие два. Однако, несмотря на разительные отличия в методиках их создания, все они послужили вдохновением для последующих разработок, в частности и для той, которую мы сейчас рассмотрим.

Ученые заявляют, что большинство синтетических молекулярных машин, хотя и управляются квантовыми процессами, демонстрируют классическую кинетику, тогда как работа с квантовым туннельным движением в значительной степени неуловима. Следовательно, сканирующая туннельная микроскопия (СТМ) обеспечивает идеальную платформу для исследования динамики атомов и молекул на поверхностях. Тем не менее, лишь немногие исследования были нацелены на достижение направленного движения (контролируемого и независимого от положения иглы), которое требует нарушения симметрии инверсии, что обычно достигается путем адсорбции хиральных молекул на ахиральных поверхностях.

Ученые решили использовать эту концепцию, но слегка изменив ее. В качестве хирального статора* было решено использовать поверхность нецентросимметричных кристаллов PdGa (Pd палладий, Ga галлий).
Статор* неподвижная часть мотора, взаимодействующая с ротором (подвижная часть мотора).
Это ослабляет геометрические ограничения на молекулу ротора и позволяет реализовать направленное движение даже для простых и симметричных молекул, таких как C2H2.

На Pd3 молекулы ацетилена адсорбируются поверх тримеров Pd. Во время STM-визуализации при 5 К они выглядят как гантели с разнесением между лепестками около 3 в трех симметрично эквивалентных ориентациях, повернутых на 120 (1E-1G), между которыми они переключаются квазимгновенно (1C и 1D).


Изображение 1

Молекулы ацетилена прочно закреплены на тримере и обычно диссоциируют* перед тем, как их вытаскивают из тримера с помощью иглы микроскопа.
Диссоциация* распад сложных химических соединений на составляющие компоненты.
Ученые наблюдали за процессом вращения, записывая временной ряд туннельного тока IT(t) при фиксированном положении иглы (1H).

IT(t) на графике 1H, записанный в течение t = 100 с, демонстрирует последовательности циклических скачков между тремя уровнями ( .RA RB BC RA ) с nCCW= 23 и nCW= 0 (CCW против часовой стрелки, CW по часовой стрелке). Это приводит к частоте f = nCCW + nCW / t = 0.23 Гц и идеальной направленности dir = 100% (nCCW-nCW) / (nCCW + nCW) = 100%.

СМТ снимки показывают, что в движении мотора преобладает направление против часовой стрелки.


Изображение 2

Анализ параметрической зависимости частоты вращения (2A-2C) показывает, что этот молекулярный двигатель работает в двух различных режимах: режим туннелирования (TR), где его частота вращения T не зависит от температуры (T < 15 K), напряжения смещения ( |VG| < 30 мВ) и тока (IT < 200 пА); классический режим (CR), где частота вращения зависит от этих параметров.

Экспериментальные данные (изображение 1) были записаны в режиме TR, однако ученые решили сначала рассмотреть именно классический режим, где вращения C2H2 могут избирательно подпитываться от тепловых или электрических возбуждений.

Для начала была найдена температурная зависимость частоты вращения при низком смещении (), чтобы следовать характеристике Аррениуса* (сплошная линия на ): (T) = T + Аexp (- EB / kBT), где T = 4.5 Гц, А = 10 8.72.0 Гц, EB = 27.57.1 мэВ.
Уравнение Аррениуса* устанавливает зависимость константы скорости химической реакции от температуры.
Выше 30 мВ частота увеличивается экспоненциально с VG, независимо от полярности (2B и 2C). В тех же условиях, но при постоянном напряжении смещения, степенная зависимость* ( InT при n 1; 2D) идентифицирует электронно-стимулированное вращение как одноэлектронный процесс. Зависимость частоты и направленности вращения от параметров T, VG и IT хорошо воспроизводится кинетической моделью Ланжевена (сплошные линии на 2B и 2C).
Степенной закон* относительное изменение одной величины приводит к пропорциональному относительному изменению другой величины.
Ученые отмечают, что важную роль в анализе всей системы играет понимание влияния иглы микроскопа, необходимого для фактических наблюдений за движением. В частности, необходимо убедиться, что нарушение симметрии инверсии из-за положения иглы вблизи двигателя не преобладает над влиянием хиральной подложки при определении направления вращения.

Для этого было измерено 6400 временных рядов с постоянной высотой наконечника zT(t) на 80х80 сетке из равноудаленных точек 1х1 нм2 в окрестности отдельных молекул ацетилена в режиме туннелирования (2E). К счастью, анализ показал, что игла микроскопа никак не влияет на однонаправленное вращение молекулы.

Дополнительное моделирование, в ходе которого была выполнена оптимизация конфигурации молекулы и формы иглы, позволило получить идеальную последовательность (схему) сигналов (2F). Следовательно, независимо от положения иглы последовательность сигналов всегда соответствует вращению против часовой стрелки.

Кроме того, как видно на 2G, нет явной зависимости T от положения иглы. Потому можно предположить, что все три вращательные конфигурации C2H2 будут энергетически эквивалентными. Три вращательных состояния становятся энергетически невырожденными, только если игла поднесена слишком близко к подложке.

Оценив 1792 событий вращения (nCCW= 1771 и nCW = 21) в режиме туннелирования, была определена направленность dir 96.7% с достоверностью 2. Сопоставив результаты моделирования и экспериментов удалось определить вращение C2H2, описать которое можно как вращающийся ротор, центр масс которого движется по окружности с радиусом r = 0.5 0.1 и моментом инерции IC2H2 = 5.62 х 10-46 кгм2 ().


Изображение 3

Установив степень влияния иглы микроскопа на вращение системы, ученые приступили к детальному рассмотрению зависимости вращения от параметров системы (3A-3D). Температурная зависимость показывает быстрое падение направленности, когда термически активированные вращения начинают вносить значительный вклад. Сплошная линия на предполагает, что T имеет 98%-ную направленность, тогда как термически активированные скачки, описываемые уравнением Аррениуса, являются чисто случайными.

Эти случайные события теплового вращения ожидаются, потому что субстрат, игла СТМ и, следовательно, молекулы находятся в тепловом равновесии и, соответственно, однонаправленное вращение (которое уменьшает энтропию) запрещено вторым законом термодинамики.

При T = 5 K уменьшение направленности также наблюдается для напряжений смещения VG выше 35 мэВ (3B). Однако, в отличие от тепловых вращений, те, которые вызваны неупругим туннелированием электронов (IET), становятся ненаправленными постепенно. Это отчетливо наблюдается в режиме, когда сосуществуют тепловые и IET-вращения. Как показано на 3C, независимая от напряжения направленность (10% при T = 19 K и |VG| < 30 мВ) может быть значительно увеличена при более высокой |VG| из-за дополнительных направленных вращений IET. Однако это увеличение эффективно только в узком диапазоне напряжений, за пределами которого (в большую сторону) направленность быстро уменьшается.

В отличие от этого, IT-зависимость направленности для фиксированного напряжения является слабой (3D), где небольшое уменьшение направленности с увеличением тока объясняется обнаружением двух быстро последовательных вращений против часовой стрелки как одного ошибочного непрерывного вращения. (сплошные линии на 3D). Из этого следует, что направленность остается выше 95% при |VG| < 40 мВ даже при высоком токе.

Для моделирования кинетики происходящих событий в данной системе было решено использовать концепцию смещенного броуновского движения*, предложенную в исследовании Астумяна (The Physics and Physical Chemistry of Molecular Machines) и Хэнджи (Artificial Brownian motors: Controlling transport on the nanoscale).
Броуновское движение* беспорядочное движение частиц твердого вещества, вызванное тепловым движением частиц жидкости или газа.
В полученной модели IET-индуцированного вращения предполагается статический и периодический, но асимметричный потенциал U() ( = [0.2] с периодичностью /3) с асимметрией потенциала (Rasym, вставка на ).

Одно IET события достаточно для мгновенного возбуждения молекулы из ее основного состояния, а ее траектория (t) получается из динамики Ланжевена: I = (U() / ) , где I момент инерции, а коэффициент вязкой диссипации.

В зависимости от Rasym и , две разные минимальные кинетические энергии EL и ER требуются для преодоления барьера слева (т.е. для движения по часовой стрелке) и справа (т.е. для движения против часовой стрелки) соответственно. Эти энергии являются основой для описания частоты и направленности с помощью использованной кинетической модели.

Сравнение кинетической модели и результатов экспериментов ( и ) позволяет определить зависящие от температуры EL(T) и ER(T) (3E). В результате было установлено, что Rasym равен 1.25 < Rasym < 1.5, предполагая, что EB = 25 мэВ.

Уменьшение диссипации с 1.6 х 10-33 кгм2/с при 5 К до 1.1 х 10-33 кгм2/с при 20 К можно объяснить менее эффективным связыванием молекулы с подложкой при повышении температуры.


Изображение 4

На графике показаны последовательности IT(t) для C2H2, C2DH и C2D2, где отчетливо видно отношения T (по отношению к C2H2) 1:0.56(11):0.24(5) (C2H2:C2DH:C2D2), которые наблюдались при использовании разных игл микроскопа.

Это явное относительное уменьшение T контрастирует со сравнительно небольшим относительным изменением момента инерции 1:1.08:1.2 и, следовательно, показательно для квантового туннелирования.

Рассмотрение IT(t) последовательности C2DH с нарушенной C2 симметрией показывает, что вращение протекает через шесть, а не три уровня тока (4B). Это является доказательством того, что для полного вращения ацетилена действительно требуется шесть вращений против часовой стрелки на 60. Сравнение экспериментальных и смоделированных значений T показало идеальное совпадение (4D).

Квантовые туннельные вращения, сопутствующие высокой направленности в 97.7%, позволяют оценить изменение энтропии одиночного туннельного вращения по экспериментально полученным вероятностям вращения против часовой стрелки и по часовой стрелке, определяемым как S = kBln (ppCCW / pCW) kBln (100/1) 0.4 мэВ/К.

Это означает, что направленное вращение в режиме туннелирования должно быть неравновесным процессом с диссипацией энергии Q > 2 мэВ при 5 К и Q > 6 мэВ при 15 К на вращение.

Максимальная мощность рассеяния составила 100 мэВ/с на каждый ротор, а частота туннелирования составила максимум 10 Гц. Однако микроскоп, необходимый для наблюдений, локально рассеивает около 3 х 106 мэВ / с даже при самых низких настройках туннельного тока. Несмотря на столь экстремальные настройки, наблюдается постоянная частота вращения со стабильно высокой направленностью.

В заключение ученые отмечают, что высоконаправленное вращение C2H2 на хиральных поверхностях PdGa{111}Pd3 демонстрирует богатую феноменологию, наиболее заметно характеризующуюся беспрецедентно высокой направленностью и малым размером мотора.

Ротор (C2H2) и статор (кластер Pd3-Ga6-Pd3) состоят всего лишь из 16 атомов, образуя однонаправленный шестизначный циклический молекулярный двигатель (), который непрерывно работает, получая энергию исключительно от одиночных электронов.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Миниатюризация стала одним из самых популярных направлений в современной науке. Разные исследовательские группы создают все больше и больше разработок, так или иначе связанных с этой концепцией. В рассмотренном нами сегодня труде его авторы описали самый маленький в мире молекулярный ротор, состоящий из 16 атомов. Однако габариты не являются единственной отличительной чертой данного мотора. Помимо этого он работает непрерывно, чем не могли похвастаться предшественники, способные выполнить лишь один цикл вращения. Еще одной диковинкой молекулярного мотора является энергия, которой он подпитывается. Ввиду того, что во время туннелирования происходит потеря энергии, ротор продолжает вращаться в одном направлении.

По словам ученых, данная разработка не только может быть использована в создании наноразмерных устройств разного назначения (медицина, передача данных, исследование микроструктурных образцов и т.д.), но и помочь в понимании процессов, связанных с рассеянием энергии во время квантового туннелирования.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята!

Пятничный офф-топ:

Каждый раз, когда я читаю что-то про молекулярные моторы, я вспоминаю это видео (да, оно не ново, но улыбку вызывает постоянно).

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Умная одежда устройство модуляции температуры на основе графена

24.06.2020 10:13:26 | Автор: admin


У природы нет плохой погоды, как поется в знаменитой песне из кинофильма Служебный роман. Однако далеко не все готовы согласиться с этим утверждением. Кому-то нравится холод, кто-то предпочитает жару, кому-то все равно. Я же отношусь к тем людям, которые будут жаловаться и на жару, и на холод, нам подавай комфортные +20 C. К сожалению, не всегда и не у всех любителей нейтрального климата есть возможность жить в регионах, где он есть. Сейчас лето в самом разгаре, удушающая жара лишь изредка прерывается кратковременными грозами, которые не особо помогают. Если природа не готова идти нам навстречу, значит стоит делать что-то самим. Сегодня мы познакомимся с исследованием, в котором ученые из Манчестерского университета (Великобритания) разработали умную адаптивную ткань, способную снижать температуру тела человека ее носящего в жаркие дни. Что легло в основу умной ткани, как протекал процесс разработки, и какие дополнительные свойства и варианты применения имеются у этого изобретения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Прежде, чем рассказать нам о своем творении, ученые отмечают, что прогресс в области пользовательской электроники за последние годы идет семимильными шагами. Буквально каждый день появляется что-то новенькое и необычное. Тем не менее, существует ряд ограничений, которые мешают тем или иным разработкам перейти от стадии лабораторных тестов к стадии массового производства. В аспекте производства умных тканей основной проблемой является сложность интеграции электронных / оптических материалов внутрь волокон ткани. Самый простой вариант в носимой электронике это создание отдельных гаджетов (браслеты, часы и т.д.), которые не требуют внедрения в другую систему (в данном случае, ткань), но спектр возможностей этих устройств будет ограничен.

По словам ученых, чтобы достичь вразумительных результатов в сопряжении электроники и ткани, необходимо либо изменить технологию производства ткани, либо использовать нестандартные материалы для электронной части носимого устройства.

Одним из таких материалов является двумерный графен. Однако в предыдущих попытках его использовать ученые полагались больше на его электропроводность. В данном же труде было сделано ударение на оптическую составляющую, т.е. была предложена идея использовать графен в качестве оптической платформы.

Тепловое излучение от многослойного графена может модулироваться электрически через интеркалирование* ионов.
Интеркаляция* обратимое внедрение молекулы или группы молекул между другими молекулами или группами молекул.
В данном исследовании ученые представляют нашему вниманию технологию оптического текстиля, основанную на интеграции в текстиль динамических инфракрасных устройств на базе электрически перестраиваемого графена, образованного методом химического осаждения из паровой фазы (ХОПФ).

Результаты исследования


Устройства состоят из объединенных слоев инфракрасно прозрачного полимерного слоя, многослойного графена, выращенного с использованием метода ХОПФ, слоя тканевого разделителя и проводящей ткани (схема устройства на ).


Изображение 1

Изготовление начинается с выращивания многослойных графеновых пленок на никелевой фольге. Тонкая полиэфирная (PE) пленка, которая функционирует как прозрачный для инфракрасного излучения защитный слой, ламинируется на многослойный графен перед травлением Ni-фольги. Графен на полиэфирном листе прикрепляется к ткани с помощью термоплавкого клея.

Одним из важных моментов данной разработки является удобство использования и практичность, потому необходимо было удостовериться в хорошей адгезии между графеном и подложкой (тканью). Это было сделано посредством нескольких циклов стирки и посредством испытаний на механическое сжатие.

Далее на задний электрод (проводящая ткань) был нанесен ионный жидкий электролит (BMIMPF6), который впоследствии диффундировал в текстильную подложку. Текстиль действует как разделитель и ионопроводящий слой, обеспечивая ионное движение, когда разность напряжений приложена к графену и заднему электроду.

На 1b показаны примеры изготовленных устройств на натуральных (хлопок) и синтетических текстильных материалах (полиэфир).

Электрохимическая стабильность заднего электрода играет решающую роль в долговременной стабильности устройства. В качестве основы для заднего электрода тестировались разные материалы: проводящий текстиль на основе серебра, сетка из нержавеющей стали, золотое напыление, графен и восстановленный оксид графена.

Массив задних электродов и проводку на текстиле изготовили с помощью фотолитографии с последующей металлизацией и процессом отрыва*.
Отрыв* в технологии микроструктурирования представляет собой способ создания структур целевого материала на поверхности подложки с использованием жертвенного материала (например, фоторезиста).
Полученные пиксельные электроды позволяют определять динамические инфракрасные структуры на непрерывном графеновом слое с помощью выборочной интеркаляции.

Принцип работы устройств основан на обратимой интеркаляции ионов в графеновые слои и модулировании его электрических и оптических свойств. При 0 В многослойный графен имеет высокое инфракрасное поглощение, что приводит к высокой излучательной способности, раскрывая фактическую температуру устройства ().


Изображение 2

При подаче достаточной разности напряжений (> 2.5 В) ионная жидкость интеркалирует в слои графена, увеличивая оптическую проводимость и подавляя излучательную способность, тем самым скрывая фактическую температуру устройства. Термографы устройства записывались с помощью длинноволновой инфракрасной камеры, которая визуализирует изображения по закону Стефана-Больцмана:
P = T4
где P количество падающего теплового излучения на матрице болометров*; излучательная способность поверхности; постоянная Стефана-Больцмана; T температура поверхности в Кельвинах.
Болометр* тепловой приемник излучения (преобразует энергию поглощенного электромагнитного излучения в тепловую).
Текстильные устройства находясь непосредственно в тепловом контакте с источниками тепла, такими как тело человека, для предотвращения ложного экранирования температуры источника. Кроме того, графен функционирует как слой с высокой теплопроводностью, который удваивает температуропроводность в плоскости текстиля, улучшая теплопроводность от источника к поверхности.

Временной отклик устройств был получен путем записи видео тепловизором, чтобы получить изменение видимой температуры поверхности (2b).


Динамическое изменение инфракрасного излучения на хлопковом устройстве.

Полная интеркаляция (подавление излучательной способности) занимает ~5 с, когда ток устройства не ограничен. Стоит отметить, что эти измерения проводились в лабораторных условиях (21 C), ограничивающих минимальную кажущуюся температуру.

Устройства могут многократно циклически переключаться между состояниями с высокой и низкой излучательной способностью (2c), однако превышение электрохимического окна электролита ухудшает рабочие характеристики устройства.

Модуляция излучательной способности определялась количественно с помощью измерений отражения в инфракрасном и ближнем инфракрасном диапазонах с использованием инфракрасного Фурье-спектрометр (FTIR), оборудованного интегрирующей сферой. При 0 В коэффициент отражения внутреннего устройства почти плоский (2d) и составляет около 30%, за исключением поглощения в верхней полиэфирной пленке на длинах волн ~3.4, ~6.8, ~13.9 мкм и поглощения в атмосфере (например, CO2, H2O).


Демонстрация работы адаптивного инфракрасного текстильного устройства.

В диапазоне спектральной чувствительности тепловой камеры (8-13 мкм) такие поглощения минимизируются благодаря тщательному выбору верхней защитной пленки. Коэффициент излучения (или коэффициент поглощения) рассчитывается как 1 R, где R коэффициент отражения, поскольку свет не проходит через устройство. По мере того, как ионы интеркалируют графеновые слои, энергия Ферми и оптическая проводимость графена увеличиваются, тем самым увеличивая коэффициент отражения инфракрасного излучения.

Средняя излучательная способность устройства в диапазоне длин волн 8-13 мкм достаточно высока ( 0.7) для 0 В и поддерживается в таком значении до порогового напряжения ( 2.5 В) с последующим резким падением до 0.35 при > 4 В (), что отлично согласуется с термограммами на 2а.

Модуляция излучательной способности охватывает как длинноволновый инфракрасный (8-13 мкм), так и средневолновый инфракрасный (MWIR, 3-5 мкм) диапазон. В MWIR, тем не менее, полиэфирная пленка демонстрирует значительное поглощение из-за режима растяжения C-H связей, который не зависит от приложенного напряжения, ограничивая диапазон модуляции излучательной способности до 0.7-0.5 (2e). Из этого следует, что любые устройства, работающие в этом диапазоне длин волн, нуждаются в нестандартном защитном слое.

Другим эффектом полиэфирного слоя является повышенная излучательная способность поверхности благодаря термической экстракции полиэфиром, у которого показатель преломления больше, чем у воздуха.

Также наблюдалась модуляция излучательной способности (0.2-0.4) и в коротковолновом инфракрасном диапазоне (SWIR, 0.9-1.7 мкм). А вот модуляция в видимом спектре была незначительной из-за недостаточного легирования графена.

Улучшить модуляцию в SWIR и видимом диапазоне возможно за счет использования ионной жидкости с большим электрохимическим окном, которая будет совместима с текстилем.

Учитывая, что ткань должна быть растяжимой и гибкой, используемые графеновые элементы должны действовать соответственно. Однако многослойный графен не растягивается и не гнется ввиду механического воздействия. Потому в разработке была использована нестандартная изогнутая конструкция графена, что обеспечило уровень деформации до 60%.


Изображение 3

Решить все проблемы с гибкостью и механическим напряжением можно за счет использования массивов электродов, в не единого элемента. На показан пример такого варианта конфигурации с массивом из 25 индивидуально адресуемых электродов и датчиком термобатареи. В качестве активного слоя использовался большой цельный лист многослойного графена на хлопчатобумажной ткани (3b). Каждый электрод контролирует излучательную способность площадью 2х2 см. Внешняя электронная схема была запрограммирована реагировать на тепловую сигнатуру от датчика. Графики 3c и 3d показывают сигналы датчика и кажущуюся температуру активного пикселя (область контроля 2х2).

Мультипиксельное текстильное устройство отображает буквы C или H (обозначающие cold и hot), настраивая излучательную способность соответствующих пикселей, реагирующих на наличие/отсутствие горячего объекта над датчиком. На 3e показаны тепловые изображения работы устройства при взаимодействии с рукой человека.

Далее ученые провели фактическое практическое испытание устройства, внедренного в обычную футболку. Из-за естественной температуры тела, в условиях окружающей среды, человеческое тело излучает около 100 Вт инфракрасного света в основном в LWIR диапазоне. Этот спектральный диапазон также совпадает с окном атмосферного пропускания, которое позволяет распространять излучаемый LWIR свет на большие расстояния.

Устройство для футболки было изготовлено путем ламинирования пленки графен/полиэфир размером 6х6 см непосредственно на поверхности футболки из 100% хлопка и сеткой из нержавеющей стали на обратной стороне ().


Изображение 4

Для передачи закодированного сигнала был использован микроконтроллер, который был запрограммирован передавать буквы N, G и I азбукой Морзе. Тире и точки создавались путем подавления кажущейся температуры на длительное (9 с) и короткое (3 с) время.

На 4b и показаны инфракрасные снимки футболки в состояниях с высокой и низкой излучательной способностью, а шкала справа показывает зарегистрированную с расстояния в 3 м кажущуюся температуру.

Использование микроконтроллера позволяет строить более сложные схемы на текстиле, что, в свою очередь, обеспечивает более безопасные протоколы связи, например, инициирование связи при получении внешних запускающих стимулов. А человеческое тело в данной конфигурации может служить источником энергии.

В данном опыте скорость связи с использованием одной заплатки ограничена процессом интеркаляции/деинтеркаляции, который масштабируется в зависимости от площади устройства.


Передача букв N, G и I азбукой Морзе.

Ученые заявляют, что использование небольших электрических сигналов для модуляции инфракрасной излучательной способности является значительным преимуществом по сравнению с альтернативами, поскольку оно обеспечивает адаптивный отклик, что необходимо для применения в динамическом тепловом камуфляже и управлении тепловым режимом.


Увеличение отражающей способности полиэфирного устройства в ближнем инфракрасном диапазоне.

Разработанное устройство требует низкого напряжения (~ 3 В) и совсем немного энергии (5.5 х 10-4 мАч/см2 на одно событие интеркаляции, что соответствует плотности заряда ~ 1014 см-2 для каждого слоя графена). Следовательно, обычная дисковая батарейка на 1000 мАч может активировать устройство размером с футболку (1 м2) около 180 раз. Кроме того, энергия потребляется исключительно во время цикла зарядки (интеркаляции). А средняя мощность в режиме ожидания практически равна нулю, что позволяет значительно продлить использования одного устройства без замены внешнего источника питания. Это, конечно, если не рассматривать идею с использованием человека в качестве источника энергии.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мода переменчива, как и погода. А вот наука, хоть иногда и кажется хаотичной, но все же следует одним и тем же естественным законам.

В данном труде ученые использовали оптические свойства графена в своей разработке графенового адаптивного оптического текстиля. Это устройство позволяет не только модулировать его температуру, но и дает возможность лучше понять термические и механические свойства графена. Успешная демонстрация модуляции оптических свойств на различных типах текстиля может дать толчок более широкому использованию волокнистых архитектур. Спектр применения подобных технологий не ограничивается элементами гардероба, она может быть крайне полезна и в технологиях связи, и даже в адаптивных скафандрах.

Сами же ученые намерены шагнуть еще дальше. В дальнейшем они планируют использовать свою разработку в спутниках на околоземной орбите. Спутники, как никто другой, испытывают экстремальные перепады температуры: в тени Земли они замерзают, а обращаясь к Солнцу очень нагреваются. Использование данной технологии в теории позволяет получить контроль над тепловым излучением, следовательно, и над температурой самого спутника. От обычной футболки к спутникам на орбите остается лишь надеяться, что амбиции ученых будут подкреплены успешными результатами их дальнейших исследований.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Recovery mode Физика света могут ли быть волны, если нет моря?

28.06.2020 16:16:57 | Автор: admin
Верно ли утверждение, что свет является волной? Да.

Следует ли из этого, что всё пространство вселенной наполнено неким морем эфиром внутри которого идут эти волны? Нет.


Джозу Аз. Волна. с сайта corchaosis.ru

Итак, я думаю, вы уже поняли: в этой статье мы поговорим об исполнении музыки на органе и духовых инструментах.

Если музыкант исполняет музыку с использованием струнного или смычкового инструмента к примеру, с использованием гитары, или с использованием опосредованно струнного инструмента, такого как фортепьяно или рояль, то как выглядит колебание звука? Так же точно, как и с ударными инструментами по синусоиде: за гребнем волны следует провал волны. За верхней точкой синусоиды, следует нижняя.

Может ли гитара звучать в вакууме? Нет.
Можете ли вы поймать ноту, исполненную гитарой (как это с фотоном делает атом вещества), а затем её испустить? Нет.
Так как же этими свойствами обладает свет? Сейчас объясню.

Световые волны это не такие колебания среды, как воздуха при игре на гитаре.
Световые волны это колебания среды, как при игре на органе и духовых инструментах.
Орган, кларнет, дудочка, флейта и тромбон не колеблют воздух так, как это делает струна.
Они добавляют воздух. Аналогично тому как это делает человек, когда он свистит.

Мы ошибочно представляем, что волна это всегда колебания высоты моря (или плотности воздуха) вниз и вверх, в одну сторону и в другую. Однако если мы выльем в лужу ведро воды, то зримо увидим волну, идущую только выше от уровня, каким он был. Нет той части волны, которая была бы ниже уровня, который был изначально ведь мы добавили (испустили) порцию воды, а не колебали имеющуюся воду.

Так можно ли пустить волну в луже, которая уже высохла можно ли пустить волну, если нет среды? Ну если просто начать прыгать на месте высохшей лужи, то волн не возникнет в ней.

Но если на ровную гидрофобную поверхность мы выплеснем то же ведро воды, то будет волна. Таким образом, в среде объектов привычных нам габаритов возможно испускание волны из частицы (из ведра), и возможно распространение волны, в отсутствии всякого эфира. Так же возможно и его поглощение.

Вполне возможно, что фотон имеет связи внутри своего объёма, позволяющие поглощать его целиком или посредством поверхностного натяжения (аналогия капля ртути), или иной природы (аналогия верёвка, цепочка, рыбацкая сеть).

Наконец, самый сложный вопрос возможна ли интерференция волны c волной, если они проходят в разное время? Да, слабая интерференция возможна, если среда не пуста, и первая волна оставляет след на песке.
Подробнее..

Вложенность нейросетей инструмента автопозинга в Cascadeur

17.06.2020 16:18:48 | Автор: admin

Мы уже рассказывали о нашем инструменте автопозинга в программе Cascadeur, но есть еще несколько интересных деталей, которыми мы хотели бы поделиться. В частности мы не говорили о том, как именно комбинируем работу нескольких нейросетей в одном инструменте.

В этой статье будет рассмотрен подход, позволивший нам реализовать достаточно продвинутый функционал, используя лишь стандартные deep learning методы.

Постановка задачи


Мы хотим дать пользователю возможность ставить позы быстро. Он может управлять позициями интересующих его точек, а инструмент будет выставлять по ним позиции остальных точек, сохраняя позу реалистичной.



Использование полносвязных нейросетей предполагает фиксированные вход и выход, поэтому мы сделали несколько нейросетей с разным количеством входных точек: 6, 15, 20, 28 точек из всех 43 точек персонажа. На картинках ниже в зеленый окрашены те точки, которые подаются на вход нейросети соответствующего уровня детализации.


В чем же проблема использования уровней детализации? Если мы хотим подвинуть точку из 4-го уровня, то нам нужно подать на вход все 28 точек. Но мы не хотим заставлять пользователя ставить их все. Наша цель дать ему возможность подвинуть только несколько из них. Как в таком случае добиться хорошего результата? Наше решение предполагает вложенность входных данных, комбинирование результатов и использование физической модели.

Вложенность входных данных


Мы выбрали такие уровни детализации, которые имеют особое свойство иерархической вложенности.


Множество входных точек нейросети каждого уровня содержит в себе все точки с предыдущего уровня и добавляет к ним несколько новых. Это позволяет нам использовать выходные данные с одной сети как входные для следующей.

Комбинирование результатов


Давайте рассмотрим работу инструмента на примере: пользователь расставил все 6 основных точек и решил отредактировать ориентацию левой кисти за счет дополнительных точек кисти со второго уровня детализации.


Как только вы меняете еще одну точку, кроме основных 6, инструмент запоминает ее и начинает использовать в вычислении позиции других точек. Работа инструмента происходит в несколько этапов в зависимости от отредактированных точек. В данном случае весь процесс схематично изображен на картинке ниже.


Сперва используется сеть первого уровня она выставляет все 43 точки персонажа по 6 основным. Затем по очереди вызываются сети более детальных уровней. Каждая последующая принимает на вход все более детальные входные данные либо уточненные пользователем, либо из результата работы предыдущего уровня. Таким образом мы получаем возможность использовать нескольких нейросетей с разной детализацией одновременно.

Физическая корректность


Поскольку модели машинного обучения несовершенны, а наша нейросеть предсказывает глобальные позиции точек, итоговая поза будет иметь ошибку в длине ребер. Это исправляется с помощью итеративного физического процесса, который и восстанавливает длину ребер. Если снизить количество итераций в настройках программы, то можно сразу увидеть, как это влияет на финальный результат.


Этот процесс вызывается после работы каждого из уровней, чтобы не допустить ситуации, когда на вход нейросети подаются точки из некорректной позы.

Заключение и планы


Итак, созданный нами инструмент доказал свою пользу на практике. Он помогает нам при создании анимации уже на самом первом этапе, когда необходимо видеть приблизительные позы. В будущем мы планируем добавить поддержку пользовательских гуманоидных скелетов, а также сделать инструмент более точным и устойчивым.

Также мы исследуем возможности, которые дарят нам более универсальные deep learning подходы. Например, уже сегодня можно восстанавливать части фотографий с заданными характеристиками, а также переносить стиль и другие характеристики между изображениями. В будущем мы могли бы использовать этот метод и при создании анимации, например, чтобы добавить в нее или же в позу желаемые характеристики.

Мы продолжаем развивать наш инструмент автопозинга. Уже в ближайшее время Cascadeur войдет в стадию открытого бета-теста. Обязательно следите за новостями на cascadeur.com и в социальных сетях проекта.

Узнать больше о Cascadeur и других проектах студии Banzai Games:

Почему 12 принципов Диснея недостаточно
Cascadeur: задача о падающей кошке
Физика в Unity-проекте на примере мобильного файтинга
Cascadeur: будущее игровой анимации
Искусственный интеллект в файтинге Shadow Fight 3

В команду Banzai Games требуется Qt GUI программист. Подробнее о вакансии можно прочитать здесь.
Подробнее..

Про самую реалистичную интерпретацию квантовой механики

18.06.2020 08:18:23 | Автор: admin

Мое внимание привлекла статья: Самая реалистичная интерпретация квантовой механики.


На хабре крайне мало толковых статей по физике, поэтому мне было чрезвычайно интересно, что же такого нового содержится в статье про квантовую механику. Тем более, что некоторые моменты квантовой механики я изучал достаточно глубоко.


Давайте приступим к анализу содержимого.


Анализ


нарушение неравенств Белла закрыло подобным моделям путь в квантовую механику. Но только если не брать во внимание одну лазейку...

Начало крайне интригующе. Сразу хочется разобраться с этой лазейкой и понять суть. Однако дальнейший рассказ забывает про эту лазейку.


В 1967 году Конрад Цузе в книге "Вычисление пространства" высказал предположение, что

Уже закрадываются сомнения. Если идет апелляция к тому, что кто-то высказал предположение, то это вряд ли может считаться фундаментом и основанием. Да, это может являться отправной точкой для рассуждений, но лучше всего начинать либо с противоречий, либо с постановки задачи. Т.е. говорить о том, какую задачу решаем и почему важно рассматривать именно с новой точки зрения. Всегда необходимо держать на пульсе полезность и актуальность проблемы, а также понимать саму проблему. То, что существуют разные интерпретации это не есть проблема в принципе. Т.е. это проблема лишь в головах людей, мало знакомых с квантовой механикой как разделом физике, а лишь читающие научно популярные статьи. Вот там да, в них всегда куча проблем. А в наличии разного интерпретаций я проблем абсолютно не вижу.


Судя по количеству цитат и скачиваний, мысль очень даже пошла в народ.

Если автор статьи хочет утверждать, что раз немалое количество уважаемых людей разделяет определенную точку зрения, то она может быть верна, то у меня плохие новости: верификация происходит другим способом.


В естестественных науках есть простой принцип эксперимент показывает, что верно, а что нет. На самом деле, это не совсем так, даже иногда совсем не так, но об этом в другой раз. Для обывателя достаточно знания того, что эксперимент как раз дает понимание того, что стоит брать за основу, а что стоит выкинуть.


Постоянное появление новых интерпретаций в квантмехе у стороннего наблюдателя должно вызывать недоумение.

К сожалению, должен констатировать, что после этого пункта число фактов а том, что эта статья рассчитана на широкую аудиторию, перевалило за красную черту. Большинство научно-популярных рассказов сами не понимают, что они пишут. При этом, что самое удивительное, способны запутать людей в трех соснах.


Для прода в квантовой механике сойдет и Копенгагенская интерпретация.

Удивительный факт состоит в том, что квантовой механике не нужны интерпретации. Они нужны для обывателей. А для физиков достаточно знать, как решать задачи с использованием, например, уравнения Шредингера.


То есть, достаточно принять, что запутанные частицы взаимодействуют на пугающе дальних расстояниях

Сколько раз я встречал такие рассуждения. Их повторяют везде, без понимания сути. Чтобы понять абсурдность, имеет смысл рассмотреть простой гипотетический эксперимент.


Эксперимент заключается в том, что мы создаем сферически симметричный шар, а внутри помещаем взрывчатку. Далее мы на крайне точных весах измеряем его массу. Допустим, что масса составляет 1 кг. Далее мы этот сферически симметричный шар помещаем в космос и взрываем. Мы точно знаем, что каждый раз после взрыва шар распадается на две части. Мы не знаем лишь, на какие конкретно части распался шар.


После взрыва части шара разлетаются в разные стороны в космосе. Мы отлавливаем одну часть и пытаемся понять, чему равна масса другой части. Предположим, что другая часть улетела на 100 млн световых лет. Теперь мы измеряем массу куска, которая у нас есть, и мы мгновенно узнаем массу другого куска! Парадокс!


Заметьте, что для этого парадокса нам не понадобилась даже квантовая механика. У частей есть вероятность иметь ту или иную массу. Можно даже составить плотность вероятности. Но это будет вероятность. Но как только мы померили массу одной части, другая часть тут же схлопнулась и обрела известную массу, как далеко она бы не находилась. Тут мы видим парадокс коллапса плотности вероятности куска!


Поэтому пугающие дальние расстояния имеют многие системы, где есть запутанность, т.е. связь величин друг с другом. И тут нет никакого парадокса.


Собственно, Эйнштейн видел квантовую теорию неполной и отстаивал мысль, что на фундаментальном уровне физика должна быть детерминистичной.

Если быть точным, то детерминированной. Слово детерминистичной просто калька с английского deterministic.


Ну а теперь про квантовую механику и детерминизм. Я сейчас скажу страшную вещь, в которую сложно поверить: эволюция состояния в квантовой механики детерминирована.


Это крайне легко показать. Действительно, квантовая механика описывается линейным дифференциальным уравнением с зависимостью от точки пространства и времени. Зная состояние (т.е. волновую функцию) в предыдущий момент времени, мы всегда сможем получить состояние в текущий и любой последующий момент времени. Это происходит однозначно, а значит детерминировано. Более того, если развернуть время вспять, то можно посчитать прошедшие события! Т.е. в этом смысле квантовая механика ничем не отличается от классической ньютоновской механики, где по положению тела и его скоростей можно рассчитать новые положения, а также прошлые.


Проблема тут лишь в том, что для получения реального результата необходимо выполнить процедуру перехода из квантовой механики в классическую, и уже в этой процедуре возникают вероятности. Но внутри квантовой механики все строго детерминировано и описывается линейными дифференциальными уравнениями. Поэтому мне не очень понятно, с чем спорил Эйнштейн, т.к. на фундаментальном уровне квантовая механика детерминирована.


Дальше уже вопрос веры и вкуса, так что условимся, что нас пока интересует, как работает окружающий мир, и какие модели можно построить, чтобы наименьшими усилиями получить достоверные предсказания поведения этого самого мира.

Это, пожалуй, единственное утверждение, которое практически не вызывает вопросов. Действительно, важно не то, какие модели и что мы используем для описания, а важно насколько хорошо мы предсказываем будущее и насколько меньше мы затрачиваем для этого усилий. Если окажется, что есть более простая теория, которая описывает квантовые эффекты, то это будет основанием для замены теории на новую. Как на самом деле происходит смена теорий отдельная, крайне забавная история. Но сейчас не про это.


эксперименты демонстрировали, что квантовые системы нарушают эти неравенства, тем самым фальсифицируя локальные теории со скрытыми переменными. А ведь Вселенная-клеточный автомат как раз такая теория.

Было бы крайне полезно для качества самой статьи рассказать уже наконец, в чем заключается теория клеточного автомата в применении к квантовой механике. А то про неравенства Белла сказано немало, но про суть теории, которая содержится в заголовке, сказано около нуля полезной информации, хотя статья уже подходит к концу.


Самое интересное почему клеточный автомат как раз такая теория мне остался неясен. Возможно, что будет дальше, посмотрим.


И дело может спасти грязный хак супердетерминизм.

Термин достаточно нов для меня. Поэтому будем разбираться.


Супердетерминизм заключается в предположении, что не существует никакой объективной случайности.

Хочется понять, а чем детерминизм отличается от супердетерминизма? Почему он супер? В чем заключается его суперскость?


Это довольно категоричная форма реализма, согласно которой, Вселенная существует независимо от разумных наблюдателей и подчиняется только своим фундаментальным законам, строго следуя принципу причинности.

Исходя из этого пояснения становится понятно, что супердетерминизм суть детерминизм. Т.к. как принцип причинности и лежит в основе определения детерминизма.


Это позволяет рассматривать естество как результат работы клеточного автомата.

Т.е. дали определение супердетерминизма, и это определение позволяет рассматривать мир определенным образом? Но хочется понять, какие же основания для того, чтобы это так рассматривать?


Состояние фактически реализуется, когда волновая функция равна 1, и оно не описывает наш мир, когда волновая функция равна нулю Именно такую "волновую функцию Вселенной" можно назвать онтологической. Любопытно, что онтологическая волновая функция выглядит как one-hot вектор, т.е. единица и куча нулей.

Теория, конечно, красивая, только математика восстает против таких волюнтаристских преобразований. Физико-математикам это будет вполне очевидно, но для остальных я постараюсь объяснить, в чем подвох.


Начнем с того, что любая физическая величина непрерывна. Т.е. спектр всевозможных значений это набор действительных величин. В математике есть теорема, что множество действительных чисел несчетно. Что это означает?


Это означает, что множество вещественных чисел нельзя занумеровать натуральным рядом от 1 до бесконечности. Мощность действительных чисел больше множества натуральных. Если мощность множества равномощно множеству натуральных чисел то оно счетно, в противном случае несчетно. Множество рациональных чисел счетно, а вот действительных несчетно.


Это означает, что нельзя физическую величину представить в виде даже бесконечного one-hot вектора. Конечно, можно натянуть сову на глобус и сказать, что все физические величины квантуются. Но для этого оснований нет никаких. Современные исследования говорят об обратном.


Именно простое математическое опровержение сводит на нет весь остальной текст этой статьи.


В целом, теория Герард т Хоофта заслуживает того, чтобы рассмотреть это более детально. Более того, есть ряд других теорий, которые вполне неплохо описывают квантовые явления на основе классических представлений. Например, теория Грызинского. Вот эта теория, как раз, заслуживает более пристального рассмотрения, т.к. она более проста для понимания, и дает интересные и новые представления о квантовом мире, решая многие парадоксы, а не преумножая их.


Может ли быть так, что наш мир это всего лишь один мир, где все происходит, согласно уравнениям эволюции, которые могут быть существенно проще, чем уравнение Шредингера, и есть ли способы узнать об этом? Можно ли убрать элемент статистического распределения вероятностей из основных законов квантовой механики?

Грызинский дает вполне простой ответ на этот вопрос.


Так что реальная мотивация заключается не в том, чтобы лучше предсказать результаты экспериментов, которые могут произойти не скоро, а скорее в том, чтобы предсказать, какой класс моделей стоит тщательно изучить, то есть вообще, в какую сторону копать.

Только эта модель не говорит о том, какие классы моделей стоит изучить. Она всего лишь предлагает одну из моделей, причем не самую простую для понимания, к тому же имеющую фундаментальный изъян.


Действительно, это был важный урок, извлеченный в 20-м веке: если что-то не может наблюдаться, это, возможно, не является четко определенной концепцией оно может даже не существовать вообще.

Электрические поля не наблюдаются это лишь специально придуманное поле, как если бы единичный заряд, помещенный в точку, испытывал соответствующую силу. Мы эти поля не можем наблюдать непосредственно, а лишь опосредованно. Означает ли это, что электрические поля не являются четко определенной концепцией? Отнюдь!


Это важная составляющая реанимируемого детерминизма: вещи, которые непосредственно ненаблюдаемы, могут все еще существовать и как таковые, играть решающую роль в наблюдаемых свойствах объекта.

Когда такое утверждается, то хочется, чтобы дали понятия наблюдаемости и существования. После этого уже можно будет дальше обсуждать. В противном случае это больше похоже на словоблудие, т.к. физика давно уже не оперирует непосредственно наблюдаемыми явлениями, поэтому говорить о существовании чего-то крайне странно. Есть модель, в которой, например, есть кварки. Есть ли они на самом деле или нет вообще не важно. Важно то, что с помощью этой модели можно предсказывать целый класс экспериментов и поведение реальных систем. Вопрос существования вторичен и не относится к физике, а относится скорее к философии.


В целом возникает спорное впечатление. С одной стороны, ортодоксальный подход уже проверен временем.

Квантовая механика ортодоксальный подход? Orthodox это общепринятый в данном контексте, но никак не ортодоксальный.


Как показывает практика, незаморачиваясь на конфликты с повседневным опытом и на вой философов, причитающих о крахе познания

Вой философов? Это новый для меня оборот речи. Хочется узнать источник этого воя, чтобы приобщиться и узнать, наконец, над чем работают философы.


С другой стороны, эпоха требует новые и удобные инструменты для конкретных целей.

Не уверен, что такая модель будет более удобна стандартной ортодоксальной модели квантовой механики.


Ведь удобно считать, что квантовые компьютеры производят параллельные вычисления во многих изолированных мирах. А бонусом получаем удобную интуицию для понятия вероятности: вероятность события доля миров, в которых это событие происходит.

Откуда взялась многомировая концепция мне неведомо. Видимо, автор решил сложить всё в кучу для большего наукообразия.


Ну а теория клеточных автоматов это довольно упреждающая работа. Она может принести полезные абстракции для тех, кто занимается фундаментальной физикой, и стать инструментом для изучения эффектов возникающих на поверхностях черных дыр и на планковских масштабах.

А может и не принести.


Герард т' Хоофт хочет вдохновить больше физиков серьезно рассмотреть возможность того, что квантовая механика, как мы ее знаем, не является фундаментальной, таинственной, непроницаемой особенностью нашего физического мира, а скорее инструментом для статистического описания мира

Вот спасибо! А то ведь все думают, что она таинственная, фундаментальная, а она всего лишь инструмент для статистического описания мира. Открыл глаза прям!


где физические законы, в своих самых основных корнях, вовсе не являются квантово-механическими.

Для домашнего задания задам вопрос. Когда мы пишем уравнение Шредингера для атома водорода, мы пишем потенциальную энергию классического электрона как U=-1/r, при этом подразумевая, что электрон точечный и не размазан по вселенной. Как так? Неужели квантовая механика не такая квантовая и там содержатся допотопные классические элементы?


Заключение


Новые модели, объясняющие квантовые физические явления, не являются чем-то выдающимся и необычным. Ученые создавали и будут создавать новые модели, которые будут требовать серьезную научную поддержку других людей. К сожалению, сложность этих моделей такова, что одному человеку продвинуть уже не под силу.


Поэтому научные теории требуются серьезного вклада и поддержки со стороны научного сообщества. Без этой поддержки новые теории будут быстро появляться и так же стремительно угасать. Теория научных революций она как раз про это. Но это тянет на отдельный рассказ.


Также стоит обратить внимание на множество фактических ошибок, упомянутых в статье. Если использовать научно популярные статьи, то для их разбора не хватит времени никакого ученого. Они слишком заняты, чтобы опровергать тот поток сознания, которые выливают на них псевдо ученые. Именно поэтому научно-популярные посты существуют в параллельной вселенной, и никто на них не обращает внимания, до поры до времени. Пока не жахнет.


Этой статьей я показал на фундаментальную проблему, которая не очевидна подавляющему большинству читателей, но которая присутствует в статье в качестве основания модели.


Помимо этого постоянно путается терминология. В данной статье описывалась модель, а не интерпретация. Введение новояза типа слова Супердетерминизм вместо общепринятых понятных терминов характерный штришок. Вообще, путаница в терминах это бич современных авторов. Никто не любит давать определения, т.к. тогда предмет спора внезапно может потеряться либо стать очевидно абсурдным.


Поэтому желаю всем оставаться с трезвым рассудком и изучать реальную физику, а не псевдофизический бред в интерпретации.


Полезные ссылки для саморазвития


[1] Об атоме точно. Грызинский, лекции.
[2] Александр Чирцов о математике в физике, видеолекции.

Подробнее..

Лучше кремния ученые получили полупроводниковый материал с более совершенными характеристиками

18.06.2020 12:21:50 | Автор: admin
В силовой полупроводниковой электронике, как и во многих других областях полупроводниковой электроники, возможности кремния, основного полупроводникового материала, оказались практически исчерпанными. Поэтому ученые ведут интенсивный поиск материалов с новыми свойствами, которые позволили бы обеспечить качественный рывок в достижимых величинах напряжений и токов и рабочих температурах при сохранении высокой эффективности работы.

Ключом здесь является переход к так называемым широкозонным материалам, в которых требуется сообщить электронам атомов очень большую энергию, чтобы они начали участвовать в переносе электрического тока. Чем больше ширина запрещённой зоны, тем более высокое напряжение можно приложить к контактам прибора, не вызывая электрического пробоя, и тем ближе можно расположить контакты, уменьшая сопротивление, а значит, электрические потери мощности, и тем при более высокой температуре устройство будет сохранять свою работоспособность.

Ученые НИТУ МИСиС, ФТИ им. А.Ф. Иоффе и компании Совершенные кристаллы продемонстрировали возможность изготовления нового материала и эффективного управления его свойствами с помощью дешёвой и экономичной технологии его выращивания. Материал является перспективной альтернативой кремнию в приборах силовой полупроводниковой электроники, области, имеющей дело с разработкой приборов и устройств, осуществляющих коммутацию, преобразование, усиление электрических сигналов с большими токами и напряжениями, т.е. с большой мощностью. Материал позволяет работать с более высокими напряжениями, при более высоких температурах, с меньшими потерями мощности.

shutterstock-1221815014-picture

Последние примерно двадцать лет прошли под знаком перехода в силовой электронике от кремния с шириной запрещённой зоны 1,2 эВ и электрическим полем пробоя 0.3 МВ/см к карбиду кремния SiC и нитриду галлия GaN c запрещённой зоной 3,3-3, 4 эВ и электрическим полем пробоя большим в десять раз, около 3 МВ/см. Но даже такое увеличение критического поля, вызывающего пробой, оказывается недостаточным для всё возрастающих требований к силовым приборам в современном мире.

В настоящее время наибольшее внимание ученых привлекает оксид галлия, Ga2O3, существующий в нескольких кристаллических модификациях- политипах, среди которых важнейшим является стабильный политип -Ga2O3 с шириной запрещённой зоны 4,8 эВ и полем пробоя 8 МВ/см. Однако и другие, менее стабильные политипы, в частности, -Ga2O3, также заслуживают внимания и изучения, потому что их запрещённая зона ещё больше (5,2 эВ для -Ga2O3), кристаллическая структура более симметрична, такие плёнки можно растить на очень дешёвых и высокосовершенных подложках сапфира с той же кристаллической структурой, что и -Ga2O3, а наличие большого количества родственных окислов металлов с той же структурой и интересными свойствами позволяет создавать разнообразные полезные комбинации.

К сожалению, выращивание совершенных плёнок -Ga2O3и нахождение подходящих легирующих примесей, которые позволили бы управлять проводимостью плёнок в широком диапазоне, представляет трудную задачу. Её решению посвящено совместное исследование группы учёных в ФТИ им. А.Ф. Иоффе и компании Совершенные кристаллы в Санкт-Петербурге и группы в НИТУ МИСиС в Москве.

Петербургская часть коллектива, руководимая профессором Владимиром Николаевым, руководителем лаборатории физики профилированных кристаллов, сумела вырастить толстые плёнки -Ga2O3с достаточно высоким структурным совершенством и ввести в плёнки примесные атомы олова, поставляющие электроны и изменяющие проводимость плёнок в очень широких пределах. Рост проводился с помощью метода галоидной эпитаксии, ранее широко использовавшегося в данной лаборатории для получения и легирования совершенных кристаллов и плёнок нитрида галлия и твёрдых растворов на его основе. Такие структуры широко используются для создания мощных светодиодов и лазеров, полупроводниковых выпрямителей, мощных транзисторов на основе InGaAlN. Легирование плёнок -Ga2O3 оловом в процессе выращивания осуществлялось с использованием паров летучих солей олова.

В московской группе исследователей под руководством заведующего лабораторией широкозонных материалов и приборов, профессора Александра Полякова из приготовленных плёнок были сделаны тестовые диодные структуры и подробно изучены электронные свойства материала, а также электронная структура имеющихся в нём примесей и дефектов. Свойства оказались похожими на свойства, изученные ранее для стабильного политипа -Ga2O3. Полученные результаты вселяют оптимизм касательно перспектив использования -Ga2O3в силовых приборах, хотя ещё потребуется провести очень серьёзные дополнительные исследования, чтобы повысить стабильность материала и улучшить его характеристики и их воспроизводимость.

Статья о разработке опубликована в журнале APL Materials.
Подробнее..

SIT Masters Insights Что дает магистратура в Швейцарии и сколько это стоит?

26.06.2020 14:09:33 | Автор: admin
Если вы задаетесь подобным вопросом, то специально для вас основатели Schaffhausen Institute of Technology (SIT) проведут вебинар, на котором расскажут об особенностях новой магистерской программы института. Магистратура SIT это реальная возможность для выпускников вузов различных стран (в том числе России и СНГ) получить образование мирового уровня, соответствующее требованиям рынка и запросам общества. Краткая информация о вебинаре, а также ссылка на регистрацию под катом.



Ни для кого не секрет, что выпускникам вузов часто не хватает квалификации, а корпорации не могут найти достойных кандидатов на роли CTO или CISO. Например, по данным АПКИТ за 2020 год потребность в IT-специалистах высокой квалификации в России уже сейчас составляет 222 тысячи сотрудников, а к 2024 году общая годовая потребность цифровой экономики страны в высококвалифицированных кадрах увеличится на четверть практически до 300 тысяч человек в год. А исследование Microsoft и IDC за 2019 показало, что 96% ИТ-шников России и Центральной и Восточной Европы недостаточно квалифицированы.

Логично, что кто-то должен предложить решение для этой проблемы. Этим летом объявили набор учащихся на новую программу Schaffhausen Institute of Technology (SIT), которая была создана для подготовки необходимых бизнесу ИТ-специалистов. SIT ведет разработки в таких стратегических сферах, как квантовые технологии, новые материалы, машинное обучение и киберзащита самых востребованных на сегодня отраслях науки и технологий. Международный научно-исследовательский университет находится в Шаффхаузене современном высокотехнологичном хабе Европы, где размещают свои штаб-квартиры многие технологические компании.Об этом можно подробнее узнать в одном из наших прошлых постов.

SIT находится в Швейцарии, но является международным проектом. Получить в нем магистерское образование могут талантливые выпускники вузов разных стран мира. Подать заявку на зачисление по магистерской программе Computer Science and Software Engineering может любой резидент Восточной Европы (включая Россию и СНГ) или Южной Азии. Для подачи документов достаточно иметь степень бакалавра по профильному направлению, а также владеть английским языком на необходимом для обучения уровне (умение понимать собеседника и выражать свои мысли на английском). Стоимость обучения в SIT находится на одном уровне с ТОП-10 российскими техническими вузами, а для самых талантливых студентов и победителей конкурсов предоставляются скидки на обучение и стипендии.

Кстати, прямо во время обучения студенты SIT могут проходить стажировку в крупных технологических компаниях (в том числе и в Acronis), принять участие в реальных проектах с официальным трудоустройством и зарплатой. Также менторы вуза могут помочь с основанием и запуском своего собственного высокотехнологичного стартапа как консультациями, так и привлечением личных связей.

SIT Masters Insights


Чем отличается магистратура SIT? Как будет построен учебный процесс? Каковы уникальные особенности специально разработанной программы? Вебинар SIT Masters Insights, с нобелевским лауреатом Константином Новоселовым запланирован как раз для ответов на эти и другие вопросы. 30 июня в 11:00 МСК на русском языке будет проведено мероприятие специально для русскоговорящих специалистов и выпускников вузов. Вы сможете узнать все из первых рук, а также задать свои вопросы.

Константин Новоселов и Сергей Белоусов

Программа вебинара:

  • 11:00 Future of Computing, Сергей Белоусов, доктор технических наук, основатель и CEO Acronis, основатель SIT;
  • 11:25 Translation of Science, Константин Новоселов, лауреат Нобелевской премии по физике 2010, Председатель стратегического попечительского совета SIT;
  • 11:45 New Era of Tech Business, Станислав Протасов, Президент и сооснователь Acronis
  • 12:05 Панельная дискуссия со студентом SIT, сессия вопросов и ответов

Вся актуальная информация о событии, а также обязательная регистрация: здесь.
Подробнее..

Категории

Последние комментарии

© 2006-2020, personeltest.ru