Русский
Русский
English
Статистика
Реклама

Космос

Как космическая гонка создала Рунет и почему без неё перспективы Рунета печальны

11.06.2021 12:20:14 | Автор: admin

Каким образом в нулевые в России случился бум IT? Дело вовсе не в высоких ценах на нефть. Если посмотреть на биографии и возраст лидеров движения это сплошь математики и физики, получившие, очевидно, очень фундаментальное образование в СССР 70-80-х. И конвертировали это в Яндекс и далее по списку. Ну и остальные кадры оттуда же. Если в стране был такой сильный физмат, то это показатель качества образования в целом. Космическая гонка, опять же. В общем, условно, последние 20 лет СССР обеспечили первые 20 лет Рунета. Вопрос: что дальше? Советское образование кончилось 30 лет назад. Рунета не было бы, не будь этих 20-30 лет бума советского образования. Откуда бы отцы Рунета пришли тогда? Так вот, последние 30 лет это 30 лет без бума советского образования. И кадровый голод, по-моему, уже начинается.
В России еще остается небольшое количество научных школ, работает несколько сильных университетов, есть институты, имеющие научный авторитет в мире. Тем не менее, если текущая ситуация продлится еще лет 510, научная база в стране будет уничтожена настолько, что создавать ее придется практически с нуля, приглашая зарубежных специалистов, в том числе и опытных менеджеров, работающих в сфере науки. (Какое будущее ждет российскую науку)
И Рунет уже не тот. То есть, по инерции катится, но видно уже многое. И будет только хуже, потому что не может быть не хуже. Чтобы это продолжилось, могучему поколению начала Рунета должно прийти на смену не могучее новое поколение. А откуда они придут? Последние 30 лет российское высшее образование коммерциализировалось, деградировало, съезжало со всех пъедесталов и падало в рейтингах. Ну и космической гонки не было, запроса на науку не было. Возможно, это не очень очевидно. Вроде какое-то образование есть, вроде в олимпиадах каких-то побеждают и поди знай, это признак, что всё отлично, или что на пердячем пару остатки 30 лет, когда Россия, удивительное дело, была впереди планеты всей в плане науки и образования? В первых рядах, по крайней мере.

Это ведь уникальное явление в тысячелетней истории России. Или пятисотлетней истории Московии. Россия никогда не была лидером науки. В ней были отличные учёные, вторая половина XIX и начало XX века были расцветом науки в царской России. Что хорошо по сравнению с Россией начала XIX века. Но если взглянуть на российскую науку в контексте европейской той же поры, то восторг иссякнет. Не то, чтобы российская наука была плоха она просто была меньше. Намного, заметно меньше. Это как сравнить процветающий мегаполис в хорошие времена с городом в десять раз меньше в той же стране. Второй город тоже хороший, современный, но видно, что попроще, поскучнее, как будто живёт в другом времени, лет на пять отставая от мегаполиса, а мегаполис в авангарде всего, все остальные меряют время по нему. Вот эту русская наука версус европейская в последние 50 лет перед Мировой войной. Если сравнивать Россию с отдельными странами Францией, Германией, США картина станет только обиднее. А до этого скромного обаяния царской науки в последние полвека царизма на тысячу лет назад не было НИ-ЧЕ-ГО. Ни науки, ни образования. Можно, конечно, винить европейцев в русофобии задним числом, но, всё-таки, современникам виднее. Точно так же как в XXI веке специалисты смогут показать на карте, где находятся очаги передового развития различных областей науки и технологий, откуда постоянно приходят главные новости, где второго эшелона, а где жизнь едва теплится и откуда ничего особо ожидать не приходится. В XIX веке научный мир разных стран уже был достаточно связным, чтобы у учёных и изобретателей в одних странах было достаточное представление о положении дел в других.

В царской России наука и технологии принадлежали ко второму-третьему эшелону ничего особо ожидать не приходится. Это не значит, что тогда в российской науке не существовало звёзд мирового уровня. Это значит, что имена вроде Менделеева, Мечникова и Павлова в тогдашней России можно пересчитать по пальцам. Никогда до XX века российская наука не была на одном уровне, скажем, с британской или французской или германской. Россия, на фоне европейских науки и образования, действительно, была тёмной, невежественной, неграмотной и отсталой страной? Даже в начале XX века. Тем более в первой половине XIX века. Тем более в XVIII веке. И так далее вплоть до Ренессанса в XIV веке. Дорожки разошлись уже тогда. И обидное отношение к России как стране необразованного мужичья отражало эту неказистую реальность. Точно так же, как сейчас русскоязычные разработчики относятся, например, к индийским. Уж точно не в индобофии дело.

Стоило же в XX веке расцвести феномену советской науки, вышедшей в отдельных областях на уровень европейской и американской как отношение к русскоязычным учёным и инженерам сменилось на уважительное во всём мире.

Потому что культура (включая культурные мемы и предрассудки) зеркало материальной реальности, а не наоборот. Меняется реальность меняется и отражение в этом зеркале. В XIX веке в этом зеркале отражался мужик в лаптях. В XX человек в халате и очках. Но кредит заработанного в XX веке уважения уже подходит к концу.

И это очень тревожно, потому что, если верить, что Россия всегда была центром наук, образования, а русский мужик был грамотен, просто раньше Европа не хотела этого признавать, то можно пропустить две важные вещи:

  1. Так было не всегда. Всеобщей грамотности в России менее ста лет.
  2. И это исторически новое состояние может очень быстро стать прошлым.


Короткая история образованной нации


К 2035 году уже арктическая ледяная шапка начнёт полностью таять каждое лето, а столетие с момента, когда можно было сказать, что все русские люди умеют читать и писать по-русски, ещё не наступит. Что всё, что сейчас принято считать за норму высшее образование, чтение книг, всеобщая грамотность, сильные физики, сильные математики, лидерство в космосе, опять же это всё произошло в 19461991. Дата начала условна назначение Сергея Королева генконструктором, потом атомная программа, даже строительство главного здания МГУ на Воробьёвых горах и понеслось. Всего 45 лет из тысячелетней истории Россия (СССР) была, действительно, грамотной, образованной, современной и продвинутой (в образовательном смысле) страной. Поглядывая на современный американский дискурс, внезапно оценил то, о чём не думал даже никогда нормализацию атеизма. Ну и теории эволюции.

И, к слову, космическая программа той же Индии к 2030 году обгонит российскую. А, значит, с задержкой в 10-20 лет (значительной в масштабах человеческой жизни, ничтожной в исторических) и положение российского и индийского IT-сектора и науки в мире поменяются местами. Потому что подойдёт время смены поколений в России уйдёт поколение, рождённое в золотое тридцатилетие советской науки и образования между 1961 (полётом Гагарина) и 1991 годами, в Индии придёт поколение, выросшее уже на индийском пике науки и технологий.

Не хочу преувеличивать распространённость невежества в США какая-то часть населения определённо диковата, но сколько их 10%, 25% или 5%, это просто интернет их делает заметнее, но сам факт, что в американском дискурсе регулярно всплывает религиозная тематика в контексте, который выглядит, скажем так, слегка архаичным мол, я не знал, что мы об этом ещё спорим, хм, что они показали мне ценность прививки атеизма, о чём мне никогда, до знакомства с американским консервативным дискурсом, не приходилось даже задумываться как о чём-то более впечатляющем, чем мытьё рук с мылом. И аборты, конечно. То, что это реальная политическая проблема в стране с самой сильной наукой в мире в 2020 году, что религиозный фундаментализм, оказывается, ещё можно мобилизовать против медицины говорит о том, что, возможно, степень культурности и образованности, до которой дошли два советских поколения, слегка недооценивается. Явно какие-то пробелы, которые ещё не везде закрыты, закрыли с опережением.

Говоря, что Россия к концу XX века стала действительно, грамотной, образованной, современной и продвинутой страной я не имею в виду моду, культуру, технологии. Я о том, что, по крайней мере, теория эволюции, рассказываемая в школах и даже детских садах уже лет 20-30 назад ни у каких родителей заметных в медийных масштабах позывов конфликтовать со школой или воспитательницами детского сада не вызывало. В первую очередь, это открытие для меня самого. Что я, оказывается, недооценивал какие-то вещи в культурном и образовательном смысле нормализованные в СССР тогда. Впрочем, одна из вещей, которая была нормализована преждевременно и напрасно это образованность, грамотность и начитанность советского человека и гениальность советских физиков и математиков, начиная уже со школьной скамьи. Проблема не в том, до какой степени это верно или нет, а в том, что, даже если это всё принять не критически это ведь явление, которое появилось и существовало в течение всего 45 лет, условно с 1946 до 1991. Ничего из этого и близко нельзя было сказать о русских ещё в 30-е годы XX века. Даже про грамотность по переписи 1937 года, 26% советского населения старше 10 лет были неграмотны.

Однако, с точки зрения человеческого восприятия, изменения, произошедшие на протяжении всего двух поколений трёх, если считать от 2020 это не изменения. Это так и было. Большинство людей родилось в это. Многие уже во втором-третьем поколении. И представить из 2020 до какой степени, по-видимому, могла на самом деле быть неграмотна Россия или оценить место русской науки в мировой в контексте той эпохи, действительно, тяжело. Четверть неграмотного взрослого населения за пару лет до начала Великой Отечественной даже это удивительно. В общем, Россия поумнела. Во второй половине XX века, это случилось на самом деле, безусловно и однозначно. Но потом случилось страшное: Россия поверила, что так всегда и было. И это очень опасно.

Опасно не ценить, насколько это всё недавно произошло. Опасно не ценить, насколько это противоречит всей предыдущей истории России за тысячу лет, из которой никогда, никак, ни в чём, ни одним намёком не вытекало никаких предпосылок цивилизационного рывка в науке и образовании во второй половине XX века.

Если не ценить внезапность этого поворота истории, ценность образовательного прорыва, случившегося так недавно, если не осознавать контраст второй половины XX века в смысле культуры и образования со всей предыдущей историей России, не понимать, что произошло, если не ценить приобретённое, не понимать, как это было приобретено, не осознавать, что вообще что-то было приобретено, ценность этого, уникальность было, действительно, приобретено нечто, чего в России никогда до этого не было, совсем недавно, и как это изменило Россию, не осознавать вообще что-то принципиально за те 50 лет изменилось всегда так было то не получится заметить, как это теряется. Это всё ещё с нами? Или уже нет? Или ещё да, но уже одна оболочка с трухой внутри, которую люди пока не замечают?

Думаю, позднесоветское-ранне-постсоветское поколение миллениалы, в общем, 19801996, может быть, чуть старше, родились в эту спокойную уверенность всегда так было. Пронесли заряд предыдущей половины столетия через 90-е и нулевые, создав по пути Рунет действительно, великую вещь. И только укрепились в ощущении, что всегда так было и всегда так будет. Которое всё очевиднее оказывается заблуждением.

Настоящие корни Рунета


Рунет не был создан в 90-е. В 90-е он проявил себя. Создан был Рунет людьми. А эти люди были созданы парой десятилетий раньше. В школах и институтах. В стране с действительно сильным физматом что они своим примером и доказали.

И, похоже, ни разу не задумались, в чувстве собственного превосходства, что их вообще-то учили. И не в сильной школе или сильном ВУЗе, а в сильной образовательной системе. Потому что чудес не бывает. Институтов мирового уровня вдруг, как жемчуг в куче говна, в окружении из посредственной образовательной системы какой-нибудь среднеразвитой азиатской страны появиться не может. Современная Россия тому доказательство. Вместе с системой высшего образования, тонущей, идущей на дно уже 30 лет, тонут и жемчужины тоже. Держатся, карабкаются, на рейтинги мировых ВУЗов стараются внимания не обращать но и без них, в общем, многое видно.

Лучшие советские школы и ВУЗы не были исключениями из правил, они были частью системы, лучшие из лучших стояли на фундаменте из лучших, лучшие стояли на очень хороших и так далее. Это был системный подход. Не лучшие ВУЗы были созданы, а была создано целое среднее и высшее образование, по большей части, с нуля. В огромном масштабе, на всю страну. И это высшее образование, огромная живая среда, уже произвела свои лучшие школы и ВУЗы.

Это, в числе прочего, перестали понимать в России всего через 20 лет после СССР. Сколково, ВШЭ, Особенно Сколково. Это был провал на уровне идеи. Откуда я могу это знать? Иногда это не так сложно. Если ты прочитал, что главный вождь объявил о намерении построить аэродром и самолёт, а потом увидел, что они тащат на поле тростник и сену, чтобы собрать их в форму самолёта вполне уверенно можно сказать, что это был провал на уровне идеи.

Идея создать крутой ВУЗ, пусть даже не по советской кальке, а по американской, создать свою Кремниевую долину в отведённых гектарах земли это карго-культ. Она была мертворождённой как намерение построить самолёт из соломы. Попытка сделать как в Америке людьми, которые не понимали, что было сделано в СССР, привела к закономерному результату: то, чего они не увидели у себя под носом они не разглядели и в США. Что Кремниевая долина, вообще-то, создана не Цукербергом. И даже не Джобсом. И даже не Гейтсом. Её создали: огромный госзаказ, военный госзаказ, космическая гонка, Стэнфордский университет, который, в свою очередь, был частью той же большой движухи, которая происходила в СССР: политикам нужны были физики, математики и инженеры. И, похоже, они понимали, что, если вам нужно 50 гениальных математиков, вы не строите школу для математических гениев с газончиками а-ля кампус в Сколково на 50 учеников. Вы строите пять тысяч школ. И пятьсот университетов. Ну хотя бы 50. Ждёте, ждёте, пока школьники пройдут школы, потом университеты, подкидываете им работы и задачи государственной важности попутно, и вуаля лет через 10-15 из 50 новых университетов вышло по одному гениальному математику. 50 гениальных математиков готово. Всего лишь 5000 школ, 50 университетов и 15 лет стимулов и задач всей этой научно-образовательной машине шевелиться и готово.

Из этого списка Медведеву для успеха Сколково не хватило примерно всего. И представления вообще, что что-то ещё за пределами задачи Хочу тут русскую Кремниевую долину!, выделить землю и построить какие-то здания, нужно знать, может потребоваться.

15 лет стимулов звучит долго. Но долго ли? Для современной России страшно долго. Любые государственные планы с горизонтам дальше двух лет заведомо профанация. Любой горизонт-2030 в 2020 будет профанацией и в 2027 будет профанацией. В 2029 может что-то забрезжит про 2030. Но за долгосрочные проекты власть сама уже перестала пытаться браться, Мудро. Если уж пытаются что-то сделать то авралом, за три года.

Однако, десять лет уже прошло. У Сколково юбилей. В моём гипотетическом примере о выведении 50 гениальных математиков 50 вероятных финалистов уже бы вырисовывались сейчас ещё в процессе учёбы. Так что проблема не во времени, 10 и 15 лет в любом случае пройдут, так почему бы не попытаться потратить их на что-то созидательное?

Рунет , как и Кремниевая долина это больше, чем 50 гениальных математиков, я думаю, но появились на свет они именно так. Всего лишь 5000 школ, 50 университетов и 15 лет стимулов и задач всей этой научно-образовательной машине шевелиться:

40 лет космической гонки то есть, 40 лет стимулов и задач всей этой научно-образовательной машине шевелиться, тысячи школ, сотни, может, тысячи институтов и готово. Возможно, Рунет так удивительно похож на Кремниевую долину (её интернет-направление, с гаджетами в России уже не вышло) именно потому, что люди, их создавшие, вышли из космической гонки. В которой они, в большинстве, не участвовали. Но которая создала эти 40 лет стимулов и задач для научно-образовательной машины, потребность в научно-образовательной машине, тысячи школ и институтов. А уже из них вышли отличные физики с математиками. Не могу ничего сказать про Кремниевую долину в этом смысле, но трудно не заметить, какой вклад физмат внёс в само возникновение Рунета как феномена, глядя на первые поколения рунетчиков. Тем более странно, что сами рунетчики этого не заметили. Рунет был создан в 90-х. Но люди, которые создали Рунет, были созданы в предыдущие 30 лет до 90-х.

И, удивительное дело, как раз прошло ещё 30 лет. Если отцы Рунета хотят передать гордое знамя новому поколению как раз подходит время. За 30 лет должна была подрасти новая смена, да?

На самом деле, нет. За 30 лет только стало ясно, что смены не будет. Уберём из волшебного коктейля амбициозный долгосрочный госзаказ на науку не было такого последние 30 лет, ни мотивации, ни потребности.

Соответственно, уберём запрос на физиков-математиков-инженеров.

Добавим к этому тотальную коммерциализацию высшего образования. Стране, которая хочет построить экономику знаний, не следует требовать платить за получение этих знаний вперёд. Впрочем, Россия за последние 30 лет ни разу ничем не выказала интереса строить экономику знаний. Да вообще в каких-то знаниях, науке. Вот коммерциализация это другое дело, чего зря таким площадям простаивать, да и тратить деньги на чьё-то обучение, когда полно дурачья, которые сами готовы за это платить? В общем, государство не было заинтересовано ни в каком развитии образования и науки за отсутствием вообще какой бы то ни было потребности в этом, и даже немножко было заинтересовано чтобы добить образование, путём повышения его эффективности. Коммерческой эффективности.

Ничего не имею против частного бизнеса и коммерческой эффективности взять те же Рунет с Кремниевой долиной. Но идея, что, если в одних областях и отраслях приватизация, profit motive, коммерциализация творят чудеса, то идея, что осталось распространить коммерциализацию на всё остальное и всюду произойдут чудеса скажем так, себя не оправдала. Конкретно образование и здравоохранение это две сферы, в которых коммерциализация не то, чтобы лишняя это я раньше так думал, что отлично сосуществуют две системы, кому-то подходит больше одно, кому-то нужно другое. Сейчас я думаю, что в образовании и здравоохранении коммерциализация вредна. Не со зла и не по умыслу, но profit motive и образование, так же, как и profit motive и здравоохранение несовместимы. И та и другая сферы по своей идеологии абсолютно некоммерческие, антикоммерческие, и появление коммерческого соблазна в них коррумпирует и разрушает и ту, и другую область. Это происходит само по себе, естественно и неизбежно.

Наверное, это не очень очевидная мысль. Но у меня есть хорошая аналогия: представьте себе коммерциализацию полиции, судов и армии. Шутки-шутками (про их безумную коррумпированность, да) но, во-первых, коррупция это и есть пример коррозийного действия денежного мотива в сфере которая принципиально с ним несовместима. В каких-то сферах денежная мотивация не мешает. В каких-то она помогает. В судебной или полицейской работе появление коммерческого интереса не даёт им выполнять свою функцию. Чем глубже деньги проникают в суды и полицию тем менее они суды и менее это полиция. Это как заливать бензин при переливании крови. Бензин отлично подходит, чтобы заливать в бензобак. Но если попробовать его залить в кровеносную систему может получиться как с российским образованием и здравоохранением. Суды и полиция, по крайней мере, коррумпированы. Представление о том, как должны работать суды и какой должна быть полиция, сохраняются. И можно даже, глядя на них в реальности, замечать некоторые отличия.

Здравоохранение и в большей степени образование в более тяжёлой ситуации. Бензин не только заливается в кровь, но ещё и агитируется как более качественный заменитель крови, вылейте её всю, замените всё на бензин. Многие люди соглашаются с этим или хотя бы не имеют возражений. Консенсуса о роли profit motive в образовании не то, что нет идея полностью коммерческого высшего образования кажется многим разумнее, чем полностью государственного образования. Фу, назад в совок! Не дай бог. Советский режим не состоял из одного образования и науки. Он ещё состоял из политической диктатуры со всеми вытекающими. Это не отменяет того, что советская космическая программа, программа по ликвидации безграмотности, сопутствовавшие буквально цивилизационный сдвиг России чуть дальше от угрюмой аграрной монархии и чуть ближе к миру Полудня. Это стоило сохранять всеми силами. Однако, история так повернулась, что, оценивая, чтобы взять, а что бы не брать у СССР, современная Россия образование не оценила, зато опытом политической диктатуры очень заинтересовалась. То, что следовало делать приоритетом номер 1 было брошено и отравлено ядом коммерциализации, то, что следовало оставить в 1991 активно имплементируется в настоящем.

В общем, смены первому поколению Рунета не будет. Точнее, её нет. Первое поколение Рунета было создано к 90-м за предыдущие тридцать лет. За следующие 30 лет ничего не создавалось, многое разрушалось и деградация видна невооружённым взглядом. То есть, по сути, история уже свершилась. То, что определяет будущее Рунета на минимум пару десятилетий вперёд произошло (или не произошло) за пару уже завершившихся десятилетий. Дальше мы будем наблюдать её наглядные проявления. В какой форме это проявится.

Это не значит, что Рунет умрёт или всем крышка. Нет, конечно. С Рунетом, я думаю, произойдёт то же самое, что происходит с российской космической программой. За те же самые тридцать лет мы ещё не до конца осознали, что лидерами космической гонки США и СССР были в 60-е и 70-е. В 80-е СССР окончательно отстал. И сохранять иллюзию, что Россия в космосе это то же самое, что СССР уже почти невозможно. Тем более, что СССР под конец в космосе был уже не тем СССР, с которым сравнивала себя Россия уже в нулевые. Поддерживать состояние отрицания помогало отсутствие других претендентов на лидерство в космической гонке, но это уже позади участников море. Сегодня Россия по разным оценкам идёт третьей после Китая, это ещё не так обидно. Но на пятки уже наступает Индия, а вообще космические программы запускают все, кому не лень. По прогнозам в 2030 году вместо утешительного третьего места Россия сползёт (по разным параметрам коммерческим, запускам, количеству грузов) уже на 4-6 места. Дело даже не в том, что в России плохо с космосом. Что есть хорошо. А в том, что это вся космическая стратегия и есть работать с тем, что есть, пока это работает. Во-первых, проедание наследия стратегия с предсказуемым финалом. Во-вторых, мало того, что Россия не движется вперёд другие движутся. Некоторые даже рвутся. Никаких космических амбиций у России сейчас нет, никуда Роскосмос прорываться не собирается и вообще, похоже, предпочитает не шевелиться. Поэтому предсказать положение России в космосе в 2030 году так просто, что хоть на деньги спорь: оно видно ясно, как в хрустальном шаре: ничего нового не появится, что-то из действующего отвалится, продолжат летать на том же, что и сейчас, выполнять те же функции, что и сейчас, только ещё меньше (потому что будет падать спрос, будет выходить из строя техника, будут уходить на пенсию люди). То есть, чуть-чуть откатится назад даже с сегодняшних позиций. Это не значит, что все, кто рвутся вперёд, обязательно в этом преуспеют, но скорее да, чем нет. Быть на 4-м месте после Индии в 2030 для России будет удачей. Скорее всего, она скатится ещё глубже во второй эшелон.

И, вероятно, к этому времени Россия уже даже это примет. 10 лет на стадию acceptance должно хватить.

Примерно так я вижу и будущее Рунета. Никуда он не денется, работа будет, бизнес будет, технологии будут. Просто из уникумов, одной из двух стран, включая Китай, которая удержала свой интернет-рынок, и выделяется на карте мира как страна, где главный браузер не Гугл, главная соцсеть не Фейсбук и так далее Россия превратится в страну, в которой есть интернет-индустрия. Как та же Индия. Как и в космической гонке Россия какое-то казалась в двойке лидеров с США. У Китая огромный рынок и господдержка. Рунет вырос в прямо противоположных обстоятельствах. Это её выделяло. Этого уже нет. И вообще, чем дальше, тем меньше чем российская интернет-индустрия будет выделяться. Будет всё ближе к любой другой интернет-индустрии сопоставимой страны.

Это будет что-то вроде интернет-деиндустриализации. Когда вроде экономика есть, но, внезапно, она уже ничего не производит особо, а занимается обслуживанием. При этом разговоры о том, что-де, промышленность не нужна, это прошлый век, будущее за сервис-экономикой оказались враньём. О том, как промышленность не нужна и прошлый век расскажите Китаю. Который начинал с фабрик для иностранцев, а за 30 лет, внезапно, развитие промышленности потянуло за собой развитие промышленности: Китай как никто в мире сейчас развивает инфраструктурные проекты у себя и по всему миру. Одни скоростные железные дороги через всю страну чего стоят. И это только малая часть. Так или иначе, промышленность нужна. Достаточно одного Китая или всем это спорный вопрос, но многие страны, в первую очередь, США, индустриализировавшие Китай ценой собственной деиндустриализации, об этом очень громко жалеют. Но пусть даже один Китай. Промышленность всё равно необходима, покуда люди живут в материальном мире. Мире вещей. То есть, мир не перешёл к постиндустриальной эре, отказавшись от промышленности. Мир просто передвинул всю промышленность в Китай, выбрав себе быть сервисными экономиками. Сейчас горько об этом жалеют и тяжело за это расплачиваются, но дело не в этом. В интернете будет то же самое.

Деиндустриализация Рунета означает, что Рунет, и IT скорее всего, будут меньше выдавать в мир чего-то нового, какие-то продукты, технологии. И больше обслуживать тем или иным образом созданные другими экономиками. Это не хорошо и не плохо само по себе. Хотя нет, всё же плохо. Если последние 10 лет в экономике чему-то и могли научить, что на сервис-экономику лучше не рассчитывать и лучше ей не быть: внутренних источников роста в ней нет, а при внешних экономических неурядицах она обваливается и превращается в основной генератор безработицы. Думаю, эта аналогия корректна и даёт понять, почему всегда лучше быть интернет-индустрией, нежели просто интернет-сектором или IT. Другое дело что а есть ли выбор?

Не буду показывать пальцем на Россию, российскую промышленность никто не любит, покажу на США.

Деиндустриализация это печальный процесс, происходящий, например, в США. Это была индустриальная страна, самая мощная индустрия в мире, поразительная во многих смыслах. Читая о том, как они налаживали, переставляли на военные рейсы и организовывали свою промышленность во Вторую мировую впечатляешься неимоверно. Количество продукции потрясало. Размах многих операций, включая логистические, в которых были задействованы тысячи самолётов разом. Америка стала индустриальным гигантом прежде, чем она стала гигантом военным и политическим. И как раз за те же последние 30 лет это закончилось. Огромное количество индустрий переехали в Китай. Много в Мексику. Фактически, США индустриализировали Китай за свой счёт прямо сняли с себя рубашку и отдали голенькой тогда КНР. Но самое главное, что всё это происходило под совершенно безумный восторг политического, журналистского, экспертного истеблишмента: дело в том, что они видели не деиндустриализацию они видели переход к сервисной экономике! Не разрушали одну из лучших вещей, которую делала Америка делала вещи а сбрасывали балласт на пути в постиндустриальный мир. А индустрии это что-то вроде паровых машин и паровозов, пусть в Китае топят, так им и надо.

Это обернулось грандиозным фейлом. Во-первых, сервис-экономика и постиндустриализация это разные вещи. До постиндустриализации ещё далеко. Под видом постиндустриализации США прошли деиндустриализацию, а пустые места попытались заткнуть сервис-экономикой. Китай прекрасно индустриализировался, удивительное дело, паровозы и пароходы оказались вовсе не утилём, и топят Китай в XXI век, а американцы смотрят видео, как китайцы то мост за десять дней построят, то госпиталь за шесть обсуждают это в новостях и завидуют! Попутно жалуясь, что сами не в состоянии даже имеющуюся инфраструктуру отремонтировать. Прямо как в России. С той лишь разницей, что, когда в России завидуют китайцам, строящим мост за десять дней, подтекст понятен: эх, а мы так не можем.

Когда с тем же самым сентиментом эх, а мы так не можем это шокирует. Это были вещи, в которых США были лучшими в мире организовать какую-нибудь масштабную операцию, осуществить какой-нибудь гигантский проект масштабы, мастерство управления масштабными проектами, ресурсы, амбиции и результаты США были и остаются непревзойдёнными. Для своего времени. Сейчас примерно тем же самым отличается Китай. Это уже совсем не то, но китайцы молодцы. А вот смотреть, как американцы сами себя забывают очень странно. Возможно, со своими заводами, США, как Самсон со своими волосами, отдали китайцам свою силу.

Вполне буквально. Замена индустриальной экономики на сервис-экономику оказалась катастрофой. Люди, которые это пропагандировали идиоты или маньяки. Второе не менее вероятно, кстати, потому что коммерческого интереса за всем этим стояло и стоит немеряно.

Вместо высокооплачиваемых, требующих высокой квалификации то есть, движущих и образование, и благосостояние среднего американца работ в индустрии, сервис-экономика предлагает: низкоквалифицированный труд. То есть, отсутствие мотивации развивать образование и тупеющую рабочую силу.

Низкооплачиваемый труд. Все эти сервис-воркерс получают минимальные или близкие к тому зарплаты. А чего им платить больше? За низкоквалифицированный труд?

Гиг-экономику. Сервис на сервисе и сервисом погоняет. Зачем идти на посоянную работу на минимальную зарплату в Макдональдс, когда можно устроиться в Убер, не быть вообще трудоустроенным, не иметь никаких бенефитов сотрудника и даже минимальной гарантированной Макдональдсом зарплаты? Конечно, в режиме как потопаешь так и полопаешь на Убере наверняка можно зарабатывать больше Мака. Главное, не заболеть. Болеть в отсутствие медстраховки и заработка во время болезни сомнительное удовольствие. В общем, чтобы наслаждаться всеми чудесными возможностями сервис-экономики и гиг-экономики лучше иметь железное здоровье. А то эйфория от перехода в постиндустриальный мир совсем добьёт.

Ну а Китай, бедный, всё ещё копошится в прошлом и развивает зачем-то эту допотопную индустрию. А как же возможность стать частью сервис-экономики и улыбаться посетителям, подавая им латте в Старбаксе?

Попутно они ещё строят масштабные инфраструктурные проекты, скоростные железные дороги, порты и аэропорты по всему, развивают индустрию уже в Эфиопии (!) возможно, тут есть связь с индустриализацей КНР? Возможно, им кто-то подсказал, что люди по-прежнему живут в материальном мире? И что обеспечение комфортных условий для погружения в виртуал тоже задача из материального мира.

России процесс деиндустриализации тоже хорошо знаком, хотя в случае с российскими индустриями по ним никто особо, вроде, не скучает. Зато картина перехода разных сфер бизнеса из индустриального сектора в сервисный очень наглядна. Возьмём, например, автомобилестроение. Безусловно, российский автопром был ужасен. Но представьте, если нет. Деиндустриализация выглядела так: вчера в России/СССР был автопром, обеспечивающий нужды рынка (допустим). Была автоиндустрия, в общем. Потом она стала таять. На смену заводам полного цикла пришли отвёрточные сборки. Тоже, к слову, восхвалялись как прогресс. Нет, Жигули всё равно были ужасны. Но всё-таки отверточная сборка не замена плохому заводу. Замена плохому заводу это хороший завод.

В общем, создать даже видимость замены индустрии не получилось. А авторынок в России превратился в ту самую сервисную экономику. Это звучит не очень драматично, но, всё-таки, если представить саму динамику: была страна, производила автомобили (допустим, хорошие). То есть, был автопром. А потом перестала. И теперь автобизнес это, в первую очередь, торговля. Сервисная экономика. Продажа чужих машин. Без автопрома. Выглядит грустновато, всё же?

Конечно, есть разные заводы разных производителей по стране, и ГАЗ с Ладой, вроде, дышат. Но что-то это ни во что не вырастает. Китай, принимая у себя фабрики и заводы, ставил условием: иметь китайского партнёра. Партнёры китайские тогда были не очень, раздражали только американцев да мешались им. Тем временем, партнёры, работая в обязательном по закону тандемом с американцами, немцами, японцами учились, перенимали компетенции своих коллег на всех уровнях, перестали раздражать и мешаться и во многом уже они стали двигателем второй волны индустриализации и бизнеса в Китае. Спасибо опыту, наниям, технологиям и рабочим местам, предоставленным Китаю во время первой волны индустриализации западными корпорациями. Почему бы России так не делать? Я не очень слежу за автопромом, но, когда следил главами всех заводов, производств, совместных предприятий и даже сборок были варягами. Многие из них не скрывали, что русским менеджерам доверять нельзя, за русскими рабочими надо глаз да глаз. И, в принципе, и менеджеры, и рабочие были согласны: всё так. Пусть варяг придёт и порядок наведёт. Однако варягу варягово, а России что? Китайский подход себя, в итоге, оправдал, хотя их требование (действующее, по-моему, до сих пор) заводить китайский бизнес в партнёры очень многих очень долгое время постоянно по разным поводам раздражало. Китай за это критиковали, считали косным, бюрократичным а они, оказывается, учились у западных коллег, перенимали от технологий до опыта всё. То есть, даже если завтра весь иностранный бизнес оставит Китай опыт останется.

В России же варяги просто заведуют производством в своих интересах, аборигенам ничем не помогая и особо их не подпуская. Это больше похоже на колониализм, чем индустриализацию. Потому что если завтра эти варяги покинут Россию, то после них ничего не останется. Посотрудничали, поработали, попрощались.

А сервис-экономика в России это смешно и грустно. Небольшой всплеск энтузиазма был в нулевые, когда появились нефтяные деньги. После 90-х и в отсутствие альтернативы (каких-либо попыток развивать производство) это было неплохо. Так бы жить да жить: разливать латте в Старбаксе, радоваться, что не надо работать на заводе, и вообще ничего больше делать нефть всё оплатит.

С нефтью начались перебои. Ситуация становится только хуже и будет дальше ухудшаться, потому что улучшаться ей некуда и не с чего. Но зато появился повод задать вопрос: если страна ничего не производит, а её главный экспортный ресурс позволяет выживать, но уже не шиковать откуда в людей возьмутся деньги для сервис-экономики? И сервис-экономика начинает скукоживаться. Сервис-экономика это не экономика, это издевательство. Экономика должна быть в состоянии производить блага, расти и развивать всё вокруг. То есть, нормальная экономика должна служить источником энергии. А сервис-экономика сама на подсосе. Какие в ней факторы роста? Что в ней может начать расти и приносить богатство стране, если у клиентов нет денег? При наличии денег сервис-экономика может работать. При отсутствии денег у рынка сервис-экономика может не работать. Варианта, при котором при отсутствии у клиентов денег, сервис-экономика могла бы сама стать драйвером экономики (а она должна такое уметь, раз её прочили на замену промышленности) нет. Потому что, чтобы стать драйвером для экономики, чтобы рост экономики добавил денег клиентам, и те снова пошли в сервис-экономику. Одна незадача: чтобы стать драйвером экономики сервис-экономике нужны клиенты, а то непонятно, на чём драйвить-то. А если проблема как раз в том, что у клиентов нет денег то ой. Сервис-экономика это обслуживающая экономика, а если обслуживать некого, то что дальше? Промышленности, напомню нет (И не надо! Сервис-экономика это XXI век, а не ваши эти совковые фабрики по выпуску чугуниевых патефонов!), нефть, скажем так, не долгосрочное решение и уже не решение, а чисто выжить. Кто какие ещё знает источники экономического драйва, когда промышленности нет, сырьевая рента высыхает, а сервисная экономика, оказывается, без уже присутствующих денег и спроса в экономике не может?

Я бы предложил промышленность. В России есть что строить, нужно много что строить, и вообще XXI век несёт промышленности новые перспективы. Спрос на вещи, материальные объекты, продукцию промышленного, сложную продукцию сложного производства, всевозможное строительство, безграничное море инфраструктурных потребностей в стране этого на две индустриализации хватит. И потребность в промышленности не грозит иссякнуть ни через 10 лет, ни через 80. Нефть точно сдастся раньше.

А сервис-экономика вообще оказалась не той, за кого мы её принимали. Сервис да, но какая же это экономика. В 2020 году эта индустрия XXI века, наш проводник в постиндустиальный мир, вообще оказалась главным генератором безработицы. Сервис, безусловно, не виноват в пандемии и кризисе. Однако сервис-экономика же продвигалась как замена промышленности. Источник рабочих мест. И так до поры до времени и было, пока не перестало. И стало ясно, что сервис-экономика может производить рабочие места, когда в экономике всё хорошо и так, есть какие-то источники ценности. В этом её главное отличие от промышленности. Промышленность способна производить ценность и вытаскивать на себе тонущую экономику. Взгляните на Китай. А как пример катастрофической деиндустриализации на США. А потом ещё раз на Китай. Россию не предлагаю, потому что российскую промышленность никто не любил и не оплакивал. Другое дело, что, не любя старую русскую промышленность, что-то же делать надо? Варианта, насколько я вижу, всего 3: сервис-экономика как более современная замена промышленности. Отличный вариант замене промышленности в плане генерирования безработицы, какой в 90-е не было. Если в экономике меньше денег, сервис уменьшается, если больше увеличивается, но драйвером-то экономики, который поможет её из состояния меньше денег к больше денег подвести? А если никак, то как она вообще может обсуждаться как замена промышленности? Пусть будет, разве жалко. Но вопрос на что жить, а не где кофе пить.

Второй вариант нефть, сырьё, рента. Даже фанаты сервис-экономики на этот вариант смотрят со скепсисом.Nuff said.

Третий вариант промышленность. Да, в России была плохая промышленность. Но эта проблема давно в России нет никакой промышленности. Соответственно, плохой тоже. Давайте создавать хорошую. В какой-то момент, надеюсь, растущая безнадёжность и безвыходность ситуации всё-таки доведут до принятия мысли, что промышленность развивать необходимо, даже если не хочется, потому что другие варианты ещё хуже. И вообще, у нас сама страна разваливается на куски. Необязательно даже экспортные амбиции с ходу лелеять для собственных-то нужд мы можем что-то начать делать? Дороги, мосты, скоростные железные дороги, жильё, порты. Список улучшений для России будет бесконечен и весь состоять из требований промышленного производства нужных для этого штук. Но можно, конечно, сидеть, беднеть, наблюдать, как изнашивается, что было, а нового не появляется. Это какая-то национальная депрессия.

Почему это важно? Потому что это, возможно, будет один из моментов встречи с реальностью лицом к лицу и осознанием не того, что Россия на каком-то там месте в космическом рейтинге, а что предыдущие 40 к тому времени лет страна уже упущены. Реальность 2021 года в России ковалась в СССР в 1980-х. 40 лет именно столько проходит в течение человеческой жизни с первых слов до пика экономической продуктивности человека в среднем. Каждый фактор с минус девяти месяцев от роду, начиная с доступности и качества репродуктивной медицины, качества жизни матери во время беременности, доступности отпуска по уходу за ребёнком, детских садов, школьного образования, внешкольного образования, ВУЗов, складывается, в сумме, в экономическую продуктивность взрослого человека в течение жизни.

Почти все поводы для гордости в России последние 30 лет от математиков-олимпиадников до космической программы, высокого уровня образования и начитанности и так далее были сгенерированы в последние 40 лет СССР. Какие-то из них протянули дольше, какие-то меньше, но к 2030 уже вряд ли останется что-то живое. И осознавать придётся уже не мы больше не, хуже: что 40 лет были потеряны в иллюзиях и безответственности. И Россия не только больше не иллюзии кончились за ними окажется, что ничего больше и нет. Всё, на что Россия надеялась, верила, рассчитывала или просто не ценила исчезнет, а ничего нового, никакого задела на будущее создано не было.


Подробнее..

Радуга Роскосмоса

18.06.2021 16:08:17 | Автор: admin
Галактика Андромеды в различных спектральных диапазонах: радио, инфракрасном, видимом, ультрафиолетовом и рентгеновском

Два года назад в космосе завершилась работа российского спутника Спектр-Р основы астрофизического проекта РадиоАстрон. Сейчас ему на смену пришел космический телескоп Спектр-РГ, а в разработке находятся еще две обсерватории Спектр-УФ и Миллиметрон. Давайте посмотрим зачем Роскосмос и Российская академия наук создают эти телескопы, и как движется их реализация.

Начнем издалека, чтобы разобраться почему астрономам недостаточно обычных телескопов на Земле.

Что такие могоспектральная астрономия?


Как и в древности, сегодня для человека главный метод получения знаний об окружающей Вселенной это наблюдения колебаний электромагнитного поля или, электромагнитного излучения. Сначала человек просто изучал окружающее пространство уникальным природным средством глазами. Но наши глаза видят очень узкий диапазон длинн волн электромагнитных колебаний, в том диапазоне, в котором наше Солнце излучает ярче всего, а атмосфера Земли лучше всего пропускает видимом.

image

Наука открыла людям возможность смотреть вокруг себя и в других диапазонах. В зависимости от длины волны электромагнитные колебания мы называем по разному. Длинные волны от километров до сантиметров это радио. Например FM радиоволна имеет длину около 3 метров, сотовая связь 16 см, микроволновки 12 см, а экспериментальная сеть 5G в Сколково 6 см.

Если длина волны укорачивается меньше сантиметра, и составляет миллиметры или их доли это уже миллиметровый диапазон излучения. Это такое переходное состояние между радио и светом. Если укорачивать волны дальше, то получим инфракрасное тепловое излучение, потом видимый свет, потом ультрафиолет, рентген и самое жесткое и энергичное излучение гамма. Всё это и называется спектр электромагнитного излучения. Наверно у всех в школьных кабинетах физики висели такие графики:

image

Из них хорошо видно насколько малую часть реальной информации об этом мире воспринимают наши глаза всего семь цветов, которые мы видим как радугу. Всё остальное и без науки во тьме.

Электромагнитные волны создаются в процессах связанных с выделением и передачей энергии, а из далекого космоса к Земле долетает только то, что было выброшено какими-то масштабными событиями: взрывами сверхновых, аккреционными дисками черных дыр, воздействием космической радиации на газ и пыль И каждое событие соответствует своей спектральной подписи. Излучение звезды зависит от её температуры и состава, например, Солнце имеет пик яркости в диапазоне видимого света, а в гамма-диапазоне почти черное. Молодые звезды синие, старые красные. Далёкие квазары светят практически во всём спектре.

То, что мы воспринимаем глазами как цвета, это просто электромагнитные колебания разной длины волны, например длина волны красного света 650 нанометров, а синего 400 нанометров. По такому же принципу ученые создают цветные картинки из снимков в тех диапазонах излучения, в котором наши глаза не видят вообще, например в инфракрасном или ультрафиолете, или даже рентгене.

image
Центр галактики Млечный путь в различных диапазонах рентгеновского света и радиоизлучения

Излучение, которое достигает Земли, далеко не всегда прямо совпадает с тем, которое покинуло источник. Разница зависит от скорости источника относительно приемника, расстояния и свойств среды между ними. И только учет всего комплекса факторов позволяет извлекать огромный объем данных о близком и далёком космосе: изучать строение, движение и эволюцию звезд, находить экзопланеты и черные дыры, наблюдать процессы в ядрах галактик, измерять расстояние в галактических и галактических масштабах, изучать свойства межгалактического и межзвездного пространства, заглядывать в прошлое галактик на миллиарды лет В конечном счёте, лучше понимать Вселенную, в которой мы живём. Поэтому нам и нужны многоспектральные глаза. (Крайне рекомендую книгу на эту тему Многоканальная астрономия).

Зачем запускать телескопы в космос?


В межзвездном пространстве электромагнитные волны переживают воздействия от гравитационных волн, межзвездной плазмы, газа и пыли, но самое серьезное препятствие на пути к Земле это наша атмосфера. Её плотность сопоставима с десятью метрами воды, поэтому нам не страшна космическая радиация, но астрономам интересна именно она. Даже если в небольшой телескоп взглянуть на звёзды с Земли, то можно увидеть рассеивающий эффект воздуха, а для некоторых электромагнитных волн (жесткий УФ, рентген, гамма) воздух вообще непрозрачен.

image

Для снижения воздействия атмосферы, астрономы стараются забраться как можно выше в горы, чтобы сократить слой воздуха. Кроме того, приходится скрываться от цивилизации, которая поднимает пыль, светит в небо прожекторами, шумит в радиодиапазоне, а сейчас ещё заваливает небо сотнями рукотворных звёзд спутниками.

image
Пролёт спутников Starlink в поле зрения одного из телескопов обсерватории CTIO

Поэтому только космонавтика дает наилучшую среду для изучения свойств обозримой Вселенной космоса во всех доступных диапазонах.

Спектры


Ученые Советского Союза в 80-е годы прошлого века запланировали масштабную астрофизическую программу Спектр, которая предполагала запуск целой серии тяжелых космических телескопов. Наблюдение планировалось в радио, миллиметровом, инфракрасном, ультрафиолетовом, рентген и гамма диапазонах. Соответственно телескопы получили литеры: Р, М, ИК, УФ, РГ. К сожалению, в приоритетах советской космонавтики 80-х гг была гонка с Америкой: станции Мир, Энергия-Буран, безумное количество спутников-шпионов СССР запускал по две ракеты в неделю, но не для науки. Лишь пара телескопов была запущена в 80-х: Астрон, и Гранат, но Спектры оставались только в мечтах наших астрономов.

Потом Советский Союз распался, пришли лихие девяностые, в которые каждый лихачил как мог. Например специалисты Астрофизического центра Физического института имени Лебедева собрали прототип телескопа КРТ-10 в Пущино, и приступили к наземным испытаниям.

image

Технически это был РТ-10, поскольку К значит космический, а наземный прототип в космос не летел. Но работа была вознаграждена. Астрофизикам, физикам и инженерам удалось-таки создать и запустить в 2011 году первый из Спектров Р, т.е. радио.

Его запуск открыл международную программу исследований методом радиоинтерферометрии со сверхдлинной базой РадиоАстрон. Главное преимущества такого метода, в возможности наблюдать с беспрецедентным угловым разрешением наиболее яркие в видимой Вселенной источники радиоизлучения. Семь с половиной лет исследований дали свои результаты в исследованиях квазаров, пульсаров, межзвездной и межгалактической среды.

image

На мой взгляд, главная уникальность РадиоАстрона была в том, что он в принципе полетел несмотря на обстоятельства, в которых создавался в 90-е и 2000-е. Наиболее важную роль в этом достижении сыграл Николай Кардашев, который в 50-х годах был соавтором работы теоретически обосновавшей создание гигантских радиотелескопов-интерферометров, а в последние десятилетия своей жизни весь свой авторитет вложил в запуск РадиоАстрона. Разработанная с участием Кардашева технология РСДБ значительно расширила возможности радиотелескопов за счет их объединения в решетки-интерферометры. Теперь много антенн могли работать как одна большая.

image

Причем их можно объединять не только напрямую, но и удаленно, т.е. создавать радиотелескопы-интерферометры диаметром 12 тысяч километров. Это не опечатка, всё правильно: радиотелескоп размером 12 тыс км. РСДБ позволяет объединять антенны размещенные по всей Земле, а значит пределом выступает только её диаметр.

Космический РадиоАстрон позволил увеличить размер радиоинтерферометра до 340 тыс км, и Кардашев стал свидетелем его успешной работы. Позже, та же технология, примененная уже европейскими и американскими учеными дала фотографию тени черной дыры.

image

Другие Спектры тоже двигались вперед, например 1,7-метровое зеркало для ультрафиолетового телескопа уже изготовлено на Лыткаринском заводе оптического стекла, а его гигантская труба, размером с автобус, не первый год ждет своего часа на НПО им. С.А. Лавочкина. Правда были проблемы с финансированием и санкционной электроникой, но, вроде бы, их смогли решить.

image

Рентгеновский Спектр-РГ, после многочисленных задержек и проблем полетел-таки в 2019 г. и сейчас радует мировую науку. Это тоже телескоп с тяжелой судьбой, которая требует отдельного рассказа. Сложности в его создании привели в выпадению Г из его научной программы, т.е. он наблюдает только в рентгене, а для гамма-диапазона не предназначен, но название решили не менять, чтобы не получился второй Спектр-Р.

В отличие от РадиоАстрона рентгеновский телескоп наблюдает не отдельные источники излучения, а ведет картографирование всего видимого небосвода.

image

Спектр-РГ это тоже международный проект, но если у РадиоАстрона иностранное участие заключалось в наземной поддержке, то в рентгене наблюдает два телескопа: российский и германский. За каждые полгода работы Спектра-РГ составляется полная карта небосвода, и чем дольше ведутся наблюдения, тем большего проникновения добьются телескопы и больше источников рентгеновского излучения будет картографировано.

image

Про Спектр-РГ мы обязательно поговорим отдельно. Нам же осталось упомянуть о самом сложном, и самом долгом Спектре Миллиметроне. Его разработкой сегодня заняты создатели РадиАстрона, которым помогает накопленный в прежнем проекте опыт.

image
Рендер Миллиметрона на фоне снимка инфракрасного телескопа Herschel. Снимки Миллиметрона должны выглядеть примерно так.

Миллиметровый диапазон не менее важен для изучения космоса, в нем светятся облака межзвездной пыли, и другие холодные объекты. Удобство миллиметрового диапазона ещё и в том, что в телескоп может наблюдать как самостоятельно, так и применяя технологию РСДБ. Пока наблюдения в миллиметровом диапазоне ведутся с Земли из высокогорных районов, например в Чилийских Андах расположен массив миллиметровых телескопов ALMA.

image

Если запустить Миллиметрон, то совместно с ALMA он сможет на порядки повысить детализацию наблюдений. С ним или отдельно можно намного точнее рассмотреть окрестности черных дыр и определить ли нет ли среди них кротовьих нор; измерить спектральные искажения реликтового излучения и заглянуть в ранее недоступное наблюдению прошлое Вселенной; определить содержание сложных органических молекул в соседних звездных системах, и даже попытаться найти сферы Дайсона, т.е. более развитые и древние инопланетные цивилизации Каждое из этих направлений отдельный прорыв в знаниях о свойствах Вселенной, и поучаствовать в исследованиях уже сейчас готовы европейцы, корейцы и китайцы, несмотря на довольно ранний этап готовности проекта. О том, как сегодня создается Миллиметрон будет наш следующий рассказ.


Подробнее..

Перевод Отслеживание и визуализация положения МКС с помощью 30 строк JavaScript-кода

15.05.2021 14:20:40 | Автор: admin


Предлагаю вашему вниманию перевод этой замечательной статьи.

В этом туториале мы создадим веб-приложение, визуализирующее положение любого спутника, например, Международной Космической Станции (далее МКС), в режиме реального времени (ну, почти).

Мы создадим приложение с нуля и примерим на себя роль настоящего ученого в области ракетостроения.

  • Мы узнаем, где найти данные для отдельного спутника, известные как двухстрочный набор элементов (two-line element set, TLE) (далее ДНЭ)
  • Мы используем библиотеку satellite-js для предсказания орбиты спутника по ДНЭ (это часть напрямую связана с ракетостроением)
  • Мы используем библиотеку CesiumJS для визуализации результата, однако, вы можете использовать любую библиотеку/движок, которые умеют работать с долготой, широтой и высотой

Превью конечного результата:



Здесь мы видим движение МКС по орбите со скоростью, увеличенной в 40 раз. Для того, чтобы увидеть текущее положение МКС, нажмите на иконку часов в верхнем левом углу панели управления.

1. Получение ДНЭ


ДНЭ это формат данных, описывающий движение объекта, вращающегося по орбите вокруг Земли. Он был создан Командованием воздушно-космической обороны Северной Америки (North American Aerospace Defense Command, NORAD). Подробнее об истории его создания можно прочитать здесь.

Имея описание орбиты, мы можем предсказывать локацию, в которой будет находиться спутник, в любой момент времени (см. ниже).

Это означает, что большинство устройств, отслеживающих положение спутников, делают это не совсем в режиме реального времени. Вместо того, чтобы получать непрерывно обновляющиеся данные, как, например, при отслеживании движения автомобиля, они используют последние доступные ДНЭ для предсказания положения объекта в определенный момент времени.

Где нам взять ДНЭ? Глобального реестра с такими данными не существует. За публикацию и обновление этих данных для космического сообщества отвечает тот, кому принадлежит тот или иной спутник (разумеется, если речь не идет о спутнике-шпионе).

Мы можем найти ДНЭ на сайте Space Track, который является реестром Космического командования Вооруженных сил США.

Другой ресурс этот список на CeleStrak (прим. пер.: для доступа к сайту требуется VPN), поддерживаемый доктором T.S. Kelso.

Мы будем использовать последний, поскольку он не требует регистрации. Для того, чтобы найти ДНЭ для МКС, нажмите на ссылку Space Stations.

Первой в списке будет МКС:

ISS (ZARYA)
1 25544U 98067A 21122.75616700 .00027980 00000-0 51432-3 0 9994
2 25544 51.6442 207.4449 0002769 310.1189 193.6568 15.48993527281553


Значения этих чисел можно найти в этой таблице. Большая часть из них является идентификаторами и метаданными спутника, например, временем его запуска.

На указанном ресурсе можно найти ДНЭ для метеорологических спутников, спутников GPS и даже для глобальной спутниковой системы Starlink, разворачиваемой SpaceX.

2. Предсказание орбиты спутника


Следующим нашим шагом является преобразование ДНЭ в определенную позицию во времени.

Для этого мы будем использовать satellite-js.

Подключаем библиотеку из CDN:




Затем передаем ей ДНЭ и время:

const ISS_TLE =
`1 25544U 98067A 21122.75616700 .00027980 00000-0 51432-3 0 9994
2 25544 51.6442 207.4449 0002769 310.1189 193.6568 15.48993527281553`;
// Инициализируем запись о спутнике с помощью ДНЭ
const satrec = satellite.twoline2satrec(
ISS_TLE.split('\n')[0].trim(),
ISS_TLE.split('\n')[1].trim()
);
// Получаем текущую позицию спутника
const date = new Date();
const positionAndVelocity = satellite.propagate(satrec, date);
const gmst = satellite.gstime(date);
const position = satellite.eciToGeodetic(positionAndVelocity.position, gmst);

console.log(position.longitude); // в радианах
console.log(position.latitude); // в радианах
console.log(position.height); // в км


Теперь у нас имеется текущее положение спутника (new Date()).

Данное положение является результатом построения определенной модели движения спутника. Эта модель называется SGP4/SDP4. Все ДНЭ следуют этой модели.

Если вас интересует, насколько точной является указанная модель, то короткий ответ звучит так: это зависит от нескольких факторов.

Точность ДНЭ зависит от нескольких факторов. Эти факторы включают в себя сенсоры, которые использовались для сбора данных, количество собранных данных о данном типе орбит, условия космической среды и т.д. К сожалению, поскольку названные факторы являются очень разными для каждого элемента набора, точность является не очень высокой. Несмотря на то, что NORAD проводит эксперименты по повышению точности предсказания движения спутников, ни один из методов не является идеальным.


3. Визуализация результата


Теперь у нас имеется возможность получать позицию спутника в заданный момент времени. Мы можем использовать это для анимирования пути спутника.

Но сначала давайте посмотрим, как анимировать отдельную точку в космосе с помощью CesiumJS.

Подключаем библиотеку вместе со стилями:

<script src="http://personeltest.ru/aways/cesium.com/downloads/cesiumjs/releases/1.81/Build/Cesium/Cesium.js"></script><link href="http://personeltest.ru/aways/cesium.com/downloads/cesiumjs/releases/1.81/Build/Cesium/Widgets/widgets.css" rel="stylesheet">


Создаем контейнер:

<div id="cesiumContainer"></div>


Дальше нам нужно инициализировать так называемого обозревателя (viewer). Мы передаем ему несколько дополнительных настроек для отключения функциональности, которая требует наличия токена доступа:

const viewer = new Cesium.Viewer('cesiumContainer', {  imageryProvider: new Cesium.TileMapServiceImageryProvider({    url: Cesium.buildModuleUrl("Assets/Textures/NaturalEarthII"),  }),  baseLayerPicker: false, geocoder: false, homeButton: false, infoBox: false,  navigationHelpButton: false, sceneModePicker: false});viewer.scene.globe.enableLighting = true;


Наконец, мы можем визуализировать положение спутника в виде красной точки в космосе:

const satellitePoint = viewer.entities.add({  position: Cesium.Cartesian3.fromRadians(    position.longitude, position.latitude, position.height * 1000  ),  point: { pixelSize: 5, color: Cesium.Color.RED }});


Вот полный код данного шага на Glitch.

4. Анимируем путь


Для анимирования пути нам всего лишь нужно получить еще несколько будущих позиций спутника. CesiumJS поддерживает интерполяцию (переход) между позициями в течение времени из коробки.

Реализация анимации несколько многословна. Вот соответствующий код на Glitch. Ниже описаны самые важные концепции.

Мы создаем SampledPositionProperty. Это объект, содержащий позиции во времени, между которыми осуществляется переход:

const positionsOverTime = new Cesium.SampledPositionProperty();


Мы перебираем позиции в любом количестве, и для каждой позиции создаем объект со временем, который называется JulianDate в CesiumJS, а также саму позицию и добавляем их в качестве образца (sample):

for (let i = 0; i < totalSeconds; i+= timestepInSeconds) {  const time = Cesium.JulianDate.addSeconds(start, i, new Cesium.JulianDate());  // Получаем позицию с помощью satellite-js  const position = Cesium.Cartesian3.fromRadians(p.longitude, p.latitude, p.height * 1000);  positionsOverTime.addSample(time, position);}


Наконец, мы передаем positionsOverTime в нашу точку:

const satellitePoint = viewer.entities.add({  position: positionsOverTime,  point: { pixelSize: 5, color: Cesium.Color.RED }});


Точка будет двигаться вместе с временной шкалой. Для прикрепления камеры к движущейся точке делаем следующее:

viewer.trackedEntity = satellitePoint;


Заключение


Надеюсь, вам было интересно немного узнать о том, как создаются программы для отслеживания спутников. Конечно, многие вопросы остались без ответа, например, что означает каждый параметр ДНЭ? Как часто они обновляются? Каким именно образом происходит их обновление?

Лично мне было очень интересно узнать о существования таких данных, о том, как их получить и использовать прямо в браузере с помощью JavaScript.

Вот парочка идей о том, что еще можно с этим сделать:

  • Визуализация нескольких спутников, например, спутниковой системы Starlink. В качестве источника для вдохновения можно использовать Celestrak viewer, показывающий каждый спутник из каталога. Можно, например, визуализировать рост количества спутников Starlink в течение времени
  • Отслеживание и визуализация положения спутника на уровне городской улицы. Можно добавить поиск здания или высоты с наилучшими условиями для наблюдения за спутником

Вот прототип второй идеи на Glitch. Демо: .

Также советую взглянуть на приложение See a satellite tonight, разработанное James Darpinian, в котором используется комбинация CesiumJS и Google улиц.

Кроме того, те, кто разбирается/увлекается 3D-моделированием, могут представить спутники не в виде точек, а в реальном масштабе для демонстрации того, насколько близко друг к другу они находятся в космосе.

Прим. пер.: мой вариант приложения выглядит так:



Благодарю за внимание и хорошего дня!



Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Гравицапа для межпланетных перелётов или гравитационный манёвр

11.05.2021 10:09:42 | Автор: admin


Вопрос эмиграции в последние десятилетия стоит наиболее остро. И если 40 лет назад пределом мечтаний было перебраться за океан, то в XXI веке умами овладела мечта о релокейшне на Марс, например. Однако там тоже в скором времени может стать тесно. Остаётся одна дорога колонизация Солнечной Системы и экзопланет. Допустим, мы собрались покинуть внутреннюю область Солнечной Системы, а, если повезёт, то и совсем выбраться за её пределы. Помимо невероятных объёмов тушёнки и кислорода, необходимых для выживания в суровом Космосе, нам потребуется в разы на порядки большее количество топлива, чтобы всё это добро дотащить. И ещё столько же топлива, чтобы тащить то топливо. И ещё топливо.

И самое обидное, что скорее всего мы закончим свой век среди троянских астероидов Юпитера, померев от тоски. Потому что топлива всё равно ни на что не хватит. Однако присмотримся к нашей Солнечной системе повнимательнее. Вот те же троянцы и греки не просто так столпились в точках Лагранжа L4 и L5 Юпитера. Их туда затолкала гравитация планеты-гиганта, не потратив ни единой капли гидразина.

Давайте же и мы применим дармовую энергию Природы для достижения благородной цели доставки полезной нагрузки в далёкий космос.


Юпитер оранжевый, Троянцы зелёные за ним, греки зелёные перед ним

Как это работает


Идея использования гравитации пролетающей мимо планеты довольно проста. Все что нужно это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящими для целей миссии положением и скоростью. Космический аппарат, попав в поле тяготения планеты обязательно изменит свою скорость. Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве гравитационной пращи, не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца. Бинго! Планеты будут брать на буксир наших путешественников.

Подобным способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный манёвр используется для разгона (для этого траектория корабля должна пролегать за планетой, или как говорят, с внешней стороны орбиты):
image
а при миссиях к внутренним планетам напротив, для гашения гелиоцентрической скорости (тут, соответственно, пролетаем перед планетой):
image

Упрощая, можно сказать, что сближение аппарата с планетой с внутренней стороны ее орбиты приводит к тому, что аппарат отдает планете часть своего углового момента и замедляется; и наоборот, сближение с внешней стороны орбиты приводит к увеличению момента и скорости аппарата. Интересно, что никакими акселерометрами на борту зарегистрировать изменение скорости аппарата в маневрах невозможно, они постоянно регистрируют состояние невесомости. Сила притяжения планеты уравновешивает центробежную силу, когда мы закладываем такой поворот.

Причём экономия топлива, достигаемая использованием волшебной силы гравитации колоссальная. Первая космическая скорость 8 км/с обеспечивает нам вращение вокруг Земли. Для перехода на более высокую орбиту скорость надо увеличивать, и каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической ракеты. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться на марсианскую по эллиптической (гомановской) траектории, надо набрать около 3,5 км/с, к Юпитеру 6 км/с, к Плутону 89 км/с. Таким образом полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. А вот какой максимальный прирост скорости может дать нам гравитация планет:

Меркурий: 3,005 км/с
Венера: 7,328 км/с
Земля (надо же): 7,910 км/с
Луна (тоже мне планета): 1,680 км/с
Марс: 3,555 км/с
Юпитер: 42,73 км/с
Сатурн: 25,62 км/с
Уран: 15,18 км/с
Нептун: 16,73
Плутон (уже не планета, но всё же): 1,09

Если присмотреться, данные теоретические пределы приращения скорости примерно равны первой космической скорости для этих планет. При этом ваш трактор космический аппарат отклонится на 60 градусов от первоначальной траектории.

Может показаться, что топливо при подобных путешествиях вообще не нужно, но это, разумеется, не так. Во-первых, до ближайшего гравитирующего тела надо ещё долететь. Причём желательно долететь до Юпитера. Впрочем, для полётов к Юпитеру есть свои лайфхаки, о которых ниже. Во-вторых, далеко не всегда направление полёта после ускорения планетой нас устраивает, поэтому траекторию нужно корректирвать двигателями. Кстати это делать лучше в моменты, когда скорость минимальна то есть ещё до входа в вираж, предварительно просчитав конус траекторий наперёд. Ну и в-третьих, в момент максимального действия гравитационной пращи, находясь в ближайшей окрестности планеты и обладая пиковой скоростью хорошо бы как следует подработать маршевым двигателем. При движении с высокой скоростью топливо имеет больше энергии, доступной для использования за счёт эффекта Оберта (причём при скорости, превышающей половину скорости реактивной струи, полученная кинетическая энергия может превысить потенциальную химическую энергию сгораемого топлива радуйтесь, торсионщики!)

Хватит болтать в дорогу!




Ракета с модулем Пионер 10 стартовала 3 марта 1972 года с базы ВВС США на мысе Канаверал носителем Атлас-Центавр. Гравитационный маневр вокруг Юпитера позволил станции превысить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему. Пересечь орбиту Сатурна Пионер-10 смог к февралю 1976 года, в июле 1979 года оказался за орбитой Урана, в 1983 году первым в истории пересек орбиту Нептуна. Последние данные от станции получены 23 января 2003 года, после чего Пионер-10 прекратил свою работу. Сейчас аппарат находится на расстоянии 120 астрономических единиц от Солнца и через пару миллионов лет наконец-то приблизится к звезде Альдебаран.

Однако первый гравитационный манёвр совершила советская станция Луна-3 в 1959 году для того, чтобы вернуться обратно. Ну ладно, такой себе вираж, зато это был манёвр с изменением плоскости траектории полёта. Подобные полёты и сегодня совершаются только при помощи гравитационной пращи. Например, аппарат для исследования полярных областей Солнца Улисс был вынужден давать крюк мимо Юпитера. Стартовав в 1990, он в 1992 году подлетел к газовому гиганту на расстояние 6 его радиусов и в 1994 году уже созерцал южный полюс Солнца с безопасного расстояния. Тут можете посмотреть на анимацию его полёта (гифка 3 мегабайта)

Американский Маринер 10 в 1974 году, наоборот, совершал торможение об Венеру для последующих сближений с Меркурием (весьма и весьма точных 705 и 318 км!). Этот же метод используется и по сей день для исследования Меркурия например, в миссиях MESSENGER и БепиКоломбо. Тут я положил ссылочку на 8-мегабайтную гифку с анимацией движения последнего модуля за период 2019-2025 годы.

Если до соседней планеты лететь далеко и топлива жалко, можно сделать вот такой финт:

Аппарат миссии Юнона, взлетел с Земли, но с орбиты не сошёл, а произвёл гравитационный манёвр так же с Землёй, после чего направился на орбиту Юпитера. Таким же макаром разгонялся Galileo Orbiter. Сначала аппарат направился к Венере, мимо которой прошел в феврале 1990 г. Затем по новой траектории в декабре он вернулся к Земле. Были переданы многочисленные фотографии Венеры, Земли и Луны, а наш герой понёсся далее.

7 декабря 1995-го исследовательский аппарат Галилео прибыл к Юпитеру и направил к нему исследовательский зонд (синие точки)

Про миссию Кассини-Гюйгенс, посадившую спускаемый аппарат на поверхность спутника Сатурна Титана, говорить можно не один день. Шутка-ли 20 лет работы на различных орбитах. Эти 20 лет стали возможны в том числе и благодаря максимально возможному использованию гравитации планет Солнечной Системы для экономии топлива.

Помимо плотной серии пиков в конце графика (когда аппарат вышел на орбиту Сатурна, и начал вращаться на его орбите) отчётливо видны моменты встреч с планетами (во время которых у аппарата прибавляется скорость), плавное снижение скорости (когда аппарат летел на встречу Сатурну, выбираясь из гравитационной ямы Солнца) с небольшим изломом у Юпитера.

Легендарный Кассини в общей сложности сделал 293 оборота вокруг Сатурна, среди которых выполнил 162 прохода вблизи его спутников и открыл 7 новых из них.

Разумеется, для выполнения гравитационных маневров дата старта должна быть выдержана весьма точно. Баллистики оперируют понятием окно запуска это интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна. Ближе к краям окна эффект становится меньше, а потребности в топливе больше. Если же выйти за его границы, то носитель просто не сможет вывести аппарат на нужную орбиту, что приведет к срыву полета или недопустимому возрастанию его длительности. Например, запуск Новых горизонтов, добывших нам такие милые фотографии Плутона, неоднократно переносился по погодным и техническим причинам. Задержись старт еще на несколько дней, и зонд отправился бы в полет уже без расчета на гравитационную помощь Юпитера и с меньшими шансами на успех.

Прибавка к скорости в 4 км/с позволила добраться до Плутона прежде чем на нём начала замерзать атмосфера (так как планетоид сейчас удаляется от Солнца). Поэтому он тут такой красивый.

Лестница Лагранжа


В начале статьи я упомянул о точках Лагранжа на просто так. Они есть у каждой пары космических тел (обычно Солнца и планеты, но есть и у планет со спутниками) и вблизи них космический аппарат может находиться довольно долго в состоянии неустойчивого равновесия и быть почти неподвижным относительно этой планеты. Например, точки L1 и L2 Земли находятся на оси Земля-Солнце.

На таких орбитах станции будут обращаться вокруг Солнца, оставаясь неподвижными относительно Земли, в направлении к Солнцу и от него. Это так называемые точки Лагранжа L1 и L2, где космический аппарат может неподвижно висеть, не расходуя топлива. Этим уже давно пользуются: в L1 работает солнечная обсерватория SOHO, а в L2 астрофизический зонд WMAP. Туда же планируется вывести 6-метровый телескоп имени Джеймса Уэбба, который строится на смену стареющему Хабблу.

Взгляните на эту непростую траекторию аппарата ISEE-3/ICE:

Труженик ISEE-3/ICE четыре года (19781982) изучал Солнце с орбиты вокруг точки Лагранжа L1, а затем путем сложных гравитационных маневров у Земли и Луны он был направлен на встречу с кометами Джакобини Циннера (1985) и Галлея (1986). В 2012 году он вернулся к нам, но интерес к миссии был уже потерян, и даже оборудование для связи с ним было списано. И в 2014 году связь с ним была окончательно потеряна, ну да ладно.

Среди многочисленных траекторий ухода от точки L1 есть такие, которые на время приводят аппарат на орбиту вокруг L2 (и наоборот). Причем для этого не требуется серьезных затрат топлива. Для случая с нашей планетой это не столь важно. То ли дело система Юпитера или Сатурна, в которых для каждого большого спутника есть пара таких точек. Например, для Ио, Европы, Ганимеда и Каллисто на орбите Юпитера. Двигаясь вокруг планеты, внутренние спутники обгоняют внешние, и если правильно подгадать, то ценой совсем небольших затрат топлива аппарат может перепрыгнуть с неустойчивой орбиты вокруг точки L2, скажем, спутника Ио на такую же орбиту вокруг точки L1 Европы. Покрутившись там и проведя наблюдения, можно подняться еще на одну ступеньку лестницы к точке L2 Европы, а оттуда в нужный момент прыгнуть к L1 Ганимеда, а там и до Каллисто недалеко. Спускаться по этой лестнице Лагранжа тоже не возбраняется.

Именно такой план полета предлагался для большой исследовательской станции JIMO (NASA). Однако эту экспедицию отменили враги, и теперь вместо неё будет миссия JUICE (Jupiter Icy Moons Explorer), которую Европейское Космическое Агентство готовит для изучения галилеевых спутников Юпитера. До сих пор спутники Юпитера исследовались только с пролетных траекторий. Лестница Лагранжа позволит станции подолгу зависать над спутником изучать его поверхность и отслеживать происходящие на ней процессы.

Каковы перспективы? Автостопом до облака Оорта?


В нашей звёздной системе насчитывается несколько десятков крупных и тысячи не очень массивных космических тел. Разумеется, бросается в глаза великолепная пятёрка: Солнце, Юпитер, Сатурн, Уран и Нептун. Однако гравитационные возмущения в траектории полётов космических аппаратов вносят все тела Солнечной системы, не забывая возмущать орбиты друг друга. И сейчас мы уже можем позволить рассчитывать гравитационное влияние и малых планет Солнечной систем. Вот, например, миссия Rosetta к комете Чюрюмова-Герасименко (2004-2016 гг). Вначале аппарат двинулся к Солнцу и, обогнув его, вновь вернулся к Земле, откуда двинулся навстречу Марсу. Обогнув Марс, аппарат вновь сблизился с Землёй и затем снова вышел за орбиту Марса. К этому моменту комета находилась за Солнцем и ближе к нему, чем Rosetta. Новое сближение с Землёй направило аппарат в направлении кометы, которая в этот момент направлялась от Солнца вовне Солнечной системы. В конце концов Rosetta сблизилась с кометой с требуемой скоростью. Столь сложная траектория позволила снизить расход топлива за счёт использования гравитационных полей Солнца, Земли и Марса. Тут гифка с полным маршрутом аппарата.
А вот выход на орбиту кометы в целях её исследования и отправки на её поверхность спускаемого аппарата Филы:


Расчёт баллистических траекторий это не решаемая в лоб задача многих тел, требующая колоссальных вычислительных мощностей для совершения достаточного числа итераций. Но вот неуклонный рост этих самых вычислительных мощностей позволяет учитывать влияние всё большего числа массивных объектов, переводя это влияние из разряда неизбежной погрешности вычислений в разряд заранее предсказанных. Таким образом число окон запуска только растёт.
Вот тут, например, в очередной раз сообщается об обнаружении скоростного хайвея в Солнечной Системе сложного переплетения гравитационных возмущений от тел Солнечной Системы, позволяющих точнее рассчитать траектории аппаратов и использовать ещё больше гравитационных манёвров вместо траты драгоценного топлива.

Постепенно расчёты полётов по нашей планетной системе будут становиться похожими больше на автобусное расписание нежели на ожидание у моря погоды. Точность небесной механики, помноженная на точность наблюдений и вычислений, способна совершить переворот в наших взглядах на космические путешествия.



Облачные серверы от Маклауд идеально подходят для расчета траектории вашего побега на Марс.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Межпланетная станция Mariner 4 первая удачная попытка сфотографировать Марс с близкого расстояния

06.06.2021 22:21:53 | Автор: admin

Марс, как и Венера, вызывал острое любопытство людей от древнейших времен до наших дней. Все просто он выделяется на небосводе, так что не заметить его нельзя. А когда стало известно, что это планета, люди тут же стали вести наблюдение всеми доступными методами. Ну а поскольку методы эти оставляли желать лучшего, то и результаты наблюдений были не совсем корректными. А вернее, совсем некорректными.

Все началось с каналов, которые заметил итальянский астроном Скиапарелли. Он нанес на карту то, что вроде бы видел своими глазами. Американский астроном Ловелл не только видел каналы, но и решил, что это население Марса так получает воду. По его мнению, каналы были ирригационной сетью, берущей начало от полярных шапок планеты и опоясывающей весь Марс. Тут же решили, что Марс засушливая планета, древнее население которой спасается от наступления пустыни при помощи титанических сооружений. Споры о каналах и марсианах велись вплоть до середины XX-го века, пока им не удалось положить конец при помощи серьезной научной аппаратуры. Эта аппаратура в виде межпланетных станций была отправлена к Красной планете. Первая успешная миссия Mariner 4.

Не только межпланетные станции


Несмотря на сказанное выше, не стоит думать, что все ученые конца XIX начала XX века считали, что на Марсе есть ирригационные каналы, и, соответственно, цивилизация, которая их выкопала. Многие специалисты сомневались. Для того, чтобы проверить предположение о каналах, поверхность Марса зарисовывалась различными учеными в разное время, а потом, с появлением соответствующих технологий фотографировалась.

Оказалось, несмотря на существование большого количества разных рисованных карт, ни одна из них не похожа на другую, как должно было бы быть, если зарисовывают реально существующие объекты.

В 1907 году ученый по имени Альфред Рассел Уоллес написал и опубликовал книгу Обитаем ли Марс?, где сделал правильные предположения о низкой температуре на поверхности планеты, низком атмосферном давлении и отсутствии воды в жидком виде. Он предположил, что на Марсе нет жизни ни разумной, ни элементарной.

Чуть позже, правда, качественные (на момент начала XX века) фотографии показали наличие участков рельефа, где было нечто похожее на каналы. Но, во-первых, их было гораздо меньше, чем рисовали наблюдатели ранее, во-вторых, они не были похожи на глобальную ирригационную сеть. Но споры о Марсе и марсианах продолжались до тех пор, пока человечество не достигло той стадии научно-технического прогресса, когда стало возможным разработать, собрать и отправить в космос межпланетные станции.

Эпоха межпланетных станций Mariner


До появления станций человечество реализовало не так и много космических проектов. Практически все они ставили своей целью выход на орбиту Земли. Полет к другой планете? Даже сейчас это крайне сложный и очень дорогой проект, а тогда это была попытка воплотить в реальности научную фантастику.

И СССР, и США, главные игроки космической отрасли того времени, достигли к середине прошлого века крупных успехов в науке и технике, а также в военном деле (привет фон Брауну). У США появились новые ракеты Atlas (естественно, это было оружие межконтинентальные баллистические ракеты), которые в сочетании со второй ступенью Agena могли выводить полезную нагрузку в космос. И именно комбинация Atlas-Agena дала возможность отправить к Марсу первые станции Mariner.


К сожалению, с первыми тремя станциями возникли проблемы каждый раз разные. Все они были потеряны. И только четвертая не только добралась к цели своего путешествия, но и успешно выполнила поставленную задачу непосредственное изучение Марса, включая фотографирование с близкого расстояния. Миссия Mariner 4 была пролетной то есть без цели сесть на поверхность Красной планеты. Тогда это было невозможно или крайне сложно реализовать технически.

Все космические станции Mariner были похожими друг на друга. Они получали энергию за счет солнечных панелей крайне дорогих на то время. Зонды, которые отправлялись на Марс, оснащались четырьмя панелями для получения большего количества солнечного света. На поверхности каждой панели содержалось 7056 фотоэлемента.


Панели находились в сложенном состоянии при помощи специальных пружин в капсуле. При выходе в заданную точку срабатывали пиропатроны, убиравшие стопорный штифт, станция выходила на заданную траекторию, панели раскрывались.

Успех Mariner 4


14 июля 1965 когда космическая станция Mariner 4 добралась к цели, хотя и не без проблем. На всем протяжении пути сбоила система навигации. Ориентировалась станция по двум объектам Солнцу и звезде Канопус. Но что-то пошло не так и в пути станцию сопровождал космический мусор. Частицы отражали свет Солнца и станция воспринимала их как новый объект настройки. Ученым приходилось несколько раз перепрограммировать бортовой компьютер станции, чтобы та не сбилась с пути и не улетела вместо Марса в неведомые дали.


Как бы там ни было, но все сложилось хорошо. Станция прошла мимо Марса. Максимальное сближение 9846 км. Аппарат сделал 21 полный снимок, причем изначально ученые не были уверены, что оборудование для съемки будет нормально работать после долгого космического путешествия. Вообще камера сделала 22 фотографии, но одна из них получилась неполной.

Аппарат не только сфотографировал Марс, но и передал их на Землю всего 643 килобайта данных (общий объем переданных данных около 6 МБ). Фотографии передавались на Землю не сразу, отправка данных стартовала после окончания облета Марса, когда удалось восстановить сигнал. Передавались фотографии с огромного расстояния в 216 млн км. Один снимок передавался в течение 8,66 часа со скоростью в 8,33 бита в секунду.

Кстати, ученые не хотели ждать, пока полученный из космоса код первого снимка будет преобразован в изображение при помощи декодировщика. На это требовалось несколько часов, поэтому было решено декодировать изображение вручную, раскрасив его затем цветными карандашами.


Первая фотография была расскрашенным вручную эскизом


Прощай, Аэлита


Аппарат не зафиксировал ни каналов, ни их создателей. Так получилось, что система пролетела над наиболее старыми участками поверхности, сфотографировав лишь кратеры. Конечно, никаких рукотворных каналов нет на Красной Планете и в других регионах, но все же на других участках Марса есть более интересные объекты.

Поверхность, которую сфотографировал Mariner 4, была очень похожа на хорошо уже изученную поверхность Луны.

Научные инструменты, которые несла на себе станция, показали, что Марс крайне холодная, сухая и неблагоприятная для жизни планета. Кроме климатических условий, там есть еще один негативный фактор космическое излучение, от которого у Марса нет защиты. Ионосфера отсутствует.


Как бы там ни было, космическая станция Marine-4 выполнила свою задачу, за что честь и хвала ее создателям. Связь с четвертой станцией поддерживалась вплоть до 21 декабря 1967 года, причем в августе ученые одновременно поддерживали связь с Mariner 4 и Mariner 5.

7 декабря закончилось топливо для системы ориентации, это был сжатый азот. Через несколько дней в Mariner 4 попало несколько десятков микрометеоритов, что изменило его ориентацию. Связь постепенно ослабевала, пока не пропала совсем. Сейчас аппарат находится в Солнечной системе и движется по гелиоцентрической орбите.

Подробнее..

Перевод Рост перечня чёрных дыр поднимает вопрос о радикальном исследовании космоса

10.05.2021 18:20:09 | Автор: admin
Десятки столкновений чёрных дыр, наблюдаемых детекторами гравитационных волн в LIGO и Virgo, меняют наш взгляд на Вселенную.Десятки столкновений чёрных дыр, наблюдаемых детекторами гравитационных волн в LIGO и Virgo, меняют наш взгляд на Вселенную.

Одна чёрная дыра это хорошо, но астрофизики могут выполнить гораздо больше научных исследований, если их 50. Когда в 2015 году было обнаружено первое столкновение чёрных дыр, это был переломный момент в истории астрономии. С помощью гравитационных волн астрономы наблюдали Вселенную совершенно новым образом. Но это первое событие не произвело революцию в нашем понимании чёрных дыри не могло этого сделать. Астрономы знали, что это столкновение будет первым и только после многих таких столкновений придут ответы.


Первое открытие было самым захватывающим в нашей жизни, рассказывает Вики Калогера, астрофизик из Северо-Западного университета и участник совместной работы лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO), выполнившей обнаружение в 2015 году. Однако невозможно заниматься астрофизикой по одному источнику.

Теперь физики гравитационных волн, такие как Калогера, говорят, что они вступают в новую эру астрономии чёрных дыр, движимую быстрым увеличением числа наблюдаемых чёрных дыр.

В последнем каталоге так называемых двойных слияний чёрных дыр (результата столкновения двух чёрных дыр, движущихся по спирали навстречу друг другу) в четыре раза увеличился объём данных о слияниях чёрных дыр, доступных для изучения. В настоящее время астрофизикам предстоит тщательно изучить почти 50 слияний, причём в ближайшие несколько месяцев ожидается ещё несколько десятков, а в ближайшие годы ещё сотни.

Гравитационные волны совершают революцию в астрофизике чёрных дыр, потому что эти числа так велики. И эти числа позволяют нам задавать качественно другие вопросы, рассказывает Калогера. Мы открыли сокровищницу.

На основе этих данных новые статистические исследования начинают раскрывать секреты этих загадочных объектов: как образуются чёрные дыры и почему они сливаются. Этот растущий список чёрных дыр также может предложить новый способ исследования космологической эволюции от Большого взрыва до рождения первых звёзд и роста галактик.

Я определённо не ожидала, что мы будем рассматривать эти вопросы так скоро после первого обнаружения, сказала Майя Фишбах, астрофизик из Северо-западного университета. Эта область просто взорвалось.

Откуда берутся чёрные дыры?

Прежде чем чёрные дыры можно будет использовать для изучения космоса в целом, астрофизики должны сначала выяснить, как они образуются. До сих пор в дебатах доминировали две теории.

Некоторые астрономы предполагают, что большинство чёрных дыр возникают внутри скоплений звёздобластей, которые иногда в миллион раз плотнее, чем наш собственный галактический задний двор.

Каждый раз, когда взрывается очень массивная звезда, она оставляет после себя чёрную дыру, которая опускается в середину звёздного скопления. В центре скопления становится тесно от чёрных дыр, которые вплетаются гравитацией в роковой космический танец. Астрономы называют этот процесс динамическим образованием чёрных дыр.

Другие предполагают, что двойные чёрные дыры происходят от пар звёзд в сравнительно пустынных областях галактик. После долгой и хаотичной совместной жизни они тоже взрываются, создавая пару изолированных чёрных дыр, которые продолжают вращаться друг вокруг друга.

Создаётся впечатление, что существует борьба между динамическими и изолированными моделями, сказал Дэниел Хольц, астрофизик из Чикагского университета.

Склонность многих теоретиков отстаивать только один канал образования двойных чёрных дыр частично проистекает из практики работы с очень небольшим количеством данных. Каждое событие было с любовью проанализировано, на нём зацикливались, над ним тряслись, рассказывает Хольц. Мы выполняли обнаружение, а люди попытались формулировать очень широкие абстрактные утверждения на основе выборки размером в одну или две чёрные дыры.

Действительно, астрофизики использовали первое обнаружение, чтобы аргументировать противоположные выводы. В LIGO первое слияние чёрных дыр обнаружили чрезвычайно быстро, фактически до официального начала наблюдений. Это позволило предположить, что двойные системы чёрных дыр очень распространены во Вселенной. Поскольку изолированные чёрные дыры могут образовываться в широком диапазоне астрофизических сред, теории, которые благоволят изолированным чёрным дырам, предсказывают, что мы увидим много слияний.

Другие указывали, что в первом слиянии отмечены необычно большие чёрные дыры и что существование этих гигантов подтверждает динамическую теорию. Такие большие чёрные дыры, рассуждали они, могли образоваться только в ранней Вселенной, когда, как также считалось, образовались звездные скопления.

Тем не менее с размером выборки в одну единицу такие утверждения могут быть лишь обоснованным предположением, считает Карл Родригес, астрофизик из Университета Карнеги-Меллона.

Теперь данные из последнего каталога LIGO показывают, что двойные чёрные дыры встречаются гораздо реже, чем ожидалось. Согласно статье, опубликованной Родригесом и его соавторами на сайте научных препринтов arxiv.org в январе 2021 года, фактически наблюдаемую в настоящее время частоту слияния чёрных дыр можно полностью объяснить звёздными скоплениями. (Вывод статьи более взвешен и предполагает, что важны как динамические, так и изолированные процессы.)

Кроме того, новые слияния позволили по-новому подойти к загадке происхождения чёрных дыр. Несмотря на свою неуловимую природу, чёрные дыры очень просты. Помимо массы и заряда единственная характеристика, которой может обладать чёрная дыра, спин (мера скорости вращения). Если пара чёрных дыр и звёзды, из которых они образуются, живут всю свою жизнь вместе, постоянное отталкивание и притяжение согласуют скорости их вращения. Но если сталкиваются две несвязанные чёрные дыры, их вращение будет случайным.

После измерения спина чёрных дыр в наборе данных LIGO астрономы теперь предполагают, что динамические и изолированные сценарии почти одинаково вероятны. Нет одного канала, который управлял бы ими всеми, написали астрофизик Майкл Зевин и его коллеги в препринте, описывающем множество различных путей, которые вместе могут объяснить эту новую растущую популяцию двойных чёрных дыр.

Самый простой ответ не всегда правильный, утверждает Зевин. Это более сложный ландшафт, и это, безусловно, более сложная задача. Но я также думаю, что и решать её интереснее.

Молодые чёрные дыры

LIGO и её сестринская обсерватория Virgo со временем также стали более чувствительными, т.е. теперь они могут видеть сталкивающиеся чёрные дыры, которые находятся гораздо дальше от Земли и намного дальше во времени. Мы прослушиваем действительно большую часть Вселенной, когда она была намного моложе, чем сегодня, сказала Фишбах.

В препринте Фишбах и её сотрудники указали на признаки различий в типах чёрных дыр, наблюдаемых в разные моменты истории космоса. В частности, более тяжёлые чёрные дыры, по-видимому, были более распространены в более ранние периоды истории Вселенной.

Это не стало неожиданностью для многих астрофизиков; они предполагают, что первые звезды во Вселенной образовались из огромных облаков водорода и гелия, поэтому они намного больше, чем более поздние звёзды. Чёрные дыры, созданные из этих звёзд, также должны быть огромными.

Но одно дело предсказать, что произошло в ранней Вселенной, и совсем другое наблюдать это. Вы действительно можете начать использовать [чёрные дыры] в качестве индикатора формирования звёзд во Вселенной сквозь космическое время, а также собирания галактик, образующих эти звёзды и звёздные скопления. И всё это действительно очень здорово! сказал Родригес.

Это исследование первый шаг к использованию больших наборов данных о чёрных дырах в качестве радикального инструмента изучения космоса. Астрономы создали удивительно точную модель эволюции Вселенной, известную как Лямбда-CDM. Но ни одна модель не идеальна. Гравитационные волны предлагают способ измерения Вселенной, который полностью независим от любого другого метода в истории космологии, заявил Сальваторе Витале, астрофизик из Массачусетского технологического института. Если вы получаете те же результаты, вы лучше спите по ночам. Но если результаты различны, то это указывает на потенциальное недопонимание.

В настоящее время теоретики строят модели, охватывающие несколько сценариев образования чёрных дыр, и расписывают, как каждая из них эволюционирует в истории Вселенной. Физики гравитационных волн надеются, что в ближайшие месяцы и годы они смогут с уверенностью ответить на эти вопросы.

Мы просто царапаем поверхность, говорит Калогера. Выборка всё ещё слишком мала, чтобы дать надёжный ответ, но, когда у нас будет 100 или 200 таких [слияний], я думаю, мы получим чёткие ответы. Мы уже не так далеко.

Многие космические объекты, например экзопланеты сегодня обнаруживают при помощи глубокого обучения. Если вам интересна эта сфера, обратите внимание на наш курс "Machine Learning и Deep Learning", партнёром которого является компания Nvidia. Не менее важен и анализ наблюдаемых данных, без которого современная наука, изучающая их огромные массивы, не жизнеспособна. Специалисты разного профиля необходимы и бизнесу, чтобы правильно подойти к анализу данных, поэтому, чтобы подняться выше по карьерной лестнице, приходите к нам наши менторы и специалисты высокого класса ответят на сложные вопросы.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Если вы окажетесь на Луне, обязательно посетите эти места

14.05.2021 10:12:48 | Автор: admin
Предлагаем вашему вниманию краткий список 34 достопримечательностей Луны (фото+местоположение).

Ад, Москва, Альпы. Коперник и Шрёдингер. Лава, водовороты, призраки, цепочки, разломы и складки. Катящиея камни и Y.

Добро пожаловать на Луну!

1. Лава внутри лавы


image


Лавовый канал внутри лавового канала. Долина Шрётера в океане Бурь

image

Подробнее

2. Аполлон


image


Аполлон гигантский (диаметр около 524 км) древний ударный кратер, неофициально именуемый бассейном Аполлон, в южном полушарии обратной стороны Луны. Название присвоено в честь американской космической программы Аполлон.

image

Подробнее

3. Кратер Коперника


image

93-километровый кратер Коперника, которому 800 миллионов лет.

image

Подробнее

4. Конусообразные потоки лавы


image

Лава, стекающая в кратер Пифей. Изображение шириной около 600 м.

image

Подробнее

5. Водовороты


image

Лунные водовороты в кратере Ингени шириной 282 км.

image

Подробнее

6. Динамичный ландшафт


image

Кратер Эйткен, 135 км ширины и 6 км глубины. Сложный ландшафт с пятиугольным кратером.

image

Подробнее

7. Хэдли


image

Гора Хэдли 4 км высоты 25 км ширины

image

Подробнее

8. Мыс Гераклида


image

image

image

Подробнее

9. Кратер Шрёдингера


image

312-километровый кратер Шрёдингера

image

подробности

10. Цепочки кратеров


image

Подробнее

11. Морщины


image

image

Подробнее

12. Ад


image
Кратер Hell Q радиусом 3.4 км

image

Подробнее

13. Разлом


image

110-километровый разлом Rupes Recta. Высота стен 240-300 метров.

image

Подробнее

14. Кратеры-призраки


image

Кратер-призрак Lambert R.

Кратер-призрак это кратер, затопленный лавой. У некоторых видна только корону из изверженной породы:

image

image

Подробнее

15. Море Москвы


image

Mare Moscoviense одно из двух лунных морей, расположенное в северо-западной части невидимой с Земли стороны Луны. Этот район лежит почти на километр ниже среднего уровня поверхности Луны

image

Подробнее

16. Аристарх


image

40-километровый кратер Аристарх, которому 450 миллионов лет.

image

Подробнее

17. Зееман


image

Пик кратера Зееман высоой 8,8 км

image

Подробнее

18. Катящийся камень


image

7-9 метровый булыжник, катающийся по Луне.

image

Подробнее

19. Лавовые реки Принца


image

80-километровые лавовые каналы рядом с кратером Принц.

image

Подробнее

20. Неправильный кратер


image

Лармор Q

image

Подробнее

21. Извилина


image


Извилистый лавовый канал рядом с метом посадки Аполлона-15

image

Подробнее

22. Y


image

Горы в форме Y на дне 77-километрового кратера King.

image

Подробнее

23. Кратер полный лавы


image

110-километровый кратер Гассенди, частично заполненный лавой. Дно чаши кратера неровное, с системой борозд (борозды Гассенди) и множеством складок.

image

Подробнее

24. Альпы


image

166-километровая долина Альп, пересекающая горный хребет Монтес-Альпы.

image

Подробнее

25. Много колец


image

Море Восточное (лат. Mare Orientale) лунное море, расположенное на западной окраине видимого с Земли полушария Луны, радиус 930 км.

image

Подробнее

26. Кратер в кратере


image

22-километровый кратер Krieger

image

Подробнее

27. Кальдера обрушившийся кратер


image

Кратер Гигин

image

Подробнее

28. Извилистый канал


image

Западная половинка кратера Посидоний

image

Подробнее

29. Цепочка из 23 кратеров


image

Цепочка кратеров Дэви

image

Подробнее

30. Гора в кратере


image

Глубина кратера Тихо 4,8 км, высота горы 1,5 км.

image

image

31. Затопленный лавой кратер Летронн


image


120-километровый кратер Летронн

image

Подробнее

32. Горный хребет 600 км


image

Апеннины (лат. Montes Apenninus) лунные горы, расположенные в северной части видимой стороны Луны на юго-восточной границе Моря Дождей.

image

Подробнее

33. Борозда через гребень


image

300-километровая борозда Аридея

image

Подробнее

34. Ина


image

Кратер Ина (лат. Ina) маленькое кратероподобное образование в Озере Счастья на видимой стороне Луны

image

image

Подробнее
Подробнее..

Перевод Изучаем атмосферу Венеры получены новые данные с зонда Паркер

15.05.2021 18:08:01 | Автор: admin
Снимок Венеры, полученный зондом Parker в июле 2020 года

Земля и Венера сформировались в одном регионе протопланетного диска из одинакового материала, но затем их развитие пошло разными путями. Из-за схожих стартовых условий двух объектов атмосфера Венеры вызывает особый интерес планетологов.

Недавно получены новые сведения об атмосфере соседки Земли. Выяснилось, что там присутствует естественное радиоизлучение, оно может быть признаком наличия ионосферы, защищающей планету от опасного солнечного излучения. К чему все это приведет и что еще скрывает атмосфера Венеры рассказываем в материале.

Последние данные об атмосфере Венеры получены с помощью солнечного зонда Паркер. ОН создан NASA для изучения внешней короны Солнца верхнего разреженного и горячего слоя его атмосферы, состоящий из плазмы. Паркер запущен в 2018 году и использует гравитацию Венеры, чтобы приблизиться к Солнцу. Все это время зонд параллельно изучает планету.

Во время третьего пролета в пределах 833 км над Венерой 11 июля 2020 года зонд Паркер зарегистрировал естественное радиоизлучение из ее атмосферы. Это открытие подтверждает, что верхние слои атмосферы планеты находятся в стадии изменений, которые соответствуют 11-летнему циклу Солнца.



Что именно узнали ученые


Для ученых и по сей день остается загадкой, почему при схожих условиях начального развития Земля и Венера так радикально отличаются друг от друга. Почему на одной планете есть жизнь, а на другой, по крайней мере, на поверхности, она не может существовать?

Они предполагают, что разгадка кроется в защитном магнитном поле Земли. У Венеры нет такого защитного колпака. Если это предположение верно, то и у Венеры должна быть атмосфера, но которая не задерживается у поверхности, а уходит в космос. Особенно в периоды повышенной солнечной активности. Однако, наблюдения с наземных телескопов показывают обратное. Был замечен слой ионосферы, самая верхушка атмосферы, в периоды, когда Солнце наименее активно.

Строение планеты Венера

Во время третьего пролета зонд в течение 7 минут измерял верхние слои атмосферы Венеры. И в итоге получил новые данные которые сравнили с полученными при дистанционном изучении планеты. Это первое прямое измерение атмосферы Венеры за почти 30 лет.

Но это еще не все. Радиоизлучения помогли ученым вычислить плотность части ионосферы Венеры. В итоге полученную информацию сравнили с данными от зонда NASA программы Пионер.

Не Паркером единым


В 1992 году зонд Пионер-Венера посетил планету. В тот момент Солнце было около точки максимальной активности в 11-летнем солнечном цикле. В то время, как зонд Паркер пролетал через 6 месяцев после солнечного минимума.

После анализа данных ученые математически доказали наличие важных отличий между собранными об атмосфере Венеры данными сегодня и теми данными, которые зонд Пионер собрал много лет назад.

Какая же атмосфера на Венере сейчас? Она стала значительно тоньше по сравнению с предыдущими измерениями, сделанными во время солнечного максимума. Ученые измерили частоты излучения, рассчитали плотность ионосферы вокруг зонда. Новые измерения показали, что атмосфера стала менее плотной. Эти факты подтверждают догадки ученых, что ионосфера Венеры существенно изменилась за 11-летний солнечный цикл.

Две сестры: Венера и Земля

Теперь ученым нужно выяснить, почему так происходит. Специалисты предполагают, что смогут с помощью имеющихся данных понять, что сделало и делает нашу планету пригодной для обитания живых организмов. Для исследования они хотят сравнить данные об атмосфере Венеры с данными об амосфере Земли. Это станет еще одним небольшим, но важным шагом в сторону раскрытия великих тайн Вселенной.



Немного о Венере


Венеру называют сестрой Земли, потому что обе планеты похожи размерами и составом. Однако условия на поверхности двух планет кардинально разные. Атмосфера Венеры, самая плотная среди землеподобных планет, состоит главным образом из углекислого газа (около 96,5% CO2). Поверхность планеты полностью скрывают облака серной кислоты, непрозрачные в видимом свете. Венера не имеет естественных спутников. Венера самая горячая планета в Солнечной системе: средняя температура её поверхности 462 C. Полагают, что в глубокой древности планета так разогрелась, что подобные земным океаны, которыми она обладала, полностью испарились. После себя они оставили пустынный пейзаж со множеством плитоподобных скал.

Что же дальше? Сейчас зонд Паркер совершает четвертый пролет мимо Венеры на пути к солнцу. На расстоянии 2 тыс. км он сделал новые снимки. Теперь остается ждать новых интересных фактов о Венере, на основании последних исследований.

Подробнее..

Из точки в точку или как Япония, Китай и США планируют развивать космический транспорт

20.05.2021 08:20:21 | Автор: admin

Перспектива попасть в любую точку планеты менее чем за два часа весьма заманчива. Именно её обсуждали 17 мая в Министерстве образования, культуры, спорта, науки и технологий Японии. Совместно с частными компаниями планируется разработка суборбитальных кораблей, которые займутся доставкой пассажиров примерно в 2040 году. Об этом сообщило издание Mainichi.

Долгоиграющие планы Японии

Достижение такой амбициозной цели планируется через усовершенствование и удешевление пока еще разрабатываемой японской ракеты-носителя H3. Ее ввод в эксплуатацию должен сделать запуски более бюджетными планируется что базовая конфигурация H3-30S сможет доставить 4 т полезной нагрузки на орбиту высотой 500 км за 45 млн. долларов США.

Будут созданы четыре конфигурации ракеты чтобы закрыть все потребности по доставке полезной нагрузки разной массы на различные орбиты.

4 варианта ракеты-носителя H3. Источник: JAXA4 варианта ракеты-носителя H3. Источник: JAXA

Первая цифра после тире обозначает количество двигателей первой ступени, вторая число твердотопливных ускорителей, буква S укороченный, а L удлиненный головной обтекатель.

Первый запуск планируется на этот год, причем у ракеты уже есть космический контракт вывод на орбиту телекоммуникационного спутника компании Inmarsat в 2022 году. После этого, японцы планируют сделать ракету многоразовой, что по их прогнозам позволит снизить стоимость запусков вдвое. Ну а к 2040-вым и вовсе выйти на 10% от первоначальной стоимости.

Далее, с помощью частного сектора (возможно,гигантов наподобие Toyota Motors, Kawasaki и т. д.) приступить к разработке пассажирского транспорта, который будет заниматься доставкой, связывая крупнейшие города планеты.

Рассматриваются два варианта исполнения корабли с горизонтальными взлетом и посадкой, и вертикальными, как это реализовано у компании SpaceX на корабле Starship.

Пока в интернете удалось найти лишь вот такой концепт.

Концепт суборбитального транспорта. Источник: JAXAКонцепт суборбитального транспорта. Источник: JAXA

Конечно, японцев нельзя недооценивать, но хотя со стороны планы и кажутся грандиозными, они слишком растянуты по времени. К тому же на конференции обсуждались только пассажирские перевозки и ни слова о доставке грузов. Учитывая сколько можно перевезти и за какой короткий срок, возможно именно грузоперевозки были бы более выгодными.

Концепция Китая

С объявлением своих планов в сфере суборбитального транспорта Китай Японию опередил. О концепции доставки точка-точка китайские ученые рассказали при проведении конференции, приуроченной ко Дню китайской космонавтики 24 апреля.

На стенде Китайского исследовательского института ракетной техники (CALT) было представлено следующее видео:

КНР также представила два возможных варианта осуществления идеи.Использование многоразовой ракеты-носителя, либо суборбитального самолета с горизонтальными взлетом и посадкой. По всей видимости, разгоняться он будет на электромагнитных рельсах, а после, с помощью собственных двигателей, выходить в суборбитальное пространство.

Осуществлять грузовые перевозки планируется с 2035 года, а в 2045 реализовать доставку пассажиров.

Китайские планы не менее грандиозные, чем японские. Единственное но недостаток технической информации. На какой базе будут разрабатываться эти концепты, либо же это будут абсолютно новые корабли и т. д.

Невозможно не сказать, что при просмотре ролика, первая концепция явно что-то напоминает. Возможно, пока рано обвинять Китай в плагиате. Но даже повторение успехов других, по крайней мере в космической сфере, что-то, да значит. К тому же, Китай в последнее время реализует много проектов от разработки новых РН до запуска спускаемого аппарата на Марс.

P. S. На время написание статьи, КНР заявила, что марсоход Чжужун успешно достиг поверхности Марса.

Куда же без Маска?

Ну и последний в статье, но первый из представленной тройки (хотя корректно ли сравнивать космические агентства стран и главу отдельной корпорации?) представивший концепцию суборбитального транспорта.

В сентябре 2017 года на канале SpaceX был опубликован следующий ролик:

В нем продемонстрирован рейс из Нью-Йорка в Шанхай, который выполняется за 39 минут. Корабль взлетает с морской платформы, выходит на орбиту, после чего происходит отделение ступени, которая возвращается обратно, а корабль продолжает полет и приземляется в точке назначения.

По некоторым сведениям, суборбитальным транспортом заинтересовалось Минобороны США, которое подписало в 2020 году контракт с SpaceX кораблями компании военные планируют доставлять грузы в различные точки земного шара.

Ну а пока многие следили за испытаниями прототипов Starship, которые хоть и не всегда были успешны, но в конечном итоги достигли цели 5 мая 2021 года пятнадцатый запуск завершился удачно.

13 мая стало известно, что компания SpaceX подала заявку в Федеральную комиссию по связи (FCC) для получения специальных полномочий на поддержание связи со Starship во время первого испытательного орбитального полета.

По официальным данным, корабль будет запущен из Бока-Чика РН Super Heavy, который после отделения через 170 секунд приземлится на морскую платформу в Мексиканском заливе. Starship продолжит полет, который продлится около 90 минут, и совершит посадку вблизи острова Кауаи. Более подробно о полете тут.

Учитывая то, что Китай и Япония планируют осуществлять космические перевозки к тому времени, когда Маск хочет колонизировать Марс, возможно для последнего рейсы из точки в точку являются скорее побочной возможностью для Starship. Но почему бы не воспользоваться ей, если эта затея может принести прибыль.

Поэтому вероятнее всего, первой в суборбитальных перевозках станет компания SpaceX, а кто сможет составить ей достойную конкуренцию предстоит со временем выяснить.Ну а пока, можно следить за космическими событиями этого года, в котором уже осуществилась масса интересных и прорывных проектов, и ждать от него еще большего.

Подробнее..

Адвокат дьявола или Путешествие Америки с SLS

22.05.2021 02:09:06 | Автор: admin

Вячеслав Ермолин, 21 мая 2021 года.

Сеть заполнена картинками и мультфильмами о планах SpaceX Илона Маска по освоению Марса (и Луны по пути к нему). Однако у американцев есть Boeing, который также имеет аналогичные планы. Boeing выпустил рекламный буклет своей любимой сверхтяжелой ракеты SLS. Как оказалось SLS может (и хочет) не только в Луну, но и дальше и больше, вплоть до миссий Interstellar Explorer. Пятница однако.

Сделал неформальный перевод буклета.
Оригинальный буклет.

Почему американцы должны выбрать SLS?

Boeing все разложил по полочкам потому, что это лучшее решение для исследовательских миссий НАСА, для коммерческих рынков и национальной безопасности. Несколько слайдов (смотреть файл для детализации).

По грузоподъемности и предлагаемому сервису (скорость полета по Солнечной системе и объем обтекателя) он вне конкуренции.

Это мотор национальной промышленности, не сравнить с выскочками, имеющими интересы в тройке-пятерке штатов.

В проекте собраны лучшие американские космические компании. Кооперация и разделение труда позволяют использовать лучшие решения (не самые дешевые, ясное дело).

Вы только посмотрите на возможности размещения полезной нагрузки! Сравнивать просто не с чем.

И конечно только SLS способен достичь поставленной цели первую женщину и еще одного мужчину на Луну.

Впереди Марс! SLS готов в 2033 году доставить человека на орбиту планеты.

Если думаете, что SLS только для Луны и Марса ошибаетесь. Быстрые полеты тяжелых аппаратов к дальним планетам Солнечной системы быстрее всех своих конкурентов и одним запуском.

Полет к спутнику Сатурна Эсцеладу поиск жизни в водяном океане.

Поиск нефти и жизни на спутнике Сатурна Титане

Еще дальше Нептун и его спутник Тритон. Там много неизвестного науке.

Летим еще дальше за пределы Солнечной системы всего за 15 лет.

Новые телескопы в точку L2 - без цирка с сегментами и развертыванием на орбите.

Не только наука и исследования неведомого, но и защита нашей планеты от астероидной опасности. Пресловутый Апофис увести с траектории столкновения с Землей.

Америка без коммерции, это как Украина без борща и сала. SLS готов вывести солнечную коммерческую электростанцию на орбиту Земли мечта зеленых.

И вишенка на торте запуски тяжелых спутников для национальной безопасности много и быстро. Китай и Россия трепещите.

Кто бросит вызов этому замечательному проекту?

Сделал неформальный перевод буклета.
Оригинальный буклет.

Подробнее..

Перевод Китайский зонд Change 5 отправил снимки с расстояния 1,5 млн км от Земли

24.05.2021 20:06:11 | Автор: admin
Вид на Землю и Луну из первой точки Лагранжа. Изображение: CNSA / CLEP

В конце 2020-го года аппарат Change 5 доставил на Землю новые образцы лунных пород в ходе пятой беспилотной китайской миссии. Но на этом его миссия не закончилась, он продолжает исследовать глубины космоса. Недавно Национальное космическое управление Китая (Chinese National Space Administration's, CNSA) получило сделанные зондом с расстояния 1,5 млн км снимки, на которых изображены Земля и Луна вместе.

Не первые на Луне


Центральной задачей миссии Change 5 была доставка на Землю лунного реголита. Зонд отправился к спутнику в конце 2020 года. На Луне приземлился спускаемый аппарат. Пробурив лунную поверхность, он собрал образцы местных пород и отправил их на Землю.

Инфракрасное изображение капсулы с лунными образцами. Изображение: CCTV / framegrab

Капсула с лунными образцами приземлилась на территорию Внутренней Монголии. Благодаря этой миссии Китай вошел в тройку стран, собравших и доставивших образцы с лунной поверхности.

Помимо первых анализов лунных проб, стали доступны фотографии, которые зонд сделал в первой точке Лагранжа. На одном из снимков видно одновременно Луну и Землю. Увидеть на одном снимке оба объекта особенно примечательно, ведь среднее расстояние до Луны от Земли составляет 384,4 тыс.км. А сам снимок сделан с расстояния 1,5 млн км от Земли.

Вид на Солнце с зонда. Изображение: CNSA / CLEP

На следующем снимке видно Солнце также из первой точки Лагранжа.

Изображение: CNSA / CLEP

По сути все эти изображения нестандартная задача для зонда, его аппаратура не предназначена и не подготовлена для получения подобных снимков.

Миссия N5


Change 5 стала первой миссией после советской 1976 года, которая доставила образцы лунных пород для научных исследований, поэтому к ней наблюдается особенный интерес.

Космический зонд Change5 отправился в свое долгое путешествие с космодрома Вэньчан (Wenchang Space Launch Center) провинции Хайнань.

Вес корабля составляет более 8 тонн, он состоит из четырех модулей. Два модуля доставили на лунную орбиту. Другие сборщик проб и подъемный аппарат прилунились 1 декабря. Остановка состоялась в Океане бурь (Oceanus Procellarum) на горе Монс Рюмкер (Mons Rmker). Аппарат должен был выполнить все работы за 2-3 недели, так как работает на солнечной энергии.

Сейчас миссия Change 5 завершила основные задачи. Сейчас зонд занялся выполнением побочных проектов. Дело в том, что на борту космического аппарата, доставившего капсулу, еще осталось топливо. Так что зонд продолжает работать в штатном режиме на орбите вокруг первой точки Лагранжа в системе Солнце Земля.

Сейчас у поверхности Луны находится еще 3 китайских космических корабля:

  • посадочный модуль Change3;
  • посадочный модуль Change4;
  • марсоход Yutu 2.

В 2019 году Change4 прилунился на обратной стороне Луны. Он стал первым космическим кораблем, осуществившим подобную посадку. Зонд выполнил все запланированные задачи, но до сих пор функционирует и работает над новыми.

Что еще?


В ходе выполнения миссии Change5 в капсуле на Землю для дальнейшего изучения доставили 2 кг лунного грунта. Посадка капсулы велась в прямом эфире. Помимо китайских ученых к процессу собирались подключить коллег из Европы.

Почему такой интерес у китайских ученых и астронавтов к Луне? Для глобальных космических исследований Луна отлично подходит. Чем именно:

  • Можно как отработать автоматическую посадку сложных аппаратов.
  • Проще поддерживать связь с аппаратом благодаря относительно небольшому расстоянию от Земли.
  • Относительно невысокая стоимость миссии по сравнению с полетами к другим космическим объектам.
  • На экспедицию к Луне с высадкой на поверхность уходит порядка 10-14 дней в отличие от других миссий, которые требуют несколько месяцев или даже лет полета.

В 2023-2024 годах Китай планирует доставку на Землю грунта с южной полярной лунной области. Космический аппарат Change6 технологически будет идентичен зонду для пятой миссии.

Подробнее..

Чем опасен космический мусор и как его уничтожают

29.05.2021 10:08:42 | Автор: admin


По разным оценкам, количество космического мусора на орбите Земли варьируется от 220 до 300 тысяч объектов. При этом, объекты, размером в поперечнике более 1 см, составляют от 20 до 33% (от 60 тыс. до 100 тыс) всего космического мусора. Только представьте, какой эффект может оказать астрономическая пуля на пролетающий мимо космический корабль. Конечно, в масштабах нашей орбиты это кажется несущественным, но по мнению ученых, после 2055, в результате взаимного саморазрушения уже имеющегося на орбите мусора, проблема космического мусора станет серьезным препятствием для дальнейшего освоения космоса. Теперь подробнее об этом и других возможных последствиях.

Суть проблемы


Угроза физического столкновения


Собственно, самая очевидная угроза, исходящая от космического мусора, это угроза физического столкновения. На текущем уровне развития технологий не существует какого-либо способа защитить космические аппараты от небольшого объекта, размером с пулю, движущегося со скоростью 10 км/с. Ну а про защиту от более крупных объектов и заикаться не приходиться, хотя на орбите их существенно меньше. Помимо угрозы повреждения и уничтожения объектов, стартующих с Земли, на орбите находится огромное количество различных спутников, необходимые для работы разных служб. GPS, метеорология, да куча всего в общем. Уничтожение одного из них не сделает всю систему нежизнеспособной, но в условиях увеличения количества мусора в будущем это может серьёзно повлиять на работоспособность этих систем. Помимо прогнозов на будущее, в настоящем и прошлом есть примеры столкновения космических аппаратов с мусором:


За всё время программы шаттлов, на них было обнаружено порядка 170 следов на иллюминаторах от столкновения, к счастью с микрочастицами (0,2 мм в диаметре). Около 70 иллюминаторов пошли под замену. На изображении слева кратер шириной 2.5 мм от частицы краски.

  • В июле 1996 года французский спутник столкнулся с третью ступенью французской ракеты Arian, запущенной намного раньше;


Французская ракета Arian. Источник ESA

  • 29 марта 2006 года российский спутник Экспресс АМ11 столкнулся с космическим мусором. В результате столкновения, был разгерметизирована система терморегулирования, спутник, потерял ориентацию и начал неконтролируемое вращение.

  • 10 февраля 2009 года российский спутник Космос-2251, выведенный из эксплуатации в 1995 году, столкнулся с американским коммерческим спутником Iridium 33.


Столкновение Космос-2251 и Iridium 33. Источник vermarushabh.blogspot.com

Для контроля мусора космическими агентствами ведутся соответствующие реестры, отслеживающие относительно крупные (от нескольких сантиметров) объекты. Так, например. основываясь на имеющихся данных, МКС несколько раз в год корректирует своё положение на орбите, дабы избежать столкновения.

Синдром Кесслера


Помимо угрозы физического уничтожения, космический мусор может являться причиной полной непригодности ближнего космоса для практического использования. Данную теорию описывает так называемый синдром Кесслера, описанный консультантом НАСА Дональдом Кесслером в 1978 году. Суть данной теории заключается в эффекте домино. По мере увеличения количества объектов на орбите увеличивается и количество потенциальных источников мусора. При столкновении двух крупных объектов приведет к появлению большого количества новых, более мелких объектов. В свою очередь, каждый из них может столкнуться с другим объектом. Таким образом возникает цепная реакция, ведущая к появлению всё новых и новых обломков. По итогу, при достаточно большом количестве столкновений, количество образовавшегося мусора на орбите сделает невозможным её использование.

Однако на низких орбитах взаимодействие с атмосферой постепенно уменьшает количество мусора, и это подводит нас к следующей угрозе.

Падение космического мусора на Землю


Объекты, находящиеся на низкой орбите, еще находятся под влиянием атмосферы земли и постепенно замедляются, в результате через какое-то время начинают снижаться и входить в более плотные слои атмосферы. Многие объекты сгорают в атмосфере, но есть и те, что достигают поверхности планеты. Так, по данным НАСА, почти ежегодно отдельные фрагменты космических аппаратов достигают поверхности Земли.


Источник oyla.xyz

Кладбище космических кораблей


Точка Немо это самая удаленная от суши место на Земле, также называемая океанической полюсом недоступности. Полюс недоступности это место, которое наиболее сложно достигнуть из-за её удалённости, обычно от береговой линии. Ближайшая суша находиться в 2688 километрах от Точки Немо, а ближайшим населенным местом периодически становится МКС, орбита которой проходит над этим местом. Низкое содержание питательных веществ (круговорот в южной части Тихого океана блокирует попадание питательных веществ в этот район) и удаленность от прибрежных вод делают это место практически безжизненным, поэтому Точка Немо идеальное место для захоронения космических аппаратов. Периодически этот район называют кладбищем космических кораблей. Некоторые русскоязычные источники называют этот район закрытым для судоходства, но судя по отсутствию нормативных документов и регламента процедуры захоронения (о которой чуть ниже) данный запрет носит рекомендательный характер. Ответственность за движение судов в этом регионе разделяют Чили и Новая Зеландия. За несколько дней до спуска космического аппарата, космические агентства предупреждают службы этих стран, которые в свою очередь доносят соответствующие предупреждения избегать этот район до летчиков и капитанов морских судов.


Источник gizmodo.com

Похороны космического аппарата


Как и при любой другой космической операции, захоронение космического аппарата требует соответствующей подготовки. После проведения необходимых расчетов и предупреждения местных властей, аппарат, достигнув необходимого местоположения, начинает снижение. Как упоминалось выше, небольшие и компактные спутник, как правило, не достигают поверхности земли и сгорают за счет трения. Поверхности воды же достигают различные тугоплавкие конструкции. Так, например, данный участок используется российским Центром управления полетов для утилизации космических беспилотных грузовиков серии Прогресс. Кстати, в результате захоронения части космического аппарата могут разлетаться на большой площади. Так, например, останки станции Мир, затопленной в 2001 году, разлетелись на участок протяженностью 3000 километров. Подобная характерность несколько раз становилась причиной ЧП. В 1979 году часть американской станции Скайлэб упала на территории Австралии, в 1991 году обломки станции Салют-7 упали на территории Аргентины. Также в 1997 году недогоревшая часть ракеты упала на женщину в Оклахоме. К счастью, все эти случаи произошли без жертв. Сейчас, ежегодно на кладбище космических кораблей свой последний приют находят несколько десятков кораблей, которые находясь на орбите являются источником большей угрозы.


Инфографика ТАСС. Источник tass.ru

Орбита захоронения


Помимо наземного кладбища также существует орбита, на которую отправляют уже отработавшие космические аппараты для уменьшения вероятности столкновения с ещё работающими. Существует две официальных орбит захоронения: для космических аппаратов, располагавшихся на геостационарной орбите, и для аппаратов для военных разведывательных спутников с ядерной энергетической установкой.

Геостационарная орбита это орбита, расположенная над экватором земли, находясь на которой, искусственный спутник имеет такую же угловую скорость, как и Земля, т.е. находится всегда над одним и тем же местом на Земле. Эта орбита используется для размещения коммуникационных, телетрансляционных спутников и находиться на высоте 35786 километров над уровнем моря. После отработки, спутник примерно на 200 км (для каждого спутника расстояние рассчитывается индивидуально).




Увеличение количества искусственных спутников Земли. Источник Европейское космическое агентство.

Другая орбита захоронения находится на высоте от 600 до 1000 километров. На эту орбиты отправляют военные спутники с ядерной энергетической установкой. Ориентировочно, эти спутники будут находиться на орбите порядка 2 тысяч лет, после чего гравитация Земли притянет их.

Пути решения


В целом, поиск путей решения этой проблемы ничем не отличается от решения проблемы творческого беспорядка у вас на столе, только масштаб у первой слегка побольше. Имеется два пути создавать меньше мусора или убирать старый.

Снижение создаваемого мусора


Как говорится, Чисто не там где убирают, а там где не мусорят!. Собственно, в этом и суть. К основным направлением снижения создаваемого мусора относят следующие меры:

  • Снижение массы запускаемого аппарата:

Меньше масса меньше потенциального мусора. Всё просто.

  • Увеличение срока эксплуатации космических аппаратов:

Чем дольше будут работать спутники, тем меньше будет производиться полетов для их замены.

  • Минимизация количества остающихся в космическом пространстве частей КА:

Утилизация отработавших частей и самого космического аппарата либо возвращение частей обратно на Землю.

Как видно, первые два пункта пересекаются с общими направлениями развития космонавтики. Последний пункт же вносит некоторые коррективы в построение ракет. Как грамотно организовать утилизацию отработавших частей? Одно из развивающихся направлений использование материалов, позволяющих ракетам-носителям вывести аппарат на орбиту, а затем сгореть в атмосфере. Т.е. такой материал должен выдерживать все взлетные нагрузки, и при этом не должен быть супер тугоплавким, чтобы за счет трения сгореть в атмосфере. Звучит как некоторый парадокс. На данный момент таких материалов в ракетостроение нет.

Второй способ это возвращение частей КА на Землю. Самый очевидные примеры это многоразовые ступени SpaceX и программа Space Shuttle.

Утилизация уже имеющегося мусора


В отличие от проектируемых с замыслом утилизации аппаратов, мусор на орбите сам себя утилизировать не может. Все текущие проекты по уборке космического мусора находятся либо в разработке либо в виде идеи. Было озвучено множество идей, которые можно классифицировать следующим образом:

  • Лазеры

Суть в том, что уничтожать мусор с помощью лазера. Что ж, звучит фантастично.

  • Захват

Захват мусора с помощью сверхпрочной сети и отправка его в плотные слои атмосферы. К слову, в 2019 году британский аппарат RemoveDebris смог захватить фрагмент спутника.

  • Воздушные шары

Крупный шар должен оборачивать мусор, при этом увеличивая их сопротивление и ускоряя процесс входа в плотные слои атмосферы.

  • Буксир с солнечным парусом

Солнечный парус это устройство, использующее давление света для приведения в движение космического аппарата. По задумке, такой аппарат будет цеплять мусор и уводить его с орбиты.

  • Облако вольфрама

По задумке, облако вольфрама будет медленно опускаться к Земле, попутно замедляя мусор.

  • Аппараты-самоубийцы

Такой аппарат должен должен буквально заталкивать опасные объекты в атмосферу, и при этом также сходить с орбиты.

  • Орбитальные мусоровозы

Аппарат будет собирать мусор на орбите и перерабатывать его.


Российский сборщик космического мусора, перерабатывающий космический мусор в топливо. Источник russianspacesystems.ru



Облачные серверы от Маклауд быстрые, безопасные и не генерируют космический мусор.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Короли малых спутниковых пусковых установок Сравнение

29.05.2021 14:11:58 | Автор: admin

28 мая 2021 г., Everyday Astronaut, 10 минут на чтение.
Первоисточник:

Технологический прогресс последних десятилетий позволил производителям резко уменьшить размер электроники. Это привело к уменьшению размеров спутников, что привело к резкому взрыву рынка малых спутников (small sat). Для запуска этих спутников пусковые компании проектируют и строят небольшие и более дешевые ракеты. Эти ракеты относятся к малым спутниковым пусковым установкам.

Небольшие спутниковые пусковые установки имеют ряд преимуществ.Во-первых,они могут запускать небольшие спутники на своей собственной специализированной ракете (или в небольшом райдшере), а не в совместном запуске с сотнями спутников. Это позволяет клиенту точно вывести свой спутник на целевую орбиту. Кроме того, из-за меньшего размера эти ракеты изначально дешевле; нет причин оплачивать дополнительные возможности ракеты-носителя средней или большой грузоподъемности при выведении небольшого спутника.

Поскольку все больше и больше новых проектов разрабатывается и воплощается в металле, пришло время рассмотреть и сравнить небольшие спутниковые пусковые установки. В этой статье будут рассмотрены ракета-носители Alpha от Firefly, LauncherOne от Virgin Orbit, Rocket 3 от Astra, Terran 1 от Relativity Space, RS-1 от ABL и Electron от Rocket Lab. Кроме того, для сравнения включены Falcon 1 и Falcon 9 от SpaceX.

Это далеко неполный списокнебольших спутниковых пусковых установок. Существует множество проектов, которые находятся в разработке.

Что такое маленькая спутниковая пусковая установка?

Маленькая спутниковая пусковая установка, или ракета-носитель с малой полезной нагрузкой, это один из классов ракета-носителей. Ракеты этого класса могут вывести на низкую околоземную орбиту (НОО) до 2000 кг. Все, что с массой полезной нагрузки от 2 000 до 20 000 кг на НОО, является ракетой-носителем средней грузоподъемности, такой как Союз, Протон и многоразовый Falcon 9. Все, что от 20 000 кг до 50 000 кг является ракетой-носителем большой грузоподъемности, например Falcon 9 в одноразовом варианте, или Delta IV Heavy. Наконец, любая ракета-носитель, способная вывести более 50000 кг, является сверхтяжелой ракетой-носителем, такой как Starship от SpaceX или Saturn V.

В связи с большим увеличением количества малых спутников возрастает спрос на ракеты-носители с малым весом полезной нагрузки. Использование более мощной ракеты является излишним, даже если теоретическая цена за килограмм будет дешевле для более крупной ракеты. Для малой спутниковой ракеты с массой полезной нагрузки 200 кг запуск за 5 миллионов долларов дешевле, чем заказ отдельного полета Falcon 9 за 50 миллионов долларов.

Использование совместных запусков множества спутников (Rideshare) становится обычным явлением с помощью специальных миссий Space Flight Inc. и SpaceX. Однако это накладывает ограничения на доступный набор орбит.

Ракеты в разработке

Есть несколько небольших спутниковых пусковых установок, разработка которых еще не завершена, чтобы их можно было включить в сравнение. Тем не менее, они все же заслуживают упоминания из-за уникальных аспектов и перспектив на будущее.

Prime

Первая это ракетаPrime Orbex.Prime использует уникальную коаксиальную конструкцию баков в котором топливный бак с жидким пропаном находится внутри бака с жидким кислородом. Это уменьшает количество переборок и изолирует топливо. Orbex надеется сделать первую ступень Prime возвращаемой, но о конструкции ракеты известно очень мало.

Skyrora XL

Вторая это малая пусковая установкаSkyrora, Skyrora XL.На машине также будут использоваться совмещенные баки. Однако, в отличие от Prime, двигатели будут работать на высококонцентрированной перекиси и РП-1 с двигателем замкнутого цикла. Ракета будет использовать один двигатель для вращения насоса, как РД-107 и РД-108 на Союзе. Однако, в отличие от Союза, поток топлива, проходящий через насосы, будет направлен обратно в камеру сгорания.

Rocket-1

Третья ракета-носительRocket-1.Будет использовать кислородно-керосиновый двигатель с замкнутым циклом, обогащенный кислородом. Это будет первый американский двигатель такого типа. Единственным другим двигателем ступенчатого сгорания, обогащенным кислородом, является BE-4 Blue Origin. Двигатель имеет 365 секунд удельного импульса в вакууме, что приближается к теоретическому пределу для РП-1.

Малые спутниковые пусковые установки

Electron

На момент публикации ракета Electron от Rocket Lab была единственной действующей небольшой спутниковой пусковой установкой в этом списке. Electron впервые стартовал в 2017 году в рамках миссииIt's a Test, завершившейся прерыванием полета из-за сбоя в системе наземной связи. Однако менее чем через год, 21 января 2018 года, Electron впервые успешно вышел на орбиту.

Взлет Electron во время миссии As The Crow Flies ( Источник: Сэм Томс и Саймон Моффат / Rocket LabВзлет Electron во время миссии As The Crow Flies ( Источник: Сэм Томс и Саймон Моффат / Rocket Lab

Уникальные особенности

У Electron много нововведений и уникальных особенностей. Прежде всего, весь корпус Electron сделан из углеродных композитов. Это делает баки легкими и прочными. Другой уникальной частью Electron является его двигатель: Rutherford. Rutherford реактивный двигатель с электрическим топливным насосом. Это означает, что двигатель использует электродвигатели для вращения турбин, в отличие от предварительной горелки или газогенератора, что значительно снижает сложность двигателя. Более того, поскольку двигатель довольно мал, с девятью двигателями Rutherford на первой ступени и одним Rutherford на второй ступени, двигатель можно полностью напечатать на 3D-принтере. Это снижает затраты и сокращает время изготовления двигателя.

В настоящее время Electron стартует с пускового комплекса 1А (LC-1A) на полуострове Махия в Новой Зеландии. Однако у Rocket Lab есть еще две стартовые площадки. В паре сотен метров правее LC-1A Rocket Lab строит вторую стартовую площадку, LC-1B. Подобно тому, как SpaceX использует SLC-40 и LC-39A на мысе, Rocket Lab будет использовать две площадки для увеличения частоты запусков. Наконец, Rocket Lab также строит MARS Pad 0C в Уоллопсе, Вирджиния, США.

Несмотря на то, что основная стартовая площадка Rocket Lab и большая часть их производства происходит в Новой Зеландии, это американская компания. Штаб-квартира Rocket Lab находится в США, что позволяет им запускать полезные нагрузки NASA и USSF и обходить некоторые ограничения ITAR.

Многоразовое использование

Кроме того, еще одна очень интересная особенность будущего Electron это восстановление и повторное использование первой ступени. Rocket Lab планирует использовать парашют, чтобы замедлить скорость ступени, прежде чем поймать ее с помощью вертолета. (больше об этих планах вэтом видео). На момент публикации Rocket Lab уже успешно возвратила два ускорителя Electron, и они даже повторно использовали некоторые из компонентов ускорителя. Например, в миссииRunning Out of ToesRocket Lab повторно использовала систему наддува топлива, которая использовалась в миссииReturn to Sender.

Photon

Наконец, у Electron есть дополнительная третья ступень. Это может быть либо их Kick stage, либо Photon. У Photon есть два варианта: межпланетная версия, которая может лететь к Венере, а также версия для орбиты Земли. У Photon есть единственный двигатель под названием Curie. Двигатель Curie выпускается в трех вариантах: версия на холодном газе, двухрежимная версия и двухрежимная версия для глубокого космоса Hyper Curie, работающая на каком-то зеленом топливе длительного хранения, о котором Rocket Lab еще не раскрыла информацию. Сегодня Curie почти всегда используется в двухрежимной конфигурации, а Hyper Curie присутствует только в версии Photon для дальнего космоса. Кроме того, Photon можно использовать как спутниковую платформу.

LauncherOne

Далее идет LauncherOne от Virgin Orbit. LauncherOne стартует по схеме воздушный старт, что означает использование Boeing 747 как мобильную стартовую площадку, или как мини-первую ступень. Воздушный запуск имеет ряд преимуществ, таких как возможность запуска с любым наклоном орбиты и запуск в плохую погоду. Однако это сопровождается рядом недостатков, поскольку ограничивает размер ракеты и увеличивает сложность.

Ракета запускается с доработанного самолета Boeing 747-400, получившего названиеCosmic Girl. 747 был выбран по ряду причин. Во-первых, в отличие от единственного всвоемроде самолетаStratolaunch, есть тысячи подготовленных пилотов, механиков и инженеров, которые обучены работать с ним и управлять самолетом. Кроме того, 747 был изначально разработан для перевозки пятого двигателя под левым крылом для доставки запасных реактивных двигателей по всему миру. Это дало Virgin Orbit отличное место для установки ракеты, поскольку с некоторыми доработками в конструкции самолет мог выдерживать массу ракеты.

LauncherOne после взлета (Источник:Джек Бейер)LauncherOne после взлета (Источник:Джек Бейер)

Ракета-носитель

LauncherOne это двухступенчатая малогабаритная пусковая установка. Первая ступень оснащена одним двигателем Newton 3, который является двигателем открытого цикла. Вторая ступень также оснащена одним двигателем оптимизированным для вакуума версией под названием Newton 4. Как и RS-68 на Delta IV, серия ракетных двигателей Newton использует выхлопные газы газогенератора для закрутки ракеты-носителя во время полета.

LauncherOne впервые была запущена в 2020 году, но вскоре после запуска двигателя произошел сбой. В январе 2021 года LauncherOne стартовала второй раз, успешно выйдя на заданную орбиту.

Ракета Astra

Ракета Astra двухступенчатая мобильная малолитражная ракета-носитель. Ракета способна поместиться в стандартном транспортном контейнере. Вся инфраструктура и оборудование наземного обслуживания также могут транспортироваться в морских контейнерах. Эти контейнеры можно загрузить на самолет C-130 и доставить в любую точку мира.

Как и вышеупомянутые ракеты, ракета Astra работает на топливной паре керосин-кислород. Первая ступень оснащена пятью двигателями Delphin, которые, как и Rutherford, питаются от электронасоса и напечатаны на 3D-принтере. Вторая ступень оснащена одним двигателем Ether с вытеснительной системой подачи топлива.

На сегодняшний день ракета Astra прошла три испытания. Все три закончились неудачей. Первый тест, Rocket 3.0, провалился во время предполетных испытаний, когда пожар уничтожил ракету. Во время второго полета офицер по технике безопасности отключил двигатели после того, как ракета начала отклоняться от курса. Наконец, в декабре 2020 года Rocket 3.2 прошла линию Кармана, но не смогла выйти на орбиту, недобрав 500 м/с из-за неправильной пропорции топливной смеси на второй ступени. Сейчас у Astra ~ 10 клиентов, готовых к запуску на ракете Astra, начиная со следующей миссии.

Запуск Rocket 3.1 (Источник: Джон Краус / Astra)Запуск Rocket 3.1 (Источник: Джон Краус / Astra)

Alpha

Из-за внутренней политики Firefly компания и ракета малоизвестны. В 2014 году была основана Firefly Space Systems, а несколько лет спустя, в 2017 году, компания обанкротилась и стала Firefly Aerospace. За время этого изменения Alpha пришла к нынешней форме: самая большая на сегодняшний день ракета из углеродного композита с четырьмя двигателями Reaver на первой ступени и одним двигателем Lightning на второй ступени.

Оба двигателя работают на топливной паре керосин-кислород и используют уникальный цикл отвода. Это означает, что газ из камеры сгорания используется для вращения турбин. Отводной цикл выгоден, поскольку он позволяет сжигать все топливо и окислитель в камере сгорания; однако цикл усложняет зажигание двигателя.

Ракета Firefly Alpha на стартовой площадке SLC-2W (Источник: Firefly)Ракета Firefly Alpha на стартовой площадке SLC-2W (Источник: Firefly)

RS-1

ABL Space Systems ставит перед собой цель создать RS-1 самую простую и экономичную ракету из когда-либо созданных. Как и другие в этом списке, RS-1 оснащена девятью двигателями Keralox E2 на первой ступени, напечатанными на 3D-принтере. На второй ступени находится один оптимизированный для вакуума двигатель E2. Двигатель E2 это двигатель с открытым циклом, целью которого является создание ракеты простой конструкции.

Однако, в отличие от других ракет из этого списка, RS-1 может запускаться откуда угодно. Ракета, GSE и другая пусковая инфраструктура упакованы в стандартный транспортный контейнер.

Макет ракеты RS-1 (Источник: ABL)Макет ракеты RS-1 (Источник: ABL)

Terran-1

Как и в случае с другими упомянутыми ранее ракетами, Relativity Space собирается напечатать двигатели для Terran-1 на 3D-принтере. В отличие от других ракет, Terran-1 будет полностью напечатан на 3D-принтере. Таким образом, Relativity Space планирует уменьшить количество деталей, необходимых для сборки ракеты, на два порядка (в 100 раз), упростив производство и сократив время изготовления. Кроме того, 3D-печать позволяет легко изменять конструкцию, поскольку не нужно менять какие-либо инструменты и оснастку.

Первая ступень Terran-1 оснащена девятью двигателями Eon 1. Вторая ступень оснащена одним оптимизированным для вакуума двигателем Eon 1. Двигатели открытого цикла, работают на сжиженном природном газе и жидком кислороде. Подобно Raptor и RS-25, двигатель Eon 1 будет использоваться для создания давления наддува в баках. Это избавляет от необходимости хранить на борту гелий в баллонах. Гелий используется только для запуска двигателей и поставляется оборудованием наземного обслуживания.

Terran-1 будет запущен из стартового комплекса 16 (LC-16) на базе Космических Сил на мысе Канаверал во Флориде, США.

Terran-1 (Источник:Каспар Стэнли)Terran-1 (Источник:Каспар Стэнли)

Сравнение

Во-первых,можно сравнить размеры всех малых пусковых установок. Это проясняет, почему эти машины называютсяпусковыми установками малой грузоподъемности,поскольку они значительно меньше, чем Falcon 9 средней грузоподъемности.

Сравнение высоты всех малых пусковых установок и Falcon 9 (Источник: Everyday Astronaut)Сравнение высоты всех малых пусковых установок и Falcon 9 (Источник: Everyday Astronaut)

Кроме того, можно сравнить диаметр каждой ракеты:

Диаметр шести вышеупомянутых малых пусковых установок (Источник: Everyday Astronaut)Диаметр шести вышеупомянутых малых пусковых установок (Источник: Everyday Astronaut)

Затем можно сравнить полезную нагрузку каждой ракеты при выведении на солнечную синхронную орбиту (SSO). SSO это околоземная орбита с большим наклонением орбиты, от 96,6 до 142,1. Эти орбиты гарантируют, что спутник ежедневно проходит над каждой точкой Земли в одно и то же среднее солнечное время. Важно отметить, что цифры полезной нагрузки в настоящее время являются приблизительными. Многие из этих ракет не летали и все еще находятся в разработке. Цифры в будущем, вероятно, будут сильно отличаться по мере продолжения разработки и появления дополнительных вариантов.

Кроме того, можно сравнить цены за каждую небольшую спутниковую пусковую установку. Все цены скорректированы с учетом инфляции и указаны на 2021 год. Поскольку эти цифры являются приблизительными, к ним не следует относиться серьезно. Истинная стоимость не будет известна, пока они не будут введены в эксплуатацию. Из-за высокой степени неопределенности в оценке полезной нагрузки и стоимости запуска сравнение цены за килограмм не будет точным или справедливым. Важно помнить, что малые ракеты-носители никогда не будут столь же рентабельными, как ракеты большего размера по стоимости за килограмм, поскольку их единственная цель обеспечить точный вывод на заданную орбиту.

Расчетная полезная нагрузка, расчетная цена и количество циклов двигателя для каждой пусковой установки (Источник: Everyday Astronaut)Расчетная полезная нагрузка, расчетная цена и количество циклов двигателя для каждой пусковой установки (Источник: Everyday Astronaut)

Резюме

В целом очевидно, что из будущих малолитражных ракета-носителей RS-1 и Terran-1 будут способны доставить около 1000 кг в SSO. Однако такая грузоподъемность имеет свою цену, поскольку эти две ракеты значительно дороже, чем ракета Astra и Electron.

Ракета Electron Rocket Lab имеет значительное преимущество перед другими ракета-носителями малой грузоподъемности, поскольку она запускалась 20 раз, выведя на орбиту более 100 космических аппаратов. Точно так же LauncherOne также является испытанной ракетой и может запускать полезную нагрузку под любым углом, что может потребоваться для некоторых полезных нагрузок. Firefly находится в том же положении, что и Alpha, так как у них на стартовой площадке стоит ракета, ожидающая запуска.

Наконец, поистине удивительно, чего SpaceX смогла достичь более десяти лет назад с помощью Falcon 1. При меньшем финансировании SpaceX смогла создать более производительную и более дешевую ракету, чем некоторые из небольших спутниковых пусковых установок, которые еще разрабатываются сейчас.

Первоисточник:

Подробнее..

Джефф Безос Я полечу в космос 20 июля, потому что я мечтал об этом всю свою жизнь

07.06.2021 16:20:09 | Автор: admin
image

С пяти лет я мечтал о полёте в космос. 20 июля я отправлюсь в путешесвие со своим братом. Величайшее приключение с моим лучшим другом.
написал в Instagram Джефф Безос сегодня


Вместе с Безосом полетит его брат Марк и еще один человек, победитель, публичного аукциона, который продлится до 12 июня. Сейчас ставка $2.8 миллиона за место в космос.

Корабль New Shepard уже прошел множество тестов, и сможет поднять 6 пассажиров на высоту 100+ километров.

Джеф Безос основал Blue Origin в 2000 году и полностью финансировал из своего кармана.

20 июля 52-я годовщина посадки Apollo 11 на Луну.

Вот как выглядит взлет и посадка ракеты:



А вот что увидят пассажиры:



Хронология на Хабре


2015: Основатель Amazon сообщил об успешном испытании новой ракеты-носителя New Shepard
2015: Успех New Shepard: многоразовый носитель и суборбитальный туризм

2016: Космический корабль New Shepard успешно совершил старт и посадку в четвертый раз
2016: Четвертая посадка New Shepard: научные эксперименты, тест отказа парашюта и первая полная трансляция пуска

2017: Полет на New Shepard от первого лица

2018: Blue Origin вернула на Землю и многоразовую ступень, и капсулу экипажа

P.S.


Джеф Безос смог.

Надеюсь, скажу я и весь мир 20 июля 2021 года.

Мечтают все: но не одинаково. Те, кто по ночам грезит на пыльных чердаках своего ума, просыпаются днем и обнаруживают, что все это было тщетой; но те, кто мечтает днем, опасные люди, ибо они могут проживать свою мечту с открытыми глазами, воплощая её.
Лоуренс Аравийский
Подробнее..

Военные США планируют доставлять грузы в разные точки мира при помощи ракет типа Starship

07.06.2021 20:11:26 | Автор: admin

Американские военные всерьез рассматривают возможность доставки грузов в разные страны при помощи мощных ракет. Слухи об этом появились давно: рассуждения высокопоставленных военных появлялись то в одном СМИ, то в другом. Но в этом году проект стал рассматриваться уже вполне серьезно, с планированием бюджета, логистикой и т.п.

В самом начале года ВВС США опубликовали в общем доступе бюджет на несколько лет (вероятно, в нем не отражены все виды деятельности, но все же). И в нем как раз красовался пункт под названием Rocket Cargo.

Что за пункт, о чем вообще речь?


Имеется в виду раздел на 305 странице вот этого документа. В нем указано, что бюджет ракетных грузоперевозок, вернее бюджет разрабатываемого проекта, составляет $47,9 млн. Финансирование начинается в октябре 2021 года.

В этом документе также указано, что ВВС США планируют использовать инвестиции для разработки самых больших из когда-либо существовавших ракет. Причем их можно будет использовать повторно, а сама ракета сможет отправиться в любую точку земного шара. Груз в 100 тонн ракета сможет доставить в течение часа повторимся, в любую точку Земли.

Как видим, название ракеты Илона Маска нигде не указано, но в настоящий момент лишь она способна удовлетворить заявленные требования. При этом доставка должна выйти бюджетной. Если же говорить о сверхтяжелой ракете SLS, то здесь иная ситуация: ее запуск обойдется военным в несколько миллиардов долларов США, так что в большинстве случаев использование подобного транспорта теряет смысл.

Военные любой страны нуждаются в оперативной логистике, а быстрее ракеты ничего пока быть не может привычные способы доставки грузов, включая корабли, железную дорогу, самолеты и автомобили в разы медленнее.

В 2021 году на ракетную логистику будет выделено около 10 млн долларов США. В последующие годы сумма, скорее всего, будет увеличена. Правда, как и всегда, придется дождаться одобрения Конгресса, но здесь все должно быть хорошо: военные вопросы политики решают быстрее прочих.

Компания SpaceX уже сотрудничала с военными США она запускала их спутники на орбиту, например. Теперь, если финансирование выгорит, Илон Маск получит партнера с очень глубокими карманами, которые буквально набиты деньгами. Возможно, этот проект поможет ускорить колонизацию Марса, кто знает. Ведь ракета Starship будет строиться с использованием военных фондов ВВС США планируют ускорить разработку.

О каких сроках идет речь?



Самое интересное, что это уже не фантастика. Военные США рассказывают о намерении реализовать свои планы в ближайшем будущем. Если речь шла о 10-20 годах, еще можно было бы представить, что это очередной странный проект, который получит огромное финансирование и в итоге будет закрыт, что случалось уже не раз. Вспомним, например, рельсовую пушку ее разработка продолжалась 10 лет, потрачена масса денег, а в итоге рельсотрон оказался непрактичным и его убрали.

Ракета не рельсотрон, конечно, но все же. Еще один интересный нюанс: военные не предлагают собственных технологий загрузки и выгрузки. Решение о том, какую именно технологию использовать, зависит от компании, получившей контракт.

Как уже говорилось выше, это, скорее всего, будет SpaceX. Но, возможно, военные обратятся и к Джеффу Безосу с его Blue Origin. На вопрос о том, кто именно получит контракт, представитель ВВС заявил, что армия общалась с гораздо большим числом компаний. И если у каких-то из них нет сейчас необходимых технологий, то военные будут стимулировать ускорение их разработки, вкладывая значительные средства. Военные хотят получить больше одного поставщика, чтобы нивелировать риски.


Совершенно точно военные США хотят быть первыми в плане получения ракетных технологий доставки груза. Представители армии заявили, что Министерство обороны собирается купить несколько первых пусков транспортных ракет для отработки логистики.

Один из важных вопросов наличие или отсутствие космодрома в месте посадки/взлета. По словам военных, они надеются на то, что разработчики космических технологий смогут добиться взлета и посадки ракетного транспорта даже на пересеченной местности. Сейчас стоит задача по выяснению особенностей такой посадки или взлета, а также анализу регионов, где теоретически может сесть ракета.

А что, Starship готов?



Почти. Компания Илона Маска готовится к первому орбитальному полету своей ракеты, планируя реализовать пуск уже в этом году. Заявка в Федеральную комиссию по связи США была подана 13 мая, а сам полет, возможно, состоится уже в этом месяце.

Согласно плану, система из первой ступени Super Heavy и корабля Starship будет запущена со стартовой площадки в Техасе. Через 171 секунду после начала полета первая ступень отделится от второй и осуществит посадку в 32 километрах от побережья США. Вторая ступень выйдет на орбиту, совершит виток вокруг планеты, потом снова войдет в атмосферу и опустится в 100 километрах от одного из островов Гавайского архипелага.

Если все пройдет так, как планируется, возможно, военные смогут отправлять грузы уже в ближайшее время.

Подробнее..

Всё о проекте Спутниковый интернет Starlink. Часть 31. Описание антенны Ка-диапазона

09.06.2021 00:09:23 | Автор: admin
Предлагаю ознакомиться с ранее размещенными материалами по проекту Starlink (SL):
Часть 25. EPFD или административно-физическая гиря на ногах SpaceX Часть 26. Первые итоги. Часть первая позитивная Часть 27. Первые итоги. Часть вторая проблемная Часть 28. Использование StarLink на движущихся объектах Часть 29. Страны, где сервис начнет предоставляться в первую очередь Часть 30. Сравнение сервиса StarLink с сервисами других операторов ШПД

В данном посте приведено подробное описание шлюзовой станции (Гейтвея) спутниковой сети StarLink. Гейтвей обеспечивает половину спутникового канала, передачу на спутник информации из сети Интернет и работает в Ка-диапазоне. Вторая половина спутникового канала это передача той же информации, но со спутника на абонентский терминал.


Приведенный ниже документ Starlink Gateway V3 Technical Information 08-07-20 является актуальным и используется в США и за его пределами подрядчиками SpaceX при строительстве Гейтвеев. В документе указаны основные технические параметры антенны и приемопередатчика Гейтвея.


Contents

  • Gateway V3 Summary
  • System Specifications
  • RF Overview
  • Mechanical Overview
  • Gateway V3 Block Diagram
  • Gateway V3 Wiring Diagram
  • Gateway Grounding Diagram
  • Harmonized Shipping Codes (TBD)
  • Photographs

Gateway V3 Summary

  • The Starlink V3 Gateway is a fully integrated Ka antenna and motion platform, assembled into a weather resistant

enclosure ( radome ).

  • Gateways are custom steerable parabolic dishes that provide the high bandwidth data backhaul to our satellites.

Unlike the user terminals, the gateways are not placed at customers houses they are located behind fences at

telecom sites

  • The gateway is powered using 240VAC, 3 phase power and communicates to an external network switch through a fiber optic cable. An umbilical Ethernet connection is available for testing purposes, but will not be used in the field.

Inside the radome are heaters and a blower to control internal temperature (and humidity to some extent). Below is a simplified assembly level block diagram


System Specifications



RF Overview



  • The radiation pattern of the gateway is designed to be compliant with the

following specifications:

FCC 25.209

ITU S.580

  • The spectral mask of the gateway is designed to be compliant with the

following specifications:

ITU SM.1541

ITU SM.329

FCC 25.202

Mechanical Overview




Gateway V3 Block Diagram




Gateway V3 Wiring Diagram







Gateway Grounding Diagram




Photographs




Partial 1x9 Site Example




Partial 3x3 Site Example



Revision History

  • 07/08/2020: Added RF overview slides.
Подробнее..

Перевод Космос, японские ученые и мыши решаем вопросы с искусственной гравитацией и космическими путешествиями

13.06.2021 18:05:09 | Автор: admin

С первых дней полета человека в космос стало ясно, что продолжительные путешествия в условиях отсутствия земной гравитации могут иметь весьма пагубные последствия для организма космонавта. Пребывание в условиях невесомости приводит к значительному уменьшению мышечной массы.

Изменения наступают очень быстро: из-за отсутствия силы тяжести, которой обычно противодействуют мышцы, они ослабевают всего за неделю. Особенно это актуально для мышц ног, спины и шеи. Во время космического полета ничего страшного не происходит, но вот после возвращения на Землю повышается риск получения травм. Что же делать?

К счастью, проблему легко решить при помощи выполнения разных физических упражнений на борту станции. Именно поэтому на космических станциях, начиная с Салюта-1, всегда есть тренажеры, поддерживающие мышечный тонус членов команды. Но даже при условии выполнения физических упражнений космонавты все равно возвращаются на Землю ослабленными.


Один из ранних концептов НАСА по созданию искусственной гравитации

На выполнение упражнений тратится драгоценное время, ведь каждый час, проведенный в космосе, это час, который стоит тратить на проведение научных исследований или обслуживание самой станции. Физкультура космонавтов на орбите становится в буквальном смысле золотой. Это, если так можно выразиться, самый дорогой тренажерный зал в мире.

Самый простой вариант для решения проблемы с мышцами космонавтов и физическими упражнениями создание искусственной гравитации на станции за счет центростремительной силы. В итоге все, что находится внутри как бы прилипнет к внутренней части корпуса. Другими словами, все объекты на станции и люди снова вернут свой вес полностью или частично. Но здесь возникает еще одна проблема для того, чтобы гравитация на корабле стала равной земной, сам корабль или станция должны быть очень большими, либо вращаться с очень большой скоростью.

На днях японские ученые из Университета Цукуба опубликовали статью, которая дает надежду на появление реальных систем искусственной гравитации на борту космических станций с экипажем. Специалисты из Японии провели серию экспериментов с мышами, результаты которых способствуют появлению того, что недавно было лишь уделом научной фантастики.

Несовершенный эксперимент


Вероятно самым интересном моментом этой работы является то, что ученые изначально не собирались изучать искусственную гравитацию. Они поставили задачу узнать больше о мышечной атрофии у млекопитающих на молекулярном уровне, поскольку это важно для длительных космических перелетов.

Обычно такие исследования заключались в отправке мышей на неделю или две, после чего их ткани сравнивались с контрольной группой грызунов, оставшихся на Земле. Но японцы решили, что такой эксперимент в корне ошибочен.

Почему? Когда есть контрольная и подопытная группа животных, условия их жизни должны быть аналогичными, за исключением фактора, который изучается. То есть мыши, отправившиеся на МКС и оставшиеся на Земле, должны были проводить время, получать питание, спать и т.п. одинаково. Исключение наличие или отсутствие гравитации, фактор, влияние которого изучается. Но создать такие равные условия для космических мышей невозможно, на орбите условия жизни в корне отличаются от земных.

Все начинается уже с полета в космос мыши, которые остаются на Земле, не испытывают перегрузок, на них не оказывают влияние и другие факторы, сопровождающие космических мышей. В космосе мыши будут жить в микромире с жизнеобеспечением со стороны соответствующих систем станции. При этом на них влияет космическое излучение станцию невозможно полностью изолировать. В конце своего срока пребывания на станции мышей снова отправляют на Землю, и в ходе этого путешествия грызуны подвергаются влиянию специфических факторов. А вот контрольная группа мышей все это время просидела в клетке где-то в лаборатории.

Наверное, какие-то из этих условий можно смоделировать и для контрольной группы, но в любом случае это будет недостаточно чистый эксперимент.

Что же делать?


Ответ все уже сделано. Японцы разработали установку, которая называется Multiple Artificial-gravity Research System (MARS). Это небольшая центрифуга с капсулами по краю, в которых живут мыши. Эта центрифуга вращается достаточно быстро, чтобы в условиях невесомости создать искусственную гравитацию, равную земной. При этом по краям находится лишь половина мышей. Вторая часть мышиной команды живет в нижней части устройства, где нет гравитации. Таким образом исследователи могут быть уверены в том, что все мыши в установке находятся в одинаковых условиях, за исключением такого фактора, как сила тяжести.


Контрольная и экспериментальная группа питаются одной и той же едой, пьют одну и ту же воду и дышат одним и тем же воздухом.

Эксперимент, как оказалось, проводился еще в 2016 году, а результаты его опубликованы лишь сейчас. В очередной раз удалось подтвердить, что потеря мышечной массы в условиях микрогравитации сильнее, чем в условиях земной силы тяжести. Здесь нет сюрпризов. Но попутно выяснилось, что экспрессия мышечного гена различается у животных контрольной и экспериментальной групп. И это убедительное свидетельство того, что это изменение вызвано отсутствием гравитации, а не космическим излучением, как считалось ранее.

Кроме того, подтвердилась и возможность моделирования силы тяжести путем вращения системы с животными внутри. Результаты эксперимента соответствуют предположениям ученых. В дальнейшем потребуются новые исследования, но уже сейчас доказано, что вращение космического корабля/станции на протяжении всего космического путешествия предотвращает потерю мышечной массы, и продолжительные физические упражнения в этом случае не требуются.

Что дальше?


Ученые планируют провести несколько экспериментов по моделированию силы тяжести Луны или Марса это позволит выяснить, что происходит с организмами животных в таких условиях. Ну а после изучения результатов этих экспериментов можно будет и понять, что случится с человеком, живущим на Луне или Марсе.

А это уже критически важная информация, которая нужна для продолжения освоения космоса человеком создания форпоста человечества на Луне, Марсе и, возможно, где-то еще. Пока все, что мы знаем о влиянии лунной гравитации результаты, полученные астронавтами, побывавшими на Луне. Что происходит на протяжении месяцев или даже лет, проведенных в таких условиях, мы не знаем.

Еще хотелось бы знать, как влияет частичная гравитация на процесс атрофии мышц. Возможно, орбитальную станцию и не нужно раскручивать до скорости, позволяющей получить 1G. Может быть, хватит и 0,5 или даже 0,3 G. Пока мы можем лишь предполагать. Японские ученые, вероятно, вскоре смогут дать четкий ответ на все эти вопросы.

Подробнее..

Странник VIPER как сконструирован планетоход и что он будет делать на Луне

21.06.2021 14:12:41 | Автор: admin
Обложка к комиксу Weird science. 50-годы

NASA разрабатывает планетоход VIPER (Volatiles Investigating Polar Exploration Rover), который будет искать и составлять карту залежей воды на Луне. VIPER планируют доставить на поверхность Луны уже к концу 2023 года. Исследовательский центр Эймса отвечает за управление работой планетохода, разработку его программного обеспечения и систем контроля. Оборудованием занимается космический центр Джонсона, научными инструментами исследовательский центр Эймса и космический центр Кеннеди. Компания Astrobotic из Питтсбурга выиграла контракт на запуск, транспортировку и доставку планетохода на поверхность Луны. По данным NASA, общие затраты на разработку миссии составляют $433,5 млн долларов.

Ключевые факты



  • Способ доставки на Луну: ракета-носитель и посадочный модуль;
  • Продолжительность полета: 100 земных дней.
  • Высадка планетохода должна осуществиться на Луне в начале летнего сезона на Южном полюсе, в самые продолжительные периоды солнечного света, чтобы было легче поддерживать работу ровера.

Задачи планетохода VIPER


В ближайшие годы в NASA намерены вновь отправлять людей на Луну (программа Артемида). Целью миссии планетохода является сбор данных, которые помогут составить дальнейшие планы по постройке баз на Луне. В лунных полярных регионах большое количество водяного льда. Его наличие связано с осевым наклоном Луны, который обеспечивает постоянное затенение полярных областей, а отсутствие прямых солнечных лучей не позволяет льду сублимироваться в кислород и газообразный водород. Лед будет необходим для жизни человека на Луне. Он будет использоваться для всего питья, орошения, производства газообразного кислорода и водородного топлива.

Оказавшись на Луне, VIPER будет собирать пробы различных почвенных сред для создания глобальных карт водных ресурсов Луны, которые пригодятся при постройке баз. Планетоход поможет ответить на вопросы о том, где находится вода, насколько глубоко и в каком количестве.

Что мы знаем о конструкции планетохода VIPER



Ровер оснащен:

  • системой спектрометров NIRVSS, NSS (будет использоваться для выявления воды под поверхностью);
  • инструментами для наблюдения за лунными операциями с масс-спектрометром MSolo;
  • буровой установкой TRIDENT (длина бура 1 м) для изучения новой местности, получения и последующего анализа образцов почвы;
  • аккумулятором на солнечной батарее (максимальная мощность 450 Вт);
  • четырьмя колесами.

Параметры VIPER:

  • Размер 1,5 м х 1,5 м х 2,5 м,
  • Вес 430 кг;
  • Максимальная скорость 0,8 км/ч;
  • Шаг от 4 до 8 метров (в зависимости от указаний диспетчеров миссии на Земле).

Поскольку на данный момент неизвестно, какой будет почва в полярных регионах Луны твердой или рыхлой, планетоход отличается беспрецедентной маневренностью и проходимостью. VIPER может двигаться вбок и по диагонали, вращаться по кругу двигаться в любом направлении. Если он встретит на своем пути мягкую почву, он даже сможет ходить колесами, независимо перемещая каждое колесо, чтобы освободиться от грунта.

Сильные колебания света и темноты на полюсах Луны создают очень длинные и быстро движущиеся тени. VIPER, работающий на солнечной энергии, должен отступать от надвигающихся теней, поскольку он ищет подходящую территорию для забора материалы, поддерживая связь с Землей. Периоды темноты будут долгими, около одной земной недели, поэтому планетоход будет парковаться на возвышенностях, чтобы сократить простой до 4 дней. Данные факторы усложняют планирование и построение маршрута планетохода.

Также VIPER первый планетоход NASA с фарами, так как он будет исследовать темные кратеры, куда не проникает солнечный свет. Исследования, проведенные в прошлом году, показали, что вода находится по всей Луне, включая участки, подверженные прямому солнечному свету, и в специальных карманах на поверхности, называемых холодными ловушками, которые постоянно находятся в темноте. Многие из этих холодных ловушек находятся в ударных кратерах, что делает их интересными объектами для исследования.

Предшественники планетохода VIPER


В настоящее время планетоходы запускаются на Луну и Марс. Некоторые планетоходы были сконструированы для перемещения членов экипажа космической экспедиции, другие были исследовательскими аппаратами дистанционно управляемыми роботами. Планетоход должен обладать стойкостью к перегрузкам, низким и высоким температурам, давлению, пылевому загрязнению, химической коррозии, космическому излучению. Также ему важно сохранять работоспособность без ремонта в течение необходимого для исследований времени.

Давайте вспомним планетоходы, которые уже побывали на других планетах.

Луноходы:

  1. Луноход-1 (1970, СССР) первый в мире планетоход, успешно работавший на поверхности Луны;
  2. Лунные автомобили программы Аполлон (1971-1972 гг., США) использовались для обеспечения большей подвижности экипажей Аполлон -15, 16, 17;
  3. Луноход-2 (1973, СССР) предназначен для изучения механических свойств лунной поверхности, фото- и телесъемки Луны, проведения экспериментов;
  4. Yutu (2013, КНР) первый китайский луноход. После 40 дней работы потерял подвижность и продолжил работу в стационарном режиме;
  5. Yutu-2 (2019, КНР) первый в мире луноход, изучавший обратную сторону Луны;
  6. Прагъям (2019, Индия) разбился о поверхность Луны в результате неудачной посадки.

Марсоходы:

  1. ПрОП-М (1971, СССР) название двух первых в мире марсоходов, которые достигли поверхности Марса, но так и не начали работу;
  2. Sojourner (1997, США) первый работающий марсоход, передал 550 фотографий и более 15 раз провел химический анализ марсианских камней и грунта;
  3. Spirit (2004, США) первый из двух запущенных марсоходов, в рамках проекта Mars Exploration Rover. Осуществлял анализ геологических пород. В 2009 году марсоход застрял в песчаной дюне.
  4. Opportunity (2004, США) второй марсоход проекта Mars Exploration Rover. В конце апреля 2010 года продолжительность миссии достигла 2246 солов ( марсианские сутки 24 часа 39 минут 35,24409 секунды), что сделало ее самой длительной марсианской операцией. В 2019 году миссия была официально завершена.
  5. Curiosity (2012, США) автономная химическая лаборатория, работает в настоящее время, проводит полноценный анализ марсианских почв и компонентов атмосферы;
  6. Perseverance (2021, США) разработан для исследования кратера Езеро. Марсоход впервые переработал углекислый газ из атмосферы Марса в кислород;
  7. Zhurong (2021, КНР) первый китайский марсоход, приземлившийся на планете. В его задачи входит картирование структуры планеты, изучение характеристик поверхностного слоя и распределения водяного льда в нем, анализ состава материалов поверхности, измерение параметров ионосферы планеты, электромагнитного и гравитационного полей и получение информации о климате.

Подробнее..

Космический мусор. Что нас защищает от падения обломков космических аппаратов?

28.05.2021 00:20:41 | Автор: admin
image

8 мая 2021 года на Землю упал один из крупнейших в истории неконтролируемых космических объектов часть модуля китайской ракеты с прочнейшими топливными баками, укреплёнными для использования криогенного топлива. К счастью, несгоревшие в атмосфере фрагменты ракеты приземлились в Индийском океане вдали от людей. Никто не знал, где и когда обломки аппарата обрушатся на Землю, потому их падение в безлюдном месте стало настоящим облегчением. Впрочем, космический мусор не всегда приземляется столь удачно: какие же законы защищают нас от обломков космических аппаратов?

image
Китайская ракета Long March 5b

Космический мусор это любые нефункциональные искусственные объекты и их фрагменты в космосе. Теоретическое обсуждение проблемы засорения околоземного пространства началось ещё на заре космической революции с запуском первых спутников. С тех пор эта проблема стала вполне реальной. Более того, оказалось, что подобный мусор представляет угрозу не только для функционирующих космических аппаратов, но и для населения Земли. Как правило, с темой опасности космического мусора связаны несколько вопросов. В первую очередь людей интересует, возможно ли предотвратить падение обломков на Землю. Не менее важной темой является алгоритм действий при реальной угрозе крушения и нанесения ущерба людям / материальным ценностям. Кроме того, принимая во внимание закономерный прирост количества частных компаний в космической отрасли, особенно актуальными являются вопросы о законах, которые регулировали бы их деятельность.

image

По словам профессора космического права Тимиеби Аганабы, для эффективности данной юрисдикции первостепенную роль играют предписания, которые должны предотвратить инциденты, связанные с космическим мусором. Кроме того, необходимы действенные методы контроля выполнения упомянутых предписаний. И наконец, несмотря на относительную редкость подобных инцидентов, необходимы законы, которые устанавливают систему ответственностей и обязательств на тот случай, если космический мусор всё же причинит ущерб другим аппаратам на орбите или людям и их имуществу на Земле.

image

Представьте, что недавний инцидент с китайской ракетой пошёл по менее благоприятному сценарию, и её обломки упали на частный дом, пока его владельцы были на работе. Согласно Договору о космосе 1967 года и Конвенции о международной ответственности за ущерб, причинённый космическими объектами от 1972 года, подобные вопросы решаются на межправительственном уровне. Оба документа гласят, что государства, вовлечённые в космическую отрасль, берут на себя полную международную ответственность за ущерб, причинённый их космическими аппаратами. Обязательства распространяются и на происшествия, спровоцированные деятельностью частных организаций. По закону, государству, на территории которого произошло падение космического аппарата или его обломков, не нужно искать виновных достаточно запросить у ответственной страны компенсацию через дипломатические каналы и передать её пострадавшим.

image

Хотя вероятность того, что поломанный спутник внезапно упадёт на чей-либо дом, стремится к нулю, падение космических обломков на сушу всё же случается. К примеру, в 1978 году советский спутник Космос-954 рухнул на безлюдные земли Северо-Западных территорий в Канаде. Во время крушения на территории площадью свыше 100000 км2 рассыпались радиоактивные обломки ядерной энергетической установки БЭС-5. Объединённая команда канадских и американских специалистов тут же начала операцию по поиску радиоактивных остатков спутника, затраты на которую составили 14 миллионов C$ (канадских долларов). Правительство Канады запросило у СССР компенсацию в сумме 6 миллионов C$, однако, по договору об окончательном урегулировании, итоговая сумма компенсации составила 3 миллиона C$.

image
Траектория падения советского спутника Космос-954
image
Обломки спутника Салют-7, упавшего в Аргентине в 1991 году. Правительства заинтересованных стран были заранее проинформированы о том, что на орбитальной станции отсутствуют токсичные, химические и радиоактивные вещества

Данный случай пока что остаётся единственным примером практического применения Конвенции 1972 года. Как итог, законодательство было дополнено несколькими уточнениями. В первую очередь при вероятности падения обломков космического аппарата на территории другого государства, страна, которой он принадлежит, обязана как можно раньше выпустить официальное предупреждение и сообщить всю доступную информацию о предстоящем крушении. Кроме того, на плечи государства ложится вся ответственность по ликвидации последствий падения обломков космического аппарата, а также компенсация ущерба материальным ценностям и здоровью людей.

image

Впрочем, если космический мусор повредил частный орбитальный спутник, государству со стороны пострадавшего придётся доказать, что в столкновении не было его вины. Увы, в настоящее время в подобных случаях установить виновника практически невозможно ввиду отсутствия глобальной системы координирования космического трафика. Более того, среди десятков тысяч идентифицированных фрагментов космического мусора на околоземной орбите присутствуют мириады мелких неотслеживаемых обломков, которые всё равно могут повредить функционирующие аппараты.

Шансы погибнуть под свалившимся с небес орбитальным спутником сводятся к нулю, но существующие законы представляют довольно стройный алгоритм действий для разрешения подобного происшествия. Однако их недостатком является то, что, как и на заре космической эры, большинство регуляций направлены на единичные, маловероятные случаи, а общая картина потенциальных проблем загрязнения околоземного пространства и его последствий остаётся без должного внимания.

image

Космический мусор представляет угрозу не только для существующих орбитальных аппаратов и жителей планеты, но и для планов дальнейшего освоения космоса. В связи с этим эксперты считают, что международное космическое право нуждается в пересмотре законодательной базы. Конечно же, можно инициировать глобальные миссии по сбору или уничтожению космического мусора, однако подобные меры едва ли справятся с нарастающими темпами космической отрасли. По этой причине необходимо обновить законы, которые определяют правовые последствия создания космического мусора и предписывают действенные наказания за нарушение актуальных мер по борьбе с техногенным загрязнением околоземного космического пространства. Первые шаги в этом направлении были сделаны Генеральной Ассамблеей ООН в 2007 году, когда её члены одобрили руководящие принципы предупреждения образования космического мусора. Впрочем, спустя более чем 10 лет эти принципы до сих пор не реализованы на глобальном уровне, а их несоблюдение всё ещё не является юридически наказуемым.

Источник
Подробнее..

Перевод Генри Форд в космосе как стартап Phantom Space разрабатывает новую модель запусков

04.06.2021 12:23:32 | Автор: admin

Аэрокосмическая компания из Аризоны планирует производить достаточно ракет для запуска 100 миссий в год.

Представляем вашему вниманию перевод статьи Нила Пателя, которая вышла в MIT Technology Review 26 мая 2021 года. В центре внимания космическая аризонская мечта. Бывший соратник Илона Маска предлагает пересмотреть существующие экономические модели запусков и обещает новый виток конкуренции на орбите.

Колорадская компания Ursa Major тестирует двигатель модели Hadley, который будет установлен на ракете Phantom Daytona. Фото: Ursa MajorКолорадская компания Ursa Major тестирует двигатель модели Hadley, который будет установлен на ракете Phantom Daytona. Фото: Ursa Major

Джим Кантрелл называет себя интеллектуальным отцом бизнеса малых запусков. С ним трудно не согласиться. Когда Илон Маск основал SpaceX в 2002 году, Кантрелл стал первым вице-президентом компании по развитию бизнеса. Его опыт имел решающее значение при разработке Falcon 1, первой ракеты SpaceX.

Позднее Кантрелл основал компанию Strategic Space Development (известную как StratSpace), которая занималась миссией NASA OSIRIS-REx к астероиду Бенну и демонстрацией технологии солнечного паруса в космосе для американского Планетарного общества. Он был соучредителем и техническим директором Moon Express. Эта компания собирается в один прекрасный день добывать ресурсы на Луне.

Кантрелл хорошо разбирается в опасностях отрасли, где неудачи бывают буквально взрывными. Moon Express вышла в финал Lunar X Prize, конкурса Google на посадку марсохода на Луну. Позднее конкурс отменили, а компания все еще не успела полететь в космос, не говоря уже о Луне.

Ракета скоро отправляется, осталось три места

Сейчас внимание Кантрелла сосредоточено на Phantom Space. За последние годы произошел взрыв популярности малых и сравнительно дешевых конструкций спутников. Множество новых пусковых стартапов стремятся воспользоваться преимуществами ситуации и строить ракеты, способные удовлетворить растущий спрос на запуск новой полезной нагрузки на орбиту. Phantom Space один из этих стартапов. Как это обычно бывает с Кантреллом, компания пытается добиться успеха, гребя против течения.

Одна из самых горячих тенденций в ракетостроении массовые совместные запуски. Клиенты покупают свободные места для своих космических аппаратов на ракетах среднего или большого размера с заданной датой вылета. Как правило, для заказчиков так дешевле доставлять грузы в космос, чем заказывать одиночный запуск. Запуск в космос 200-килограммовой нагрузки по райдшеринговой программе SpaceX обходится в 1 миллион долларов (всего ракета Falcon 9 может вывести 22 800 кг на низкую околоземную орбиту). 21 января компания осуществила особую миссию по совместному запуску и вывела на орбиту рекордные 143 спутника. В июне SpaceX выполняет аналогичный пуск. Космическая компания Rocket Lab долгое время сопротивлялась идее создания более крупных ракет, а в марте совершила неожиданный разворот и представила ракету Neutron, предназначенную для выполнения совместных запусков и конкуренции с Falcon 9.

Но райдшеринг Phantom не прельщает. Компания собирается занять свое место в космосе за счет массового производства небольших ракет, чтобы совершать сотни запусков в год. Мы хотим быть Генри Фордом в космосе, говорит Кантрелл. И придерживаемся противоположного взгляда на то, как будем развиваться. Подобно тому, как Генри Форд не заново изобретал машину, а способ ее создания, Phantom стремится переделывать не ракеты, а только их производство.

Каким образом? Когда SpaceX начала работать, цепочки поставок для аэрокосмических компаний, производящих орбитальные запуски, были вплетены в финансовую систему Министерства обороны США. Чтобы оставаться независимой, SpaceX решила производить все сама, полагаясь на состояние Маска и тонну инвестиций. Компания удерживалась на плаву, долгие годы работая в убыток. В результате долгосрочная игра окупилась.

Экономный подход к ракетостроению

Основатели Phantom решили, что им не нужно следовать примеру Маска. За последние пять лет цепочки поставок в аэрокосмической отрасли стали более гибкими и конкурентоспособными. Это значит, что Phantom может просто закупать нужные детали, а не строить все с нуля. Стартап покупает двигатели, напечатанные на 3D-принтере, у компании Ursa Major из Колорадо. Конструкция бортового компьютера лицензирована у НАСА, и в нем стоит плата BeagleBone Black. Некоторые дистрибьюторы продают ее за 50 долларов. Другие компоненты, такие как батареи и телеметрические системы, находятся через цепочку поставок противоракетной обороны.

Аналогия с Генри Фордом не ради красного словца, а модель для подражания. Соучредитель стартапа Майкл ДАнджело говорит, что автомобильный и ракетный бизнес следуют схожей кривой роста: удвоение производства приводит к экономии за счет масштаба, а также к большей эффективности и меньшему количеству производственных ошибок. Более того, компьютеры и мобильные устройства пошли по тому же пути. И он утверждает, что в настоящее время цепочки аэрокосмических поставок достаточно зрелы, чтобы обеспечить быстрое производство, которое хочет запустить Phantom.

Сейчас компания разрабатывает два типа ракет. Есть 18,7-метровая Daytona, которая должна выводить в космос около 450 килограммов аппаратуры. Ее можно считать крупной ракетой малого класса. По словам Кантрелла, анализ компании счел этот размер оптимальным для прибыльной деятельности. Затем идет 20,5-метровая Laguna, способная запускать полезную нагрузку до 1200 кг. Phantom разрабатывает версию Laguna с многоразовым ускорителем первой ступени, как у SpaceX Falcon 9. Процесс вертикальной посадки будет аналогичным.

Художественная визуализация ракеты Daytona. Изображение: Phantom SpaceХудожественная визуализация ракеты Daytona. Изображение: Phantom Space

Phantom Space надеется заполнить пустующую нишу на рынке. Хотя массовые совместные запуски относительно дешевы, но клиенты в меньшей степени контролируют ход миссии. Такая миссия, словно поезд, идет по фиксированному маршруту. Если вы хотите, чтобы ваш спутник двигался по другой орбите или по другой траектории, придется установить дорогостоящие маневровые двигатели, которые направят его туда. В противном случае вам придется изменить функцию аппарата и смириться с менее благоприятной орбитой, либо просто купить билет на другую миссию. И остается надеяться, что ваш спутник будет точно прилегать ко всем остальным грузам, с которыми его запускают эти рейсы всегда полностью забронированы.

Запуск небольшой ракеты может обойтись дороже, но возвращает контроль клиенту. Когда у вашей миссии конкретные требования например, заменить определенный спутник в группировке, запустить чувствительное оборудование или дорогостоящую техническую демонстрацию вам, вероятно, понадобится отдельный полет, а не совместный. Определенно есть интерес и спрос на эти запуски малых ракет, говорит Райан Мартино, инженер космических систем из Лаборатории космической динамики в Юте.

Кантрелл считает, что его стартап удовлетворит спрос без ущерба для бюджета. По его оценкам, со своим особым подходом компания может фактически предлагать запуск за треть цены модели массовых запусков.

Ближайшие планы Phantom Space: сосуществование со SpaceX

Но сначала компания должна, собственно, выйти в космос. Планируется, что Daytona совершит свой первый космический полет в 2023 году. По словам Кантрелла, обычно надежность первых четырех запусков новой ракеты составляет 50%. То есть в Phantom предполагают, что по крайней мере одна из его первых четырех миссий выйдет на орбиту. Недавно стартап арендовал у ВВС США стартовую площадку на базе Ванденберг в Калифорнии, а теперь ищет разрешение на запуск с мыса Канаверал во Флориде. Это важные шаги, Phantom действительно собирается совершать 100 запусков в год.

Phantom также хочет создавать спутники и стать универсальным центром обслуживания клиентов. Ключевой стороной бизнеса станет компания Кантрелла StratSpace, которую стартап приобрел на этой неделе. Компания работает над прототипами спутниковых группировок для клиентов и участвует в коммерчески финансируемой научной миссией стоимостью составляет 1,2 миллиарда долларов. Конкретные детали не будут разглашать нескольких месяцев. Вдобавок команда разрабатывает коммуникационную систему, которую называет Phantom Cloud. По сути, это ячеистая сеть, которую другие спутники могут использовать для связи друг с другом или с аппаратурой на поверхности планеты. Кантрелл называет это спутниковым интернетом в космосе.

На самом деле, Phantom совсем не обязательно побеждать SpaceX и крупных производителей ракет достаточно выстоять. По мере развития рынка малых пусков, я думаю, больше клиентов воспользуется этой возможностью, говорит Мартино. Маловероятно, что один метод станет доминирующим и вытеснит другой.

Сосуществование нормально, говорит Кантрелл: Мы признаем, что SpaceX великолепно разработала большую многоразовую космическую транспортную систему. Мы считаем, что это всего лишь одна из двух, или множества, фундаментально разных экономических систем в экосистеме космических перевозок. Он надеется, что Phantom станет первопроходцем в свой области.

Перевод: Александра Галяутдинова

Как вы считаете, ракета Phantom Space взлетит? Мы в Madrobots придерживаемся мнения, что еще один игрок на орбите это всегда плюс для развития аэрокосмической отрасли.

***

Для читателей Хабра в магазине гаджетов Madrobots действует скидка 5% на все продукты. И не надо ждать до 2023 года. Просто введите промокод: HABR

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru