Русский
Русский
English
Статистика
Реклама

Гравитация

Левитация наоснове магнитного равновесия

13.01.2021 22:20:55 | Автор: admin

Эксперименты смагнитной левитацией меня привели ксовершенно новому потрясающему эффекту. Это очень удивительно, номагнит парит безэлектроники икаких либо датчиков, только засчет вращения другого магнита.

<cut />

Для повторения эксперимента нужно на насадку от гравера приклеить 4 магнита, полюса расположить как показано на изображении.

Гравировальную машинку нужно включать практически на минимальных оборотах, иначе магнит приближается к своим вращающимся братьям слишком близко и происходит столкновение. При понижении оборотов магнит постепенно отдаляется, и на определенном отдалении его начинает болтать во все стороны, пока не произойдет разрыв связи.

Шарик сателлит сделан из неодимового магнита

Если Вы думаете, что это такойже способ левитации, как магнитный Волчок, то ошибаетесь. Вмагнитном Волчке используется метод магнитной ямы, акольцевой магнит иВолчок направленны друг кдругу одноименными полюсами, так как они для левитации используют силу отталкивания.

Левитация насверхпроводимости здесь тоже исключена.

Я считаю, что вданном способе магнит левитирует засчет быстрой смены магнитных полей, врезультате чего получается переменное магнитное поле иприопределенной величине оборотов, наступает магнитное равновесие. Это когда один полюс недает оторваться отмагнита, адругой недает кнему приблизиться. Иневажно каким полюсом повернут магнит кэтому полю.

Также мной была замечена зависимость отмассы магнитов, частоты оборотов исилы магнитного поля. Чем больше масса и сила магнитных полей, тем дальше друг от друга магниты и меньше частота оборотов инаоборот.

Планирую повторить эксперимент, ноуже сбольшими магнитами иэлектромагнитами.

Хотелосьбы услышать мнение экспертов вэтой области.

Если увас остались вопросы, по моему опыту, то можете задать их вкомментариях.

Подробнее..

А что если гравитация и ускоренное расширение Вселенной это следствие энтропии?

06.05.2021 08:19:11 | Автор: admin

Предисловие

Притяжение властвует на больших расстояниях, оно универсально и очевидно в сравнении с другими взаимодействиями, но нюанс заключается в том, что оно невероятно слабо в 1039 раз слабее электромагнитного взаимодействия, а ее влияние на микроскопическом уровне вовсе незаметно. Природа гравитации в мире элементарных частиц ломает умы ученых не один десяток лет, ведь она не хочет мириться ни с квантовой физикой, ни с электродинамикой. Струнная теория так же не может удовлетворить конфликт гравитации с другими взаимодействиями. Но, кажется, мы нашли способ помирить гравитацию с физикой. Как? Предположить, что она не фундаментальное взаимодействие.

Credit: TimeOneCredit: TimeOne

Любой вопрос или замечания Вы можете написать в комментариях. Также я открыт для личного диалога в телеграме или даже беседы в нашем чате. А еще у меня есть телеграм-канал о космологии.

Информация и ее роль во Вселенной

Рассматривая гравитацию во вселенной с инвариантными процессами с точки зрения струнной теории, исследователи пришли к выводу, что гравитация истекает из законов микроскопических взаимодействий и свойства информации. Информация играет важнейшую роль в устройстве Вселенной и понимание ее содержания поможет нам создать точную описательную модель нашего мира. Информация отражает абсолютно все: начиная от состава материи или энергии до его положения. Мера содержания информации характеризуется т.н. энтропией, которая оказывается для нас чрезвычайно полезной, когда речь заходит о выборе объективной меры количества информации.

Попробуем рассмотреть данное предложение в двоичном коде тогда его энтропией будет то количество знаков, которое необходимо для его кодирования и количество их возможных состояний (0 или 1), называемых степенью свободы. По поводу понимания сущности энтропии у меня есть интересная статья, рекомендую к прочтению.

Энтропия черных дыр и интересные выводы об этом

А если вместо предложения у нас будет черная дыра? На мой взгляд, это самый простой и самый сложный для понимания объект одновременно. Многие ошибочно считают, что информация о поглощенном черной дырой теле неизбежно в нем исчезает, а также что единственное известное свойство черной дыры это количество энергии в ней. Благо, все устроено иначе если мы проанализируем взаимодействие черной дыры, то убедимся, что при поглощении объекта от него передается энергия, а также момент импульса, что неизбежно влияет на массу и состояние черной дыры и проще это выражается одним словом информация. Информация об объекте осталась с информацией черной дыры и отражается в последствиях взаимодействия с поглощенным телом. Ну и если поразмыслить еще, то мы вспомним, что утеря информации несет за собой упорядочивание и уменьшение энтропии, что противоречит второму закону термодинамики, гласящем о том, что энтропия замкнутой системы постоянно не убывает. Об этом впервые высказался американский физик Джон Уиллер.

Стивен Хокинг, Credit: New ScientistСтивен Хокинг, Credit: New Scientist

Ага. Эта штука называется голографическим принципом и говорит о том, что любая n-мерная система с i-тым количеством информации экспериментально идентична (n-1)-мерной сфере с тем же количеством информации вне зависимости от того, насколько различны описательные характеристики этих систем. Это в прямом смысле проецирование на экран в кинозале ведь с помощью двухмерной проекции мы получаем такое же количество информации, что и получал оператор с трехмерной. Черная дыра тот же оператор. Она сохраняет объективную информацию об объекте на своей двухмерной поверхности нулей и единиц, именуемой горизонтом событий и отражает ее в виде излучения Хокинга. И никакого нарушения принципа энтропии.

5-мерное антидесситеровское пространство-время заключено в 4-мерную сферу плоской геометрии (голографический экран). Происходящие процессы внутри сферы и на поверхности сферы разные: например, поведение суперструн в пятимерном пространстве для четырехмерного отражается в виде взаимодействия конформных полей, а черная дыра, которая не может существовать в такой четырехмерной сфере, вовсе превращается в горячее излучение.5-мерное антидесситеровское пространство-время заключено в 4-мерную сферу плоской геометрии (голографический экран). Происходящие процессы внутри сферы и на поверхности сферы разные: например, поведение суперструн в пятимерном пространстве для четырехмерного отражается в виде взаимодействия конформных полей, а черная дыра, которая не может существовать в такой четырехмерной сфере, вовсе превращается в горячее излучение.

А что там с гравитацией?

Как я сказал в самом начале, гравитация тесно связана с информацией, а следовательно, и с энтропией. Хуан Малдасена, струнный теоретик, смог рассмотреть гравитацию через призму голографического принципа, представив модель с n-мерным пространством-временем, где материя подчинена струнному взаимодействию, окруженную (n-1)-мерной сферой, где та самая струнная теория превращалась в квантовую гравитацию. Как? Колебания браны неизбежно приводят к гравитационному взаимодействию на граничащей поверхности. Это была первая попытка показать гравитацию как не первопричину, а следствие какого-то другого фундаментального взаимодействия.

Второй, наиболее успешной попыткой стала статья Эрика Верлинде, вышедшая в 2010 году и взбудоражившая умы СМИ и публики О природе тяготения и законов Ньютона. Верлинде на основании энтропийной природы гравитации удалось вывести законы Ньютона и уравнения Эйнштейна. Давайте приступим к основной части этого материала и рассмотрим основные тезисы его работы.

Эрик Верлинде, Credit: Het ParoolЭрик Верлинде, Credit: Het Parool

В первую очередь, в своем исследовании Верлинде утверждает, что гравитация это явление изменения информации о материальных телах, подчиняющееся голографическому принципу. Зададим энергию двух тел, а также их взаимное положение. По второму закону термодинамики энтропия этой системы останется либо постоянной, либо начнет расти. Рост энтропии будет лишь в том случае, если тела начнут сближаться друг со другом, т.к. это вызовет рост степеней свободы системы в ином случае энтропия будет уменьшаться. Так как энтропия должна расти, тела будут неизбежно вступать во взаимодействие, называемое гравитацией. Это похоже на принцип Гейзенберга и флуктуации частицы невозможно единомоментно определить положение и состояние частицы, потому, например, поместив на дно сосуда частицу, вместо ожидаемого покоя в минимуме потенциальной энергии мы будем наблюдать ее колебания, называемые также флуктуациями.

Для доказательства этих соображений предлагаю рассмотреть частицу массой m, находящуюся на расстоянии x от голографического экрана площадью S. Частица будет неизбежно приближаться к голографическому экрану и их микроскопические степени свободы сольются. В таком случае формула приращения энтропии будет:

\Delta S = 2\pi k_В \dfrac{mc}{\hbar} \Delta x.

Энтропийная сила это ни что иное, как причина компенсировать уменьшение энтропии:

\Delta F \Delta x = T \Delta S,

где T температура.

Известно, что сила связана с ускорением, которое также связано и с температурой. Квантовый эффект Унру гласит, что наблюдатель в ускоренной системе отсчета обладает температурой:

k_В T = \dfrac{1}{2\pi} \dfrac{\hbar a}{c},

где a ускорение. Из вышеполученных выражений несложным образом получаем математическое представление второго закона Ньютона:

F = ma.

Теперь представим область пространства, заключенную в сферу с энергией E и с голографической поверхностью. Вспомним, что емкость сферы пропорциональна площади ее поверхности. Тогда мы можем выразить число битов системы N как:

N = \dfrac{1}{2} Nk_В T .

Также вспомним самую знаменитую формулу физики (или, как минимум, Эйнштейна):

E = mc^2,

где m масса, заключенная в части ограниченного сферическим экраном пространства. Подставив в выражение площадь сферы, равную:

A=4\pi R^2,

получим:

F=G\dfrac{Mm}{R^2}.

Удивительно, но мы приходим к неутешительному выводу о том, что гравитацию можно рассматривать как несамостоятельное явление природы, зависящее от энтропии в рамках голографического принципа. Эрик Верлинде в своем исследовании также заметил, что энтропийную природу может иметь и красное смещение, возникающее вследствие градиентов энтропии специально поэтому я также кратко рассмотрю работу (Easson et al.), рассматривающую темную энергию и ускоренное расширение с точки зрения энтропийной природы гравитации. Последующий пункт будет занят математическими вычислениями, вывод по статье ждет вас в соответствующем разделе. Математика для неподготовленных будет ограничена горизонтальными чертами после второй можете продолжить чтение.


Для начала вспомним, что такое темная энергия. По Общей теории относительности и космологическому принципу масштабный фактор a(t) в FLRW-метрике удовлетворяет уравнению Фридмана:

H(t)^2 = \left(\dfrac{\dot a}{a}\right) = \left (\dfrac{8\pi G}{3} \right) \rho,

где масштабный фактор в настоящий момент равен единице, а плотность энергии компоненты, ответственной за расширение Вселенной, где для расширяющейся ускоренно Вселенной:

\rho = \rho_m + \rho_{\gamma},\rho_m(t) = \rho_m(t_0)a(t)^{-3},\rho_{DE}(t) = \rho_{DE}(t_0)a(t)^{-3(1+\omega)},

а также

\omega = \dfrac{p}{\rho c^2}.

Для значения омеги, равного (-1), получим:

a(t)=a(t_0)e^{Ht},

где

H = \sqrt{\dfrac{\Lambda}{3}} = \sqrt{8\pi G\rho_{DE}}.

Продифференцируем уравнение масштабного фактора по времени и получим:

\dfrac{\delta^p}{\delta t^p} a(t) = H^p, \: t \rightarrow 0.

Подставим полученное в уравнение Фридмана:

a(t)=a(t_0)e^{Ht},

где

\sqrt{3}H=\sqrt{\Lambda}=\sqrt{8\pi G\rho_{DE}}.

Предсказанное таким образом значение плотности темной энергии составляет 1018 ГэВ4. Наблюдаемое же значение равно 10-3 эВ4 отличие на 120 порядков! Во избежание данного казуса авторами статьи было предложено энтропийное истолкование космологической константы. Для этого рассмотрим горизонт голографической поверхности с температурой:

T_{\beta} = \dfrac{\hbar}{k_В} \dfrac{H}{2\pi} \sim 3 \times 10^{-30} K.

Из ранее упомянутого эффекта Унру следует, что горизонт, обладающий температурой, должен неизбежно ускоряться:

a_{horizon} = \dfrac{2\pi c k_В T_{\beta}}{\hbar} = cH \sim 10^{-9} \: m/s^2.

При данном мы можем видеть, как темная энергия становится лишним компонентом теперь мы можем объяснить космологическое ускорение без нее. Исследователи решили сравнить свои теоретические изыскания с нашей моделью Вселенной на примере сверхновых типа Ia. Для этого они взяли стандартную формулу фотометрического расстояния и построили две кривые:

D_L = \dfrac{c(1+z)}{H_0} \int^z_0 \dfrac{\delta z'}{H(z')}.

Ускорение, обусловленное энтропийными силами, как оказалось, обеспечивают такой же гладкий переход кривой в горизонтальное положение, что и в уже классической интерпретации светимости сверхновых.

Краткий вывод

На основании проведенных теоретических опытов, можно сделать вывод о том, что:

  1. Энтропийная трактовка гравитации удовлетворяет теоретическим предположениям для модели, соответствующей релятивистской плоской вселенной и ньютоновской вселенной;

  2. Энтропийная трактовка ускоренного расширения вселенной потенциально способно объяснить природу космологического ускорения без привлечения темной энергии.

Сказать, что это круто ничего не сказать. Мы, вероятно, находимся совсем вблизи от нового научного прорыва, похожего на тот, что совершил Альберт Эйнштейн более ста лет назад. Даже если мы не сможем доказать справедливость голографического принципа для нашей Вселенной, мы откроем для себя новый мир, полный струн не музыкальных, конечно, но и на них поиграть мы сможем. А вообще перед нами новое непаханое поле, которое мы только увидели. В голографическом мире мы можем придумать много нового, что-то даже открыть и не только физическое, но и принадлежащее миру математики или химии. Я думаю, свой вывод каждый сформулировал для себя сам. Для интересующихся я оставляю библиографический список с источниками и с интересными материалами по этой теме:

  1. Самодостаточная для популярного понимания энтропийной гравитации статья на Википедии (ссылка);

  2. Статья Информация в голографической Вселенной на Modern Cosmology (ссылка);

  3. Оригинальная статья Эрика Верлинде (ссылка), а также перевод этой статьи Михаилом Ханановичем Шульманом (ссылка);

  4. Статья Entropic Acceletating Universe на arXiv.org (Easson et al., ссылка);

  5. Статья Голографический принцип первая встреча на Modern Cosmology (ссылка);

  6. Моя статья об энтропии Просто об энтропии: без формул и с бытовыми примерами (ссылка);

  7. Статья Черные дыры и голограммы на Хабре (ссылка);

  8. Супер-пупер статья о голографическом принципе на английском (ссылка).

Ну и напоминаю, о том, чтобы читатель не стеснялся задать вопрос или поправить меня в комментариях. Также у меня есть телеграм-канал, где я рассказываю о последних новостях космологии и астрофизики, а также пишу об астрофотографии. Пишите мне в личку или наш чат. Всем добра!

Подробнее..

Перевод Почему для чёрных дыр 28 47 72, а не 75

26.05.2021 20:08:54 | Автор: admin
Две чёрные дыры, каждая с аккреционным диском, изображаются незадолго до столкновения. С новым сообщением GW190521 мы нашли самые тяжелые массивные чёрные дыры, когда-либо обнаруженные в гравитационных волнах, их масса превышает 100 солнечных масс, они впервые раскрывают массу переходной чёрной дырыДве чёрные дыры, каждая с аккреционным диском, изображаются незадолго до столкновения. С новым сообщением GW190521 мы нашли самые тяжелые массивные чёрные дыры, когда-либо обнаруженные в гравитационных волнах, их масса превышает 100 солнечных масс, они впервые раскрывают массу переходной чёрной дыры

Для некоторых физических объектов, подчиняющихся закону гравитации, сложение не всегда просто. Если объединить чёрную дыру массой 28 солнечных масс с чёрной дырой массой в 47 солнечных масс, полученная в результате чёрная дыра будет иметь массу 72 солнечные массы, а не 75. Фактически при слиянии любых двух чёрных дыр получаемая в результате масса меньше стартовой. Это связано не с недостатком математики, а скорее с особенностями работы гравитации. Здесь объясняется, почему при слиянии чёрных дыр всегда теряется масса.


Когда чёрная дыра и звезда-компаньон вращаются друг вокруг друга, движение звезды со временем изменяется из-за гравитационного влияния чёрной дыры, в это же время чёрная дыра обрастает веществом звезды, порождая рентгеновское и радиоизлучение. Если вместо звезды на орбите вращается другая чёрная дыра, будет преобладать гравитационное излучение (ЦЗИНЧУАНЬ ЮЙ/ПЕКИНСКИЙ ПЛАНЕТАРИЙ/2019год)Когда чёрная дыра и звезда-компаньон вращаются друг вокруг друга, движение звезды со временем изменяется из-за гравитационного влияния чёрной дыры, в это же время чёрная дыра обрастает веществом звезды, порождая рентгеновское и радиоизлучение. Если вместо звезды на орбите вращается другая чёрная дыра, будет преобладать гравитационное излучение (ЦЗИНЧУАНЬ ЮЙ/ПЕКИНСКИЙ ПЛАНЕТАРИЙ/2019год)

Одно из первых научных правил, которым мы учимся в нашей жизни, это сохранение энергии. Оно гласит, что энергия не может быть создана или уничтожена, а только преобразована из одной формы в другую. Поднимая тяжелый блок, вы выполняете работу (форма энергии) против силы тяжести: вы передаёте энергию блоку. В результате блок приобретает гравитационную потенциальную энергию. Если блок бросить, эта потенциальная энергия преобразуется в кинетическую энергию, а в момент соударения блока с полом эта энергия переходит во множество других форм: тепло, деформацию и звуковую энергию, помимо прочего.

Поэтому, если начать с двух масс, также присутствует определённое количество полной энергии, энергии, которая присуща всему, что имеет массу, и задаётся самым известным уравнением Эйнштейна: E = mc. Есть, конечно, и другие формы энергии, но три из них нельзя игнорировать. Две из них более очевидны, чем третья; но мы должны рассмотреть все соответствующие формы энергии, если хотим убедиться, что всё, что необходимо сохранить, действительно сохранено.

Из-за эффектов как высокой скорости (специальная теория относительности), так и кривизны пространства (общая теория относительности) звезда, проходящая рядом с чёрной дырой, должна подвергнуться ряду важных воздействий, которые приведут к физическим наблюдаемым явлениям, таким как красное смещение её света и небольшое, но значительное изменение её эллиптической орбиты. Сближение S02 в мае 2018 года было лучшим шансом, предоставленным нам, чтобы исследовать эти релятивистские эффекты и тщательно изучить предсказания Эйнштейна (ESO/M. KORNMESSER)Из-за эффектов как высокой скорости (специальная теория относительности), так и кривизны пространства (общая теория относительности) звезда, проходящая рядом с чёрной дырой, должна подвергнуться ряду важных воздействий, которые приведут к физическим наблюдаемым явлениям, таким как красное смещение её света и небольшое, но значительное изменение её эллиптической орбиты. Сближение S02 в мае 2018 года было лучшим шансом, предоставленным нам, чтобы исследовать эти релятивистские эффекты и тщательно изучить предсказания Эйнштейна (ESO/M. KORNMESSER)

В дополнение к энергии массы покоя мы должны рассмотреть энергию следующих трёх типов:

  1. Гравитационная потенциальная энергия зависит от расстояния между двумя массами. Массы, разделённые бесконечным расстоянием, имеют нулевую гравитационную потенциальную энергию. Однако, чем ближе они друг к другу, тем больше деформируется пространство-время и, следовательно, тем больше мы получаем отрицательной гравитационной потенциальной энергии.

  2. Кинетическая энергия определяется движением этих двух масс относительно друг друга. Чем быстрее вы двигаетесь, тем больше ваша кинетическая энергия. Сочетание кинетической и потенциальной энергии объясняет, почему падающие объекты ускоряются: по мере уменьшения отрицательной гравитационной потенциальной энергии растёт положительная кинетическая энергия.

  3. Энергия также содержится в гравитационных волнах (форма гравитационного излучения, которая уносит энергию из системы).

При слиянии двух движущихся объектов порождается огромное количество гравитационных волн. Простое путешествие через искривлённое пространство отличный способ заставить массивные частицы излучать гравитационные волны. В этом заключается фундаментальная разница между гравитацией Эйнштейна и гравитацией НьютонаПри слиянии двух движущихся объектов порождается огромное количество гравитационных волн. Простое путешествие через искривлённое пространство отличный способ заставить массивные частицы излучать гравитационные волны. В этом заключается фундаментальная разница между гравитацией Эйнштейна и гравитацией Ньютона

В то время как понятия энергии массы покоя, потенциальной гравитационной энергии и кинетической энергии прекрасно работают в ньютоновской механике и гравитации, гравитационное излучение по своей сути новая идея, присущая общей теории относительности Эйнштейна. Когда массивное тело движется через область пространства, в которой изменяется кривизна пространства-времени или ускоряется массивное тело (меняет направление), даже когда кривизна пространства-времени остаётся постоянной, такое взаимодействие порождает излучение определённого типа гравитационные волны.

Любое массивное тело, вращающееся вокруг любого другого массивного тела, будет излучать эти волны, причём, как правило, чем меньше масса, тем больше эффект. Например, мы считаем, что Земля вращается вокруг Солнца по стабильной орбите, но технически это не совсем верно. Если бы свойства Солнце оставались постоянными никаких изменений массы никогда, Земля не осталась бы на эллиптической орбите навечно. Наоборот, планеты будут медленно излучать энергию, их орбиты будут снижаться, и в конечном счёте они будут по спирали приближаться к Солнцу. Для достижения финальной точки Земле может потребоваться около 10 лет. Падение остаётся ненаблюдаемым долгое время, но, если гравитационное излучение реально, то оно произойдёт.

Гравитационное движение Земли вокруг Солнца не связано с невидимым гравитационным притяжением, но лучше описывается свободным падением Земли в искривлённом пространстве, большая часть кривизны которого порождается Солнцем. Кратчайшее расстояние между двумя точками не прямая линия, а геодезическая: кривая линия, которая определяется гравитационной деформацией пространства-времени. Проходя через такое искривлённое пространство, Земля испускает гравитационные волны (LIGO/T. PYLE)Гравитационное движение Земли вокруг Солнца не связано с невидимым гравитационным притяжением, но лучше описывается свободным падением Земли в искривлённом пространстве, большая часть кривизны которого порождается Солнцем. Кратчайшее расстояние между двумя точками не прямая линия, а геодезическая: кривая линия, которая определяется гравитационной деформацией пространства-времени. Проходя через такое искривлённое пространство, Земля испускает гравитационные волны (LIGO/T. PYLE)

Однако во многих астрофизических сценариях эффекты гравитационных волн гораздо более выражены. В общем, любой эффект, который существует только в общей теории относительности (а не в ньютоновской гравитации), будет самым сильным там, где:

  • массы велики;

  • расстояния малы;

  • кривизна пространства велика.

Где у нас есть большие массы на малых расстояниях, где пространственная кривизна очень значительна? Вблизи массивных, компактных объектов: белых карликов, нейтронных звезд и чёрных дыр. Из всех них у чёрных дыр наибольшие массы, наименьшие объёмы, к ним можно подойти на очень близкое расстояние, и рядом с ними пространственная кривизна максимальна.

Однако чёрные дыры чрезвычайно трудно обнаружить и наблюдать, в то время как многие нейтронные звёзды имеют характерный признак очень регулярную пульсацию. Когда одна пульсирующая нейтронная звезда вращается вокруг другой, большей массы, например другой нейтронной звезды или чёрной дыры, мы можем начать измерять поведение таких импульсов, и они открывают нам нечто захватывающее.

Пульсар с массивным двойным компаньоном, особенно компактным компаньоном, таким как белый карлик, другая нейтронная звезда или чёрная дыра может испускать значительное количество гравитационных волн. Такое излучение вызовет изменение временных наблюдений пульсара, что позволит проверить теорию относительности (ESO/L. CALADA)Пульсар с массивным двойным компаньоном, особенно компактным компаньоном, таким как белый карлик, другая нейтронная звезда или чёрная дыра может испускать значительное количество гравитационных волн. Такое излучение вызовет изменение временных наблюдений пульсара, что позволит проверить теорию относительности (ESO/L. CALADA)

Если бы нейтронная звезда находилась на совершенно стабильной орбите, которая никак не деформируется из-за излучения предсказанных гравитационных волн, мы получили бы постоянный во времени характер импульсов. Однако, если бы орбита распадалась, мы бы увидели эволюцию этого характера импульсов, и, в частности, мы также увидели бы ускорение самого орбитального движения. (С потерей энергии тело падает ближе к другим массам, а это означает более плотные и быстрые орбиты.)

С 1960-х годов мы знаем о двойных пульсарах, т.е. пульсарах, вращающихся вокруг другой нейтронной звезды. Мы также знаем о синглетных пульсарах, или пульсарах, которые в своей системе представляют собой единственное тело с большой массой. Что мы обнаруживаем при длительном наблюдении за такими объектами? У таких пульсаров очень последовательный характер импульсов, и этот характер не изменяется с течением времени. Однако для двойных пульсаров характерно не только изменение последовательности наблюдаемых импульсов, но и сама последовательность меняется в точности так, как предсказывает общая теория относительности в силу излучения гравитационных волн.

Релятивистский прогноз (красная линия) и ньютоновский прогноз (зелёная линия) в сравнении с данными двойного пульсара (чёрные точки). С самого первого открытия двойной нейтронной звездной системы мы знали, что гравитационное излучение уносит энергию. Поиск системы на завершающих стадиях движения по спирали и слияния был только вопросом времени (НАСА (L), РАДИОАСТРОНОМИЧЕСКИЙ ИНСТИТУТ МАКСА ПЛАНКА/МАЙКЛ КРАМЕР)Релятивистский прогноз (красная линия) и ньютоновский прогноз (зелёная линия) в сравнении с данными двойного пульсара (чёрные точки). С самого первого открытия двойной нейтронной звездной системы мы знали, что гравитационное излучение уносит энергию. Поиск системы на завершающих стадиях движения по спирали и слияния был только вопросом времени (НАСА (L), РАДИОАСТРОНОМИЧЕСКИЙ ИНСТИТУТ МАКСА ПЛАНКА/МАЙКЛ КРАМЕР)

Па-де-де в космосе: когда две нейтронные звезды танцуют вокруг общего центра гравитации, они излучают гравитационные волны. Поскольку это происходит с обоими объектами, они теряют часть орбитальной энергии, медленно приближаясь друг к другу по спиральной орбите, а их период обращения становится всё короче. Диаграмма справа показывает их состояние как двойного пульсара PSR-J0737-3039.

Хотя нейтронные звёзды могут быть как массивными, так и невероятно компактными, достигая по массе чуть более 2 солнечных масс при размерах всего 1020 километров, чёрные дыры ещё экстремальнее. Их массивные тела сжимаются до сингулярности, скрытой за горизонтом событий (граница, из-за которой теоретически ничто не может вырваться), размер и форма которого определяются только их массой и угловым моментом.

Когда чёрные дыры вращаются друг вокруг друга в так называемой двойной системе чёрных дыр, каждая масса испытывает влияние пространства-времени, искривлённого другой массой. Когда они движутся по взаимным орбитам, взаимодействие массы и искривлённого пространства-времени порождает излучение. (Аналогичный эффект имеет место в электромагнетизме, когда заряжённая частица, движущаяся/ускоряющаяся через изменяющееся электромагнитное поле, испускает излучение.) Амплитуда, частота и энергия гравитационного излучения определяются величиной масс, разделением масс и скоростью движения масс в этом искривлённом пространстве-времени.

Рябь пространства-времени, порождаемая орбитальными массами, возникает независимо от конечного продукта слияния. Однако большая часть высвобождаемой энергии исходит только на нескольких последних орбитальных витках и во время фактического слияния двух масс, которые проходят стадии вращения по спирали и слияния (Р. ХАРТ CALTECH/JPL)Рябь пространства-времени, порождаемая орбитальными массами, возникает независимо от конечного продукта слияния. Однако большая часть высвобождаемой энергии исходит только на нескольких последних орбитальных витках и во время фактического слияния двух масс, которые проходят стадии вращения по спирали и слияния (Р. ХАРТ CALTECH/JPL)

Удивительно то, что большая часть излучаемой энергии около 90% или более испускается только во время последних двух или трёх орбитальных витков этих масс друг вокруг друга, а также в момент самого слияния. Если бы не этот энергетический пик в самом конце долгого космического танца, мы бы полностью пропустили многие события излучения гравитационных волн, которые мы видели, включая самое первое.

Во многих случаях только всплеск во время этих последних миллисекунд даёт нам верную сигнатуру сигнала гравитационных волн, возвышающегося над шумом. (Также часто удаётся извлечь оставшийся сигнал.) Во многих отношениях мы наблюдаем самые энергетические события излучения гравитационных волн со времён Большого взрыва. Например, за последние несколько миллисекунд, когда горстка солнечных масс может быть преобразована в энергию гравитационных волн, при слиянии система двух чёрных дыр может излучать больше энергии, чем все звёзды во Вселенной, вместе взятые.

На этом графике показаны массы всех компактных двойных звёзд, обнаруженных LIGO/Virgo: чёрные дыры, отмеченные синим цветом, и нейтронные звёзды, отмеченные оранжевым цветом. Также показаны чёрные дыры с массами звёзд (фиолетовые) и нейтронные звёзды (жёлтые), обнаруженные с помощью наблюдений электромагнитных волн. Всего у нас более 50 наблюдений событий излучения гравитационных волн, соответствующих слиянию компактных масс (LIGO/VIRGO/СЕВЕРО-ЗАПАДНЙ УНИВЕРСИТЕТ/ФРЭНК ЭЛАВСКИ)На этом графике показаны массы всех компактных двойных звёзд, обнаруженных LIGO/Virgo: чёрные дыры, отмеченные синим цветом, и нейтронные звёзды, отмеченные оранжевым цветом. Также показаны чёрные дыры с массами звёзд (фиолетовые) и нейтронные звёзды (жёлтые), обнаруженные с помощью наблюдений электромагнитных волн. Всего у нас более 50 наблюдений событий излучения гравитационных волн, соответствующих слиянию компактных масс (LIGO/VIRGO/СЕВЕРО-ЗАПАДНЙ УНИВЕРСИТЕТ/ФРЭНК ЭЛАВСКИ)

Забавно в этом то, что есть простое приближение, которое позволяет ответить на вопрос: При слиянии любых двух чёрных дыр какая часть массы преобразуется в энергию?

Приближение? Просто возьмите меньшую массу из двух сливающихся чёрных дыр, умножьте это значение на 0,1 примерно такая часть массы преобразуется в энергию. Да, это 10% от массы меньшей чёрной дыры.

Существуют всевозможные сложные эффекты, и большая вращательная составляющая чёрной дыры, которая есть у многих из них, может немного изменить историю. Однако эффекты масс, как правило, доминируют над спином / угловым моментом, а эффекты неравномерных соотношений масс, как правило, невелики. Фактически физик Виджай Варма построил график в целях проверки этого приближения для различных соотношений масс, и, как вы видите, 10% от меньшей массы отличное приближение для доли массы, которая преобразуется в энергию при слиянии двух чёрных дыр.

Какая часть массы преобразуется в гравитационные волны при слиянии двух чёрных дыр? Обратите внимание, что, хотя график, очевидно, показывает большие вариации в зависимости от соотношения масс, масштаб по оси y очень мал, и 10% даёт хорошее приближение в широком диапазоне соотношений масс (ВИДЖАЙ ВАРМА)Какая часть массы преобразуется в гравитационные волны при слиянии двух чёрных дыр? Обратите внимание, что, хотя график, очевидно, показывает большие вариации в зависимости от соотношения масс, масштаб по оси y очень мал, и 10% даёт хорошее приближение в широком диапазоне соотношений масс (ВИДЖАЙ ВАРМА)

Если происходит слияние двух чёрных дыр и известны их начальные массы, можно предсказать, какая часть этих масс перейдёт в окончательную чёрную дыру после слияния, а какая часть будет излучена в виде гравитационных волн. Просто возьмите чёрную дыру меньшей массы, уберите из неё 10% массы, а чтобы получить конечный результат, оставшуюся часть объедините с другой чёрной дырой. Между тем эти 10% массы меньшей чёрной дыры преобразуются в гравитационные волны, которые распространяются по Вселенной во всех направлениях.

Таким образом, если взять чёрные дыры массой 46 и 40 солнечных масс, масса конечной чёрной дыры равна 82 солнечным массам, а 4 солнечных массы будут излучены.

Для чёрных дыр массой 53 и 10 солнечных масс масса финальной чёрной дыры равна 62 солнечным массам, а в излучение перейдёт 1 солнечная масса.

Для чёрных дыр массой 47 и 28 солнечных масс масса финальной чёрной дыры равна 72,2 солнечной массы, а в излучение перейдёт 2,8 солнечной массы.

В нижней части анимации показан сигнал гравитационных волн (по амплитуде и частоте), генерируемых двумя чёрными дырами примерно одинаковой массы при прохождении стадий вращения по спирали и слияния. Такой сигнал гравитационных волн распространяется в трёхмерном пространстве со скоростью света. Его можно обнаружить с расстояния в миллиарды световых лет достаточно точным детектором гравитационных волн (Н. ФИШЕР, Х. ПФАЙФФЕР, А. БУОНАННО (ИНСТИТУТ ГРАВИТАЦИОННОЙ ФИЗИКИ ИМ. МАКСА ПЛАНКА), МОДЕЛИРОВАНИЕ ЭКСТРЕМАЛЬНОГО ПРОСТРАНСТВА-ВРЕМЕНИ (SXS))В нижней части анимации показан сигнал гравитационных волн (по амплитуде и частоте), генерируемых двумя чёрными дырами примерно одинаковой массы при прохождении стадий вращения по спирали и слияния. Такой сигнал гравитационных волн распространяется в трёхмерном пространстве со скоростью света. Его можно обнаружить с расстояния в миллиарды световых лет достаточно точным детектором гравитационных волн (Н. ФИШЕР, Х. ПФАЙФФЕР, А. БУОНАННО (ИНСТИТУТ ГРАВИТАЦИОННОЙ ФИЗИКИ ИМ. МАКСА ПЛАНКА), МОДЕЛИРОВАНИЕ ЭКСТРЕМАЛЬНОГО ПРОСТРАНСТВА-ВРЕМЕНИ (SXS))

Пока пространство искривлено, массивное тело не может двигаться через него, не испуская гравитационного излучения. В самых тяжёлых случаях это даже влияет на то, как выполняется сложение. От первого предсказания гравитационных волн до их первого прямого измерения прошло 100 лет, и это достижение никогда не выглядело более впечатляющим. По мере улучшения наших наблюдений мы сможем выявить более тонкие эффекты, наложенные поверх этого простого приближения. Однако пока наслаждайтесь простотой математики чёрных дыр, которая доступна каждому!

Несмотря на такую простоту математики столкновений чёрных дыр современное моделирование космических процессов по-прежнему требует анализа огромных потоков данных с детекторов, иными словами, до подобных упрощений и допущений нужно доходить ощутимо трудными путями, зато результаты трудов всегда будут поражать нас красотой, точностью и чёткостью науки.

Сегодня анализ данных и работа с ними отдельная, интересная область не только в науке, но и в сфере бизнеса пренебрегать данными сейчас просто невозможно. И если область работы над данными и их анализа вам интересна, вы можете обратить внимание на наш флагманский курс по Data Science, где получаемый студентами объём знаний равен знаниям, приобретаемым за два-три года активного самостоятельного изучения науки о данных.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Геометрическое представление кривизны пространства в метрике Шварцшильда

25.09.2020 14:16:06 | Автор: admin
или два плюс два равно четыре.

Для понимания статьи достаточно школьного курса математики.

Форма множителя в метрике Шварцшильда давно не давала мне покоя своей изысканной двуличностью, и я решил уделить некоторое время изысканиям возможностей её преобразования. Сама метрика Шварцшильда получается в результате решения ОТО для вакуумного случая (тензор энергии-импульса равен нулю):

$ds^2 = - \left(1- 2 \frac{GM}{c^2 r}\right) c^2 dt^2 + \left(1- 2 \frac{GM}{c^2 r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Она описывает пространственно-временной континуум в окрестностях произвольного компактного массивного объекта. Компактного, значит, девиации формы незначительны в отношении к массе. Проще говоря, круглый и плотный. Обычно здесь приводят в пример чёрную дыру. Никто почему-то не приводит примеров некомпактных объектов. Герметичная палка из пенопласта в открытом космосе на бесконечном удалении от массивных объектов, например, некомпактный объект. Кубический конь на расстоянии, с которого можно разглядеть печаль в его глазах тоже.

Через объём 3-сферы


Произведём замену:

$M=\frac{E}{c^2}$


Тогда метрика станет такой:

$$display$$ds^2 = - \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right) c^2 dt^2 + \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$$display$$


Замена была нужна только для того, чтобы обратить внимание на четвёртую степень у скорости света, потому что все циферки в формулах имеют значение. Об этом говорит вся история физики любая эмпирически полученная формула со временем получает теоретическое основание, объясняющее значения всех математических форм, которые в ней содеражатся.
Обычно в представлении этой метрики часть, связанную с физическими константами и массой тела, создающего поле, выражают через радиус Шварцшильда:

$r_s = 2 \cdot \frac{GE}{c^4}$


потому что метрика имеет особенность в этой точке. Здесь время, буквально, останавливается.
Вот так, в таком случае, выглядит вся метрика:

$ds^2 = - \left(1- \frac{r_s}{ r}\right) c^2 dt^2 + \left(1- \frac{r_s}{r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Но в продолжение рассуждений о физической сути явлений эта двойка:

$r_s = \color{red}{2} \cdot \frac{GE}{c^4}$


тоже должна быть осмыслена. Поэтому представим так:

$u = \frac{GE}{c^4}$


Это просто половина гравитационного радиуса $r_s$, и размерность у него такая же. Получим:

$ 1 - 2\frac{GE}{c^4r} = 1 - 2\frac{u}{r} $


Напрашивается:

$= \left( 1 - 2\frac{u}{r} + \frac{u^2}{r^2} \right) - \frac{u^2}{r^2} = \left( 1 - \frac{u}{r} \right)^2 - \frac{u^2}{r^2} = \left( \frac{r - u}{r} \right)^2 - \frac{u^2}{r^2} = $


$= \frac{(r-u)^2 - u^2}{r^2} \qquad \qquad (1)$


Уже неплохо. Зарисуем. Представим $r = OB$ конечным отрезком, $u = OA$ его частью, как показано на рисунке ниже. Очевидно, что $(r-u) = AB$.
image
Любопытно, кстати, что из $r_s = 2u$ следует, что точка $A$ находится за (под) горизонтом событий объекта энергии $E$. Вот так легко она находится, а мы не можем.
Теперь покажем, что отношение вида $(1)$ будет выполняться для всех точек, имеющих геометрическое место на перпендикуляре к $OB$ в точке $A$:

$\frac{(r-u)^2 - u^2}{r^2} = \frac{((r-u)^2 + a^2) - (u^2 + a^2)}{r^2} = \frac{b^2 - d^2}{r^2} \qquad \qquad (2) $


image
для любых $b = CB$ и $d = OC$.
Говоря проще, разность квадратов $(r-u)^2 - u^2$ эквивалентна разности любых величин, проекциями которых на $OB$ являются $AB$ и $OA$ соответственно, при условии, что точка $C$ у них общая.
Дальше предположим, что $u = u(E)$ и $(r-u)$, наоборот, проекции $r = OB$ на какие-то оси, то есть пифагорова сумма двух величин, в исходном виде перпендикулярных друг другу. Переводя это в требование, рассмотрим случай $\angle{OCB} = \pi/2$, для которого верно:

$b^2 = r^2 - d^2 \rightarrow (2) \rightarrow \frac{b^2 - d^2}{r^2} = 1 - 2\frac{d^2}{r^2} \qquad \qquad (3)$


image
Доработаем $(3)$ аналогично начальной итерации:

$1 - 2\frac{d^2}{r^2} = \left( 1 - 2\frac{d^2}{r^2} + \frac{d^4}{r^4} \right) - \frac{d^4}{r^4} = \frac{(r^2-d^2)^2 - d^4}{r^4} =$


$= \frac{b^4 - d^4}{\sqrt{b^2 + d^2}^4} = \frac{b^4 - d^4}{r^4}\qquad \qquad (4)$


Вот и четвёртая степень. Формула объёма 3-сферы:

$V = \frac{\pi^2 \cdot R^4}{2}$


Это я к тому, что если домножить и разделить $(4)$ на $\pi^2/2$:

$\frac{b^4 - d^4}{r^4} = \frac{\pi^2}{2} \cdot \frac{2}{\pi^2} \cdot \frac{b^4 - d^4}{r^4} = \frac{V_b - V_d}{V_r} \qquad \qquad (5)$


то множитель в метрике Шварцшильда превращается в разность объёмов двух 3-сфер, построенных вокруг двух радиальных проекций точки относительно центра поля, соотнесённой к объёму 3-сферы, образуемой полным расстоянием между точкой и центром поля.
С учётом того, что полный радиус задаётся проекциями, всю эту конструкцию весьма лаконично задают два параметра, один из которых связан с энергией, а второй нет. Там точно две координаты.

Выводы


Замечательными следствиями такого представления являются:
1. Из формы множителя видно, что поведение фотона ограничивает видимую зону пятимерного пространства-времени. За её пределами можно спрятать нечто гравитирующее, но невидимое.
2. Наличие второй спрятанной координаты избавляет от парадокса нулевого времени.
3. Раз кривизна пространства вокруг массивного тела может быть всегда разложена на две компоненты, одна из которых связана с энергией тела, а вторая исключительно с пространством, то следующим шагом надо решить уравнения ОТО для вакуумного случая пятимерного пространства-времени. Об этом в следующей статье.

Бонус. Через угол


Очевидно, что можно выразить значимость поля в точке через плоский угол, выражающий отклонение траектории движения от плоского пространства (в отсутствие гравитационных полей).
Выразим величины $b$ и $d$ через угол $\alpha = \angle{OBC}$: $b = r \cdot \cos\alpha; \ d = r \cdot \sin\alpha$. Назовём его угол кривизны траектории. Тогда множитель можно выразить очень по-разному:

$1 - 2\frac{GE}{c^4r} = \cos^2\alpha - \sin^2\alpha = \cos^4\alpha - \sin^4\alpha = 1 - 2 \sin^2\alpha = $


$= \frac{1-\tan^2\alpha}{1 + \tan^2\alpha} = \cos2\alpha \qquad \qquad (6) $


Особенно мне нравится вариант с тангенсами.
image
Подставим в исходный интервал:

$ ds^2 = -\cos 2\alpha \cdot c^2dt^2 + \cos^{-1} 2\alpha \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2 $


Всё, как и должно, превращается в плоскую метрику Минковского при $\alpha = 0$.
Здесь точно должен быть пятый
Продолжение следует.
Подробнее..

ОТО. Геометрическое представление кривизны пространства в метрике Шварцшильда. Часть 2

23.02.2021 10:12:21 | Автор: admin
или один плюс три снова четыре.

Для понимания статьи необходим школьный курс математики, и, может быть, даже достаточен.

В предыдущей статье мы выяснили, что множитель кривизны пространства в метрике Шварцшильда в каждое мгновение может быть представлен как сумма двух перпендикулярных мер (длин), одна из которых зависит от энергии массивного тела, создающего гравитационное поле, а вторая нет.
В этой статье, я объясню выводы предыдущей статьи, часть которых оказалась неочевидна, а также продолжу развитие идеи распрямления искривлённого четырёхмерного пространства-времени через энергетическую глубину.


Чтобы не скакать по ссылкам, предыдущая статья здесь целиком.
Форма множителя в метрике Шварцшильда давно не давала мне покоя своей изысканной двуличностью, и я решил уделить некоторое время изысканиям возможностей её преобразования. Сама метрика Шварцшильда получается в результате решения ОТО для вакуумного случая (тензор энергии-импульса равен нулю):

$ds^2 = - \left(1- 2 \frac{GM}{c^2 r}\right) \cdot c^2 dt^2 + \left(1- 2 \frac{GM}{c^2 r}\right)^{-1} \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Она описывает пространственно-временной континуум в окрестностях произвольного компактного массивного объекта. Компактного, значит, девиации формы незначительны в отношении к массе. Проще говоря, круглый и плотный. Обычно здесь приводят в пример чёрную дыру. Никто почему-то не приводит примеров некомпактных объектов. Герметичная палка из пенопласта в открытом космосе на бесконечном удалении от массивных объектов, например, некомпактный объект. Кубический конь на расстоянии, с которого можно разглядеть печаль в его глазах тоже.

Через объём 3-сферы


Произведём замену:

$M=\frac{E}{c^2}$


Тогда метрика станет такой:

$$display$$ds^2 = - \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right) c^2 dt^2 + \left(1- 2 \frac{GE}{c^\color{red}{4} r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$$display$$


Замена была нужна только для того, чтобы обратить внимание на четвёртую степень у скорости света, потому что все циферки в формулах имеют значение. Об этом говорит вся история физики любая эмпирически полученная формула со временем получает теоретическое основание, объясняющее значения всех математических форм, которые в ней содеражатся.
Обычно в представлении этой метрики часть, связанную с физическими константами и массой тела, создающего поле, выражают через радиус Шварцшильда:

$r_s = 2 \cdot \frac{GE}{c^4}$


потому что метрика имеет особенность в этой точке. Здесь время, буквально, останавливается.
Вот так, в таком случае, выглядит вся метрика:

$ds^2 = - \left(1- \frac{r_s}{ r}\right) c^2 dt^2 + \left(1- \frac{r_s}{r}\right)^{-1} dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


Но в продолжение рассуждений о физической сути явлений эта двойка:

$r_s = \color{red}{2} \cdot \frac{GE}{c^4}$


тоже должна быть осмыслена. Поэтому представим так:

$u = \frac{GE}{c^4}$


Это просто половина гравитационного радиуса $r_s$, и размерность у него такая же. Получим:

$ 1 - 2\frac{GE}{c^4r} = 1 - 2\frac{u}{r} $


Напрашивается:

$= \left( 1 - 2\frac{u}{r} + \frac{u^2}{r^2} \right) - \frac{u^2}{r^2} = \left( 1 - \frac{u}{r} \right)^2 - \frac{u^2}{r^2} = \left( \frac{r - u}{r} \right)^2 - \frac{u^2}{r^2} = $


$= \frac{(r-u)^2 - u^2}{r^2} \qquad \qquad (1)$


Уже неплохо. Зарисуем. Представим $r = OB$ конечным отрезком, $u = OA$ его частью, как показано на рисунке ниже. Очевидно, что $(r-u) = AB$.
image
Любопытно, кстати, что из $r_s = 2u$ следует, что точка $A$ находится за (под) горизонтом событий объекта энергии $E$. Вот так легко она находится, а мы не можем.
Теперь покажем, что отношение вида $(1)$ будет выполняться для всех точек, имеющих геометрическое место на перпендикуляре к $OB$ в точке $A$:

$\frac{(r-u)^2 - u^2}{r^2} = \frac{((r-u)^2 + a^2) - (u^2 + a^2)}{r^2} = \frac{b^2 - d^2}{r^2} \qquad \qquad (2) $


image
для любых $b = CB$ и $d = OC$.
Говоря проще, разность квадратов $(r-u)^2 - u^2$ эквивалентна разности любых величин, проекциями которых на $OB$ являются $AB$ и $OA$ соответственно, при условии, что точка $C$ у них общая.
Дальше предположим, что $u = u(E)$ и $(r-u)$, наоборот, проекции $r = OB$ на какие-то оси, то есть пифагорова сумма двух величин, в исходном виде перпендикулярных друг другу. Переводя это в требование, рассмотрим случай $\angle{OCB} = \pi/2$, для которого верно:

$b^2 = r^2 - d^2 \rightarrow (2) \rightarrow \frac{b^2 - d^2}{r^2} = 1 - 2\frac{d^2}{r^2} \qquad \qquad (3)$


image
Доработаем $(3)$ аналогично начальной итерации:

$1 - 2\frac{d^2}{r^2} = \left( 1 - 2\frac{d^2}{r^2} + \frac{d^4}{r^4} \right) - \frac{d^4}{r^4} = \frac{(r^2-d^2)^2 - d^4}{r^4} =$


$= \frac{b^4 - d^4}{\sqrt{b^2 + d^2}^4} = \frac{b^4 - d^4}{r^4}\qquad \qquad (4)$


Вот и четвёртая степень. Формула объёма 3-сферы:

$V = \frac{\pi^2 \cdot R^4}{2}$


Это я к тому, что если домножить и разделить $(4)$ на $\pi^2/2$:

$\frac{b^4 - d^4}{r^4} = \frac{\pi^2}{2} \cdot \frac{2}{\pi^2} \cdot \frac{b^4 - d^4}{r^4} = \frac{V_b - V_d}{V_r} \qquad \qquad (5)$


то множитель в метрике Шварцшильда превращается в разность объёмов двух 3-сфер, построенных вокруг двух радиальных проекций точки относительно центра поля, соотнесённой к объёму 3-сферы, образуемой полным расстоянием между точкой и центром поля.
С учётом того, что полный радиус задаётся проекциями, всю эту конструкцию весьма лаконично задают два параметра, один из которых связан с энергией, а второй нет. Там точно две координаты.

Через угол


Очевидно, что можно выразить значимость поля в точке через плоский угол, выражающий отклонение траектории движения от плоского пространства (в отсутствие гравитационных полей).
Выразим величины $b$ и $d$ через угол $\alpha = \angle{OBC}$: $b = r \cdot \cos\alpha; \ d = r \cdot \sin\alpha$. Назовём его угол кривизны траектории. Тогда множитель можно выразить очень по-разному:

$1 - 2\frac{GE}{c^4r} = \cos^2\alpha - \sin^2\alpha = \cos^4\alpha - \sin^4\alpha = 1 - 2 \sin^2\alpha = $


$= \frac{1-\tan^2\alpha}{1 + \tan^2\alpha} = \cos2\alpha \qquad \qquad (6) $


Особенно мне нравится вариант с тангенсами.
image
Подставим в исходный интервал:

$ ds^2 = -\cos 2\alpha \cdot c^2dt^2 + \cos^{-1} 2\alpha \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2 $


Всё, как и должно, превращается в плоскую метрику Минковского при $\alpha = 0$.
Здесь точно должен быть пятый
Продолжение следует.

Если коротко, то мы представляем метрику Шварцшильда:

$ds^2 = - \left(1- 2 \frac{GM}{c^2 r}\right) \cdot c^2 dt^2 + \left(1- 2 \frac{GM}{c^2 r}\right)^{-1} \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2$


где $M$ масса тела, $s$ интервал, $t$ время, $r, \theta, \phi$ сферические координаты, $G, c$ вселенские константы, так:

$ ds^2 = - \frac{V_b - V_d}{V_r} \cdot c^2 dt^2 + \frac{V_r}{V_b - V_d} \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2 \qquad (1) $


где $V_b, V_d, V_r - $ объёмы 3-сфер, заданных радиусами: $b$ в псевдоевклидовом пространстве, энергорадиусом $d$ массы гравитирующего тела и их суммой $r = \sqrt{b^2 + d^2}$;
и так:

$ ds^2 = -\cos 2\alpha \cdot c^2dt^2 + \cos^{-1} 2\alpha \cdot dr^2 + r^2 \cdot d\theta^2 + r^2 \cdot \sin^2\theta \cdot d\phi^2 \qquad (2) $


где $\alpha$ угол кривизны угол отклонения траектории объекта от нормальной (от её проекции на плоское трёхмерное пространство).
Физически интерпретировать смысл формулы $(1)$ можно было бы так: объект, движущийся в бесконечном вечном асимптотически плоском пространстве Шварцшильда, приближаясь к массивному объекту, будет испытывать дефицит пространства в направлении центра масс гравтела, словно там из ткани космоса вынули часть 4-объёма, пропорциональную массе гравтела и обратно пропорциональную расстоянию до его центра масс. Важным аспектом при этом является то, что изменение кривизны происходит линейно изменению четырёхмерного объёма 3-сферы, а не трёхмерного, потому оно и выглядит таким одутловатым в стандартной метрике.
Это достаточно образная трактовка, которая возможно поможет взглянуть на метрику другими глазами. А формулу $(2)$ я пока трактовать не буду, потому что по ходу данной статьи она ещё получит свою интерпретацию.
Далее я сперва объясню выводы предыдущей статьи, а затем перейду к развитию темы с представлением метрики через дополнительное измерение.

Часть 1. Выводы предыдущей статьи и пояснения к ним



Выводы предыдущей статьи с пояснениями

Выводы


Из возможности такого представления были сделаны следующие выводы:
1. Из формы множителя видно, что поведение фотона ограничивает видимую зону пятимерного пространства-времени. За её пределами можно спрятать нечто гравитирующее, но невидимое.
2. Наличие второй спрятанной координаты избавляет от парадокса нулевого времени.
3. Раз кривизна пространства вокруг массивного тела может быть всегда разложена на две компоненты, одна из которых связана с энергией тела, а вторая исключительно с пространством, то следующим шагом надо решить уравнения ОТО для вакуумного случая пятимерного пространства-времени.

Ограничение видимой зоны пятимерного пространства


Чтобы наглядно объяснить первый вывод предыдущей статьи, представим множитель кривизны траектории объекта так:
image
где $OB$ полное расстояние $r$ до массивного объекта, $b$ величина координаты, не связанной с энергией массивного тела, $d$ величина координаты, связанной с энергией массивного тела, энергетическая глубина.
Единственное отличие от представления в предыдущей статье в том, что для наглядности картинка перевёрнута: переставлены местами величины $ u = AB $ и $ (r-u) = OA $, то есть энергетическая глубина как бы отнесена к движущейся точке, вместо самого объекта. На итоговый результат это не влияет, но позволяет наглядно представить множитель $ \cos 2\alpha = \cos^2\alpha - \sin^2\alpha $, потому что обратные проекции $b$ и $d$ на гипотенузу $r = OB$ являются квадратами косинуса и синуса угла $\angle BOC = \alpha$ соответственно. Иначе говоря:

$ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{OA^2 - AB^2}{OB^2} $


Таким образом, кривизна движения объекта, находящегося в точке $B$ относительно массивного объекта в точке $O$ определяется как отношение разности площадей кругов радиусов $OA$ (синего) и $AB$ (красного) в отношении к кругу радиуса $r = OB$.
Движение по осям рекурсивно влияет на обе координаты измерения неразрывно связаны, и в зависимости от показателя массы движущегося объекта траектория кривой будет изменяться, принимая крайнее положение при $ m=0, \ ds^2 = 0 $, то есть для фотона. При этом область возможных траекторий движущихся объектов, обладающих массой, будет находится с одной стороны от траектории фотона $ (ds^2 > 0) $ (в стандартном представлении интервала, для $(2)$ наоборот $ (ds^2 < 0) $ ), будучи ею предельно ограничена.
Таким образом, в обстоятельствах описываемых интервалом, заданным через угол кривизны, пространство всегда можно условно разделить на две области: дофотонную внутреннюю (ниже обозначена красным: при той же кривизне проходимые расстояния меньше, чем у света), и постфотонную внешнюю (ниже синим).
image
Из изложенного логически вытекает отрицательность интервала $( ds^2 < 0 )$ привычного вида для объектов в синей части, и как следствие его пространственно-подобность. Однако, это следствие ограниченной применимости интервала четырёхмерного пространства-времени для описания континуума большей размерности.
Если мысленно увязать ось $ w $ с явлением энергии, то синюю область можно попробовать трактовать как часть плоского пространства, которая однако вследствие гравитации имеет такую энергетическую плотность, что электромагнитные волны её обтекают, и делают тем самым ненаблюдаемой.
Совсем утрировано: все объекты с более кривыми траекториями, чем у света, будут видимы, а менее кривые нет. При этом для того, чтобы оказаться скрытыми, им совершенно необязательно двигаться быстрее света проходить большее пространство за то же время находится правее прямой, соответствующей $ ds^2 = 0 $ в точке. Им достаточно находится ниже этой прямой, и они останутся скрыты гравитационным искривлением, взаимодействуя с гравитирующим объектом легче, чем свет.
Завершу эту главу фантазией, предположив, что в тёмное пространство под синим подолом гравитационного поля можно было бы спрятать, например, пару гораздо более энергоёмких поколений частиц (II и III), таких неустойчивых в нашем 4-континууме.
Если большое количество такого рода частиц разместить компактно, то такое скопление при наблюдении проявляло бы свойства тёмной материи само создавало гравитационное поле, оставаясь при этом вне фотонного пространства невидимым.
Естественно, это всего лишь недоказанные наброски большими мазками. Догадки, которые должны быть высказаны уже только затем, чтобы выявить противоречивость подхода в целом на раннем этапе. А также, вопреки своей возможной ложности в деталях, они могут, наоборот, подстегнуть чей-то интерес к подходу.

Ненулевое время в особенной точке метрики


Здесь предлагаю для начала взглянуть на изменение угла кривизны в динамике:
image
Если условно представить движение объекта в гравитационном поле поворотом относительно плоского трёхмерного пространства наблюдателя, то исходное количество движения останется прежним, изменится только его конфигурация.
Я хочу сказать, что гравитационное поле можно представить пожирателем движения фундаментальных частиц, словно оно является воронкой в никуда, поворачивая их перемещение из наблюдаемого пространства в невидимом направлении, определённо связанном с наблюдаемым нами явлением энергии.
Причём, говоря поворачивая, я, естественно, не подразумеваю поворот в обычном, наблюдаемом пространстве. Гравитационное поле забирает часть движения частиц, как если бы те вращались и могли быть охарактеризованы частотой вращения комплексной составляющей, а гравитационное поле было берегом, который поджимает заходящие на него волны меняет количество движения вдоль, переводя его в движение поперёк. Увеличивает мнимую составляющую, уменьшая вещественную.
Таким образом, в предлагаемой парадигме континуума расширенной мерности движение не исчезает и не растягивается/сжимается. Оно перетекает из плоского наблюдаемого пространства $(x,y,z)$ в перпендикулярном направлении совокупно определённом ранее как единая ось $w$, хоть полноценной осью, изоморфной остальным, судя по всему, не является. Однако ставка на аналогичное представление времени сто лет назад сыграла, хоть ось времени также не совсем обычна, поэтому продолжим пилить в этом месте.
Изменение относительного положения движущегося объекта в пространстве рекурсивно влияет на характеристику его дальнейшего движения так, как если бы на каждый тик $dt^2$ часть движения переходила из наблюдаемого плоского пространства в перпендикулярном ему направлении или наоборот в зависимости от направления.
Соответственно, точка $ r_{s} = 2 GE / c^4 $ (угол кривизны $\alpha = \pi / 4 $) является граничным условием для безмассового объекта, при котором количество наблюдаемого движения объекта становится равно количеству движения изымаемого полем, что реконфигурирует собственное движение объекта в нечто иное, но прекращения движения последнего в пространстве $(w,x,y,z)$ при этом всё же не происходит. Движение остаётся, мы его просто не видим.
Время объекта не останавливается, а энергия количество движения не становится бесконечной.


Решение уравнений ОТО для пятимерного пространства


Вначале я попытался пойти этим путём. С позволения сказать, в штыковую атаку. Но несколько недиагональных компонент в тензоре Риччи получились отличными от нуля (из-за взаимного влияния координат на неизвестные функции), и я не знал, что с этим дальше делать. Насильно приравнять нулю, и получить требуемую форму взаимодействия искомых функций, дало интересный результат, но, кроме этого допущения, логически получалось, что дополнительное измерение, будучи связанным с энергией, имело все шансы оказаться включением правой части уравнений составной частью тензора энергии-импульса (ТЭИ), и тогда его введение в геометрическую левую часть вряд ли сохраняло бы тождества.
В итоге, глядя на косую симметрию в метрике Шварцшильда и на угловую форму мультипликатора в метрике Фридмана, я подумал, а не получилось ли так, что на существующем этапе развития физической теории использование римановой геометрии дало чрезвычайно изящное представление о гравитационном поле в виде ОТО настолько прекрасное, что оно намертво вплело парадигму изгибаемого, неевклидового пространства-времени в умы нескольких поколений физиков. Окажись она ложной не в математическом выражении, но в самой сути представления явлений природы, и стагнация развития теоретической физики, запертой в тензорной ловушке, была бы обеспечена.
Забегая вперёд, выскажу догадку, что если всё-таки развернуть ТЭИ через геометрическое представление тотально, то его можно будет перенести в левую часть, и свернуть с формами пространственного тензора в более развитую, сложную, но в то же время и более лаконичную, форму расширенной мерности.
Однако, чтобы сделать это необходимо попытаться понять суть происходящих процессов называемых явлением гравитации заново. С какой-то другой, неизученной стороны.
Показанный в предыдущей статье принцип демонстрирует возможность ежемгновенного разложения искривления пространства вокруг массивного компактного объекта на ортогональные компоненты, что даёт нам возможность сделать шаг назад, к евклидовой геометрии, и посмотреть с этой позиции на явление гравитации как на поведение объектов внутри евклидова пространства увеличенной размерности, как если бы гравитация была явлением деформирующим сами объекты и их наблюдаемое поведение (относительность времени), а пространство и время при этом оставляла абсолютными (что даёт в перспективе отличный мостик обратно к энергии и её сохранению).
Подход в лоб не сработал, и я пошёл в обход.

Дополнительная ось комплексного пространства


Невидимое окно, в которое вытекает движение, выраженное объёмом $ V_d $ в объёмном представлении кривизны, возникает на горизонте объекта и зовёт в себя провалиться, тем неотвратимее, чем выше его относительная важность (масса к массе) против объекта и расстояние, читай, пространство, которое их разделяет.
Если объект склоняется к этому окну не только в видимом пространстве, но и незримо начинает участвовать в некотором дополнительном движении, по мере приближения соотносясь с мерой внутреннего движения объекта собственной участвуя в потоке, и отдавая на это часть собственного движения из видимого пространства, то из другого среза видимого пространства такой процесс выглядел бы как искривление времени, хотя в самом деле являлся его перераспределением.
Скажу проще. Кусок четырёхмерного объёма $V_d$, чьё возникновение в объёмном представлении кривизны в метрике Шварцшильда:

$ \frac{V_b - V_d}{V_r} = | V_d = 0 | = 1 $


обуславливает её отклонение от псевдоевклидовой метрики, то есть, собственно, и отвечает за возникновение этой самой кривизны континуума, в четырёхмерной (3-пространство и время) версии последнего вырезается на каждый тик $ dt^2 $, и разжиженные остатки пространства-времени стягиваются в центр, склеиваясь краями, чтобы не было видно дыры.
Я же просто предлагаю попробовать дать этой катаракте собственное измерение, чтобы уже перестать натягивать четырёхмерную сову на пятимерный, как минимум, глобус.
В дополнение к трём осям $(\rho, \theta, \phi)$ (для удобства сразу представим его в сферических координатах) введём ось $ w $.
В предыдущей статье мы увидели, что радиальное смещение объекта в гравитационном поле в любой момент времени может быть представлено пифагоровой суммой двух величин:

$ r^2 = b^2 + d^2 $


одна из которых $ b $ не связана с энергией массивного тела (в отсутствие $ d $ оставляет пространство-время плоским), а другая $ d $ связана.
Теперь, чтобы двигаться дальше, представим составляющую $ d $ частью мнимой оси $ w $, а $ b $ частью вещественной оси $ \rho $:

$ r^2 = \rho^2 + \imath^2 w^2 $


где $ \rho $ радиальная координата псевдоевклидова пространства, а $ w $ дополнительная ось энергетического характера.
Как минимум, чтобы не получать $ dd $ при дифференцировании последнего.

Двухмерная радиальная координата


Дальше в комплексном представлении радиальной координаты используется только соответствующая координата плоского пространства $ \rho $. Ось $ \rho $ будет вещественной, её единичным вектором будет $\hat{h}$.
Мнимой осью будет количество требуемого (изымаемого из наблюдаемого пространства) гравитацией движения объекта (как своего рода эвфемизм для $ E = mc^2 $, ведь именно наличие энергии массы создаёт поле) элементарной частицы или их совокупности $ w $. Для обозначения единичного вектора этой оси мы введём несколько необычное для мнимой единицы обозначение $\hat{v} = \sqrt{-1} $, чтобы далее не путать со стандартным набором $ \imath, \jmath, k $ мнимых единиц в кватернионе, с которым столкнёмся в третьей статье цикла.
Тогда состояние поля, создаваемого некоторым массивным объектом, в любой точке расширенного таким образом пространства можно представить как разность квадратов расстояния до центра объекта в плоском 3-пространстве и некоторой энергетической глубины, которую требует поле в виде своего рода контрибуции движения, изымаемого из плоского наблюдаемого пространства, объекта, перемещающегося с наличием радиальной компоненты:

$ \vec{r}^2 = \vec{\rho}^2 + \vec{w}^2 = \hat{h}^2 \cdot \rho^2 + \hat{v}^2 \cdot w^2 $


В представленном таким двухмерным образом пространстве $ ( \rho, w ) $, мы можем описать произвольный вектор $ \vec{r}$ через векторную сумму действительного и мнимого векторов:

$ \vec{r} = \vec{\rho} + \vec{w} = \hat{h} \cdot \rho + \hat{v} \cdot w $


Кроме того, ввиду псевдоевклидовости комплексной плоскости верным будут также:

$ d\vec{r}^2 = \hat{h}^2 \cdot d\rho^2 + \hat{v}^2 \cdot dw^2 = d\rho^2 - dw^2 $


Также нам пригодится такой результат дифференцирования первой формулы в этой главе:

$ \vec{r} \cdot d\vec{r} = \hat{h}^2 \cdot \rho \cdot d\rho + \hat{v}^2 \cdot w \cdot dw $


Эта замечательная форма даст нам далее некоторые удобные инструменты.

Комплексное представление расширенного пространства


Теперь не поленимся, и проверим как изменится выражение множителя метрики Шварцшильда в комплексном представлении:

$\begin{array}{rlcl} ] & \Xi & = & 1- 2 \cdot \frac{GE}{c^4 r}; \\ ] & \vec{u} & = & \frac{GE}{c^4} = e^{z_1} = e^{x_1 + \imath \alpha}, \ \vec{u}, z_1 \in \mathbb{C}; \\ ] & \vec{r} & = & e^{z_2} = e^{x_2 + \imath \alpha} = |r| \cdot e^{\imath \alpha}, \ \vec{r}, z_2 \in \mathbb{C}: \quad \Xi = 1 - 2 \cdot \frac{\vec{u}}{\vec{r}}; \\ & \Xi & = & 1 - 2 \cdot \frac{\vec{u}}{\vec{r}} + \frac{\vec{u}^2}{\vec{r}^2} - \frac{\vec{u}^2}{\vec{r}^2} = \left( \frac{\vec{r} - \vec{u}}{\vec{r}} \right)^2 - \frac{\vec{u}^2}{\vec{r}^2} = \\ & & = & \left( \frac{\vec{r} - \vec{u}}{\vec{r}} \right)^2 + \frac{\vec{a}^2}{\vec{r}^2} - \frac{\vec{u}^2}{\vec{r}^2} - \frac{\vec{a}^2}{\vec{r}^2}, \quad \vec{a} \in \mathbb{C} : \\ ] & \Re(r) & = & ( \vec{r} - \vec{u} ) + \vec{a}; \\ ] & \Im(r) & = & (\vec{u} - \vec{a}) / \imath = - (\vec{u} - \vec{a}) \cdot \imath: \\ & \vec{r} & = & \Re(r) + \Im(r) \cdot \imath \\ \exists & e^{\imath \alpha}, \quad \vec{a} & \perp & \vec{r}: \\ & \Re^2(r) & = & ( \vec{r} - \vec{u} )^2 + \vec{a}^2; \\ & \Im^2(r) & = & - \vec{u}^2 - \vec{a}^2 : \\ & \Xi & = & \frac{\Re^2(r)}{\vec{r}^2} + \frac{\Im^2(r) }{ \vec{r}^2}; \\ ] & \vec{\rho} & = & \Re(r); \\ ] & \vec{w} & = & \Im(r): \\ & \Xi & = & (\vec{\rho}^2 + \vec{w}^2 ) / \vec{r}^2 = \\ & & = & |\vec{r}|^2 / \vec{r}^2 = \\ & & = & e^{-2 \alpha \imath} \end{array}$


Любую пару скалярных чисел $ ( r; u ) $ можно представить парой таких коллинеарных векторов $ ( \vec{r}; \vec{u} ) \in \mathbb{C} $ в комплексной плоскости, что угол поворота (кривизны) $ \alpha = \mathtt{ Arg(\vec{r}) } $ задавал его действительную и мнимую части как обратные проекции векторов $ (\vec{r} - \vec{u}) $ и $ \vec{u} $ на оси, соответственно.
Наглядно (показано в первом квадранте, для четвёртого отрицательного угла $ \alpha $ естественно, тоже работает):
image
Переворот дополнительной оси $ w $ из действительного во мнимое пространство позволил нам выразить радиальную компоненту метрики Шварцшильда гораздо элегантнее:

$ \frac { dr^2 }{ 1 - 2 \cdot \frac{ GE }{ c^4 \cdot r}} = e^{ 2 \alpha \imath } \cdot d\vec{r}^2 \rightarrow (1) $


Это, как минимум, красиво.

Время


Множитель темпоральной компоненты при переносе вектора $ \vec{r} $ на комплексную плоскость перевернулся, но для компоненты в целом это ничего не меняет хоть аргумент стал отрицательным, $ \cos $ чётная функция.

$ \begin{array}{ccl} e^{-2 \hat{v} \alpha } \cdot dt^2 & = & \left[ \hat{h} \cdot \cos (-\alpha) + \hat{v} \cdot \sin (-\alpha) \right]^2 \cdot dt^2 = \\ & = & \left[ \cos^2 \alpha + \hat{ v }^2 \cdot \sin^2 \alpha \right] \cdot dt^2 \end{array} $


Именно это свойство времени подспудно подтолкнуло меня к мысли о его абсолютности как бы взаимно не располагались две другие части расширенной метрики, время объекта в континууме наблюдателя всегда меняется одинаково. Оно тратится на перемещение, в каком бы направлении не происходило движение, и как бы ни выражалось.
Подробнее об этом в третьей статье цикла.

Радиальная компонента


Очевидно, что $ e^{ 2 \alpha \imath } $ часть самого вектора $ \vec{r} = |r| \cdot e^{ \alpha \imath } $, тогда нам остаётся только дополнить её модулем $ |r|^2 $, чтобы сломать окончательно:

$ (1) \rightarrow e^{ 2 \alpha \imath } \cdot d\vec{r}^2 = \frac{ |r|^2 \cdot e^{ 2 \alpha \imath } \cdot d\vec{r}^2 }{ |r|^2 } = \left( \frac{ \vec{r} \cdot d\vec{r} }{ |r| } \right)^2 \rightarrow (2) $


Как было показано выше, $ \vec{r} \cdot d\vec{r} = \hat{h}^2 \cdot \rho \cdot d\rho + \hat{v}^2 \cdot w \cdot dw $, подставим:

$ (2) \rightarrow \left( \frac{ \vec{r} \cdot d\vec{r} }{ |r| } \right)^2 = \left( \frac{ \hat{h}^2 \cdot \rho \cdot d\rho + \hat{v}^2 \cdot w \cdot dw }{ |r| } \right)^2 = \hat{h}^4 \cdot \cos^2 \alpha \cdot d\rho^2 + \hat{v}^4 \cdot \sin^2 \alpha \cdot dw^2 $


И вот энергоглубина, выделенная в отдельную координату $ w $, изящно отвалилась по шву от плоского пространства.

Угловые координаты


Чтобы преобразовать угловые координаты, выразим квадрат вектора $ \vec{r} $ с учётом поворота на угол кривизны:

$ \begin{array}{ccl} \vec{r}^2 & = & \hat{h}^2 \cdot |r|^2 \cdot\cos^2 \alpha + \hat{v}^2 \cdot |r|^2 \cdot \sin^2 \alpha = \\ & = & ( \rho^2 + w^2 ) \cdot (\cos^2 \alpha - \sin^2 \alpha) = \\ & = & \rho^2 \cdot \cos^2 \alpha - w^2 \cdot \sin^2 \alpha - \rho^2 \cdot \sin^2 \alpha + w^2 \cdot \cos^2 \alpha = \\ & = & \rho^2 \cdot \cos^2 \alpha - w^2 \cdot \sin^2 \alpha - \frac{ \rho^2 \cdot w^2 }{ |r|^2 } + \frac{ w^2 \cdot \rho^2 }{ |r|^2 } = \\ & = & \rho^2 \cdot \cos^2 \alpha - w^2 \cdot \sin^2 \alpha = \\ & = & \rho^2 \cdot \cos^2 \alpha + \hat{v}^2 \cdot w^2 \cdot \sin^2 \alpha \end{array} $



Преобразование интервала


Теперь мы можем разделить координаты во всём интервале полностью:

$ \begin{array}{ccl} ds^2 & = & \left( 1 - \frac{ GE }{ \mathtt{ c }^4 r } \right) \cdot dt^2 - \left( 1 - \frac{ GE }{ \mathtt{ c }^4 r } \right)^{-1} \cdot dr^2 - r^2 \cdot d\theta^2 - r^2 \cdot \sin^2 \theta \cdot d\phi^2 = \\ & = & \color{red}{ \cos^2 \alpha \cdot dt^2 - \sin^2 \alpha \cdot dt^2 } - \\ & - & \color{green} { \cos^2 \alpha \cdot d\rho^2 - \cos^2 \alpha \cdot \rho^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] } - \\ & - & \color{blue}{ \sin^2 \alpha \cdot dw^2 + \sin^2 \alpha \cdot w^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] } = \\ & = & \color{red}{ \cos^2 \alpha \cdot dt^2 } - \color{green} { \cos^2 \alpha \cdot \left[ d\rho^2 + \rho^2 \cdot d\theta^2 + \rho^2 \cdot \sin^2 \theta \cdot d\phi^2 \right] } - \\ & - & \color{red}{ \sin^2 \alpha \cdot dt^2 } + \color{blue}{ \sin^2 \alpha \cdot \left[ - dw^2 + w^2 \cdot d\theta^2 + w^2 \cdot \sin^2 \theta \cdot d\phi^2 \right] } = \\ & = & \cos^2 \alpha \cdot \left[ \color{red}{ dt^2 } - \color{green} { d\rho^2 - \rho^2 \cdot d\theta^2 - \rho^2 \cdot \sin^2 \theta \cdot d\phi^2 } \right] - \\ & - & \sin^2\alpha \cdot \left[ \color{red}{ dt^2 } - \color{magenta}{ \hat{?}^2 } \color{blue}{ \cdot dw^2 - w^2 \cdot d\theta^2 - w^2 \cdot \sin^2 \theta \cdot d\phi^2 } \right] \rightarrow ? \\ & \rightarrow & \cos^2 \alpha \cdot \color{green}{ ds_\rho^2 } - \sin^2 \alpha \cdot \color{blue}{ ds_w^2 } \end{array} $


Вот так поворот. Был бы, если бы не перевёрнутый знак перед $ dw^2 $ (маджента). Именно такая возможность представления формы метрики Шварцшильда не давала мне покоя, но почему возникает ошибка?
Как бы по-идиотски это не звучало, она возникает, потому что мы выносим не тот минус один, который, будучи вынесенным, даст положительное значение при $ dw^2 $, а тот, который оставит $ dw^2 $ отрицательным, как и оба других слагаемых угловых координат.
Для того, чтобы разобраться в этой математике, нам потребуется ввести дополнительный вектор $ \hat{ u }^2 = -1, \ \hat{ u } \in \Im $ мнимой оси комплексного пространства, который задаёт 3-пространство относительно времени в стандартном интервале, например, в метрике Минковского:

$ ds^2 = dx_0^2 + \hat{ u }^2 \cdot \left[ dx_1^2 + dx_2^2 + dx_3^2 \right] $


Тогда введённый ранее вектор $ \hat{ v }^2 = -1, \hat{ v } \in \Im $ будет ему всегда перпендикулярен $ \hat{ u } \perp \hat{ v } $ по определению.
Но, как известно, математики для двух мнимых осей нет, только для трёх, поэтому введём сразу ещё один базовый мнимый вектор $ \hat{ w }^2 = -1, \hat{ w } \in \Im $, и определим результаты взаимных операций над ними аналогично кватернионам:

$ \hat{ u }^2 = \hat{ v }^2 = \hat{ w }^2 = \hat{ u } \cdot \hat{ v } \cdot \hat{ w } = -1, \\ \hat{ u } \cdot \hat{ v } = \hat{ w }, \ \hat{ v } \cdot \hat{ w } = \hat{ u }, \ \hat{ w } \cdot \hat{ u } = \hat{ v }, \\ \hat{ v } \cdot \hat{ u } = - \hat{ w }, \ \hat{ w } \cdot \hat{ v } = - \hat{ u }, \ \hat{ u } \cdot \hat{ w } = - \hat{ v }$


Тогда интервал метрики Шварцшильда с мнимыми векторами в явном виде будет:

$ \begin{array}{ccl} ds^2 & = & \color{red}{ (\cos^2 \alpha + \hat{v}^2 \cdot \sin^2 \alpha ) \cdot dt^2 } + \\ & + & \color{green}{ \hat{u}^2 \cdot \cos^2 \alpha \cdot \left( d\rho^2 + \rho^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] \right) } + \\ & + & \color{blue}{\hat{u}^2 \cdot \sin^2 \alpha \cdot \left( \hat{v}^4 \cdot dw^2 + \hat{ v }^2 \cdot w^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] \right) } = \\ & = & \color{red}{ \cos^2 \alpha \cdot dt^2 } + \color{green}{ \hat{u}^2 \cdot \cos^2 \alpha \cdot \left( d\rho^2 + \rho^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] \right) } + \\ & + & \color{red}{ \hat{v}^2 \cdot \sin^2 \alpha \cdot dt^2 } + \color{blue}{ \hat{u}^2 \cdot \sin^2 \alpha \cdot \left( \hat{v}^4 \cdot dw^2 + \hat{ v }^2 \cdot w^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] \right) } = \\ & = & \cos^2 \alpha \cdot \color{green}{ ds_\rho^2 } + \\ & + & \sin^2 \alpha \cdot \color{magenta}{ \hat{ v }^2 } \cdot \left( \color{red}{ dt^2 } + \color{blue}{ (-\hat{ w })^2 \cdot dw^2 + (- \hat{ u })^2 \cdot w^2 \cdot \left[ d\theta^2 + \sin^2 \theta \cdot d\phi^2 \right] } \right) \end{array} $


Можно менять направление тройки $ \hat{ u } \cdot \hat{ v } \cdot \hat{ w } = -1 \rightarrow \hat{ w } \cdot \hat{ v } \cdot \hat{ u } = -1 $ с левого на правое, можно выносить $ \hat{ v }^2 $ (маджента) направо операции некоммутативны. Как ни крути, на языке кватернионов перед всеми пространственными слагаемыми в последней строке будет квадрат мнимого вектора.
Тогда, приняв, что $ ds_\rho^2 = \hat{h}^2 \cdot dt^2 + \hat{u}^2 \cdot \left( d\rho^2 + \rho^2 \cdot d\theta^2 + \rho^2 \cdot \sin^2\theta \cdot d\phi^2 \right)^2 $ квадрат проекции вектора $ d\vec{ s } \in \psi $, принадлежащего расширенному комплексному пространству $ \psi ( \hat{h}, \vec{r} (\hat{u}, \hat{v}, \hat{w}), \hat{\theta}, \hat{\phi} ) = \mathbb{R}^6 \ \dagger $ ), на условно плоское пространство наблюдателя $ \psi_\rho ( \hat{h}, \hat{u}, \hat{\theta}, \hat{\phi} ) = \mathbb{R}^4 $, а $ ds_w^2 $ по аналогии, квадрат проекции этого же вектора внутрь подпространства $ \psi_w ( \hat{h}, \hat{v}, \hat{w}, \hat{\theta}, \hat{\phi} ) = \mathbb{R}^5 $, то движение объекта в гравитационном поле может быть представлено как чистый поворот:

$ ds'^2 = \cos^2 \alpha \cdot ds_\rho^2 + \hat{v}^2 \cdot \sin^2 \alpha \cdot ds_w^2 = \left( e^{\hat{v} \alpha} \cdot d\vec{s} \right)^2 = \left( \mathbf{v} \cdot d\vec{s} \right)^2 \quad \quad (3) $


где $ \mathbf{v} = e^{ \hat{v} \alpha } = \cos \alpha + \hat{v} \cdot \sin \alpha $ ротор, нормализованный вектор поворота. Пока только как индуктивный эскиз от частного к общему.
В третьей статье цикла я постараюсь обобщить модель интервала из тех черт, которые проступили по ходу проведённого изыскания, и других известных свойств явлений природы. Так, чтобы поворотами приводить интервал к известным частным случаям.
$ \dagger $ минимальное количество осей для формализации шесть: время $ \hat{h} $, трёхсоставная радиальная ось $ \vec{r} ( \hat{ u }, \hat{ v }, \hat{ w } ) $, две угловые оси $ \hat{ \theta }, \hat{ \phi } $.
Простыми словами геометрия траектории объекта в сферически симметричном гравитационном поле может быть представлена как поворот четырёхмерного плоского (псевдоевклидова) пространства-времени относительно дополнительных, пятой и шестой мнимых осей.

Заключение


Сначала я подумал, что, возможно, если детально разобраться с единицами измерения угла кривизны $ \alpha $, расчёт относительных траекторий массивных тел через $ (3) $ стал бы гораздо проще и точнее. И к этому несомненно стоит вернуться.
Но, ввиду просматривающейся тенденции, я решил уделить время гораздо более интересному направлению развития теории:
1. Специальная теория относительности. Взаимное движение объектов разных кинетических энергий может быть представлено как движение в континуумах, повёрнутых друг относительно друга (буст).
2. Общая теория относительности. Решение Фридмана. Масштабный фактор расширения Вселенной может быть представлен как угол поворота относительно дополнительной, ненаблюдаемой оси.
3. Общая теория относительности. Решение Шварцшильда. Изменение интервала, соответствующее движению объекта в гравитационном поле, можно представить как поворот относительно дополнительных ненаблюдаемых осей.
Я подумал, что неплохо было бы составить мат. модель, которая обобщала бы все эти повороты. Подобная генерализация, впрессованная в контуры известных вакуумных решений и СТО, могла бы случайно наследовать ряд свойств необходимых, чтобы соответствовать и другим наблюдаемым физическим эффектам. Возможно, она позволила бы взглянуть под другим углом на многие известные явления природы, и дать им интерпретацию. Это, кроме того, что она позволила бы легко обсчитывать комбинированные движения как сумму поворотов. Да много чего ещё там вкусного может быть дух захватывает от этой перспективы.
А с Геометрическим представлением кривизны в метрике Шварцшильда локально я вроде закончил.
Читателей очень прошу, кому не лень, проверить математику. Я её люблю, она взаимна, но она царица, а я всего лишь человек могу ошибаться.
Подробнее..

Гравитационный двигатель

25.04.2021 18:04:25 | Автор: admin
image

В этой статье речь пойдет о гравитационном двигателе.
На картинке самая простая схема:
2 маленькие черные дыры издалека начинают падать в большую центральную.

Изначально никакой энергии ни у кого нет все начинают с околонулевой скоростью.
Для примера давайте возьмем Солнечную систему и сожмем Солнце в Черную дыру.
Массу маленьких ЧД возьмем в тысячи раз меньше Солнечной масса имеет значение, но для простоты возьмем одинаковую и незначительную относительно центральной ЧД.

Начальную скорость маленьких ЧД возьмем вторую космическую для начальной высоты, Например если мы начинаем падение с высоты Земли, то начальная скорость ~42 км/с, если начинать с высоты Юпитера, то ~18,3 км/с т.е. Чем дальше, тем меньше начальная энергия, она может быть и 100 м/с и околонулевой, но для удобства начнем с высоты Земли и скорости ~42 км/с.

Итак: Для начала давайте бросим одну ЧД в нормальное Солнце со скоростью ~42 км/с по параболической траектории в таком случае она подлетая к Солнцу ускоряется и около поверхности Солнца (695 700 километров от центра самого Солнца) разгонится до скорости ~617 км/с, пролетит рядом с поверхностью и начнет отдаляться/замедляться и на высоте Земли её скорость будет такая же как изначально 42 км/с.

Теперь бросаем 2 ЧД в нормальное Солнце примерно как на первой картинке. Вариантов начальных параметров очень много и можно бросать с разной начальной скоростью или разного расстояния, но мы возьмем самый простой и наглядный, одинаковая скорость, одинаковое расстояние до Солнца, но бросаем из разных начальных точек.

Итак, изначально маленькие ЧД друг с другом не связанны (расстояние между ними миллионы километров).
Они начинают каждая со скоростью 42 км/с, а при максимальном приближении к Солнцу их скорость будет ~617 км/с, и в этот же момент они приблизятся максимально близко друг к другу и сделают гравитационный маневр для перераспределения энергии.

Коротко о гравитационных манёврах из Википедии.
image


За 1 гравитационный манёвр можно передать максимум 50% энергии, т.е. Забрать всю энергию у сбрасываемой ЧД за 1 раз не получится и в таком случае КПД 50%, но там очень много параметров и не вдаваясь в детали КПД 50% это очень легко, 99% это уже сложнее, но тем не менее тоже возможно.
Для начала давайте разберемся сколько вообще энергии можно получить таким образом (КПД как бы 100%).

Итак при сближении с Солнцем у нас 2 ЧД на скорости 617 км/с = энергией ~190 гигаджоулей на килограмм у каждой. Забираем энергию у одной и отдаем другой.
Итого ЧД без энергии как бы ляжет на поверхность Солнца с нулевой скоростью.
А ЧД получившая энергию начнет удаляться от Солнца со скоростью 872 км/с, а когда она отлетит до высоты Земли на которой она была изначально, то её скорость составит ~618,5 км/с = энергия 191 263 МДж на каждый килограмм. А это энергия, которую можно получить при сжигании 4,3 ТОНН бензина!!!

Теперь просто сожмём Солнце в 100 тысяч раз (нет ничего проще чем сжать термоядерную бомбу в активной фазе) до диаметра ~7 км это еще не ЧД, а нейтройнная звезда. Итак масса у нас та же самая Солнечная, и даже сама материя та же самая и ничего внутри не поменялось, поменялась только плотность, но теперь мы можем получить гораздо больше энергии и если раньше мы могли приблизится к центру масс на расстояние 696 тысяч километров и столкнулись бы с Поверхностью Солнца, то теперь путь свободный и мы можем пролететь еще сотни тысяч километров получая энергию/ускорение.

Сколько энергии можно получить около нейтронной звезды?


Около нейтронной звёзды скорость будет составлять сотни тысяч км/с (десятки процентов от скорости света) и там уже нужно учитывать эффекты Теории Относительности, а я к сожалению не гравитолог и кривые пространства считать не умею, но в одной из лекций Сергея Попова, он говорил, что при падении на нейтронную звезду энергия составляет 20% от $E_0=mc^2$ Т.е. Около нейтронной звезды с каждого сброшенного килограмма мы можем получить 20% от энергии, которую мы бы получили от аннигиляции 1 кг материи и антиматерии. И это от нейтройнной звезды, если мы сожмем её до черной дыры, то энергии будет больше чем 20% от $E_0=mc^2$.

Сколько максимум энергии можно получить из гравитации?


И это самый интересный и сложный вопрос. Я конечно не астрофизик, но кое что в физике и математике понимаю, а на этот вопрос я потратил часов 300 и в конечном итоге вопросов у меня стало гораздо больше чем было изначально. В общем дальше я просто расскажу свои мысли по этому поводу.

Итак, сжимаем Солнце в ЧД и получаем кристально чистый гравитационный двигатель. Никакой термодинамики, энтропии, фотонов и электронов тут нет = Электромагнитное взаимодействие тут не участвует вообще!!! -Только масса и гравитация, и при этом мы можем получить энергию. В системе из 3-х тел, где изначально нет никакой энергии и всё никуда не двигается (почти), мы можем получить массу летящую с околосветовой скоростью. Т.е. По сути, в системе из 3-х тел гравитация может отталкивать, а потенциальная энергия это не отрицательная энергия её можно сделать положительной.

При плотности нейтронной звезды можно получить 20% энергии от $E_0=mc^2$, у ЧД плотность выше и энергии будет больше. Минимальное расстояние пролета около звезды ограничивается поверхностью самой Звезды, у ЧД поверхности нет, но есть горизонт событий из под которого уже ничего не вытащить и забрать энергию можно только над горизонтом. А горизонт событий как раз и начинается там, где вторая космическая скорость становится равна $mc^2$. И по сути максимальная энергия, которую можно забрать у сбрасываемого тела равна энергии аннигиляции. И мы как бы можем избавиться от массы аннигилировав материю с антиматерией и получить энергию, либо мы можем сбросить массу в черную дыру (по сути в никуда) и получить ровно такую же энергию и точно так же навсегда и безвозвратно потерять массу.

Но при этом Черные дыры гораздо реальней чем антиматерия, найти чистую антиматерию во вселенной вообще невозможно, а черные дыры просто валяются в вакууме. В галактике существуют двойные черные дыры вращающиеся друг вокруг друга с околосветовой скоростью образовавшиеся естественным путём.

image

ЧД тормозит камень ускоряется. Если для примера опять взять Солнечную систему (в центре 2 вращающиеся ЧД массой 0,5 Солнечной каждая), то мы сбрасываем с Земли 2 камня один камень остается в центре после тормозящего гравитационного маневра он останется на орбите центра масс вокруг которого вращаются и сами ЧД и со временем упадет в одну из ЧД, а второй ускорившийся камень, прилетит к Земле с околосветовой скоростью. Камень летящий с околосветовой скоростью это конечно замечательно, но нам нужно электричество. Самый тупой способ получить электричество столкнуть этот камень с Луной, т.е. Камни влетают на околосветовой скорости в Луну, она нагревается и начинает светиться как лампочка из света получаем электричество. При столкновении на такой скорости, мощность взрыва будет в ~2 миллиона раз больше чем мощность бомбы сброшенной на Хирасиму (при массе камня, равной массе бомбы). На самом деле, способов получить электричество с помощью гравитации очень много, но пока давайте разберемся с самим источником энергии.

Тратить массу в случае нахождения 2-х Черных дыр, нам придется только для того, чтобы чёрные дыры не слились и вечно находились на одном и том же расстоянии друг от друга. Если же не тратить массу, а кидать камни только для ускорения, то ЧД начнут сближаться
и когда-нибудь сольются, а для получения энергии нужно обязательно две Вернее главный элемент конструкции это одно плотное тело с большой скоростью на орбите массивного тела, (идеал это как раз черная дыра двигающаяся с околосветовой скоростью вокруг другой черной дыры). А если они сольются, то ЧД у нас будет всего одна, и с нулевой скоростью, поэтому нужно держать баланс. Но всё же возникает вопрос:- Сколько энергии можно забрать до того как 2 ЧД сольются? 100% от $mc^2$, если у нас 2 ЧД по 0,5 Массы солнца, то сольются они, когда мы заберем энергию равную аннигиляции целого Солнца (зависит от изначального расстояния между ними, но даже если изначально они будут вращаться на орбите Меркурия ~ 120 млн км друг от друга, то суммарная энергия будет больше 99% от $mc^2$). На самом деле, Солнце за 5 миллиардов лет своего существования не произведет столько энергии, а за всю свою жизнь Солнце растворит меньше 0,1% своей массы.

Термоядерный синтез это вообще фуфло по сравнению с тем, сколько энергии можно получить с помощью гравитации. К слову, масса ЧД совершенно не влияет на КПД = скорость около горизонта событий всегда одинаковая. И для получения энергии, по факту нам не обязательно иметь черные дыры огромной массы, по сути, масса ЧД может быть даже по 1 кг и мы можем сжать 2 арбуза до черных дыр, и всё будет работать так же как и с большими черными дырами. Причем управлять маленькими ЧД гораздо проще чем термоядерным синтезом (есть даже мнение, что удерживать материю температурой несколько миллиардов градусов вообще невозможно), а черные дыры можно держать теми же самыми гравитационными маневрами. Поэтому маленький и даже переносной реактор массой несколько килограмм вполне возможен. Правда чем меньше ЧД тем она злее, около горизонта событий огромные приливные силы будут разрывать любую материю и получится 2 маленьких злобных и неуправляемых квазара. В общем сбрасывать материю в маленькие ЧД плохая затея.

Можно ли сбрасывать в Черные Дыры свет?


Я конечно не специалист по кривым пространствам, но вроде бы гравитационные маневры должны работать и со светом. По крайней мере, я слышал о таком эксперименте: В институте светили фонариком вертикально вверх/вниз. И фотоны поднимающиеся вверх теряли энергию (краснели), а фотоны падающие вниз получали энергию (синели). Т.е. Гравитация передаёт энергию свету, а значит и гравитационные маневры со светом тоже должны работать (свет проходящий позади движения ЧД будет ускоряться/синеть/получать энергию, а пролетающий перед движением ЧД будет тормозить/краснеть/терять энергию). У света есть импульс и он может толкать парус, поэтому и гравитационные маневры скорее всего должны работать. Тогда энергию гравитации можно легко получать даже из очень маленьких черных дыр.

А как же излучение Хокинга?


Излучение Хокинга позволяет создать вечный двигатель, мы сбрасываем массу и получаем энергию, а она опять выходит, мы опять сбрасываем и получаем энергию, а она опять выходит. Поэтому по всем вопросам обращайтесь к самому Хокингу, а ещё лучше к тем, кто ему нобелевскую премию выдал. В моем двигателе, никакие квантовые числа не нарушаются Всё абсолютно легально!!! Кот Шрёдингера будет доволен!!!

Хотя всё же запашок вечного двигателя тут есть. Импульс света равен $p=(hv)/c$
Чем больше частота тем больше импульс, но тормозящий гравитационный маневр будет уменьшать частоту и в предельном случае, если забрать у света всю энергию около горизонта событий то он упадет в ЧД с нулевой энергией, тогда на сколько увеличится масса ЧД?
У материи, к слову, возникает такая же проблема, если забрать всю энергию у килограммового камня перед сбросом, масса ЧД должна увеличится на 1 кг. Но второй килограммовый камень который унесёт энергию при столкновении с Луной на околосветовой скорости, осколков из него вылетит на 2 кг. ($E_0=mc^2$ работает в обе стороны). И в результате у нас будет опять 2 кг., да еще и масса ЧД увеличится на 1 кг. Итого суммарная масса вселенной увеличится на 1 кг. И вроде бы эта проблема вообще никак не решается суммарная масса вселенной при любом КПД будет увеличиваться.

Либо каким-то чудесным образом, при сбросе в ЧД со скоростью/энергией меньше чем $mc^2$ масса ЧД будет уменьшаться и тогда получается, что с помощью гравитации мы можем вытаскивать энергию из ЧД.

Либо масса вселенной всё таки увеличится но произойдет какая-нибудь дичь. Всё же бесконечно увеличивать массу мы не сможем, если мы всё это будем делать условно на орбите Земли, то со временем, горизонт событий дотянется до Земли, и мы просто окажемся в ЧД (энергии при этом мы не получим). И тогда бесконечно получать массу/энергию мы не сможем. Но все эти проблемы начнутся после увеличения центральной массы в миллионы раз.

В общем что это за энергия и откуда она берется вопрос весьма интересный и возможно что эта энергия вообще никак не связанна с $E_0=mc^2$ это какая-то другая энергия и её гораздо больше. Если пойти с другой стороны и задаться вопросом А почему вся масса вселенной не схлопнулась в огромную ЧД? Её растолкала какая-то энергия

P.S.

В общем Черные дыры и мутная энергия всё это конечно замечательно, но это крайне далекое будущее, да и не понятно как это будет работать с ЧД. В следующей статье поговорим о более реальных вариантах. На самом деле, даже на орбите Юпитера можно легко построить электростанцию из грязи палок и фольги производящую 900 Мдж с каждого сброшенного килограмма, а это энергия 25 литров бензина. Вот в следующей статье я и попробую прикинуть сколько будет весить такая орбитальная конструкция.

P.P.S.

Хотелось бы еще обратится к читателям. А может кто-нибудь перевести статью на английский язык? Просто на такие статьи уходит очень много времени, да и в России физика никому особо и не нужна. Нужен хотя бы спрос. И вообще куда можно на английских ресурсах писать такие статьи?

Иногда, между состояниями ни жив ни мертв я коллапсирую на твиче.
Подробнее..

Перевод Космос, японские ученые и мыши решаем вопросы с искусственной гравитацией и космическими путешествиями

13.06.2021 18:05:09 | Автор: admin

С первых дней полета человека в космос стало ясно, что продолжительные путешествия в условиях отсутствия земной гравитации могут иметь весьма пагубные последствия для организма космонавта. Пребывание в условиях невесомости приводит к значительному уменьшению мышечной массы.

Изменения наступают очень быстро: из-за отсутствия силы тяжести, которой обычно противодействуют мышцы, они ослабевают всего за неделю. Особенно это актуально для мышц ног, спины и шеи. Во время космического полета ничего страшного не происходит, но вот после возвращения на Землю повышается риск получения травм. Что же делать?

К счастью, проблему легко решить при помощи выполнения разных физических упражнений на борту станции. Именно поэтому на космических станциях, начиная с Салюта-1, всегда есть тренажеры, поддерживающие мышечный тонус членов команды. Но даже при условии выполнения физических упражнений космонавты все равно возвращаются на Землю ослабленными.


Один из ранних концептов НАСА по созданию искусственной гравитации

На выполнение упражнений тратится драгоценное время, ведь каждый час, проведенный в космосе, это час, который стоит тратить на проведение научных исследований или обслуживание самой станции. Физкультура космонавтов на орбите становится в буквальном смысле золотой. Это, если так можно выразиться, самый дорогой тренажерный зал в мире.

Самый простой вариант для решения проблемы с мышцами космонавтов и физическими упражнениями создание искусственной гравитации на станции за счет центростремительной силы. В итоге все, что находится внутри как бы прилипнет к внутренней части корпуса. Другими словами, все объекты на станции и люди снова вернут свой вес полностью или частично. Но здесь возникает еще одна проблема для того, чтобы гравитация на корабле стала равной земной, сам корабль или станция должны быть очень большими, либо вращаться с очень большой скоростью.

На днях японские ученые из Университета Цукуба опубликовали статью, которая дает надежду на появление реальных систем искусственной гравитации на борту космических станций с экипажем. Специалисты из Японии провели серию экспериментов с мышами, результаты которых способствуют появлению того, что недавно было лишь уделом научной фантастики.

Несовершенный эксперимент


Вероятно самым интересном моментом этой работы является то, что ученые изначально не собирались изучать искусственную гравитацию. Они поставили задачу узнать больше о мышечной атрофии у млекопитающих на молекулярном уровне, поскольку это важно для длительных космических перелетов.

Обычно такие исследования заключались в отправке мышей на неделю или две, после чего их ткани сравнивались с контрольной группой грызунов, оставшихся на Земле. Но японцы решили, что такой эксперимент в корне ошибочен.

Почему? Когда есть контрольная и подопытная группа животных, условия их жизни должны быть аналогичными, за исключением фактора, который изучается. То есть мыши, отправившиеся на МКС и оставшиеся на Земле, должны были проводить время, получать питание, спать и т.п. одинаково. Исключение наличие или отсутствие гравитации, фактор, влияние которого изучается. Но создать такие равные условия для космических мышей невозможно, на орбите условия жизни в корне отличаются от земных.

Все начинается уже с полета в космос мыши, которые остаются на Земле, не испытывают перегрузок, на них не оказывают влияние и другие факторы, сопровождающие космических мышей. В космосе мыши будут жить в микромире с жизнеобеспечением со стороны соответствующих систем станции. При этом на них влияет космическое излучение станцию невозможно полностью изолировать. В конце своего срока пребывания на станции мышей снова отправляют на Землю, и в ходе этого путешествия грызуны подвергаются влиянию специфических факторов. А вот контрольная группа мышей все это время просидела в клетке где-то в лаборатории.

Наверное, какие-то из этих условий можно смоделировать и для контрольной группы, но в любом случае это будет недостаточно чистый эксперимент.

Что же делать?


Ответ все уже сделано. Японцы разработали установку, которая называется Multiple Artificial-gravity Research System (MARS). Это небольшая центрифуга с капсулами по краю, в которых живут мыши. Эта центрифуга вращается достаточно быстро, чтобы в условиях невесомости создать искусственную гравитацию, равную земной. При этом по краям находится лишь половина мышей. Вторая часть мышиной команды живет в нижней части устройства, где нет гравитации. Таким образом исследователи могут быть уверены в том, что все мыши в установке находятся в одинаковых условиях, за исключением такого фактора, как сила тяжести.


Контрольная и экспериментальная группа питаются одной и той же едой, пьют одну и ту же воду и дышат одним и тем же воздухом.

Эксперимент, как оказалось, проводился еще в 2016 году, а результаты его опубликованы лишь сейчас. В очередной раз удалось подтвердить, что потеря мышечной массы в условиях микрогравитации сильнее, чем в условиях земной силы тяжести. Здесь нет сюрпризов. Но попутно выяснилось, что экспрессия мышечного гена различается у животных контрольной и экспериментальной групп. И это убедительное свидетельство того, что это изменение вызвано отсутствием гравитации, а не космическим излучением, как считалось ранее.

Кроме того, подтвердилась и возможность моделирования силы тяжести путем вращения системы с животными внутри. Результаты эксперимента соответствуют предположениям ученых. В дальнейшем потребуются новые исследования, но уже сейчас доказано, что вращение космического корабля/станции на протяжении всего космического путешествия предотвращает потерю мышечной массы, и продолжительные физические упражнения в этом случае не требуются.

Что дальше?


Ученые планируют провести несколько экспериментов по моделированию силы тяжести Луны или Марса это позволит выяснить, что происходит с организмами животных в таких условиях. Ну а после изучения результатов этих экспериментов можно будет и понять, что случится с человеком, живущим на Луне или Марсе.

А это уже критически важная информация, которая нужна для продолжения освоения космоса человеком создания форпоста человечества на Луне, Марсе и, возможно, где-то еще. Пока все, что мы знаем о влиянии лунной гравитации результаты, полученные астронавтами, побывавшими на Луне. Что происходит на протяжении месяцев или даже лет, проведенных в таких условиях, мы не знаем.

Еще хотелось бы знать, как влияет частичная гравитация на процесс атрофии мышц. Возможно, орбитальную станцию и не нужно раскручивать до скорости, позволяющей получить 1G. Может быть, хватит и 0,5 или даже 0,3 G. Пока мы можем лишь предполагать. Японские ученые, вероятно, вскоре смогут дать четкий ответ на все эти вопросы.

Подробнее..

Фантазии на тему мироздания о веществе и материи

30.07.2020 10:07:11 | Автор: admin
Материально ли вещество? Науку уже давно, лет сто, сиё не интересует. Ибо, приведу цитату: "согласно квантовой теории поля, субатомный мир это мир, где повсюду существует несчетное количество полей, а частицы это локальное колебание этого поля, постоянно перемещающегося со временем". Где или в чём эти поля вопрос неправильный они просто есть.

В статье "Фантазии о физической причине лоренцева сокращения, объясняющей инвариантность скорости света и пр." была математически обоснована зависимость положения вещественных частиц от конфигурации и скорости распространения физических полей в пространстве. Поскольку там речь тоже о полях и частицах, нечто общее в этих концепциях есть.

Замечу, что измышляемые серьёзными учёными science fiction theories, зачастую гораздо более сумасшедшие, чем изложенные в данной статье, где, опираясь на уже обоснованное, фантазируем о полях и частицах, которые существуют не в абстрактном математическом пространстве, а как физически реальные в нашем общем со звёздами 3-х мерном пространстве.

1.Материя

В вышеупомянутой статье (обозначим её источником [1], ибо на неё придётся неоднократно ссылаться) было показано, что все феномены эйнштейновской СТО получают простое и наглядное объяснение в нашем 3-х мерном пространстве, без привлечения 4-мерного пространства-времени Минковского только если пространство не пусто, а заполнено некоей материей, которая не в сжатом состоянии воспринимается нами как пустота. И в этой материальной среде существуют и распространяются с конкретной скоростью физические поля определяющие местоположение и взаимодействие частиц, энергия покоя и движения которых зависит от степени сжатия занимаемого ими участка первоматерии. Как ни странно, этого предположения оказалось достаточно и никаких постулатов не потребовалось.

Первоматерия не имеет ничего общего с субстанцией имеющей устоявшееся название "Мировой эфир" или "светоносный эфир". К моменту создания теории относительности эфир понимался как некая субстанция, существующая наряду с размещающимися в ней вещественными частицами, в которой существуют и по которой распространяются физические поля, иногда представляемые в виде некоего вихревого движения эфирных частиц. Опыт Майкельсона показал, что такого эфира не существует.

Первоматерия концептуально отличается от этого классического эфира. В ней вещественные частицы представлены как напряжения и деформации (сжатие, например) локальных участков первоматерии, и они не могут существовать вне или без неё. Первоматерия уклончиво называется учёными "физический вакуум" (обозначим ФВ), про согласие которого с опытом Майкельсона говорить не принято. Субстанцию первоматерии обозначим аббревиатурой СФВ.

Из гл.1 статьи [1] следует, что материальные частицы (атомы, молекулы ) располагаются в определённых узлах картинки взаимодействующих физических полей, связанных с частицами. И это понятно, не по своей же воле и желанию они там располагаются.

Однако и внутренние процессы в элементарных частицах тоже подвержены преобразованиям Лоренца. Это доказывается, например, замедлением распада субсветовых мюонов, возникающих при взаимодействии высокоэнергетичных космических частиц с атомами в верхних слоях атмосферы. Иначе они не успели бы долететь до поверхности земли. И тем, что в синхрофазотронах приходится учитывать фактор возрастания массы частиц от скорости, что бы там не разгонялось: электроны, протоны или ионы.

Значит и само внутреннее строение частиц и их движение тоже полностью определяется напряжениями и деформациями первоматерии. И значит наряду с первоматерией никакой иной материи не существует. Иначе лоренцево сокращение и пр. феномены СТО не наблюдались бы у частиц.

Из того факта, что физические поля могут быть как продольные, так и поперечные, приходится сделать вывод, что субстанция первоматерии должна быть твёрдой и упругой. А быть может даже имеющей некую кристаллическую микроструктуру. Как и почему она имеет такие свойства, здесь не важно. Твёрдой будем считать субстанцию, в которой возникают силы напряжений при её механических деформациях сжатия и сдвига. Энергия материи, как обосновано в [1], может быть представлена энергией её механической деформации сжатия.

Вещественные частицы, естественно, не могут протискиваться сквозь твёрдую материю. Это значит, что воспринимаемые нами вещественные частицы должны представлять собой особые состояния деформаций и напряжений той же материи, а не какую-то отличающуюся от неё сущность. Они перемещаются, исчезая там где были, и появляются, можно сказать телепортируются, в новом месте, которое соответствует новым узлам суперпозиции полей напряжений материи. Ну как не вспомнить из Пушкина: "Движенья нет, сказал мудрец брадатый. Другой смолчал и стал пред ним ходить." И заключительные слова Пушкина: "Ведь каждый день пред нами солнце ходит, Однако ж прав упрямый Галилей".

Далее будут рассматриваться, в качестве гипотез разумеется, только такие механизмы физических явлений, которые могут быть реализованы в 3-х мерном пространстве первоматерии. Пока они не подкреплены теоретическими расчётами и являются вообще-то измышлениями, но они следуют из концепции математически обоснованной в статье [1].

2.Стабильность вещественных частиц

До сих пор не выдвигались какие-либо предположения, кроме как о существовании материи и наличия в ней физических полей.
А вот сейчас предположим, что первоматерия имеет предел прочности. Ибо вряд ли может существовать нечто абсолютно прочное. Соответственно, когда предел прочности материи под силовым воздействием полей будет превышен, то она просядет. То есть некоторая часть СФВ вокруг точки концентрации напряжений, скажем так, коллапсирует, образуя вещественную частицу , в результате чего объём материи там уменьшится, а значит уменьшится и напряжение сжатия вокруг этой точки.

Но для того, чтобы после снятия избыточного напряжения внешних полей этот участочек не распрямился, необходимо наличие внутреннего давления во всём объёме первоматерии. А некоторое снижение давления и сжатия СФВ вблизи частицы обусловлено снижением сопротивляемости коллапсировавшего участка СФВ. Внешнее для корпускулы давление компенсируется тангенциальными напряжениями области материи вокруг неё. Корпускула вместе с окружающей её областью пониженного внутреннего давления вокруг сжатого участка СФВ выглядит примерно как на рис.1.

Возможно стабильность вещественных частиц обусловлена иным физическим механизмом, но все дальнейшие рассуждения и гипотезы будут опираться именно на вышеуказанный. Тогда это внутреннее давление во всём объёме первоматерии не предполагается, а является необходимо неизбежным ввиду явного существования стабильных частиц.

3.Гравитация

Уже понятно, что эта область пониженного давления в СФВ представляет собой гравитационное поле корпускулы. Важно обратить внимание на то, что источником этого поля является не корпускула, а окружающая её СФВ. Если две подобные корпускулы сблизить, то между ними возникнет сила притяжения вследствие избыточного давления со стороны СФВ окружающей обе корпускулы, как на рис.2.

Равенство гравитационной и инерционной масс можно объяснить.
Чтобы переместить некий объём тела из области близкой к корпускуле в удалённую от неё область с более сжатой первоматерией, надо затратить работу по сжатию тела равную такой же при его ускорении, согласно гл.6 статьи [1]. Следовательно, на тело в гравитационном поле действует сила равная необходимой для придания ему ускорения свободного падения.

Естественно предположить, что в участках первоматерии разной плотности и скорость света различна. В статье [1] было показано, что скорость течения времени и др. физические характеристики зависят от скорости света и плотности первоматерии в локальном участке. Поэтому все теории гравитации, декларирующие мировой константой скорость света в вакууме, скорее всего несостоятельны. В общем, примерно понятно, как можно начинать строить теорию гравитации.

4.Тёмная энергия и тёмная материя

Поскольку в твёрдой субстанции ФВ, что следует из существования стабильных частиц, присутствует внутреннее давление, то вследствие оного первоматерия стремится расшириться что, собственно, и замечено как расширение вселенной, причём с ускорением. И вот эта энергия внутреннего сжатия первоматерии давлением, по-видимому, и является тем, что называют тёмной энергией.

Однако на слуху и тёмная материя. Что это такое не знает никто, но уже есть масса теорий на уровне математической эквилибристики, разумеется. Заметим, что согласно излагаемой здесь теории, в области скопления вещества сила внутреннего давления в СФВ ослаблена. Это может быть отражено или как уменьшение гравитационной постоянной, или как уменьшение массы, так как при меньшем давлении уменьшается и энергия сжатия СФВ, которая и есть эквивалент массы. Всё расставить по местам должна новая материальная теория гравитации.

Тем не менее уже можно утверждать, что из-за большей концентрации вещества внутри галактик, звёзды там притягиваются друг к другу и к центру слабее, чем те же звёзды наблюдаемые на периферии галактик, где внешнее давление в межгалактической материи больше. И всё выглядит так, будто в галактике больше создающего гравитацию вещества, чем ожидалось, избыток которого и списывается на тёмную материю.

5.Частицы

Мы все знаем, что упругий стержень хорошо сопротивляется нажиму вдоль него, но если его слегка изогнуть, сопротивление резко падает. Образование корпускулы с поворотом схематично показано на рис.3

При определённых соотношениях давления в СФВ, механических свойств первоматерии и размеров корпускулы, она окажется устойчивой.

Противодействующих сил напряжений сдвига будет недостаточно, чтобы снова развернуть её обратно, а ослабленной силы давления в СФВ вокруг корпускулы будет недостаточно, чтобы закрутить её сильнее. Таким образом, при данной величине давления в СФВ деформации граничной области корпускулы имеют конкретные константные значения, которые мы связываем с понятиями различного типа зарядов, спина и т.п. Внутреннее содержание коллапсированной области совершенно не играет никакой роли, так как все свойства корпускулы полностью выражаются величиной константных значений и форм напряжений на её границе.

Каждая корпускула представляет собой нелокальный объект, все свойства которого (масса, заряд и пр.) определяются конфигурацией полей во всей первоматерии вселенной вокруг корпускулы. Вот эти внешние поля частицы, видимо и определяют её движение в силовых полях и прочих взаимодействиях. Сила внешнего ускоряющего поля действует на связанные с частицей поля, которые сжимаются по Лоренцу по мере роста скорости.

Логично предположить, что при неупругих соударениях и др. взаимодействиях приводящих к трансформации частиц, границы корпускул и их коллапсированные ядра как бы исчезают и образуется иной, общий объект, ещё не представленный в частицах. И там, вероятно, происходит локальное увеличение давления и плотности первоматерии с сопутствующим увеличением скорости света.

Квантовые числа, соответствующие совокупным граничным значениям определяемым внешними полями на поверхностях корпускул до взаимодействия, должны как бы в своей совокупности сохраняться и после взаимодействия. Сохранение квантовых чисел, скорее всего, обусловлено тем, что весь спектр местных напряжений в СФВ быстро (быть может даже со скоростями взаимодействия превышающих скорость света в вакууме) и локально находит воплощение в наборе пусть даже нестабильных, но быстро образующихся частиц. А затем всё распределяется по стабильным частицам.

Энергия, заключённая на текущий момент во всех сжатых состояниях частиц, должна сохраняться и во всех последующих процессах в объёме всей вселенной. Даже если пара частиц аннигилирует, то энергия СФВ, потенциально присутствующая в коллапсированных ядрах корпускул и представляющая их массы покоя, должна быть по новому представлена в виде энергий других, образовавшихся при этом частиц вместе с их кинетической энергией (соответственной их лоренцеву сокращению), энергий излученных фотонов и пр. Ибо давление в первоматерии, обусловленное, по-видимому, глобальными причинами, остаётся постоянным.

6.Физические поля

Как уже знаем, радиальные напряжения сжатия СФВ вокруг корпускулы соответствуют гравитационному полю. Допустим, что напряжения сдвига по правилу буравчика задают вектор электрического поля. Тогда угол поворота верхней части корпускулы относительно нижней определяет её электрический заряд. Взаимный поворот может быть левым или правым отсюда положительные и отрицательные заряды.

Магнитное поле может порождаться динамикой движения электрических полей и зарядов и, возможно, представлено деформациями продольных смещений в СФВ. Соответственно, если выпуклость соответствует северному магнитному полюсу, то с другой стороны обратная ей вогнутость южному.

Допускаю, что могу ошибаться в сопоставлении физических полей деформациям и напряжениям СФВ. Критерием истины тут мог бы быть вывод уравнений Максвелла исходя из деформационной модели твёрдого ФВ. Теоретикам было бы наверное интересно заняться решением этой реальной и актуальной проблемы, довершив незаконченный труд Максвелла.

На рис.4 условно изображена гипотетическая простейшая заряженная частица.
Закрученность (вид спереди по стрелкам), которая способствовала коллапсированию в корпускулу, фиксируется действием сил внутреннего давления в СФВ (фиолетовые стрелки).
Для нас это заряд корпускулы и электрическое поле вокруг неё.
Деформации смещения в её окрестностях мы бы интерпретировали как присущий корпускуле магнитный момент.
Корпускулу на рис.3 и рис.4 будем условно считать электроном. Более сложным частицам возможно соответствуют конструкции из многогранников.
На рисунках ниже представлены гипотетические схемы взаимодействия простейших заряженных элементарных частиц.

На рис.5 иллюстрируется, что при наличии давления в СФВ разноимённые заряды притягиваются, а одноимённые отталкиваются (рис.6). Конечно сами схемы не доказательны, но от них можно начать танцевать, чтобы определить упругие свойства ФВ. Например, его модуль Юнга и коэффициент Пуассона.

Полагаю, понимание динамики полей при движении элементарных электрических зарядов могло бы, при наличии в том заинтересованности, способствовать созданию электромагнитных движителей.
Идеи как бы есть (не варп-двигатель), а вот теории пока нет.

7.Корпускулярно-волновой дуализм

Только напряжения могут перемещаться в неподвижной материи, в фокусе концентрации которых и возникает ядро частицы.

В процессе движения, заключённая в ядре частицы материя может частично восстанавливаться из сверхсжатого состояния с тем, чтобы в новом месте локализации фокуса напряжений, как результата взаимодействия полей, снова коллапсировать в ядро частицы. Возможно подобными процессами объясняется и тунеллирование частиц сквозь потенциальные барьеры.

Опыт Клауса Йонссона интерференции электронов на двух щелях однозначно свидетельствует о том, что каждый электрон суть волна и, являясь нелокальным объектом (строго говоря, бесконечным), в той или иной степени проходит через обе щели, но материализуется (в акте взаимодействия полей) в конкретной точке детектора.

Если мы попытаемся отследить, через какую из щелей он конкретно проходит, то тем самым мы детектируем (материализуем) электрон в самой щели, а после он уже от неё движется с сохранением своего исходного импульса к экрану и мы получаем просто изображения двух щелей. Детектор достаточно поставить в одну из щелей, и, если электрон в ней не пойман, значит, он прошёл большей частью через другую щель: детектор не может материализовать пол-электрона. Интерференция всё равно наблюдаться не будет.

8.Идеи правят миром

Корпускулы, т.е. вещественные частицы, всего лишь фиксируют и персонифицируют картинку создавших их полей. Но гносеологически проблема гораздо глубже. Мы интуитивно уверены, что проявленные свойства объекта определяются его ВНУТРЕННЕЙ природой. А на самом деле иногда оказывается НАОБОРОТ: свойства, приписываемые нами объекту (частицам и не только) определяются свойствами и состоянием того, что ВНЕ объекта. И вот это ВНЕШНЕЕ формирует и управляет объектом, которым оно (внешнее) всего лишь олицетворяется и персонифицируется. Ну а нам КАЖЕТСЯ, что это внешнее как бы порождается самим этим объектом.

Заметим, что физические поля, характеризуемые изменениями параметров среды первоматерии, образуют структуры, которые по сути являются виртуальной информацией записанной на материальном носителе. При создании вещественных частиц эти информационные образы записываются в долговременную память мироздания. Вещественные частицы тоже являются всего лишь образами, однако более устойчивыми. Но и они, тем не менее, могут динамически модифицироваться достаточно энергичными полевыми образами. Причём инициатива изменения определяется динамикой информационных структур физических полей, так как только их изменение определяет движение и затем положение вещественных тел.

Если информацию обозначить понятием дух, а вещество, как и принято, называть материей, то вот и ответ на волнующий философов вопрос, что первично дух или материя.

Фантазии, излагаемые далее, не следуют логически напрямую из концепции вещества как изменённого состояния участков первоматерии. И их, допустим, ошибочность никак не влияет на истинность самой этой фантастической концепции.

9.Спин ?

Можно предположить, что сопротивление СФВ сжатию ослабевает не только при взаимном скручивании плоскостей, но и ещё чуть-чуть при нарушении симметрии вдоль оси вращений, как изображено на рис.8.

Вследствие этого вдоль оси возникает смещение СФВ, воспринимаемое как магнитный момент. Вот такое нарушение симметрии, возможно, и связано с одним из понятий спина. На рис.8 изображены условно электрон и, как его зеркальное отражение, позитрон.

Рис.9 показывает, почему электроны на орбиталях атомов предпочитают группироваться парами с противоположными спинами. Заряд ядра атома (в центре) обозначен коричневым цветом. (Ввиду большей массы ядро ожидаемо должно иметь меньшие размеры).

10.Космология

Попробуем реконструировать космологическую историю вселенной, основываясь на вышеизложенной концепции первоматерии. В оправдание попытки отмечу, что господствующую теорию о возникновении вселенной из сингулярности считаю математическим экзерсисом гораздо более фантазийным, чем даже нижеизложенное.

Итак, мы предполагаем, что Метагалактика заполнена первоматерией, находящейся под давлением и частично в сверхсжатом состоянии в корпускулах. Резонный вопрос а откуда взялось это внутреннее давление?
Возможно дело в том, что вселенная, то есть первоматерия в ней, расширяясь, давит на соседние вселенные, чьё инерционное сопротивление и обуславливает в ней это внутреннее давление.
Логично предположить, что именно величиной этого давления в первоматерии и, соответственно, её плотностью определяются значения мировых констант.

Инерция (масса), как обосновывается в [1], присуща именно СФВ как мера заключённой в ней энергии сжатия и лишь олицетворяется видимым присутствием сопутствующих вещественных тел. Вероятно, в одних вселенных Космоса происходит расширение ФВ, а в соседних сжатие, потом наоборот, так что в целом объём Космоса можно принять стабильным.

Понятно, что из-за внутреннего давления первоматерия должна расширяться, что и замечено реально как ускоряющееся расширение вселенной. И понятно, что при этом внутреннее давление в СФВ вероятно будет ослабевать в объёме вселенной. И, возможно, когда-нибудь ослабнет настолько, что не сможет уже удерживать вещественные элементарные частицы в сжатом коллапсированном состоянии.

Они начнут распрямляться, переходя в упругое состояние СФВ, воспринимаемое нами как пустое пространство. В итоге, из вселенной начнёт исчезать вещество, естественно вместе со всеми её обитателями, пока она вся не станет пустым пространством, которое, однако, продолжит расширяться. Это является первым из возможных сценариев совершенно неизбежной гибели всякой жизни в нашей вселенной.

После продолжительной стадии расширения, возможно уже в виде пустого пространства или до того, вселенная может начать сжиматься вследствие противодействия соседних вселенных или, быть может, вследствие упругих сил растяжения, если таковые вообще могут быть в СФВ. Сжимаясь, бывшая вселенная в своём объёме набирает кинетическую энергию, которой будет достаточно, чтобы превысить предел упругости СФВ и заставить коллапсировать значительную часть первоматерии вселенной. Примерно аналогично тому, как подобное, предполагается, происходит при образовании вещественных частиц.

Если это условие не будет выполнено, то в этом участке первоматерии вещества не возникнет, соответственно и статуса вселенной он не получит. Итак, где-то в центре бывшей и будущей вселенной начинает образоваться значительный по массе и размерам участок сверхсжатой СФВ, который мы назовём привычным термином чёрная дыра (ЧД).

Отметим, что в её формировании главным фактором является прочность первоматерии и динамика движения, а не гравитация. И в эту глобальную ЧД перетекает значительный объём бывшей вселенной, вместе со всем сущим в ней и это второй из возможных сценариев совершенно неизбежной гибели всякой жизни в нашей вселенной.

Как обосновано выше, вокруг участка с коллапсированным участком СФВ образуется область с пониженным давлением и в тем большей степени, чем больший объём СФВ был коллапсирован. По мере перетекания СФВ в ЧД уменьшается давление вокруг и внутри ЧД, и в какой-то момент его оказывается недостаточно для удержания первоматерии в этом сверхсжатом состоянии. И тогда ЧД вскипит и станет белой дырой.

Вселенная начнёт расширяться, тем более, что остаточное давление в СФВ, окружающей ЧД, будет таким же как в ней самой. В толще вскипевшей глобальной ЧД станут появляться пузыри упругого пространства ФВ, восстанавливающегося из вещества в состояния коллапса. Разумеется в пару от вскипевшей ЧД образуются также всевозможные вещественные элементарные частицы. Пузыри будут расти и сливаться, а осколки глобальной ЧД сгруппируются на границах пузырей в виде сеточки, которую мы сейчас называем ячеистой структурой скоплений галактик, что можно видеть на рис.11.

И вот это всё и есть так называемый Большой взрыв, который, как видим, весьма протяжён и в пространстве, и во времени.

Итак, часть первоматерии из коллапсированного и сверхсжатого в ЧД состояния перейдёт в нормальное упругое состояние большего объёма, которое мы воспринимаем как обычное пустое пространство. А это вызовет увеличение давления в СФВ в окрестностях глобальной ЧД и в ней самой, что в свою очередь приостановит освобождение прочей заключённой в ней массы первоматерии.

Вероятно осколки от взорвавшейся глобальной ЧД можно наблюдать в центре больших галактик в виде сверхмассивных ЧД. А сами галактики образовались из вещества создававшегося вокруг этих останков и в процессе испарения самой глобальной ЧД. Обнаружены молодые галактики на расстояниях порядка 13 млрд. св.лет, в центре которых УЖЕ есть сверхмассивные ЧД. То есть сначала ЧД, а потом галактики, а не наоборот.

Замечено пропорциональное соотношение массы чёрной дыры в ядре галактики и размеров самой галактики. Пропорциональность масс центральной чёрной дыры и массы галактики может быть объяснена степенью расходования скрытого вещества исходных ЧД, что, в общем, характеризует степень использования энергетического потенциала всей вселенной.

Попробую проиллюстрировать это следующим примером. Пусть имеем несколько надутых воздушных шариков разной величины в некоем замкнутом объёме воздуха. Понятно, что давление внутри и вне шаров почти одинаково. Пусть затем объём (в котором плавают шары) увеличится вдвое (соответственно уменьшится давление, но это не важно). Ясно, что вдвое увеличатся и размеры каждого шарика как больших, так и маленьких. Только исходные чёрные дыры в процессе общего расширения вселенской области первоматерии меняют не свой размер, а пропорционально освобождают вещество.

Для стадии после образования галактик может наблюдаться определённый гомеостазис, когда, несмотря на перманентное расширение первоматерии, давление в ней, а значит и величины мировых констант, остаются постоянными за счёт освобождения вещества из ЧД в ядрах галактик. Судя по всему, наша вселенная находится как раз на такой стадии. По мере расширения вселенной запасы сверхсжатой первоматерии в ЧД галактик будут израсходованы, и тогда станет уменьшаться и сама величина давления в СФВ и, соответственно, станут изменяться значения мировых констант.

Следует отметить, что в данной фантазийной теории механизм происхождения ЧД отличается от общепринятого и связан не с невозможностью свету преодолеть её тяготение, а, как уже упоминалось, с сопроматовскими параметрами упругости и прочности первоматерии и механикой сплошных сред (МСС). Но естественно ЧД обладает гравитацией соответственно своей массе. А вследствие снижения плотности первоматерии вблизи границы ЧД там тоже должны, как и в ОТО, наблюдаться феномены замедления времени, но вследствие меньшей скорости света.

Хотелось бы надеяться, что какие-нибудь из изложенных в статье фантастических идей, будучи творчески доработаны профессионалами-теоретиками, быть может подвигнут некоторых из них рискнуть (в чём я дико сомневаюсь) стать творцами новой физики.

Используемые источники:
  1. "Фантазии о физической причине лоренцева сокращения, объясняющей инвариантность скорости света и пр."
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru