Русский
Русский
English
Статистика
Реклама

Химия

Перевод 10 бесплатных и полезных курсов в сети, от Фейнмана до на

14.04.2021 16:05:26 | Автор: admin

Я предпочитаю курсы, а не книги. Хотя лучшие книги определённо превосходят курсы, есть несколько причин, по которым прекрасный курс оставит более глубокое впечатление. Начинающим на курсах склонны преподавать основы, тогда как большинство авторов книг пытаются быть оригинальными. Но многое из того, что стоит знать, насамом деле довольно старое. В этом посте поделимся с вами лучшими бесплатными курсами Гарварда, Стэнфорда, Массачусетского технологического института и других.


Курсы склонны быть сбалансированными. Преподающий курс профессор постарается объяснить большинство основных точек зрения на предмет. Кроме того, написанная профессором популярная книга может оказаться полностью односторонней, поскольку [в книге] профессор пытается привести самые убедительные доводы в пользу собственной точки зрения.

Ко всему прочему, я просто люблю смотреть курсы. Читать это хорошо, но также хорошо смотреть и слушать. Если вы читаете, слушаете и смотрите, то, вероятно, научитесь большему, чем когда останавливаетесь только на тексте.

Вот моя подборка лучших бесплатных курсов на видео.

1. Справедливость Митчел Сэндел, Гарвард

Честно говоря, этот курс стоит посмотреть только для того, чтобы увидеть одного из лучших учителей всех времён. Сэндел преподаёт моральную философию, эта тема слывёт не самой захватывающей. Тем не менее лекции увлекательны: студенты обсуждают понятия философии, проиллюстрированные реальными примерами.

Больше всего меня впечатляет способность Сэндела преподавать скрытые, доступные лишь посвящённым моменты через диалог с учениками в манере Сократа: философские принципы иллюстрируются реакциями студентов.

Есть причина, почему эти занятия одни из самых популярных среди первокурсников Гарварда. И теперь вам не нужно посещать Гарвард, чтобы послушать этот курс.

2. Физика Уолтер Левин, MIT

Лекции по физике от Уолтера Левина (и классической, и физики электромагнетизма) я смотрел во время MIT Challenge. Эти занятия одни из самых лучших, на которых я когда-либо присутствовал через интернет. В захватывающих экспериментах Левину удаётся объяснить глубокие концепции устройства мира. А ещё он прекрасно рисует пунктирные линии.

К сожалению, на открытой платформе MIT был небольшой скандал, из-за которого связанные с Левином материалы были удалены, и теперь эти лекции в онлайне найти сложнее; но из сети ничего не удалить, и я думаю, если вы хотите изучать физику, неплохо посмотреть эти лекции.

3. Как научиться учиться? Терренс Сейновский и Барбара Окли, Калифорнийский Университет в Сан-Диего

Это самый популярный курс на Coursera, который, кроме того, преподаёт мой друг Барбара Окли. Он увлекателен и прост в понимании: чтобы проиллюстрировать принципы эффективного обучения, применяются нейронауки и психология.

Должен признаться: когда этот курс вышел, я немного нервничал: мой доход во многом зависит от моего собственного платного курса.С тех пор я понял, что сам подход к обучению это довольно широкий предмет; всегда будет чему научить и чему научиться. Несмотря на это, я рекомендую этот курс!

4. Машинное обучение Эндрю н, Стэнфорд

С этого курса начался взрыв популярности массовых открытых онлайн-курсов вообще, когда н оставил преподавание в Стэнфорде, чтобы запустить Coursera.

Он прошёл несколько итераций: сначала это были записанные в классе Стэнфорда лекции, позже упрощённый массовый курс в онлайне, а сегодня это полноценная платформа для изучения машинного обучения.

Я предпочитаю YouTube, поэтому смотрел видео реальных занятий в Стэнфорде. С версией на Coursera неясно, бесплатная она или нужно немного заплатить. Тем не менее вы можете предпочесть версию массовый курс в сети, потому что он новее.

5. Квантовая механика Ричард Фейнман

Ричард Фейнман мой интеллектуальный герой на все времена. Он проделал блестящую работу по объяснению квантовой механики, не прибегая к математике. Я решил бы, что это невозможно, но каким-то образом Фейнману удаётся и в переносном смысле босиком, не меньше!

Хотя занятия Аллана Адамса из MIT по квантовой физике мне понравились, в них предъявлены непомерно высокие требования к знаниям в математике. Количество людей с достаточным уровнем знаний и в математике, и в физике, но почему-то не изучавших квантовую механику на бакалавриате, справедливо невелико, так что я не беру их во внимание. Однако первая лекция свободна от математики и сделана прекрасно, поэтому я рекомендую её, даже если вы не знаете математику.

6. Медицинская нейронаука Леонард Уайт, Университет Дьюка

Этот курс по нейробиологии лучший из всех, что я видел. Уайт подробно описывает, как работает мозг. Он даже показывает на камеру реальные ткани человеческого мозга, сопровождая лекцию большим количеством диаграмм и слайдов.

Курс тяжёлый, особенно если вы хотите сдать экзамены. Я даже сделал для него флеш-карты [для запоминания], пока изучал анатомию. Но если вы просто хотите прослушать занятия, думаю, вы многое узнаете о том, как работает мозг.

7. Органическая химия Майкл МакБрайд, Йель

Этот курс я посмотрел недавно: глядя на мои усилия в изучении биологии, его предложил один из моих читателей.

Я нашёл его очень увлекательным, особенно его первый семестр. Хотя курсы по органической химии часто пугают сложностью и необходимостью запоминать, МакБрайду удаётся передать фундаментальные идеи сквозь призму научных открытий.

Значительная часть времени уходит на то, чтобы показать, как люди, начиная с Лавуазье и заканчивая Вёлером и Кекуле, открывали определённые идеи. В науке мне нравятся занятия, на которых показывается, как нам удалось выяснить что-то, а не поощряется принять открытие как истину только потому, что учитель вам так сказал.

8. Иммунология Альма Новотны, Университет Райса

Это серия курсов по иммунной системе, которая состоит из четырёх частей, я, кстати, начал проходить этот курс незадолго до начала пандемии.

Иммунная система намного интереснее, чем я думал до того, как пройти этот курс. Например, вот вопросы: как ваш организм строит клетки, которые распознают и удаляют совершенно новые болезнетворные микроорганизмы, не повреждая при этом ни одну из ваших тканей? Как защититься от захватывающих клетки вашего организма вирусов или от бактерий, которые быстро реплицируются и развиваются вокруг вашей защиты? Почему мы страдаем от аутоиммунных заболеваний и аллергии?

Предмет закладывает основы знаний по этим темам. Приятные иллюстрации разных иммунных клеток ещё один плюс: любители визуальной передачи идей оценят их по достоинству.

9. Ускоренный курс всемирной истории Джон Грин

Красиво анимированный, с крепким сценарием, этот курс разработан специально для аудитории YouTube. Когда он вышел, я, наблюдая за обзором множества разных исторических событий, получил истинное наслаждение. Сейчас этот курс состоит из множества укоренных курсов на различные темы, так что если вы предпочитаете стиль, а не доску, мел или PowerPoint, то это отличный ресурс.

10. Микроэкономика Тайлер Коуэн и Алекс Таббарок, Университет Маржинальной Революции

Экономика это, наверное, тема, с которой я работаю каждый день. Если вы увлечены изучением моделей мышления, с помощью которых можно смотреть на реальность, то экономика хорошее начало.

Коуэн и Таббарок ведут популярный экономический блог Marginal revolution и преподают в Университете Джорджа Мейсона. Их набег на образование в онлайне позволил создать поистине звёздные видеокурсы; достаточно хороши курсы микро- и макроэкономики: авторам удаётся передать сложные идеи, не абстрагируясь сверх меры.

Напоследок

Написав этот список, я осознал, сколько прослушанных мной хороших курсов не вошло в него.

Вот краткий дополнительный список
  • Нелинейная динамика и хаос Стивена Строгаца о математике, которая стоит за эффектом бабочки, о том, почему реальность может быть непредсказуемой по своей природе.

  • Системная биология Ури Алона чарующая машинерия человеческих клеток, от регуляции генов до причин сахарного диабета II типа.

  • Парадигмы программирования Джерри Кейна один из моих первых онлайн-курсов, отчасти он стал стимулом, чтобы пройти MIT Challenge.

  • Введение в биологию Эрика Лэндера отличные лекции по биологии, особенно те, которые преподаёт Лэндер. Единственное, что раздражает, курс сшит из нескольких сегментов, а не законченных лекций. Тем не менее разделы по генетике сделаны действительно хорошо.

  • Теория и аналитика покера от Кевина Десмонда весело о математике, стоящей за покерными ставками. Я проходил его, когда работал над проектом программированием покера.

  • Бытие и время от Хьюберта Дрейфуса Дрейфус предлагает множество аудиокурсов по континентальной философии, а его Хайдеггер лучший.

Распространённая проблема со всеми свободно доступными курсами, даже суперкрутыми у них нет никаких факторов, которые не позволяют нам просто прекратить обучение. Особенно остро данная проблема проявляется в тёплое время года, когда погода на улице располагает к прогулке, а не к сидению дома за лекциями. У нас, например, на курсе по Data Science, с этой проблемой работают координаторы, которые поддерживают студентов, помогая пройти курс до финала и выполнить свою цель по освоению нового и смене сферы деятельности. Приходите, поможем и вам.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Другие профессии и курсы
Подробнее..

Что варится в пекулярных звездах

05.06.2021 20:22:47 | Автор: admin

Однажды сэр Артур Эддингтон, считающийся основателем теоретической астрофизики, заявил, что ничего нет более простого, чем звезда. Действительно, при всей грандиозности большинство звезд это почти однородные и очень стабильные объекты. Звезда главной последовательности в течение миллионов, миллиардов или, возможно, даже триллионов лет перерабатывает запасы водорода, постепенно сдвигаясь в красную часть спектра, а в конце пути, как правило, превращаясь в белый карлик. При этом о триллионах лет сейчас можно говорить лишь гипотетически, но красные и оранжевые карлики действительно могут просуществовать так долго, тогда как голубые сверхгиганты выгорают за миллионы лет. Например, возраст Спики (альфа Девы) составляет около 12,5 миллионов лет.

Звезда светится благодаря процессу термоядерного синтеза, в ходе которого ядра водорода превращаются в ядра гелия, а гелий на заключительных этапах существования звезды порождает и более тяжелые элементы. Последовательность примерно такова (в скобках номер элемента в таблице Менделеева): водород (1) гелий (2) небольшие примеси лития (3) углерод (6) магний (12) железо (26) + небольшие примеси никеля (28), а также спорадически возникающие ядра кадмия и олова. В целом элементы тяжелее железа в обычных звездах практически не образуются. Их источниками являются взрывы сверхновых, при которых синтезируются все элементы как минимум вплоть до урана (атомный номер 92, атомная масса 238), а также взрывы гиперновых, при которых схлопывание умирающей звезды происходит постепенно, и, за счет огромной исходной массы светила, выделяемая энергия еще выше.

Кстати, существует следующее предположение: обилие тяжелых элементов на Земле может быть связано с тем, что в обозримом прошлом недалеко от нашей планеты произошел взрыв гиперновой, и нас накрыло взрывной волной именно после этого события, произошедшего около 400 миллионов лет назад, на Земле могли остаться следы короткоживущего никеля-56.

Поэтому тем более интересно, что из этой стройной системы есть немало исключений. До 25% звезд главной последовательности являются пекулярными (от англ. peculiar - странный). Это означает, что спектральный анализ выявляет в них линии элементов, в том числе, гораздо тяжелее железа. Очевидно, состав этих звезд обусловлен спецификой их эволюции. Именно об этом мы поговорим далее.

Итак, Эддингтон изрядно упростил ситуацию ради афоризма. Звезда сложный обогатительный комбинат, где сравнительно незамысловатые термоядерные реакции порождают целую цепочку легких элементов, начиная водородом и гелием, и заканчивая железом, марганцем, кобальтом и никелем. Стареющая звезда это не костер, а скорее кузница. Но возможности ее ограничены: обычная звезда не может достичь такой степени сжатия, чтобы в ней в неследовых количествах образовывались элементы тяжелее железа. Это же означает, что в молодой звезде, активно переваривающей запасы водорода и гелия, железа будет мало. Но столь же верно, что повышение концентрации легких металлов в звезде должно свидетельствовать о ее скорой гибели.

Эта логичная картинка неожиданно потребовала пересмотра, когда в 1933 году молодой американский астроном Уильям Морган обнаружил звезду, в составе которой был явный избыток марганца. Марганец находится в таблице Менделеева под номером 25, то есть, непосредственно перед железом. Такой элемент звезда породить в состоянии. Но его обилие в составе звезды косвенно означает, что эволюция звезды близится к закату, а звезда, открытая Морганом, признаками старения не обладала.

С конца 40-х астрономы принялись усиленно изучать спектроскопию звезд, и обнаружили, что звезды с аномальным химическим составом встречаются на каждом участке Главной Последовательности.

Сначала принялись искать звезды, обладающие избытком марганца и выяснилось, что они действительно встречаются нередко; таков, например, Альферац, альфа Андромеды. Но звезды, подобные Альферацу, богаты не только марганцем, но и ртутью. Ртуть же занимает в таблице Менделеева 80-ю клетку, она более чем вдвое тяжелее железа. Образоваться в звезде в ходе типичных ядерных реакций она никак не могла.

Дальше больше. Оказалось, что химические странности звезд не ограничиваются содержанием тяжелых металлов. По каким-то причинам вышеприведенная цепочка изотопов сбивается, и некоторые звезды главной последовательности усиленно обогащаются бором, углеродом, кислородом и азотом (так называемые OBCN-звезды). Причем, такие звезды подразделяются на два подкласса: в OB-N повышено содержание азота, а в OB-C содержание углерода.

Исследование таких звезд вывело астрофизиков на интересную закономерность: оказывается, почти все звезды подкласса OB-N являются двойными, то есть, обращаются вокруг общего центра масс:

Таким образом, звездная пекулярность в некоторых случаях может быть связана с существованием двойных систем. В такой системе звезды могли бы вторично захватывать атомы легких элементов, например, из протопланетного облака.

Но вернемся к находкам Уильяма Моргана. Воодушевившись открытием ртутно-марганцевых звезд, он продолжал изучать ночное небо со спектрометром, и вскоре обнаружил другие классы пекулярных звезд. Именно Морган впервые описал марганцевые, хромовые, европиевые, циркониевые и кремниевые звезды. Позже эту классификацию немного обобщили: в наше время среди пекулярных звезд принято выделять 1) ртутно-марганцевые 2) европий-хром-циркониевые и 3) кремниевые звезды.

Ртутно-марганцевые, бариевые и свинцовые звезды

Именно к ним относится упомянутый выше Альферац из созвездия Андромеды, видимый невооруженным глазом (величина +2,6). С Земли Альферац кажется одиночной яркой звездой, но на самом деле это двойная звездная система:

Именно голубая звезда Альферац-А в этой паре является ртутно-марганцевой, а также содержит заметные количества европия, иттрия и платины. Другая известная двойная ртутно-марганцевая звезда Джиенах гамма Ворона. Сейчас Джиенах еще является голубым гигантом, ему может оставаться несколько миллионов лет до превращения в красный гигант.

В 1970 появилось предположение, что образование пекулярных звезд в двойных системах может быть связано с гравитационным осаждением, а также с давлением излучения: поскольку две звезды находятся очень близко друг от друга, на расстоянии меньшем одной астрономической единицы, взаимное облучение приводит к слипанию протонов (ядер водорода) в более крупные ядра. Именно таким образом в пекулярных звездах может образовываться сравнительно легкий марганец. Давление излучения может выталкивать тяжелые элементы из недр звезды наверх, в атмосферу где мы и фиксируем необычные спектральные линии. Интересный побочный эффект значительное усиление магнитного поля ртутно-марганцевой звезды, что также упрощает ее обнаружение.

Но ртутно-марганцевыми звездами картина не ограничивается. Еще в природе встречается немало бариевых и циркониевых звезд, а также есть звезды, богатые свинцом и висмутом.

В двойных системах, где белый карлик соседствует с голубым гигантом, вещество белого карлика может перетекать гигантскому соседу, в результате чего в голубом гиганте усиливаются линии бария (56 элемент).

Иные процессы приводят к накоплению небольших количеств свинца (82 элемент) в звездах, относящихся к группе AGB (асимптотическая ветвь гигантов). Это огромные звезды, которые на диаграмме Герцшпрунга-Рассела (вынесена в качестве КДПВ к этой статье) считаются гигантами за счет высокой светимости, но температура их сравнительно невелика многие из них относятся к спектральному классу M, также S и C.

Именно в асимптотической ветви гигантов был открыт s-процесс, то есть, медленное обрастание мелких атомов нейтронами с последующим превращением нейтронов в протоны. Таким образом, в пекулярных звездах тяжелые элементы могут образовываться в небольших количествах и без сверхновых и гиперновых событий. S-процесс протекает медленно и может приводить к образованию всех стабильных элементов и даже многих радиоактивных.

Технециевые звезды

После того, как в 1925 году Вальтер и Ида Ноддак получили чистый рений, в доурановой части таблицы Менделеева пустовали всего две клетки. Это была клетка экамарганца, то есть, элемента 43, и клетка 61 легкий лантаноид, который идет сразу после церия. Эти элементы, технеций (экамарганец) и прометий - существенно легче последних стабильных элементов, свинца и висмута ( 82 и 83) но сами стабильных изотопов не имеют и в природе не встречаются. Дело в том, что сама конфигурация ядра у этих элементов неправильная, и поэтому они легко теряют протоны, превращаясь в другие простые вещества. Элемент 43 был открыт в 1937 году Эмилио Сегре на Сицилии, когда отважный физик смог извлечь его из радиоактивных отходов от работы циклотрона Лоуренса.

До 1937 года технеций в Солнечной системе практически отсутствовал. Даже ультраредкие астат (85) и франций (87) постоянно присутствуют в земной коре в количестве десятков граммов, поскольку являются побочным продуктом распада других изотопов, а технеция практически нет (при распаде одного грамма урана возникает порядка 1 пикограмма (1x10-12 г) технеция). Дело в том, что технеций получается обогащением других изотопов, в первую очередь, молибдена а также, как уже сказано выше, образуется в радиоактивных отходах в ядерном реакторе. Сегодня наша цивилизация ежегодно производит технеций килограммами, но период полураспада самых долгоживущих его изотопов 98Tc и 99Tc составляет считанные миллионы лет. Но s-процесс может приводить к образованию технеция в некоторых пекулярных звездах, относящихся к подгруппе циркониевых звезд. Спектральные линии технеция в циркониевых звездах еще в 1952 году зафиксировал американский астроном Меррилл Пол Уиллард. Технеций в больших количествах присутствует в атмосфере циркониевых звезд, например, этих: R Андромеды, U Кассиопеи, W Андромеды, R Близнецов. Соответственно, эти звезды действуют как настоящие ядерные реакторы, и технеций является в них не случайной примесью, а элементом жизненного цикла.

Антизвезды

Обзор химической пекулярности звезд был бы неполон без упоминания об антизвездах.

Одной из величайших загадок астрофизики является практически полное отсутствие антивещества во Вселенной. При этом теоретически антивещество должно было бы образоваться при Большом Взрыве в равной пропорции с обычным веществом. Соответственно, поскольку антивещество существует (элементарная античастица позитрон открыта в 1932 году) преимущественно в виде антигелия, обнаруженного в космических лучах должно быть объяснение, почему его настолько мало. Возможно, на заре существования Вселенной антивещество и вещество успели аннигилировать друг с другом превратиться в фотоны а вещество, наблюдаемое сегодня, является лишь небольшим избытком того первичного антивещества.

В телескоп антивещество практически не должно отличаться от вещества, поскольку также испускает фотоны, а свет это фотоны. Подсказкой могли бы послужить только акты аннигиляции, которые мы могли бы зафиксировать: при аннигиляции происходит выброс гамма-излучения в строго определенной узкой области спектра. Антивещество могло бы концентрироваться в виде настоящих антизвезд, а при столкновении с частицами вещества давать стабильный поток гамма-вспышек в этой области.

В 2021 году ученые из университета Тулузы под руководством Симона Дюпурке (Simon Dupourqu) нашли на небе 14 таких аномальных источников гамма-излучения. Пока эти наблюдения остаются чисто астрономическими, а не астрофизическими то есть, хорошо было бы поймать космические лучи от звезд-кандидатов и посмотреть, из чего они состоят. Аннигиляционное топливо было бы самым мощным и при этом компактным источником энергии для межзвездных перелетов (корабль ЗАРЯ из фильма Москва-Кассиопея это звездолет аннигиляционный релятивистский ядерный). При этом мы пока не представляем, как можно было бы добывать антивещество в промышленных или вообще макроскопических количествах. Добыча крупиц антивещества в почтительном отдалении от антизвезды отличный сюжет для голливудского блокбастера. Поэтому остается надеяться, что открытие французов когда-нибудь приведет нас к его неисчерпаемым и недостижимым залежам.

Заключение

Надеюсь, мне удалось продемонстрировать, насколько преждевременным и наивным было утверждение Артура Эддингтона, вынесенное в начало этой статьи. Порой звезда это не водородно-гелиевый костер, а сложный ядерный реактор, возможно, даже концептуальная модель для создания искусственного астрофизического реактора, который, будучи окружен магнитными полями, мог бы походить на пекулярную звезду. Поэтому завершу эту статью я другим афоризмом, принадлежащим Айзеку Азимову: Самая волнующая фраза,какую можно услышать внауке, вовсе неэврика!, авот это забавно. Или, добавим мы, пекулярно.

Подробнее..

Белее некуда краска, отражающая до 98.1 солнечного света

21.04.2021 10:22:09 | Автор: admin


Изобретение велосипеда зачастую описывает процесс создания чего-то, что уже создано. Другими словами, бессмысленный труд. Однако в научном мире существует множество трудов, которые можно описать этой фразой. Тем не менее многократное создание одного и того же велосипеда разными людьми позволяет взглянуть на него под разным углом, тем самым усовершенствовав его. Подобная ситуация сложилась и с материалами, способными отражать большой процент солнечного тепла, дабы получить пассивное охлаждение без необходимости в системах кондиционирования. Эта тема уже затрагивалась нами ранее (http://personeltest.ru/aways/habr.com/ru/company/ua-hosting/blog/510582/), но ученые из университета Пердью (США) решили взглянуть на эту проблему по-своему, создав при этом ультрабелую краску, способную отражать до 98.1% солнечных лучей. В чем секрет нового лакокрасочного материала, как он создавался, и будет ли его использование на практике действительно выгодным и экологичным? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Лейтмотивом исследований, связанных со снижением экономической и экологической нагрузки на охлаждение, является радиационное (излучательное) охлаждение. Данный метод заключается в пассивном охлаждении за счет специальных устройств, материалов, покрытий и прочего. Чаще всего для реализации радиационного охлаждения применяются сложные многослойные структуры или отражающие металлические слои. Эффект от них, конечно, имеется, однако такой вариант не особо практичен и выгоден.

Попытки реализовать радиационное охлаждение с помощью одного слоя краски тоже часто заканчиваются провалом, ибо в таком случае этот слой будет весьма толстый, а эффект охлаждения незначительный.

Однако, радиационное охлаждение все же имеет свои преимущества, если правильно его реализовать. К примеру, в отличие от активного охлаждения, которое требует электричества, радиационное охлаждение использует атмосферное прозрачное окно (небесное окно) для испускания теплового излучения непосредственно в глубокое небо без потребления энергии. Если тепловое излучение через небесное окно превышает поглощение солнечного света, то на поверхности может сохраняться холодная окружающая среда даже под прямыми солнечными лучами.

Ранее уже были попытки создать краску, способную реализовать радиационное охлаждение. Был вариант, в котором использовался тонкий слой TiO2 на алюминиевой подложке. В зимний день такая структура демонстрировала температуру на 2 C ниже температуры окружающей среды. Однако, по словам ученых, это, вероятно, было связано скорее с подложкой, а не с самой краской.

Были и варианты без каких-либо красок, основанные на многослойных структурах. В одном из таких вариантов использовались металлический слой, полиэтиленовый аэрогель и делигнифицированная древесина. Очевидно, что подобные конструкции крайне сложны и дороги в реализации, не говоря уже о большой толщине результирующего покрытия.

Другими словами, методов реализации радиационного охлаждения существует довольно много, каждый из них обладает рядом преимуществ и недостатков. Авторы рассматриваемого нами сегодня труда решили попытать удачу в этой области и создали еще один метод пассивного охлаждения, основанный на сочетании пленки из наночастиц BaSO4 и краски, содержащей эти же наночастицы.

Результаты исследования


Выбор BaSO4 в качестве главного героя данного труда был неслучайным. BaSO4 имеет широкую запрещенную зону, что хорошо для малого солнечного поглощения, и фононный резонанс на 9 мкм, что хорошо для высокой излучательной способности. Приняв во внимание эти особенности, удалось создать пленку из наночастиц BaSO4 с высоким коэффициентом отражения солнечного света (97.6%) и коэффициентом излучения прозрачного окна (0.96).

Для повышения стабильности и надежности пленки была создана акриловая краска, содержащая наночастицы BaSO4 (60% от объема). Высокая концентрация наночастиц и их широкое распределение по размерам позволяют снизить показатель преломления BaSO4, что приводит к коэффициенту отражения солнечного света в 98.1% и излучательной способности в 0.95. По заявлению ученых, их BaSO4-акриловая краска имеет показатель качества 0.77, который является одним из самых высоких среди подобных структур для радиационного охлаждения. При этом их вариант надежен, легок в использовании, а также прекрасно имплементируется в промышленный процесс производства красок.


Изображение 1

Коммерческие белые краски (TiO2-акриловая) не могут достичь полноценного охлаждения из-за высокого поглощения в УФ-диапазоне (из-за ширины запрещенной зоны TiO2 в 3.2 эВ) и ближнем инфракрасном (NIR) диапазоне (из-за акриловой абсорбции).

В данном труде была изготовлена пленка из частиц BaSO4 толщиной 150 мкм на кремниевой пластине () в совмещении с коммерческой белой краской. На СЭМ-снимках (СЭМ от сканирующий электронный микроскоп) пленки BaSO4 (1b) видно образование воздушных пустот. Интерфейсы между наночастицами BaSO4 и воздушной полостью увеличивают рассеяние фотонов в пленке, тем самым увеличивая общий коэффициент отражения солнечного света.

Для повышения надежности структуры необходимо обеспечить устойчивость BaSO4 пленки к воздействию окружающей среды. Именно для этого и была использована акриловая краска. Однако, краска на базе BaSO4 (1c) обладает низким коэффициентом преломления, в отличие от TiO2. Чтобы исправить это, концентрация частиц BaSO4 в краске была повышена до 60%, что значительно выше, чем в промышленных красках.


Изображение 2

Как показано на изображении 2a, для достижения успешного охлаждения ниже температуры окружающей среды необходимы высокая степень отражения солнечного света и высокая степень излучательной способности. Для достижения этого необходимо было уменьшить поглощение в УФ-диапазоне. Это было достигнуто за счет BaSO4, обладающего запрещенной зоной в ~6 эВ.

А за счет фононного резонанса на 9 мкм возможно проектирование частиц определенного размера так, чтобы лишь один слой был необходим для достижения как отражательной способности, так и излучательной. В результате оптимальный размер частиц BaSO4 составил 400 нм. В результате пленка BaSO4 обладала коэффициентом отражения солнечного света в 97.6% и коэффициентом излучения в 0.96 (2b). Эти показатели лучше тех, что демонстрируют коммерчески доступные теплоотражающие краски (коэффициент отражения солнечного света от 80% до 91%).

Ученые отмечают, что использованная в их структуре кремниевая подложка была всего лишь фундаментом, и никак не участвовала в повышении показателей охлаждения. На графике 2c показано сравнение коэффициента отражения различных структур: с подложкой (разный материал и толщина) и без нее. Как мы можем видеть, использование подложки никак не влияет на охлаждающую способность всей структуры.

Что касается краски, то вариант с высоким содержанием частиц BaSO4 показал лучшие результаты: коэффициент отражения солнечного света 98.1%; коэффициент излучения 0.95. Физика, лежащая в основе высокой степени отражения, была смоделирована посредством метода Монте-Карло* (2d).
Метод Монте-Карло* метод изучения случайных процессов, когда оные описываются математической моделью с использованием генератора случайных величин. Модель многократно обсчитывается, а на основе полученных данных рассчитываются вероятностные характеристики изучаемого процесса.
Толщина слоя краски также была установлена посредством моделирования и практических опытов. При толщине 400 мкм достигались максимальные значения показателей отражения и излучения, тогда как при других толщинах они были немного меньше: при 200 мкм 95.8%; при 224 мкм 96.2%; при 280 мкм 96.8% (2e).


Изображение 3

Далее были проведены полевые испытания, дабы воочию понаблюдать за работой созданной структуры. Опыты проводились 14-16 марта 2018 года в городе Вест-Лафайет (штат Индиана) при пиковом солнечном излучении 907 Вт/м2 и влажности 42% (3a).

Температура образца упала на 10.5 C ниже температуры окружающей среды в течение ночи и оставалась на 4.5 C ниже температуры окружающей среды даже при пиковом солнечном излучении. Для сравнения, коммерческие варианты краски нагревались на 6.8 C выше температуры окружающей среды при таких же условиях опыта.

Дополнительные опыты в городе Рино (штат Невада) 28 июля 2018 года показали, что мощность охлаждения достигла в среднем 117 Вт/м2 за суточный период при 10% влажности (3b).

Мощность теплового излучения увеличивалась с повышением температуры поверхности в дневное время, что компенсирует более высокое поглощение солнечной энергии. Таким образом, оценка мощности охлаждения без учета температуры поверхности может быть неверным показателем эффективности охлаждения.

Термоэмиссионная мощность пленки BaSO4 при 15 C достигала 106 Вт/м2. Дополнительно были проведены полевые испытания BaSO4 краски (3c и 3d), которая оставалась холоднее окружающей среды в течение суток при пиковом солнечном излучении в 993 Вт/м2 и влажности около 50% (показатель получен в полдень).

Поскольку созданная BaSO4 краска предназначена для наружного применения, необходимо было также проверить ее надежность. Для этого были проведены тесты на истирание, атмосферные воздействия на открытом воздухе и определение вязкости.


Изображение 4

Во время тестов на истирание (4a) на образец помещали пару абразивных кругов с нагрузкой 250 г на каждый круг. Обновление кругов производилось каждые 500 циклов, между чем измерялась потеря массы образца. Коэффициент износа определялся как потеря массы (мг) на каждые 1000 циклов. Результирующий коэффициент износа BaSO4 краски достигал 150, что сравнимо с коммерческими красками (104). Тест влияния окружающей среды проводился довольно просто: образец помещали под открытым небом на 3 недели (4b). В течение всего времени коэффициент отражения солнечного света и коэффициент излучения оставались практически неизменными. Вязкость BaSO4 краски также была измерена и показала значения, схожие с оным для коммерческих вариантов (4c).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые в очередной раз обратили свое внимание на вопрос радиационного охлаждения, который соблазняет своей экологичностью и экономичностью по сравнению с классическими методами. Их идея заключается в использовании микроскопических частиц BaSO4 и создании двухслойной структуры. Один слой это пленка из этих частиц, второй акриловая краска, в состав которой входят опять же частицы BaSO4.

В результате полученная пленка смогла показать коэффициент отражения солнечного света 97.6%, а коэффициент излучения 0.96. Но это еще не максимум, что может разработанная структура. Совместив пленку из BaSO4 с краской, в состав которой также входит BaSO4, удалось достичь коэффициента отражения солнечного света 98.1% и коэффициента излучения 0.95.

Полевые испытания показали, что температура поверхности, покрытой BaSO4 краской, была на 4.5 C ниже температуры окружающей среды, а средняя мощность охлаждения при этом составляла 117 Вт/м2.

По надежности и износостойкости полученная краска ничем не уступает своим коммерческим собратьям. Кроме того, имплементация данной разработки в промышленность не требует больших затрат или специфического оборудования. Другими словами, создавать и использовать такой материал будет довольно просто и выгодно.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Разнообразие смерти гастрономические предпочтения змей и эволюция их яда

23.04.2021 10:10:48 | Автор: admin


В мире людей существует немало страхов, некоторые их которых перерастают в самые настоящие фобии: арахнофобия (пауки), акрофобия (высота), аквафобия (вода), коулрофобия (клоуны), офидиофобия (змеи) и т.д. Многие люди, даже не имея офидиофобии, относятся к змеям с призрением и недоверием. Змей часто отожествляют с хитростью, подлостью, коварством и прочими малоприятными качествами, которые по иронии им совершенно неприсущи, в отличие от самих людей. С другой стороны змеи часто символизируют мудрость, бессмертие, знания. Одними из самых узнаваемых символов, в которых присутствует змея, являются сосуд Гигиеи (символ фармации) и посох Асклепия (символ медицины). Для многих самой примечательной особенностью некоторых змей является их яд, структура которого может быть невероятна. Ученые из Клемсонского университета (США) выяснили, что структура яда некоторых змей зависит от того, насколько эволюционно далека друг от друга добыча. Как гастрономические предпочтения змей влияют на их яд, чей яд сильнее, и как полученные знания можно применить на практике? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Многие виды на нашей планете связаны друг с другом. Это вполне логично, ибо есть хищники, поедающие добычу, есть паразиты, не способные жить без носителя, есть симбиотические существа, получающие выгоду от совместного проживания с другими видами. Связь проявляется по-разному, но она одинаково играет важную роль в развитии каждого из участников этой связи. Об этом говорил еще Дарвин, уделяющий внимание в своих трудах корреляции между эволюцией признаков и взаимодействиями видов.

Однако связь не формируется сразу, на это требуется уйма времени, в течение которого происходит процесс естественного отбора. Ученые приводят в пример связь носителя и паразитов. Носитель в ходе эволюции может развить уникальную для каждого вида паразита защиту или же универсальную сразу от нескольких видов паразитов. В таком случае необходимо понять, важно ли количество или все же характеристики взаимодействующих видов.

Сложные черты того или иного вида определяются множеством компонентов, вносящих вклад в окончательный функциональный фенотип, который формируется в зависимости от количества информации в геноме, определенной данными компонентами. Молекулярные признаки, участвующие в антагонистических взаимодействиях, проявляются как модели для связывания сложности признака с разнообразием видовых сообществ, поскольку их сложность может быть точно определена количественно числом и разнообразием уникальных компонентов. Это, по словам ученых, позволяет использовать меры разнообразия, такие как H-индекс Шеннона*, для суммирования сложности той или иной черты вида.
Индекс (или энтропия) Шеннона* был предложен Клодом Шенноном в 1948 году для количественной оценки энтропии в строках текста. Суть модели состоит в том, что чем больше разных букв и чем больше их пропорциональное количество в интересующей строке, тем труднее правильно предсказать, какая буква будет следующей в строке. Энтропия Шеннона количественно определяет неопределенность (энтропию), связанную с этим предсказанием.
Одним из ярчайших примеров взаимодействия видов является использование одним их низ яда для защиты/нападения. Яд нарушает гомеостатические физиологические процессы, быстро делая добычу неспособной сопротивляться либо нападающего неспособным продолжить преследование. Это взаимодействие позволяет понять силы, опосредующие сложность признаков во взаимодействиях хищник-жертва.

Что касается белковых смесей, сложность фенотипа яда может быть определена количественно с помощью хроматографии*.
Хроматография* метод разделения и анализа смесей веществ, а также изучения их физико-химических свойств. Суть метода заключается в распределении вещества между двумя фазами: неподвижная (твердая или жидкая) и подвижная (газовая или жидкая).
Кроме того, транскриптом ядовитой железы напрямую связывает протеом (совокупность белков) яда с генотипом вида. То есть транскриптом является вторым независимым методом определения сложности яда за счет оценки сложности геномной последовательности.

Функциональные исследования змеиного яда выявили несколько примеров разнообразия и специфичности добычи, вызванных эволюционными процессами. К примеру, из-за того, что морские змеи вида Aipysurus eydouxii начали питаться практически исключительно икрой рыб, их яд стал намного слабее, а также были выявлены нулевые и негативные мутации в генах яда.

Любопытно и то, что паралоги* высокоэкспрессированных генов яда одной и той же змеи могут обладать таксономической специфичностью.
Паралоги* последовательности, которые присутствуют в одном и том же геноме, а возникают в эволюции путем дупликации первичной последовательности.
К примеру, яд змей Spilotes sulphureus одинаково смертелен для млекопитающих или ящериц, а яд Bothrops neuwiedi по-разному выполняет прокоагулянтную функцию (свертывание крови) в крови любого из представителей млекопитающих.

В данном труде особое внимание было уделено гадюковым змеям, так как их гастрономические предпочтения были хорошо изучены, что позволяет детально оценить различия в рационе питания и влияние этого фактора на структуру яда.

Большинство гадюк питаются в основном мелкими позвоночными, при этом диета их предков, вероятно, состояла из млекопитающих, ящериц и лягушек. Гремучие змеи (Crotalus и Sistrurus), медноголовые и мокассиновые (Agkistrodon) составляют крупнейшую кладу переднезубых ядовитых змей в Северной Америке, насчитывающую от 45 до 64 описанных видов. Питание этих видов также обладает широким разнообразием. К примеру, Crotalus horridus питается исключительно млекопитающими, а вот Agkistrodon piscivorus conanti не брезгует рыбой, лягушками, млекопитающими, ящерицами, птицами, черепахами и даже змеями.

Яды этих родов змей состоят из 1070 белков из 1525 различных семейств генов. Из этого и происходит разнообразие действия яда: нейротоксическое (нарушение периферической нервной системы), коагулопатическое (нарушение свертывания крови), геморрагическое (образование кровяных сгустков) или миотоксическое (предотвращение релаксации мышц после сокращения) и т.д.

Дабы проверить, какие теории о связи между питанием змей и структурой их яда все же верны, а какие нет, ученые проанализировали рацион змей и измерили протеомную сложность яда и транскриптомную сложность ядовитых желез. Образцы яда и желез были получены от змей Agkistrodon, Crotalus и Sistrurus. В результате была сформирована самая крупная база данных протеомов и транскриптомов ядовитых желез для этой группы на сегодняшний день (68 линий). Была также создана филогения* из 125 неядерных генетических локусов* из транскриптомов, после чего был проведен сопоставительный анализ с рационом змей.
Филогения* результат филогенетического анализа, т.е. процесса выявления и объяснения эволюционных взаимоотношений между видами.
Локус* местоположение определенного гена на генетической или цитогенетической карте хромосомы.

Результаты исследования



Изображение 1

В ходе исследования была получена филогения посредством методов видового древа (схема выше) и конкатенации* с использованием последовательностей от 169 особей, представляющих 46 видов Agkistrodon, Crotalus и Sistrurus.
Конкатенация* объединение объектов линейной структуры в одну (например, слова микро и мир дают микромир). В генетике подход, основанный на конкатенации, представляет собой подход полного доказательства, который объединяет все сопоставления генов в суперматрицу.
Чтобы получить максимальное разнообразие в пределах исследуемой основной клады, выборка была расширена. В нее дополнительно были включены филогенетически отдельные подвиды и линии с описанным филогенетическим разнообразием, что привело к окончательному набору данных о 9 линиях Agkistrodon, 5 линиях Sistrurus и 54 линиях Crotalus.

Полученные деревья были использованы для филогенетического сравнительного анализа взаимосвязи между разнообразием рациона и сложностью яда.

Первый анализ, во время которого оценивалась связь между транскриптомной и протеомной сложностью яда, показал, что между выраженным генотипом и сложностью фенотипа в ядах змей присутствует сильная связь (диаграмма на изображении 1).

Ученые отмечают, что в ходе высокоэффективной жидкостной хроматографии (ВЭЖХ) похожие белки могут элюироваться (извлекаться) вместе в виде одного пика на хроматограммах, что потенциально недооценивает сложность фенотипа на уровне отдельных компонентов. Однако применение меры транскриптомной сложности позволяет количественно определять различия между белками, в то время как равный вес всех уникальных последовательностей независимо от длины транскрипта обеспечивает дополнительный акцент на общем разнообразии последовательностей, а не на организации в транскрипты.

Транскриптомная сложность, лежащая в основе ядов, варьировалась в 10 раз между линиями. При этом самый сложный транскриптом был у змей вида Sistrurus tergeminus edwardsii 45191 k-мер (последовательностей из k нуклеотидов); самый же простой транскриптом принадлежал виду Crotalus durissus terrificus 4723 k-мер.

Протеомная сложность яда также значительно различалась: наиболее сложная у Crotalus lepidus lepidus примерно 32 пика белка на хроматограммах; самая простая у Crotalus tigris в среднем 8 пиков.

Реконструкции состояния предков указывают на промежуточный белок (22.3 пика) и транскриптомную сложность (28751 k-мер) у общего предка агкистродонов и гремучих змей. Из этого можно сделать вывод, что с течением времени произошла эволюция как в сторону более простых, так и более сложных ядов.

Разнообразие у змей проявляется не только в аспекте видов, но и в аспекте потребляемой пищи (схема ниже), т.е. видового разнообразия добычи, которое варьировалось от 2.9 до 15 (среднее 6.7) видов и от 118 до 731 (среднее значение = 365) MPD (от million years of divergence, т.е. миллионов лет расхождения*).
Дивергенция (расхождение)* расхождение признаков и свойств у первоначально близких групп организмов в ходе эволюции.

Изображение 2

Наблюдаемые вариации протеомной и транскриптомной сложности яда лучше всего моделировались с помощью MPD добычи по всем альтернативным филогенетическим деревьям, используемым для представления этой взаимосвязи. Кроме того, модели MPD значительно лучше соответствовали данным по сравнению с нулевыми филогенетическими обобщенными моделями наименьших квадратов. Другими словами, используемая модель по MPD показала, что эволюция сама по себе не может объяснить вариативность ядов у змей.

Наряду с положительной корреляцией между сложностью яда и MPD (график ниже), предложенная модель подкрепляет теорию филогенетического разнообразия для эволюции более сложных признаков яда у змей.


Изображение 3

Более детальный анализ показал положительную корреляцию между сложностью яда и MPD добычи, однако не было выявлено связи между видовым разнообразием и сложностью белков яда. Подобная ситуация наблюдалась и при анализе MPD и транскриптомной сложности: корреляция между ними была, но значимой связи между видовым разнообразием и транскриптомной сложностью яда не было.

Далее была выполнена оценка взаимосвязи между транскриптомной сложностью яда и филогенетическим разнообразием добычи на уровне семейства генов для четырех крупнейших семейств генов среди гадюк (SVMP, SVSP, PLA2 и CTL). Значимые положительные корреляции между сложностью транскриптомов и MPD добычи были обнаружены для семейства генов SVMP, SVSP и PLA2 (график ниже). Семейство генов CTL, однако, не показало значимой связи между MPD и сложностью транскриптомики.


Изображение 4

Данный анализ показывает эволюционный ответ на отбор из более филогенетически разнообразной добычи, происходящий через несколько семейств генов.

В заключение была выполнена проверка того, отражает ли филогенетическое разнообразие добычи функциональное разнообразие яда лучше, чем обычное видовое разнообразие.

Анализ аминокислотных последовательностей яда разных змей показал, что MPD добычи в большей степени отражает разнообразие белковых последовательностей в функционально важных элементах яда, чем простое разнообразие видов добычи. Кроме того, разнообразие аминокислотных последовательностей в конкретных аспектах яда может успешно предсказать его сложность.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Эволюцию сложно назвать быстрым и легким процессом, о каком бы виде не шла речь. Каждый живой организм адаптируется к ряду факторов, в числе которых присутствует и окружающая среда, и ее обитатели. Подавляющее большинство видов так или иначе связано друг с другом. Одни являются хищниками, другие добычей, одни паразитами, другие носителями и т.д. Даже обычное проживание на одной и той же территории видов, которые не контактируют напрямую, вносит свой вклад в их эволюционное развитие.

В данном труде ученые установили, что разнообразие рациона змей коррелирует со сложностью их яда. Другими словами, чем разнообразнее гастрономические аппетиты змеи, тем сложнее будет ее яд. На первый взгляд это кажется весьма очевидным выводом. Далеко не все яды одинаково действуют на разных существ. Следовательно, если есть желание лопать всех подряд, яд должен быть сложным и, следовательно, универсально смертоносным.

Несмотря на простоту вопроса, ответ оказался гораздо сложнее и затронул миллионы лет эволюции. При этом было установлено, что среди четырех семейств генов лишь троим можно приписывать связь видового разнообразия добычи и сложности яда. Четвертое семейство (CTL, т.е. лектины типа С) пошли по другому пути. В дальнейшем ученые намерены выяснить, почему имело место именно такое генное распределение обязанностей.

Важность этого исследования заключается в том, что змеиный яд крайне важный элемент многих препаратов, нацеленных на лечение заболеваний сердца, высокого давления, тромбов и т.д. Змей очень много (порядка 3631 видов по данным 2017 года), среди которых разнообразие ядов еще больше. Чем лучше мы понимаем структуру змеиного яд, тем лучше мы сможем его использовать в фармации.

Пятничный офф-топ:

Порой единственное, что может спасти от неминуемой гибели, это скорость.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Загрязнение окружающей среды, как наследие советского прошлого, на примере Московского завода полиметаллов

24.04.2021 16:07:19 | Автор: admin

Московский завод полиметаллов (МЗП) располагается на правом берегу реки Москвы, на холму высотой 150 метров с крутыми скатами, обрывами и оврагами.

Карта с портала Retromap http://retromap.ru/051952_z16_55.644383,37.683062Карта с портала Retromap http://retromap.ru/051952_z16_55.644383,37.683062

История предприятия МЗП рассказывает о том, что МЗП сначала загрязнял окружающую среду высокотоксичными химическими отходами: As (мышьяк), Sr (сурьма), Mn (марганец), Cr (хром), Zn (цинк), Th (торий), U (уран), с 1947 года МЗП вошел в состав атомной промышленности), была создана научно-исследовательская лаборатория.

Концентрат тория или радия, полученный после переработки руды редкоземельных элементов (РЗЭ) или урановой руды, отправлялся для дальнейшей химической (щелочной или кислотной) переработки на предприятии. Отделение тория чрезвычайно затруднено, поскольку монацит содержит элементы, по свойствам близкие к торию, редкоземельные металлы, уран. Опыт работы с высокотоксичными химическими элементами и научно-исследовательская лаборатория позволили МЗП заняться не только переработкой руд, но и производством сплавов на основе тория и радия, где в качестве химических элементов использовались: мышьяк, сурьма, цинк и др. Необходимость металлических сплавов с содержанием К40, Cs137, Ra226, Th232, U234, U235, U238 обуславливалась технологией использования в атомной промышленности. Жидкие отходы производства, содержащие соли тяжелых металлов и химические кислоты, отправлялись в отстойник, а затем сбрасывались в реку Москва.

Заброшенные отстойники около МЗП https://interrno.livejournal.com/278062.htmlЗаброшенные отстойники около МЗП https://interrno.livejournal.com/278062.html

Сыпучими отходами, а также отходами в виде металлических слитков (брак на производстве, лабораторные отходы) засыпались овраги. С утверждением: "МЗП загадил прилегающую территорию высокотоксичной химией и радиоактивными отходами", никто не спорит. Например, Ростехнадзор прямо указывает на обстоятельства загрязнения окружающей среды

из письма Ростехнадзора от 05.08.2019 06-00-06/1132 авторуиз письма Ростехнадзора от 05.08.2019 06-00-06/1132 автору

Развитие московского региона в середине 60-х вынуждает искать решение по консервации отходов. До классическогохвостохранилища комплекс специальныхсооруженийи оборудования, предназначенный для хранения или захоронениярадиоактивных, токсичных и других отвальныхотходовобогащенияполезных ископаемых(такие отходы именуютхвостами), немного не дотянули, но использовалисанитарные правиладля консервации.

9.5. При консервации хвостохранилищ, содержащих радиоактивные и высокотоксичные вещества, его поверхность засыпается гравийно-щебеночным покрытием с последующей засыпкой чистым грунтом слоем не менее 0,5 м. Засыпанные поверхности следует засеять травой.

Высота слоев засыпки хвостохранилища уточняется проектом консервации в зависимости от конкретных условий расположения объекта и климатических особенностей района.

Такие хвостохранилища, в которых складированы отходы не пригодные для дальнейшего использования, другим этапом рекультивации не подлежат и должны иметь ограждение. В остальных случаях согласно Постановлению СМ СССР от 2 июня 1976 г. территория хвостохранилища должна быть рекультивирована в соответствии с проектом и видом народно-хозяйственного использования

9.6. Ограда вокруг законсервированных хвостохранилищ, содержащих радиоактивные вещества, должна располагаться на расстоянии не более 30 м, при условии, что за пределами ограды гамма-излучение от поверхности почвы и от тела дамбы хвостохранилища не превышает 30 мкР/час.

Получилось примерно следующая картина: розовый - это высокотоксичная химия, желтый - это радиоактивные отходы, темный - это консервирующий слой (глина). Деревья посажены для того, чтобы удержать сползание грунта.

Оценка количества химических и радиоактивных отходов возможно предпринималась не раз. Так к.б.н. Зозуль Ю.Н. вдиссертации по исследованию отходов около МЗП, отмечает наличие радиоактивных отходов Ra226 (до 138 Бк/кг) и Th232 (до 610 Бк/кг), а также превышение ПДК Sb в 193 раза, As в 78 раз, Zn в 10 раз, Pb в 3 раза со стороны реки Москвы.

В 2017 году Роспотребнадзор в "Государственном докладе о состоянии санитарно-эпидемиологического благополучия населения в городе Москве в 2017 году" на стр. 34 указывает на наличие 60000 тонн радиоактивных отходов. Если радиоактивными отходами занимается ФГУП "Радон", то химическими отходами никто не занимается, поэтому упоминаний о количестве химических отходов в Государственном докладе не обнаружено.

Основным документом, где описывается перечень выявленных объектов с источниками радиоактивных аномалий и загрязнений являетсяРадиационно-гигиенический паспорт города Москвы (РГП), но получить актуальный радиационно-гигиенический паспорт города Москвы (Государственныйдокладосостояниисанитарно-эпидемиологическогоблагополучиянаселения в городеМоскве можно найти на портале Роспотребнадзора) не получается никак (Прокуратура Москвы побежала жаловаться в Генеральную прокуратуру на мэрию Москвы из-за отказа в предоставлении РГП). В радиационно-гигиеническом паспорте описываются наименование объекта, местоположение, номер объекта, площадь объекта, максимальная мощность эквивалентной дозы (МЭД).

Радиационно-гигиенический паспорт города Москвы за 2017 год.Радиационно-гигиенический паспорт города Москвы за 2017 год.

Понимая необходимость предотвращения проникновения на хвостохранилище посторонних лиц, была создана санитарно-защитная зона около МЗП.

Санитарно-защитная зона около Московского завода полиметалловСанитарно-защитная зона около Московского завода полиметаллов

Управление Роспотребнадзора решением от 14.01.2009 10-15/3 регистрируетСанитарно-защитную зону около Московского завода полиметаллов(граница 65 метров в сторону железной дороги и 200 метров в сторону реки), устанавливает особые условия (условия достаточно простые территория может быть использована исключительно, как санитарно-защитная зона).

Что было дальше - в следующей публикации

Подробнее..

Что запрещает принцип Паули?

27.04.2021 10:04:26 | Автор: admin

Принцип запрета Паули с однозначной многочастичной волновой функцией эквивалентен требованию, чтобы волновая функция была антисимметричной по отношению к обмену частицами. Как это объяснить на пальцах? Легко - ткните пальцем в стол, в монитор во что-нибудь твердое. Глубоко пронзили материю? Удалось достичь перекрывания атомных электронных облаков пальца и стола? Нет? Не удивительно. Читайте дальше, если хотите узнать, почему так.

Спин

Цитата из Википедии: Принцип исключения Паули (принцип запрета Паули или просто принцип запрета) это квантово-механический принцип, который гласит, что два или более идентичных фермиона (частицы с полуцелым спином) не могут одновременно находиться в одном и то же квантовом состоянии в квантовой системе.

Волновая функция вращающейся частицы.Волновая функция вращающейся частицы.

Что-то про спин. Начнём с того, что такое спин, в частности, полуцелый спин. Пускай частица движется по окружности длины 2\pi r , а через \vec{r} мы обозначим позицию частицы. Частица будет описываться волновой функцией \psi(\vec{r},t) . Для простоты положим, что это самая обычная бегущая волна.

\psi(\vec{r},t)=e^{\frac{i}{\hbar}(\vec{p}\cdot \vec{r}-E\cdot t)}

Волновая функция должна однозначно определяться на окружности, а поворот на 2\pi радиан никак не должен её изменять, то есть:

e^{\frac{i}{\hbar}p\cdot 2\pi r}=1

Экспонента в мнимой степени это тригонометрическая функция, как синус или косинус, по сути мы записали, что волновая функция периодическая. Это возможно только если произведение p\cdot r=\hbar n , где n - обязательно целое число. Вспомнив, что произведение \vec{l}=\vec{p}\times \vec{r} ничто иное как момент импульса, для нашей частицы мы получаем условие:

l_z = n\hbarТа самая открытка Нильсу Бору от Отто Штерна и Вальтера Герлаха.Та самая открытка Нильсу Бору от Отто Штерна и Вальтера Герлаха.

Всё это хорошо, но Отто Штерн и Вальтер Герлах установили, что электрон может так вращаться, что совершив полный оборот он не придёт в тоже самое состояние, что и раньше. А вот если два оборота сделает, тогда всё хорошо. В его случае n=\frac{1}{2} и он может крутиться с периодичностью 4\pi . Если Вы тоже задали себе этот вопрос: а что, черт возьми, курили эти ученые, то вам поможет удовлетворить любопытство эта статья - Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics.

Вращение тела с периодичностью 720 градусов.Вращение тела с периодичностью 720 градусов.

Хорошие новости - в трехмерном пространстве есть такой тип вращения. Забавная особенность - такое вращение не перекручивает подсоединенные к телу верёвки. Попробуйте этот трюк в баре с кружкой пива - Вы сможете её постоянно поворачивать не перекручивая свою руку.

Антисимметричность по отношению к обмену электронов

Перестановка двух связанных друг с другом объектов трехмерного пространства эквивалентна повороту одного из них на 360 градусов. Значит, если периодичность вращения объекта 4\pi - то перестановка приводит к смене его волновой функции. Две смены знака: -1\times -1=1 .

Обязательную смену знака волновой функции при перестановке двух частиц со спином s=1/2 можно трактовать как требование не перекручивать связывающее их пространство [См. Pauli principle in Euclidean geometry]. Эта лента гибкая, но до определенных пределов. Давайте установим предел гибкости нашего пространства-времени на скручивание.

Следующий пример описывается в статье Вайскопф, В. Современная физика в элементарном изложении. УФН 103(1) (1971) 155-179. Пусть есть два электрона с волновыми функциями:

\psi(x_{1})=e^{\frac{i}{\hbar}p\cdot x_{1}},\quad\psi(x_{2})=e^{\frac{i}{\hbar}p\cdot x_{2}}

Забудем пока об электростатическом отталкивании, просто летят два электрона с импульсами p_1=-p_2 на встречу друг другу. Расстояние между ними x=x_{2}-x_{1} . Волновая функция этой системы электронов:

\Psi(x_{1},x_{2})=e^{\frac{i}{\hbar}p\cdot x_{1}}e^{-\frac{i}{\hbar}p\cdot x_{2}}

однако, она в таком виде еще не обладает свойством антисимметрии. Легко поправить дело:

\Psi=e^{\frac{i}{\hbar}p\cdot(x_{2}-x_{1})}-e^{-\frac{i}{\hbar}p\cdot(x_{2}-x_{1})}

тогда перепишем её как:

\Psi=2i\cdot\sin(\frac{p\cdot x}{\hbar})

Плотность вероятности имеет вид:

\rho(x)=4\cdot\sin^{2}(k\cdot x)

где k=p/\hbar - волновое число. Для всех возможных импульсов со средним значением p_o плотность вероятности \rho(x) есть интеграл по всем волнам с различными значениями k. После интегрирования получаем, что \rho(x) имеет вид ступени.

Черная кривая - плотность вероятности для некоего среднего значения импульса.Черная кривая - плотность вероятности для некоего среднего значения импульса.

Плотность вероятности встречи электронов на расстоянии менее x_{min} стремится к нулю. Минимальное возможное расстояние между ними, как видно, имеет порядок их средней длины волны, т.е. x_{min}\approx 1/k_0 . Именно так получается характерный объём пространства, занимаемый электроном. Как будто электрон - упругий шарик.

Принцип запрета Паули

Плотная упаковка электронов в атоме.Плотная упаковка электронов в атоме.

Расположим шарики-электроны плотной упаковкой, т.к. положительно заряженное ядро стягивает их к себе, а принцип Паули и кулоновское отталкивание мешают подходить им близко друг к другу. В полученной структуре шарики расположены слоями - наружный слой, средний, внутренний. Места в пространстве у шариков однозначно задаются адресами из трех целых чисел. Смотрите на картинку.

Оболочечная структура атома: главное квантовое число, орбитальное число и магнитное число.Оболочечная структура атома: главное квантовое число, орбитальное число и магнитное число.

Если считать, что четвертое число - окраска шара (черная/белая, спин +1/2 или -1/2), получим, что принцип запрета Паули (нет двух электронов в атоме с одинаковым набором четырех квантовых чисел) эквивалентен однозначности адресации шара в плотной упаковке.

В свою очередь, атомы в веществе, как правило, стремятся плотно заполнить пространство. Пустого места нет, и метафора с электронными облаками, а облака могут проникать друг в друга, здесь неуместна. Материя плотная и мы это чувствуем физически.

Октет Льюиса, двойной квартет Линнета

Стремление к заполнению оболочки (правило 8 электронов, правило 18 электронов) есть ничто иное, как попытка электронов атома выстроить максимально плотную и симметричную структуру. Более того, октет Льюиса как раз исторически произошёл от кубической модели атома. С появлением квантовой механики о кубе забыли, но правило октета осталось в школьных учебниках.

В 1961 году Линнет выдвинул интересную модификацию правила октета Льюиса (см. Дей К., Селбин Д. Теоретическая неорганическая химия. М.: "Химия" 1976. Стр. 197). Он предположил, что ключевым принципом построения оболочки должно быть максимальное отталкивание электронов одного спина. Учитывая, что они же стягиваются к ядру атома, получается плотная упаковка - тетраэдр. Устойчивой оболочкой Линнет считал ориентацию двух тетраэдров, обеспечивающую их максимальное отталкивание, т.е. 4+4=8, куб. Пока мы не рассматриваем спин, его правило не отличается от правила октета, однако, оно приводит к геометрической трактовке связи. Например, отличие однократной, двойной и тройной связей выглядит так:

Этан, этилен, ацетилен.Этан, этилен, ацетилен.

Интересно, что предсказываемые соотношения для длин связей находятся в прекрасном согласии с наблюдаемой геометрией молекул. Более того, его принцип позволяет объяснить электронную структуру молекулы кислорода, для которой основное состояние - триплет, два неспаренных электрона. Правило октета в данном случае бессильно.

Триплетное состояние кислорода.Триплетное состояние кислорода.

Долгое время было загадкой, почему две молекулы NO (свободные радикалы) не образуют устойчивый димер, в отличие от циана CN, который димеризуются в дициан C2N2. С позиции теории двойного квартета, структура O=N-N=O потребовала бы пространственного совмещения тетраэдров электронов разного спина, что невыгодно из-за электростатического отталкивания, тогда как дициан позволяет минимизировать отталкивание электронов. Принцип плотной упаковки электронов описывает все типы химических связей: ковалентную с кратными связями, ионную, а также металлическую связь.


Наши серверы можно использовать для разработки и просчета научных экспериментов.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Мухи в холодильнике криоконсервация эмбрионов плодовой мушки

30.04.2021 10:21:30 | Автор: admin


В кино, литературе и видеоиграх можно часто встретить вариации на тему криогенной заморозки, особенно, если сюжет разворачивается вокруг длительного межпланетного путешествия. Концепция заморозить что-то или кого-то до лучших времен не нова, но за последние годы она стала намного популярнее. Сейчас даже существуют специализированные учреждения, которые могут заморозить человека с неизлечимой болезнью, а потом разморозить его, когда будет изобретено лекарство. Правда, по законам живых людей замораживать нельзя. Успешно разморозить человека, который фактически переступил черту между жизнью и смертью, а потом еще и вылечить его недуг задача для ученых будущего. Криоконсервация может использоваться не только для людей, но и для других организмов.

Плодовые мушки являются важным модельным организмом во многих отраслях науки, посему ученые из Миннесотского университета (США) разработали методику криоконсервации, позволяющую замораживать эмбрионы дрозофилы. Как работает данная методика, с какими трудностями ученым пришлось столкнуться, и насколько успешна созданная разработка? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Drosophila melanogaster, она же дрозофила или плодовая мушка, является без преувеличения уникальным организмом. Это назойливое насекомое, которое в летние месяцы с радостью становится соседом всех любителей свежих фруктов и овощей, играет важную роль во многих исследованиях.


Томас Морган (1866-1945)

В далеком 1909 году Томас Морган использовал плодовую мушку в качестве модельного организма в своих генетических экспериментах. Модельный организм, как это и предполагает сам термин, используются в качестве моделей в процессе изучения каких-либо процессов или явлений живой природы. Чтобы организм стал модельным, он должен соответствовать ряду требований: ученые должны знать о нем максимум, он должен быть простым в разведении, содержании, а время его развития должно быть минимальным.

Дрозофила подходит по всем этим параметрам и не только. Мушки быстро растут, быстро и массово размножаются, смена поколений также происходит быстро, а их эмбрионы прозрачны, что делает дрозофилу идеальным кандидатом для изучения эмбрионального развития животных.

Использование дрозофилы в качестве модельного организма позволило нам сделать множество важных открытий. Неудивительно, что в разных исследовательских лабораториях по всему миру хранится более 160 000 уникальных генотипов дрозофилы.


Внешний вид Drosophila takahashii.

На данный момент поддержание жизни дрозофил полностью ложится на плечи самих ученых, которые должны периодически переносить взрослых особей к свежему корму, постоянно мониторить условия среды обитания, следить за стерильностью (дабы избежать генетического загрязнения) и т.д. Это крайне трудоемкая задача, требующая немало сотрудников, оборудования и ресурсов.

Криоконсервация, напротив, должна быть гораздо проще и выгоднее, не говоря уже о сохранности самих дрозофил и их генетического материала.

Ранее, как заявляют ученые, уже были попытки разработать метод заморозки дрозофил, который испытывался на диком штамме (Oregon R). Однако разработку свернули из-за ее недостаточной воспроизводимости и сложности.

Если же вернуться ближе к теме исследования, а именно к заморозке эмбрионов дрозофилы, то основными проблемами являются введение криопротекторного агента (CPA от cryoprotectant agent), масштабируемость витрификации*, выживаемость эмбриона в зависимости от возраста и генетический фон, зависящий от штамма.
Витрификация* (стеклование) переход жидкости в стеклообразное состояние при понижении температуры.
Проблема, связанная с CPA, проявляется на этапе дехорионации (Drosophila Egg Dechorionation), так как эмбрион становится непроницаем для криопротекторного агента ввиду воскового слоя и желточной мембраны. Если же CPA все же удастся ввести, то требуются большие скорости заморозки и разморозки для достижения криоконсервации посредством витрификации (стеклования). Однако этот процесс крайне сложно масштабировать, если речь идет о тысячах эмбрионов сразу. Не говоря уже о разнице в генетическом фоне разных штаммов дрозофилы, из-за которой заморозка может по-разному влиять на разные штаммы.

В рассматриваемом нами сегодня труде ученые попытались решить вышеописанные проблемы и достичь успешной криоконсервации эмбрионов разных штаммов дрозофилы.

Результаты исследования


Первый этап заморозки эмбриона это определение того, на какой стадии развития его лучше всего замораживать.


Изображение 1

Для этого использовалась имеющаяся коллекция дрозофил, названная М2 (1a). Особи в этой коллекции являются производными от штамма w[1118], а посему обладают прослеживаемым однонуклеотидным полиморфизмом на X-хромосоме и являются гомозиготными, жизнеспособными и фертильными.

Поскольку скорость эмбрионального развития сильно зависит от температуры, необходимо было постоянно мониторить возраст эмбрионов посредством строгого контроля времени инкубации при установленной температуре (например, 20.1 0.05 C). Также контролировались и морфологические особенности путем изучения внешнего вида кишечника (выглядит, как темные участки) эмбриона под микроскопом (кишечник выделен белыми линиями на 1b). При использовании препарирующего микроскопа кишечник приобретал молочный цвет (ниже на 1b).

С 19-ого по 24-ый час инкубации внешний вид кишечника меняется от структуры в форме сердца (19 часов инкубации) до набора из 34 полупараллельных полос, которые лежат перпендикулярно длинной оси эмбриона (20 часов), затем постепенно наклоняется (2122 часа) и в конечном итоге принимает более вытянутую форму (2324 часа).

После криоконсервации эмбрионов на разном этапе их развития была выполнена разморозка. Это позволило оценить степень выживаемости эмбрионов по скорости вылупления (от эмбрионов до личинок) и выживаемости взрослых особей (вылупившиеся личинки окукливание почти взрослые особи). В результате было установлено, что эмбрионы на 22-ом часу развития обеспечивают самую высокую выживаемость после криоконсервации (2a).


Изображение 2

Дело в том, что у эмбрионов в более старшем возрасте начинает формироваться непроницаемый слой кутикулы, препятствуя поглощение CPA, и поэтому выживаемость резко снижается.

Возраст мошек, используемых для сбора эмбрионов, также повлиял на результат криоконсервации. Выживаемость эмбрионов, полученных от более старых мух (9-12 дней), была значительно ниже, чем от более молодых (1-4 дня).

Далее была выполнена процедура стабилизации проницаемости эмбрионов посредством сетчатой корзины и смеси D-лимонена и гептана (сокращенно LH от D-limonene и heptane). Было установлено, что выдержки эмбрионов в LH растворе в течение 10 секунд вполне достаточно для удаления парафина и повышения проницаемости желточной мембраны, вызывая при этом минимальное повреждение. Далее эмбрионы окрашивались в красный цвет с помощью раствора родамина B, а затем с них удалялся восковой слой (1c).

В результате эмбрионы были полностью проницаемы для CPA, содержащего этиленгликоль (EG), пропиленгликоль (PG) и диметилсульфоксид (DMSO), но не для CPA, содержащего сахариды (сахароза, сортибол и трегалоза).

Чтобы ввести CPA в эмбрионы для последующей витрификации, монослой эмбрионов сначала подвергали воздействию проницаемой CPA с низкой концентрацией (13 мас.%). Более 90% эмбрионов сначала потеряли воду и сжались из-за более высокой внешней осмолярности*, за чем последовало набухание, когда CPA проникал внутрь (1c).
Осмолярность* (осмотическая концентрация) суммарная концентрация всех растворенных частиц.
На следующем этапе было выполнено увеличение внутриэмбриональной концентрации CPA за счет обезвоживания путем помещения эмбрионов в CPA с высокой концентрацией (~ 39 мас.%) при 4 C. Обезвоженные эмбрионы стали плоские по форме и имели множество складок на поверхности.

Важно и то, что более высокая внутриэмбриональная концентрация CPA приводит к большей защите от летального образования льда во время последующего охлаждения и повторного нагревания, но также может привести к большей токсичности CPA, особенно при температурах выше нуля. Проанализировал выживаемость при различных концентрациях CPA, ученые установили, что 9 минут дегидратации в 39 мас.% этиленгликоля + 9 мас.% сорбита идеально подходит для успешной криоконсервации, так как снижает затраты реагентов и время выполнения самой процедуры.

После завершения всех подготовительных этапов ученые приступили непосредственно к заморозке эмбрионов. Для того чтобы криоконсервацию можно было использовать сразу на большом количестве эмбрионов, был разработан метод криосетки нейлоновая сетка, прикрепленная к тонкому держателю из полистирола. Сетка размером 2х2 см может вместить около 1700 эмбрионов. Для каждого отдельного опытного захода заморозки использовалось от 200 до 600 эмбрионов.

Когда криосетка вдавливается в раствор CPA, в котором плавают эмбрионы, последние переносятся на сетку, а CPA поднимается (1a).


Изображение 3

Ученые отмечают, что удаление излишков раствора CPA с криосетки непосредственно перед стеклованием уменьшило общую массу на криосетке в 10 раз, тем самым повысив скорость охлаждения/нагревания и выживаемость эмбрионов после криоконсервации (3a-3d).

Другими словами, чем меньше лишнего раствора CPA остается на сетке, тем быстрее будет процесс заморозки и тем больше эмбрионов одновременно можно будет стекловать (3c).

Затем криосетку с эмбрионами быстро погружали в жидкий азот (LN2) для стеклования и последующего хранения. Выявить успешность стеклования можно было визуально: витрифицированные эмбрионы становились прозрачными, а кристаллизованные (т.е. стеклование прошло неудачно) становились белыми (1c).

Для сравнения был использован другой хладагент SN2 (slush nitrogen). SN2 является более молодым вариантом LN2, который применялся в предыдущих исследованиях для стеклования эмбрионов. В рамках данного эксперимента SN2 показал более высокую скорость заморозки, но такую же скорость нагревания, как и LN2. Кроме того, показатели выживаемости в случае использования SN2 практически не отличались от LN2. По этой причине было решено продолжить использовать именно жидкий азот, так как SN2 гораздо сложнее производить (2c).

Факт того, что на криосетке было минимум раствора CPA, играет важную роль и в процессе нагревания. Предыдущие исследования показали, что скорость нагревания крайне важна для выживаемости эмбрионов. Правильное нагревание может даже спасти те эмбрионы, чья заморозка прошла с ошибками (например, образование льда).

Моделирование процесса нагревания показало, что при наличии CPA этот процесс протекает значительно медленнее. К примеру, скорость нагрева падает до 2.4 х 104 C/мин при толщине слоя CPA в 250 мкм (2e-2f).

Если же удалить CPA, то моделирование показывает, что увеличение площади контакта эмбрионов с криосеткой увеличивает скорость начала вторичного нагревания, так как нейлоновая секта нагревается быстрее эмбрионов (3g-3h).

После успешного охлаждения и последующего нагревания необходимо было удалить CPA, присутствующий внутри эмбрионов. Для этого эмбрионы после нагревания подвергались воздействию 15 мас.% раствора сахарозы перед криобуфером (т.е. изотоническим солевым буфером*) для смягчения осмотического шока (повреждение /распад клеток).
Изотонический солевой буфер* состоит из хлорида натрия (NaCl), диспергированного в стерильной воде в концентрации, при которой объем остается в пространстве внеклеточной жидкости (ECF от extracellular fluid). Буфер называется изотоническим, так как он не меняет размер клеток.
Дополнительно был протестирован метод прямой загрузки эмбрионов в изотонический буфер (т.е. без раствора сахарозы). На удивление скорость вылупления таких эмбрионов была такой же, как и при использовании сахарозы, но выживаемость была ниже. Это, по мнению ученых, связано с желточной мембраной, которая помогает избежать чрезмерного набухания обезвоженных эмбрионов.

Результирующая выживаемость вылупившихся и взрослых особей после криоконсервации составила 52.9 6.3 % и 31.8 5.3 %, тогда как выживаемость без заморозки составляла 97% и 89%. Полученные результаты могут показаться слишком малыми, однако для такого рода процедур это весьма внушительные цифры.

В заключение ученые проверили эффективность данного метода криоконсервации на других 24 штаммах мошек (графики ниже).


Изображение 4

В результате было установлено, что использованные первоначально условия проведения процедуры заморозки/нагревания одинаково успешны для всех протестированных штаммов, хоть и были некоторые незначительные отличия.

В частности, для штамма S7 21-часовые эмбрионы обеспечивали более высокую выживаемость после криоконсервации, чем 22-часовые эмбрионы, из-за несколько более высокой скорости эмбрионального развития.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые продемонстрировали методику криоконсервации эмбрионов дрозофилы. Для достижения максимальной выживаемости эмбрионов после охлаждения/нагревания необходимо было учесть несколько важных аспектов и обойти некоторые трудности. К примеру, важную роль играл не только возраст эмбрионов (оптимальный: 22-ой час развития), которые будут подвержены охлаждению, но и возраст родителей (оптимальный: 1-4 дня). Для успешного введения в эмбрионы криопротекторного агента (CPA) была использована методика увеличения проницаемости, основанная на погружении эмбрионов в смесь D-лимонена и гептана. Эта процедура позволяла снять с них парафиновую оболочку и повысить проницаемость желточной мембраны. Но лишний CPA, остающийся на поверхности эмбрионов, мог бы усложнить процедуру охлаждения, потому его необходимо было удалить. Это было сделано посредством криосетки (нейлоновая сетка, прикрепленная к тонкому держателю из полистирола). Очистка эмбрионов от излишков CPA снижала общую массу примерно в 10 раз, тем самым ускоряя процесс заморозки, для которой использовался жидкий азот. А вот удаление CPA из эмбрионов на этапе нагревания происходило за счет погружения последних в раствор сахарозы, что значительно снижало вероятность осмотического шока.

На первый взгляд кажется, что вся эта процедура невероятно сложна. Однако авторы уверяют в обратном. Они даже проверили это, пригласив добровольцев (два старшеклассника), которых обучили проводить криоконсервацию самостоятельно. Новоявленные лаборанты крайне быстро освоились, а выживаемость эмбрионов, с которыми они работали, оставалась на уровне, описанном учеными в их труде.

Несмотря на свои малые габариты, дрозофилы играют крайне важную роль современной науке. Между человеком и дрозофилой много общего, особенно в аспекте генов. Изучение мутантов этого модельного организма позволяет выяснить, как подобного рода генетические изменения могут повлиять на человека, заявляют авторы исследования. Именно потому сохранение взрослых особей и эмбрионов дрозофил для будущих исследований играет столь важную роль.

Пятничный офф-топ:


Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Непостижимая гиперпродуктивность учёных

13.05.2021 10:08:31 | Автор: admin

imageИллюстрация David Parkins изстатьи Nature 561, 167-169 (2018).


Научный прогресс двигается быстрее и быстрее. Новости полны пресс-релизами о перспективных разработках и об очередных взятых вершинах. Кто же они, герои эпохального подъёма? Новые гении, как Тесла, Эйнштейн или Тьюринг? Возможно ли измерить вклад гения в науку? Оказывается, да, теперь есть такая дисциплина наукометрия. Если совсем по-простому, нынче вклад в науку измеряется числом вышедших статей. Если судить по этому показателю, существует в мире не менее сотни людей, чьи способности таковы, что они публикуют не менее одной научной работы в рабочую неделю. Пять дней публикация в рецензируемом научном журнале. Хотите узнать секрет их креативности?


Предыстория


В марте 1909 г. Фриц Габер впервые получил аммиак, используя в качестве катализатора порошкообразный осмий. Результаты учёный передал в фирму BASF, которая построила в 1913 г. первый завод по синтезу аммиака. Аппаратуру для него разработал инженер К. Бош. Процесс получения азотной кислоты из аммиака к тому времени уже был разработан. Это означало, что Германия больше не зависит от импорта селитры, и способна сама прокормить себя (в буквальном смысле удобрения теперь производились из воздуха) и обеспечить выпуск военной продукции: порох, взрывчатка. А в 1914 году началась Первая мировая война. Подробнее об этой истории читайте в Нитраты на войне. Часть II. Горький мёд и почти детективная история.


Привели ли научные разработки процесса Габера-Боша к Первой мировой войне дискуссионный вопрос. Однако, история Второй мировой войны, с точки зрения химии, начиналась подозрительно похожим образом.


Снова крупное научное достижение процесс Фишера-Тропша. В 3040-е гг. на основе этой технологии налажено производство синтетического бензина в Германии. Коммерциализация осуществлена в 1933 году фирмой Braunkohle Benzin AG. Её история и годы жизни (1933-1945) удивительным образом пересекается с историей Германии тех лет. Располагая синтетическим бензином, Третий Рейх смог вести военные действия с невиданной ранее моторизацией вооруженных сил.


А вот какой был ответ советских химиков

Большинство предприятий, расположенных на Украине, в частности в Донбассе, и в центральных районах, оказалось в зоне военных действий и на оккупированной территории. В результате выхода из строя значительных производственных мощностей выпуск химической продукции снизился. Так, в декабре 1941 г. производство продукции по сравнению с июнем 1941 г. составило по Наркомату химической промышленности 32,3% (в ноябре было еще ниже 30,9%). Цитировано по статье ХИМИЧЕСКАЯ ПРОМШЛЕННОСТЬ В ГОД ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙН.


Не преувеличивая, скажу, что без серной кислоты нет не только производства военной продукции, как порох и взрывчатка, но и практически всей химии. Потеря производства серной кислоты означала неминуемый проигрыш войны. Однако, советским химикам удалось внедрить ванадиевый катализатор контактного синтеза серной кислоты. В результате удалось резко увеличить производственные мощности, и в тяжелое военное время наша промышленность была обеспечена этим важным сырьем. Это позволило во время Великой Отечественной войны полностью покрыть потребности оборонной промышленности страны в важном стратегическом сырье, необходимом для получения взрывчатых веществ. (Цитировано по статье Катализатор победы).


Роль ученых в ходе Второй мировой войны возросла настолько, что они являлись целями стратегических военных операций. Читайте об "операции Скрепка" и недавний пост Математики во время Второй Мировой войны: интеллект важнее грубой силы. Кульминацией силы науки явилась демонстрация ядерного оружия.


Последовавшая вслед за Второй мировой Холодная война велась в основном научно-производственными комплексами мировых держав. Гонка вооружений требовала всё больше и больше разработок, НИИ, ученых и инженеров. Быть учёным стало означать не только призвание и наклонности, но и профессию.


Пирамида


Нужные на особый случай ученые кадры заготовить сложно, если возможно вообще. Это не мобилизационный резерв, как в армии. Учебные заведения США и СССР готовили гораздо больше специалистов, чем было востребовано мирной экономикой. Спрос и предложение уравновешиваются, а в результате имеем падение уровня доходов рядовых учёных. Обычных учёных, занятых своей деятельностью. Среди них возникает стремление подняться выше в ранге, чтобы избежать проблем с трудоустройством, плюс, хотя бы элементарно компенсировать вложения сил и времени, потраченные на учебу.


Занятие наукой становится рискованной инвестицией: сначала работаешь на профессора, потом "сделав себе имя" становишься профессором сам и берешь несколько новых аспирантов, работающих уже на тебя. Каждый из них надеется сам стать профессором и так далее. Число занятых в науке возрастает. Подробнее о ситуации смотрите под катом. Там изложена ситуация 20-летней давности, но с тех пор вещи не стали лучше.


Известное письмо профессора Jonathan I. Katz - Don't Become a Scientist!

Не становитесь ученым!


Джонатан И. Кац


Профессор физики


Вашингтонский университет, Сент-Луис, Мо.


[my last name]@wuphys.wustl.edu


Подумываете о том, чтобы стать ученым? Хотите раскрыть тайны природы, проводить эксперименты или расчеты, чтобы узнать, как устроен мир? Забудьте об этом!


Наука это весело и увлекательно. Острые ощущения от открытий неповторимы. Если вы умны, амбициозны и трудолюбивы, вам стоит изучать естественные науки в бакалавриате. Но это и всё, что вам следует сделать. После окончания университета вам придется иметь дело с реальным миром. Это означает, что вам не следует даже рассматривать возможность поступления в аспирантуру по естественным наукам. Вместо этого займитесь чем-нибудь другим: медициной, юриспруденцией, компьютерами, инженерным делом или чем-то еще, что вас привлекает.


Почему я (занимая должность профессора физики) пытаюсь отговорить вас от карьеры, которая была для меня успешной? Потому что времена изменились (я получил докторскую степень в 1973 году, а статус профессора в 1976 году). Американская наука больше не предлагает разумного карьерного пути. Если вы идете в аспирантуру по естественным наукам, то рассчитываете на трудовую деятельность, занимаясь научными исследованиями, применяя всю свою изобретательность и любопытство для решения важных и интересных проблем. Вы практически наверняка будете разочарованы, возможно, когда будет уже слишком поздно выбирать другую карьеру.


Американские университеты готовят примерно в два раза больше докторов наук, чем имеется рабочих мест для них. Когда на рынке возникает избыток чего-то или кого-то, цена снижается. В случае с учеными, получившими докторскую степень, снижение цены происходит за счёт многих лет, проведенных в постдокторантуре. Постоянная работа оплачивается не сильно меньше, чем раньше, но вместо того, чтобы получить настоящую работу через два года после получения докторской степени (как это было типично 25 лет назад), большинство молодых ученых проводят пять, десять или более лет постдоками. У них нет перспектив на постоянную работу, и часто они вынуждены переезжать каждые два года, чтобы получить новую должность постдока. Для получения более подробной информации обратитесь к Сети молодых ученых или прочитайте статью в майском номере журнала Washington Monthly за 2001 год.


В качестве примера можно привести двух ведущих кандидатов на должность ассистента профессора на моей кафедре. Одному было 37 лет, десять лет после окончания аспирантуры (он не получил работу). Блестящему ведущему кандидату было 35 лет, семь лет после окончания аспирантуры. Только тогда ему предложили первую постоянную работу (это не стаж, просто возможность получить его через шесть лет, и шаг с беговой дорожки поиска новой работы каждые два года). Последний пример 39-летний кандидат на должность доцента, он опубликовал 35 работ. В отличие от них, врач обычно начинает частную практику в 29 лет, юрист в 25 лет и становится юридическим партнером в 31 год, а ученый со степенью доктора наук computer science имеет очень хорошую работу в 27 лет (компьютерные науки и инженерия это те немногие области, в которых промышленный спрос делает разумным получение степени доктора наук). Любой человек, обладающий интеллектом, амбициями и желанием упорно трудиться, чтобы добиться успеха в науке, может также добиться успеха в любой из этих других профессий.


Типичная зарплата постдока начинается от 27 000 долларов в год в биологических науках и около 35 000 долларов в физических науках (стипендии аспирантов меньше половины этих цифр). Сможете ли вы содержать семью на такой доход? Для молодой пары в небольшой квартире этого вполне достаточно, хотя я знаю одного физика, жена которого ушла от него, потому что устала от постоянных переездов без особых перспектив осесть на новом месте. Когда вам будет за тридцать, вам понадобится больше: дом в районе с хорошей школой и все остальное, что необходимо для жизни обычного среднего класса. Наука это профессия, а не религиозное призвание, и она не оправдывает клятву бедности или безбрачия.


Разумеется, вы шли в науку не только чтобы разбогатеть. Поэтому вы решаете отказаться от медицинской или юридической школы, хотя врач или юрист обычно зарабатывает в два-три раза больше, чем ученый (тому, кому повезло иметь хорошую работу высокого уровня). Я тоже сделал такой выбор. Я стал ученым, чтобы иметь возможность свободно работать над проблемами, которые меня интересуют. Но у вас такой свободы, скорее всего, не будет. В качестве постдока вы будете работать над чужими идеями, и к вам могут относиться как к техническому специалисту, а не как к независимому сотруднику. В конце концов, вас, вероятно, полностью вытеснят из науки. Вы можете получить прекрасную работу программиста, но почему бы не сделать это в 22 года, а не терпеть десятилетие страданий на рынке труда в науке? Чем больше времени вы проведете в науке, тем труднее вам будет ее покинуть, и тем менее привлекательными вы будете для потенциальных работодателей в других областях.


Возможно, вы настолько талантливы, что сможете избежать ловушки постдоков, какой-нибудь университет (в физических науках почти нет промышленных рабочих мест) будет настолько впечатлен вами, что вас возьмут на должность с правом преподавания уже через два года после окончания аспирантуры. Возможно. Но общее удешевление научного труда означает, что даже самые талантливые остаются на беговой дорожке постдокторантуры в течение очень долгого времени. Рассмотрим кандидатов на работу, описанных выше. Многие из тех, кто кажутся очень талантливыми, с соответствующими оценками и рекомендациями, позже обнаруживают, что конкуренция в области исследований более сложная или, по крайней мере, другая, и что они должны бороться с остальными.


Предположим, что в конце концов вы получите постоянную работу, возможно, должность профессора. Борьба за работу теперь сменится борьбой за гранты, и тут снова наблюдается избыток учёных. Теперь вы тратите свое время на написание заявок, а не на исследования. Хуже того, поскольку ваши заявки оцениваются конкурентами, вы не можете следовать своему любопытству, а вынуждены тратить свои силы и таланты на предвосхищение и отражение критики, а не на решение важных научных проблем. Это не одно и то же: вы не можете изложить в предложении свои прошлые успехи, потому что они являются законченной работой, а ваши новые идеи, какими бы оригинальными и умными они ни были, все еще недоказуемы. По пословице, оригинальные идеи это поцелуй смерти для заявки; поскольку еще не доказано, что они работают (в конце концов, это то, что вы предлагаете сделать), они могут быть и будут оценены низко. Достигнув земли обетованной, вы обнаруживаете, что это совсем не то, чего вы хотели.


Что делать? Первое, что должен сделать любой молодой человек (а это значит любой, у кого нет постоянной работы в науке), это избрать другую карьеру. Это избавит вас от страданий, связанных с обманутыми ожиданиями. Молодые американцы, как правило, уже осознали плохие перспективы и отсутствие разумной карьеры среднего класса в науке и покидают её. Если вы еще не сделали этого, то присоединяйтесь к ним. Оставьте аспирантуру людям из Индии и Китая, для которых перспективы на родине еще хуже. Я знаю больше людей, чьи жизни были разрушены получением докторской степени по физике, чем наркотиками.


Если вы занимаете руководящую должность в науке, то вам следует попытаться убедить финансирующие агентства готовить меньше докторов наук. Перенасыщение ученых это полностью следствие политики финансирования (почти всё обучение аспирантов оплачивается федеральными грантами). Финансовые агентства сетуют на нехватку молодых людей, интересующихся наукой, в то время как они сами вызвали эту нехватку, разрушив науку как карьеру. Они могли бы обратить эту ситуацию вспять, приведя количество подготовленных специалистов в соответствие со спросом, но они отказываются это делать или даже серьезно обсуждать эту проблему (в течение многих лет NSF распространял нечестное предсказание о грядущей нехватке ученых, и большинство финансирующих агентств по-прежнему действуют так, как будто это правда). В результате лучшие молодые люди, которые должны идти в науку, благоразумно отказываются это делать, а аспирантура заполняется слабыми американскими студентами и иностранцами, которых заманивают американской студенческой визой.


(оригинал письма)


Наукометрия


Учёных в мире становилось всё больше и больше, а в некоторых странах окончание Холодной войны привело еще и к демобилизации армии научно-технического фронта. Как это всегда бывает, под призывы к оптимизации управления научными исследованиями скрывалось старое доброе сокращение расходов и кадров. Однако, сложно решить, какие разработки пустить под нож, а какие оставить, обучение каким специальностям нужно, а каким нет. По силу ли эта задача даже гению? Что говорить об обычных менеджерах, чиновниках и управленцах. Непопулярные меры были замаскированы под введение формальных показателей результативности научной работы. Так у учёных появились свои KPI.


Ключевые показатели эффективности (KPI) подразумевают, что при достижении всех целей нижнего уровня иерархии, главная цель достигается автоматически. Так, мы считаем, что вместе с публикацией серии статей о некой проблеме X (за KPI здесь взята мера количество публикаций, цель нижнего уровня иерархии), научная проблема X оказывается решённой. Никто не сомневается в том, что решение научной проблемы сопровождается публикациями, но верно ли обратное?


Тем не менее, минимум последние 20 лет ученый мир живет с установкой, что эффективность исследований прямо пропорциональна публикационной активности. Вы делаете свою работу, отправляете её в журнал. В зависимости от импакт-фактора журнала (средняя величина, показывающая сколько цитирований имеет статья опубликованная в данном журнале за фиксированный период времени, обычно это три года) вам начисляются баллы.


Например, за две принятых статьи в престижный журнал с импакт-фактором 20 вы заработаете 40 баллов, а за двадцать статей в журнале рангом поменьше, с импакт-фактором 0.5, вы получите всего 10 баллов. Престижный журнал имеет придирчивых и дотошных рецензентов, его редактор выбирает актуальные и перспективные темы работ. Чем больше у вас баллов, тем выше шансы получить финансирование. Чем выше ваш индекс Хирша, тем выше ваш престиж и шансы получить грант.


О слабых сторонах и недостатках такого подхода к науке известно многое, мне не удастся перечислить все источники здесь, отмечу лишь два хороших поста на эту тему:



Проклятие закона Гудхарта


Закон (принцип) Гудхарта заключается в том, что когда экономический показатель становится целевой функцией для проведения экономической политики, прежние эмпирические закономерности, использующие данный показатель, перестают действовать. Своего рода это соотношение неопределенностей


$\Delta x \cdot \Delta p \ge \hbar/2$


где $\Delta x$ погрешность нашего показателя (координаты цели, KPI), $\Delta p$ погрешность меры воздействия (импульс, экономический стимул), а $\hbar/2$ константа.


Так, сделав публикационную активность мерилом вклада ученого в решение научной проблемы и управляя научной деятельностью по показателю, добились того, что показатель перестал отражать реальность. Много публикуется не значит, что делает что-то полезное. Равно и наоборот вклад Григория Перельмана в решение проблемы Пуанкаре бесспорно значителен, но по современным меркам, как ученый он совершенно незаметен. Всего три статьи, просто в архиве препринтов, никаких журналов с высоким импакт-фактором.


Кто думает, что дело поправят новые индексы, правила рецензирования и критерии выдачи грантов или наивен, или лукав. Закон Гудхарта опровергнуть сложно. Григорий Перельман находится по одну сторону значительный вклад, незначительный KPI. Кто же находится по другую? Кто новый вид эволюционировавших исследователей?


Сверхпродуктивные и успешные


Журнал Nature опубликовал в 2018 году интересное статистическое исследование Thousands of scientists publish a paper every five days. Список успешных ученых в открытом доступе вот он! Какие выводы следуют из собранных данных?


Большинство гиперпродуктивных авторов (86%) работают в области физики высоких энергий. Это ученые работающие на ускорителях частиц, в том числе на большом адронном коллайдере. Как правило, это крупные международные проекты и практически все задействованные люди вносят свою лепту. Сложившиеся правила таковы, что в авторы публикаций включают всех, нередко число соавторов превышает 1000 человек. Эти публикации исключены из статистики, так как цель была установить именно продуктивных "писателей".


Оставшиеся области химия, медицина, компьютерные науки (информатика) и биология. Исследователи отправили по электронной почте письма 265 авторам с просьбой рассказать о том, как они попали в чрезвычайно продуктивный класс ученых. 81 ответ приведен в дополнительной информации. Общими ответами были: упорная работа; любовь к науке; наставничество очень многих молодых исследователей; руководство исследовательской группой или несколькими группами; широкое сотрудничество; работа в нескольких областях или в основных службах; наличие подходящих обширных ресурсов и данных; кульминация большого проекта; личные ценности, такие как щедрость и обмен знаниями; опыт и сон всего несколько часов в сутки.


Когда я читал эти ответы, моя реакция была да ладно? Вы серьезно что ли?


Bellomo, Rinaldo: Ни для кого не загадка: это кривая нормального распределения с людьми на каждом хвосте. Для людей, находящихся в середине, каждый хвост будет выглядеть невероятным. Они правы. По определению, они правы. Гаусс гордился бы ими.


Читайте там же: есть победители, а есть неудачники, мы работаем 80 часов в неделю и успешны. Не хотелось бы занудствовать, но распределение Гаусса как раз исключает существование таких отклонений. Потому то его и называют нормальное распределение.


Посмотрим на близкие к реальности причины.


кардиологи публикуют больше работ после того, как становятся директорами (несмотря на тяжелые клинические и административные обязанности). Иногда ускорение бывает ошеломляющим: на пике своей продуктивности некоторые кардиологи публикуют в 10-80 раз больше работ за год по сравнению со своей среднегодовой продуктивностью, когда им было 35-42 года. Также часто наблюдается резкое снижение после передачи кафедры преемнику.


Оставлю это без комментариев.


Далее. Опрос гиперпродуктивных авторов показал, что в большинстве публикаций не соблюдался Ванкуверовский критерий авторства, то есть необходимое соблюдение следующих требований:


  1. участие в разработке или проведении эксперимента, или в обработке полученных данных
  2. участие/помощь в подготовке и редакции текста рукописи
  3. подтверждение опубликованного материала
  4. ответственность за содержание статьи

В реальности дело упрощается до первых двух пунктов. Подтверждение автоматическое (если вы не хотите выпускать статью явно отвечаете на email издательства, нет от вас ответа не возражаете). Ответственность? Раз статью пропустили рецензенты, значит, они гарантируют, что там всё нормально. Учитывая, что рецензирование анонимное и практически всегда бесплатное, по факту, за материал статьи никто не отвечает. Воспроизводимость результатов страдает, да.


Новые способы увеличения продуктивности


Цитата из статьи: Увеличит ли любая какаха, которую мы поместим в графен, его электрокаталитический эффект? (Wang L., Sofer Z., Pumera M. Will any crap we put into graphene increase its electrocatalytic effect? // ACS Nano. 2020. Vol. 14. . 1. Pp. 21-25.)


Располагая 84 достаточно стабильными химическими элементами (исключая благородные газы и углерод), можно подготовить 84 статьи о моноэлементном легировании графена; с двумя легирующими элементами имеем 3486 возможных комбинаций, с тремя 95284, а с четырьмя элементами почти 2106 комбинаций.


Видите? Разбавили графен куриным помётом и его свойства реально стали лучше! Стоит ли удивляться, что именно в химии работают очень продуктивные учёные?


Рассмотрим этот способ детальнее. Однажды я готовил на пару капусту брокколи. Реактивы вода, брокколи. Оборудование обычная мультиварка. Как капуста была готова, я посмотрел, что осталось в чашке мультиварки. Там была коричневая жижа многократно упаренный сок капусты. У меня есть детская ручка с УФ-светодиодом, вроде такой.
Фломастер-невидимка с УФ-фонариком.
Фломастер-невидимка с УФ-фонариком.


Посветив на разбавленную водой коричневую жижу я обнаружил люминесценцию раствора. Что же это такое? А это углеродные квантовые точки, вот что! Горячая тема исследований. Не верите? Пожалуйста, вот статья (не моя, к сожалению): Arumugam N., Kim J. Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions // Materials Letters. 2018. Vol. 219. Pp. 37-40. Читайте. Вы сможете сделать свои квантовые точки тоже, например, из апельсинового сока. Ничуть не сложнее, а вас процитируют более 1200 раз.


Люминесценция раствора от пропаренной капусты.
Люминесценция раствора от пропаренной капусты.


Больше серьезности. Возьмем вместо мультиварки тефлоновый автоклав и программируемую печь, воду непременно деионизированную. Вооружимся спектрофлуориметром, образец исследуем на просвечивающем электронном микроскопе Зачем всё это? Чтобы описать в статье. Чтобы было о чем писать на нескольких страницах с библиографией.


У вас есть просвечивающий электронный микроскоп? Умеете на нем работать? Не беда если его нет. На помощь приходит гиперпродуктивный ученый. Встречайте: человек-на-приборе. Вот где они, герои публикационной активности. Всего лишь за небольшое дело, которое вас ни к чему не обязывает, вы включаете специалиста по физическим методам исследования в статью. Снимок статья, спектр еще статья, дело пошло, химия богата на образцы.


Странно, что авторы упомянутого исследования в Nature не обнаружили эту простую закономерность.


Неожиданным результатом стало то, что некоторые гиперпрофильные авторы разместили много публикаций в одном журнале. В этом отношении выделяются Acta Crystallographica Section E: Structure Reports Online (перезапущен в 2014 году как Section E: Crystallographic Communications, а краткие отчеты о структурных данных теперь публикуются в IuCrData) и Zeitschrift fr Kristallographie New Crystal Structures. Три автора опубликовали более 600 статей в первом (Хун-Кун Фун, Сейк Венг Нг и Эдвард Тиекинк).


Ничего неожиданного. Эдвард Тиекинк, судя по его профилю, тот самый нужный специалист, без которого вы не опубликуете статью он отвечает за выдачу результатов рентгеноструктурного анализа.


Заключение


Ради Бога, только не думайте, что я призываю пойти в науку и стать широко публикуемым соавтором, наслаждаться грантами, путешествиями на конференции и славой. Помните, это всё пирамида, схема Понци. Сегодня выгодно снимать спектры и превращать их в статьи, завтра нет. Взлёт наук о материалах тоже не навсегда. Истории сегодняшнего успеха никак не рецепты завтрашнего. Если, конечно, не верить всерьёз мантрам вроде: упорная работа, меньше сна, сотрудничество с коллегами, увлеченность задачами, 80 часов работы в неделю Здоровый сон важен, а показатели результативности нет.


Моё мнение наука переместится в R&D подразделения компаний и в лаборатории при кафедрах немногих высших учебных заведений. Прогноз, безусловно, спорный, но оптимистичный. Другое будущее в пирамиде даже представлять не хочется.




VPS от Маклауд недорогие и надежные.


Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!


Подробнее..

Желе для принтера гибридный гидрогель и 3D-печать методом экструзии

19.05.2021 16:06:46 | Автор: admin


Несмотря на свою якобы внезапную популярность в последние годы, аддитивные технологии впервые увидели свет еще в 1971 году. Долгое время 3D-принтеры использовались исключительно для производства функциональных или эстетических прототипов, а сама технология носила название быстрое прототипирование. Стремительное развитие вычислительной техники привело к появлению разных методов реализации аддитивных технологий: от лазерной стереолитографии (SLA) до более знаменитой 3D-печати (3DP). Другой термин, появившийся еще в 1894, это гидрогель полимер, способный поглощать воду (если очень утрировано). У гидрогелей, как и у аддитивных технологий, множество применений: медицина, фармакология и даже энергетика. И вот ученые из университета Северной Каролины решили объединить 3D-печать и гидрогель для создания гидрогелевых структур с желаемыми свойствами. На Хабре была новость об этой разработке, но мы попробуем копнуть глубже. Из чего состоит изучаемый гидрогель, какими свойствами его можно наделить, и что из него можно сделать? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Для начала стоит в двух словах пояснить, что такое гидрогель. Это сеть из пересекающихся полимерных цепей, способных равновесно и обратимо набухать в воде и водных растворах. Основой гидрогеля являются гидрофильные молекулы.

Проблема классических гидрогелей, изготовленных из полимерных сетей в воде, состоит в том, что они мягкие и хрупкие, т.е. им не хватает упругости и прочности. Из-за этого применение гидрогелей в различных отраслях (робототехника, тканевая инженерия и т.д.) сильно ограничено.

Эластичность гидрогелевых материалов может быть улучшена путем объединения взаимопроникающих ковалентных и ионных полимерных сетей с образованием сильно растяжимых и прочных структур. Другой метод улучшения механических свойств гидрогелей основан на использовании наполнителей с высоким коэффициентом формы (высокое отношение длины наполнителя к диаметру его поперечного сечения). Это позволяет механически усилить гелевую матрицу. Однако использование наполнителя из материала, отличного от материала матрицы, приводит к возникновению напряжения на поверхностях интерфейсов, которые вызывают образование трещин при деформации или нагревании.

Противоположный метод основан на применении однополимерных композитов или так называемых гомокомпозитов. Мезомасштабная усиливающая сеть гомокомпозитов сделана из материала, который химически идентичен материалу первичной матрицы. Сети гомокомпозитного армирования позволяют модулировать механические свойства первичной (основной) матрицы без напряжения, точек расслоения и т.д. Звучит очень многообещающе, но и тут есть проблема изготовление HHG (от homocomposite hydrogel, т.е. гомокомпозитный гидрогель) является крайне сложным процессом из-за отсутствия методов создания армирующих сетей с тем же химическим составом, что и матрица гидрогеля.

В рассматриваемом нами сегодня труде ученые описывают новый тип HHG, в котором как первичная гелевая матрица, так и армирующая сеть состоят из альгината натрия (SA от sodium alginate; C6H9NaO7). Эти HHG усилены фибриллярной сетью альгинатных мягких дендритных коллоидов (SDC от soft dendritic colloid). SDC это иерархически структурированный класс мягкой материи, синтезированный посредством процесса осаждения, вызванного сдвигом, в турбулентной среде.

Высокая степень разветвления вокруг ядер частиц SDC делает их морфологически похожими на полимерные молекулярные дендримеры. Однако SDC намного больше, чем эти дендримеры. Ученые считают, что иерархически разветвленные SDC могут быть отличным вариантом для эффективного армирования композитных материалов. Важен тот момент, что ответвления SDC покрывают большую площадь поверхности, что может повысить стабильность композита за счет более равномерного распределения нагрузки.

Результаты исследования


Первым делом необходимо было изготовить мягкие дендритные коллоиды из альгината (т.е. SDC), которые должны были послужить армирующими сетками. Для этого было использовано турбулентное осаждение. Для получения SDC гидрогеля раствор альгината (120190 кДа) вводили в водный раствор ионов Ca2+, которые эффективно связывают две -COO- боковые группы на основной цепи альгината ().


Изображение 1

Процесс осаждения приводит к образованию SDC с характерной иерархической морфологией (1b) с разветвлением разного масштаба и поколениями (вторичными ответвлениями) волокон. Фактически SDC состоят из волокон микронного размера, которые многократно разветвляются на все более тонкие волокна. Самый внешний слой (корона), окружающий каждый SDC, состоит из гибких нановолокон, толщина которых может достигать 10 нм (1b). Нановолокна в коронах наделяют их физической адгезией, которая является основным фактором способности дендриколлоидов создавать структурную прочность коллоидной сети. Конечный размер обычных SDC, включая их корону, находится в диапазоне 100500 мкм.

Далее необходимо было оценить вязкоупругие свойства водных суспензий SDC. В первую очередь ученые проверили, образуют ли альгинатные SDC гидрогели коллоидной сети при низких объемных долях в воде. В теории в водных суспензиях контактирующие SDC будут прочно прилипать за счет сил Ван-дер-Ваальса с образованием перколяционной* сети субконтактов разветвленных волокон (2a).
Перколяция* в химии явление протекания или непротекания жидкостей через пористые материалы.

Изображение 2

Оценка модулей накопления (G') и потерь (G) суспензий SDC в линейной вязкоупругой области показала, что SDC имеют сильную склонность к образованию коллоидных сетей.
Динамический модуль*: совокупность динамического модуля G может быть использована, чтобы представить соотношение между колебательным напряжением и нагрузкой:

G = G +iG

где i2 = -1; G модуль накопления; G модуль потерь.
Предел текучести наблюдался в водных суспензиях 0.25 мас.% SDC, т.е. при более низкой концентрации, чем в большинстве типов обычных коллоидных гелей.

Суспензия 1.0 мас.% SDC показала значение G '= 200 Па, тогда как заявленное значение для 1.0 мас.% альгинатных микрогелей должно быть 10100 Па. Т.е. суспензии SDC обладают более выраженными твердоподобными характеристиками, чем суспензии обычных альгинатных частиц.

Непрерывная фаза HHG состоит из молекулярного альгинатного геля, объединенного ионами Ca2+. Первым делом ученые проанализировали свойства молекулярных гидрогелей, содержащих из 1.0 мас.% связанного альгината, но без SDC. Гидрогель был получен путем добавления наночастиц CaCO3 и -лактона D-глюконовой кислоты (GDL) к раствору SA. Поскольку GDL подвергается гидролизу и понижает pH, CaCO3 медленно высвобождал ионы Ca2+. Спустя 2 часа уравновешивания были получены данные касательно вязкоупругих свойств гидрогеля (2c). При концентрации CaCO3 выше 0.05 мас.% гидрогель вел себя как твердое вещество. При дальнейшем введении Ca2+ в гидрогель его жесткость продолжала увеличиваться. Но при CaCO3 выше 0.2 мас.% наблюдался синерезис (старении структуры) гидрогеля с последующим выделением воды. В результате было установлено, что для поддержания стабильности гидрогеля в его составе должно быть 1.0 мас.% SA и 0.1 мас.% CaCO3.

В итоге у исследователей было на руках две составляющие, которые требовали объединения, SA SDC (альгинатные мягкие дендритные коллоиды) и молекулярная матрица SA CMH (альгинатный гель, связанный ионами Ca2+).

Было синтезировано множество гибридных HHG, где общая концентрация SA поддерживалась на постоянном уровне в 1 мас.%, а отношение SDC к CMH варьировалось.


Изображение 3

Все образцы, полученные таким путем, демонстрировали характеристики твердого вещества (3a). Характерные кривые напряжение-деформация (3b), полученные при испытании на механическое растяжение, также демонстрируют, что гибридные HHG имеют большую жесткость, чем гели только из SDC или CMH. На графике 3c показаны данные измерений растяжения-деформации и реометрии всех образцов. Анализ этих данных показывает, что гомокомпозитные системы, содержащие смешанные SDC и CMH, проявляют сильный синергетический эффект. Значения комплексного модуля (G) и модуля Юнга (E) для гомокомпозитных гелей показали трехкратное увеличение с максимумами при низких отношениях SDC к CMH.

Однако это нельзя приписывать исключительно увеличение концентрации Ca2+ в гомокомпозитной системе. Так максимальный модуль сдвига в HHG (G = 950 Па при 0.125 мас.% SDC / 0.875 мас.% CMH) не соответствует самой высокой концентрации Ca2+, поскольку дальнейшее увеличение доли SDC снижает получаемую жесткость HHG.

Следовательно, сильный синергетический эффект, приводящий к увеличению механической прочности HHG, может быть непосредственно связан с физическим переплетением молекулярной SA и коллоидных сетей SDC (3d). Полученная структура сохраняет стабильность в большинстве сред, но может быть легко разрушена путем помещения ее в растворы сильных хелатирующих агентов, таких как ЭДТА (этилендиаминтетрауксусная кислота; C10H16N2O8).

Ученые отмечают, что еще одной важной особенностью разработанного гибридного гидрогеля является возможность менять кинетику его гелеобразования в зависимости.

Сначала была выполнена проверка зависимости гелеобразования от времени трех вариантов образцов: SDC, CMH и композитный HHG (концентрация SA у всех была одинаковой 1 мас.%).


Изображение 4

На графике 4a представлены результаты анализа чистой суспензии SDC. Видно, что SDC сразу проявляет твердое поведение без добавления CaCO3 или GDL. Это объясняется тем, что формирование этой сети происходит за счет контактного расщепления и переплетения фибриллярных дендриколлоидов.

С другой стороны, чистый CMH сначала проявляет жидкое поведение и постепенно затвердевает по мере высвобождения связывающего агента Ca2+ в результате гидролиза. CMH становится полностью связанной структурой спустя 120 минут (4b).

Важно отметить, что зависимая от времени эволюция HHG напрямую зависит от кинетики, с которой SDC и CMH (основные составные элементы HHG) собираются в сети. Изначально происходит затвердевание HHG из-за гелеобразования механически жесткой сети SDC. Затем формируется более прочный гидрогель, поскольку взаимопроникающая молекулярная сеть CMH становится связанной ионами Ca2+ (4c и 4d).

Эти свойства материала показывают контролируемые начальные напряжения текучести и медленное нарастание эластичности гидрогеля с течением времени. Следовательно, подобный материал можно использовать в 3D-печати, что ученые и решили проверить на следующем этапе исследования.

Факт того, что созданный гидрогель является гомокомпозитной системой, позволяет точно контролировать его свойства. За счет этого такой гидрогель можно использовать в 3D-печати с помощью экструзии, что ранее было крайне сложной задачей. Для примера, оба SDC и CMH не пригодны для экструзии в своей чистой форме, в отличие от гибридного HHG.

Возможность контролировать свойства гидрогеля позволяют создать чернила для экструзии, в которых не зависящие от времени предел текучести и время затвердевания могут быть настроены так, как это угодно человеку.

Синергетический эффект в смешанных композитах SA-SDC.

Поскольку 3D-принтер применяет перепад давления, превышающий предел текучести HHG, экструдированная форма сохраняется за счет быстрого гелеобразования сети SDC (4c, видео выше).


Изображение 5

Важно и то, что разработанный гидрогель можно было использовать для печати в обычных условиях без дополнительной обработки или подготовки материала (). Примечательно, что G чистой суспензии SDC (1500 Па) почти на четыре порядка больше, чем у смеси CMH при до добавления GDL (0.5 Па; 5b).

Несмотря на максимальную жесткость геля HHG, возникающую при более низких относительных соотношениях SDC/CMH (4c), HHG с более высоким относительным содержанием SDC давали больше нитей с улучшенным наслоением (видео ниже).

3D-печать многослойной структуры путем экструзии.

На 5a и 5c показан процесс 3D-печати гомокомпозитного гидрогеля методом прямой экструзии. HHG экструдируется через сопло (25 G, внутренний диаметр 0.26 мм) при 140 кПа, и гель сохраняет свою форму благодаря пределу текучести (80 Па). Дополнительное формирование структур в z-направлении может быть достигнуто путем наложения последовательных слоев, которые, как было обнаружено, хорошо прилегают к нижележащим. Ученым удалось добиться аддитивной печати более 10 слоев гидрогеля в вертикальном направлении без снижения скорости экструзии. После затвердевания (60 минут) готовую напечатанную структуру можно было легко удалить с подложки (5d). Если же есть необходимость в структуре больших размеров, то тут необходима поэтапная экструзия, дающая дополнительное время для затвердевания геля, также необходимо увеличить предел текучести материала за счет изменения состава HHG.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые продемонстрировали свое удивительное творение композитный гидрогель, свойствами которого можно манипулировать в зависимости от потребностей конечного пользователя. Созданный ими гидрогель отлично подходит для 3D-печати посредством экструзии, чем не могли похвастаться предшествующие гидрогели.

Ученые заявляют, что материалы на водной не отличаются особой прочностью, они хрупкие и мягкие, что вполне ожидаемо. Однако, если объединить альгинатные мягкие дендритные коллоиды и альгинатный гель, связанный ионами Ca2+, то можно получить гидрогель с повышенной прочностью. Другими словами, они объединили два разных гидрогеля в один, свойства которого превосходят свойства его составных.

К вариантам применения нового гидрогеля его создатели относят медицину, пищевую промышленность и мягкую робототехнику. Но до полноценного использования еще далеко, так как гидрогель требует доработок. В частности, ученые хотят изменить гидрогель так, чтобы его можно было применять в 3D-печати биомедицинских инъекционных материалов.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Нестойкий оловянный припой. О чуме, погубившей Роберта Скотта, и о других заразных болезнях

20.05.2021 14:22:33 | Автор: admin

"Моей вдове"

Дорогая, любимая. Мне непросто писать из-за холода 70 градусов ниже ноля и только палатка защищает Мы оказались в тупике, и я не уверен, что мы справимся. Во время короткого завтрака я пользуюсь небольшой толикой тепла, чтобы написать письма, готовясь к возможной кончине. Если с мной что-то случится, я бы хотел, чтобы ты знала, как много ты значила для меня. Заинтересуй сына естественными науками, если сможешь. О, моя дорогая, моя дорогая, как я мечтал о его будущем. И все же, моя девочка, я знаю, что ты справишься. Ваши портреты найдут у меня на груди. Я мог бы многое рассказать тебе об этом путешествии. Какие истории ты смогла бы поведать нашему мальчику, но, ох, какой ценой. Лишиться возможности увидеть твое милое, милое лицо. Я думаю, что шансов нет. Мы решили не убивать себя, и бороться до конца, чтобы добраться до лагеря. Смерть в борьбе безболезненна, так что не волнуйся за меня.

Это знаменитое письмо написал в Антарктиде замерзающий Роберт Скотт в конце марта 1912 года. 17 января 1912 года, в ходе второй антарктической экспедиции под названием Терра Нова, Скотту и горстке его соратников (Эдгару Эвансу, Лоуренсу Отсу, Эдварду Уилсону и Генри Боуэрсу) удалось достичь Южного Полюса, где они обнаружили норвежский флаг и множество собачьих следов (14 декабря 1911 года к полюсу пришла группа Руаля Амундсена, в которой кроме Амундсена были Оскар Вистинг, Хелмер Хансен, Сверре Хассель, Олаф Бьяланд).

Соперничество Амундсена и Скотта, фамилии которых теперь навечно сцеплены дефисом в названии американской антарктической станции Амундсен-Скотт прямо на Южном Полюсе это редкостной выразительности пример, демонстрирующий сокрушительную победу эффективного менеджера над прекраснодушным героем. Амундсен (которого завистники звали Рекламундсен) продумал свою экспедицию до таких мелочей как закупка варежек. Его палатки не продувались, так как были оснащены ультрасовременными застежками-молниями (которые, кстати, на антарктическом морозе иногда так замерзали, что из палатки было невозможно выбраться без ножа, либо молнию приходилось отогревать снаружи). Расходуя груз и провиант, Амундсен методично расстреливал ездовых собак, оставляя ровно столько, сколько нужно было, чтобы тащить полегчавшие сани, скармливая убитых собак живым. Он называл ледники в честь своих спонсоров и за всю экспедицию не потерял ни одного человека.

Скотт при движении на юг также оставлял базовые лагеря с топливом и провиантом для обратного пути. Были там и запасы керосина в канистрах, запаянных оловом. На свою беду полярники не учли феномена оловянной чумы.

Аллотропия

Для химических элементов характерны так называемые аллотропные изменения (модификации). В зависимости от условий окружающей среды физические свойства элемента, а также его наблюдаемое состояние, могут сильно меняться. Это связано с переупорядочиванием атомов и, следовательно, с изменением силы связей между ними.

Рассмотрим три характерных примера аллотропной модификации:

Озон и кислород

Обе этих молекулы состоят из атомов кислорода, но плотность озона в 1,5 раза больше, чем у кислорода, и химическая активность также выше. Например, возможна прямая реакция озона с серебром, которая между кислородом и серебром происходить не будет:

6Ag+O3=3Ag2O

Кислород жизненно необходим для человека, а озон в больших концентрациях вреден, хотя, в малых полезен. Озон обладает сильным приятным запахом, а кислород нет.

Графит и алмаз

Как известно, алмаз имеет максимальную твердость по шкале Мооса (10), а графит минимальную (1). Из иллюстрации понятно, что связи между атомами углерода в горизонтальных слоях графита остаются сильными, а в вертикальном разрезе очень слабые, благодаря чему графит снимается послойно, и им удобно писать.

Белый и красный фосфор

Температура плавления красного фосфора составляет 600 C, тогда как температура плавления белого всего 44 C. При этом красный фосфор не воспламеняется до 250 C, а белый фосфор воспламеняется уже при 45 C, а при трении и при более низких температурах.

Таким образом, поразительные отличия разных аллотропных модификаций у фосфора и углерода связаны с тем, что кристаллическая решетка этих элементов может упорядочиваться принципиально разным образом. Фосфор и углерод находятся в центральной части своих периодов в таблице Менделеева, однако являются полноценными неметаллами, будучи расположены в правом верхнем углу таблицы, где сосредоточены элементы с неметаллическими свойствами:

Здесь желтым цветом обозначены неметаллы, зеленым переходные металлы, розово-желтым полуметаллы. И также есть олово, которое, в отличие от сурьмы и германия, правильнее считать полноценным металлом. Но оно находится на три периода ниже углерода, поэтому тоже проявляет ярко выраженные аллотропные свойства.

Оловянная чума

Белое олово это типичный металл, напоминающий свинец, но легче и тверже. Олово известно с глубокой древности и входит в состав бронзы одного из первых сплавов, изобретенным человеком (олово + медь). Как олово, так и медь достаточно мягкие и легкоплавкие металлы, а бронза гораздо прочнее, благодаря чему отлично подошла для изготовления оружия, посуды и инструментов, дав начало Бронзовому Веку. Тем не менее, белое олово существует в достаточно узком температурном режиме, между 161 и 13,2 C. При более низких температурах олово начинает спонтанно переходить в серую аллотропную форму, напоминающую порошок или даже пыль. Максимальной интенсивности этот процесс достигает примерно при -39 C, и от металлического олова ничего не остается.

Наиболее опасной чертой такой аллотропной модификации олова является заразность. Серое олово при контакте превращает белое олово в серое, если температура остается достаточно низкой. Так, принесенная с мороза оловянная миска, поставленная в шкаф в неотапливаемом помещении, может заразить всю остальную оловянную посуду.

Очень странно, что Роберт Скотт не учел этого обстоятельства ведь оловянная чума известна давно; есть даже предположение, что именно из-за оловянной чумы, поразившей пуговицы наполеоновской армии в ходе отступления из Москвы, французы оказались в особенно незавидном положении.

Оказывается, что оловянная чума характерна только для химически чистого олова, для защиты от нее достаточно правильно подобрать сплав на основе олова. Например, в наше время широко известен сплав пьютер, предметы из которого были найдены даже в раскопках древнеегипетского культурного слоя. Наиболее качественный пьютер состоит из 95% олова, 2% меди и 3% сурьмы. Именно из такого сплава выполнена статуэтка Оскар.

Поразительно, но в недавнем прошлом для оловянной чумы нашлось практическое применение, связанное с очисткой лабораторной и промышленной оптики от капелек олова. Капельки чистейшего олова используются в качестве мишеней для плазмы, которая применяется для получения глубокого ультрафиолета, а глубокий ультрафиолет для вытравливания микросхем. При этом для сборки ультрафиолета в действующий луч используется тончайшая оптика, которая быстро тускнеет, так как на ней конденсируется олово. Оказалось, что именно обработка оптики серым оловом позволяет полностью очистить стекло, не оставив на нем ни малейших царапин. В результате срок службы такого собирающего зеркала значительно увеличивается.

Но оловянная чума лишь наиболее известная аллотропная болезнь металла. Есть и значительно более экзотические и не менее опасные метаморфозы, о которых я также хочу здесь рассказать.

Цинковая чума

Это явление во многом подобно оловянной чуме и изучено гораздо хуже. Впервые описано примерно в 1920-е годы в среде мастеров и коллекционеров, увлекающихся миниатюрными моделями машин. В чистом виде цинк в производстве практически не используется, а в промышленности применяется как основа сплава цамак, содержащего также алюминий, магний и медь. Цамак был разработан в США в 1929 году, в СССР и России более употребительно название ЦАМ (цинк, алюминий, медь). Правильное соотношение металлов в ЦАМ: цинк 95%, алюминий 4%, медь 1%.

Чума, подобная оловянной, поражает такой сплав не просто при изменении физических условий, но и, по-видимому, неизбежно, если доли металлов в ЦАМ отмерены неправильно. Цинковая чума начинается с характерных вздутий на поверхности металла.

Затем микроструктурные изменения проникают в глубину металла, и он крошится.

Прямая аналогия таких повреждений с оловянной чумой не доказана, хотя, по данным частных экспериментов, прочность металлических моделей после замораживания действительно падает в разы. Согласно другой версии (изложенной здесь, где показаны фотографии с последовательной деградацией модели), ЦАМ заболевает чумой, если в его составе оказывается хотя бы минимальное количество олова или свинца. Если бы эта версия подтвердилась, то означала бы, что оловянная чума заразна даже для цинка, являющегося переходным металлом.

Чаще цинковую чуму связывают с технологическим браком при производстве. Например, в сплаве может быть слишком велика доля алюминия, как в китайских моделях, либо в него могут попадать примеси никеля или сурьмы. То есть, такой сплав уже нельзя считать ЦАМ.

До недавнего времени цинковая чума считалась неизлечимой. Действительно, вздутия на моделях практически необратимы, но болезнь можно затормозить, заливая микротрещины эпоксидной смолой. До сих пор неизвестно, является ли цинковая чума физико-химическим заболеванием или просто заводским браком, поэтому мне были бы интересны подробные исследования или новости на эту тему, если Хабр их подскажет.

Пурпурная чума

Такое название получила еще одна болезнь металлов, заражение золота алюминием. Проблема была обнаружена в 1970-е годы в США, когда в радиолокационном оборудовании стали применяться СВЧ-транзисторы с алюминиевыми проводниками. При прохождении сильного тока алюминий разогревался, затем, остывая, сжимался, проводник деформировался, транзистор выходил из строя. Чтобы справиться с этой проблемой, проводники стали делать из золота, но подложка транзистора могла по-прежнему содержать алюминий. Тогда оказалось, что при сильном нагревании на стыке золота и алюминия между ними образуется сразу несколько интерметаллических соединений, одно другого пагубнее.

Основной недостаток таких сплавов хрупкость и низкая прочность. Контакт просто отламывается от транзистора. Наиболее распространенное соединение золота и алюминия AuAl2, где золото составляет по массе примерно 78,5%, а алюминий 21,5%. Это соединение имеет яркий фиолетовый цвет, почему и получило название пурпурная чума.

Пурпурная чума возникает при температурах свыше 1000 C, то есть, близко к температуре плавления золота (1064 C). Пурпурная чума образуется неравномерно, поэтому конструкция долго сохраняет механическую плотность, пока не станет слишком поздно. Но уже при остывании до 624 C пурпурная чума сменяется коричневой, гораздо более хрупким соединением Au2Al. А при температурах 100 C и ниже начинается диффузия: слои с содержанием алюминия начинают проникать вглубь золота, и пурпурная чума охватывает весь образец, а не только стык (это явление называется эффект Киркендалла). При этом уменьшается общий объем вещества, и разрушительное воздействие пурпурной чумы становится фатальным.

Опять же, эта болезнь устраняется достаточно легко: проводник нужно легировать, достаточно 1% платины или палладия.

Интересно, что и пурпурная чума нашла своих ценителей. Соединения золота и алюминия эстетично выглядят, а интерметаллид AuAl2 даже был получен ювелирами в 1930 году и запатентован под названием аметистовое золото. Уже тогда было замечено, что этот сплав очень хрупкий, поэтому его нельзя ковать или вытягивать, но можно осторожно гранить и оправлять как драгоценные камни. Открыв пурпурную чуму, ювелиры продолжили эксперименты, легируя золото, в частности, галлием и индием. Получались сплавы, близкие по свойствам к золоту, но тяготеющие по цвету к синей части спектра, также очень красивые.

Вместо заключения

Процессы, рассмотренные в статье, можно считать специфическими случаями коррозии. Пример истинной коррозии, напоминающий металлическую чуму это образование дикой патины. В отличие от ровной и плотной благородной патины, которая возникает при медленном окислении меди на воздухе, дикая патина является рыхлой, поэтому не только разрушается вместе с поверхностным слоем медного изделия, но и проникает внутрь него, заражая металл ионами хлора. В Санкт-Петербурге, где атмосфера в конце XX века стала гораздо агрессивнее из-за выхлопных газов, усугубивших высокую влажность, дикая патина серьезно поразила скульптуры Укрощение коня на Аничковом Мосту.

Чтобы продлить жизнь этих скульптур, их пришлось искусственно покрывать очень тонким слоем закиси меди, имитирующей благородную патину. Возможно, она позволит продлить жизнь этим красавцам.

Вышеизложенный экскурс при всей пестроте приведенных примеров был подготовлен, чтобы продемонстрировать, насколько больно бывает учиться на ошибках. Я не симпатизирую Скотту, который при всей отваге и силе духа последовательно действовал как карьерист и увел с собой в могилу еще нескольких людей, при этом вдохновив своим примером целое поколение полярников. Но мне кажется очень странной гримасой судьбы, что смерть Скотта, напрасная с точки зрения географического подвижничества, могла настолько подстегнуть развитие металлургии и химии металлов, именно в силу своей нелепости и неизбежности.

Подробнее..

Сыворотка правды. Расскажете, что угодно

02.06.2021 16:12:10 | Автор: admin

Всем привет! Вместо предисловия: замглавред Хабра увидел наши посты на других ресурсах и сказал, что на Хабре оно тоже можно/нужно. Попробуем. Мы пишем на темы химии, биохимии, биологии, медхимии, пищехимии и т.п. Научпоп, в общем. Невысокой сложности, без лишних формул и прочего, чего обычному человеку не надобно. Темы берём из пожеланий, писем и прочих запросов.

Пост, который попался замглавреду, был посвящён т.н. сывороткам правды. С него и начнём. Занятная идея, эта сыворотка. С ней расскажете, что угодно! Действительно, что угодно. То есть - что пожелаете. То есть -не работают никакие "сыворотки" никакой правды.

Человек умеет врать (говорить неправду), вот это - общеизвестный факт. Да чего уж там человек, даже братья наши меньшие умеют (есть масса интересных экспериментов с обезьянками). И разумеется, у многих есть большой соблазн "принудить" человека к правде. В первую очередь это касается всевозможных спецслужб. В книжках разного уровня художественности то и дело попадаются эпизоды, как в застенках КГБ/ФСБ/ЦРУ/МИ6/Моссада человеку на допросе вводят сыворотку правды (чаще всего звучат названия "скополамин" или "пентотал"). И человек, конечно, не может теперь не соврать. Или - ещё надёжнее! - магия, как у Джоан Роулинг или Даниэля Дессана. В воображении волшебствующих авторов это выглядит примерно так (смотреть с 1:50, не нашла идеально вырезанного фрагмента):

В реальности - ничего подобного.Нет. Ноу. Найн. Даже не надейтесь, коварные спецслужбы, хитрые маги и проч. Вот вам правда. "Сыворотки правды" могут воздействовать на процессы торможения, и при этом человеку несколько труднее запускать сложное мышление (а придумывание лжи - это очень сложный в физиологическом смысле акт).Но сыворотки не отнимают у человека этой способности в принципе. А самое главное - они просто дают некоторое ощущение расслабленности и комфорта. Иными словами, если вы хотели наврать всем и каждому, что вчера видели прилёт летающей тарелки с марсианами, то после применения "сыворотки правды" вы получите лишь больше удовольствия от такойфантазииправдивой истории и будете охотнее ею делиться. Хотя она, возможно, станет несколько беднее на подробности, но это уже детали.

Пентотал (а точнее - пентотал натрия, а ещё точнее это вещество называется тиопентал натрия) - препарат, работающий с системой гамма-аминомасляной кислоты. ГАМК - главный тормозный нейромедиатор, так вот тиопентал просто стимулирует это действие. Он активирует ГАМК-рецепторы, замедляет закрытие ГАМК-зависимых каналов, которые имеются у нейронов, словом - вовсю помогает этой кислоте "жать на тормоз".

Скополамин - алкалоид (т.е. производится природой, а мы у неё это подсмотрели). Он работает с системой ацетилхолина (холинолитик, т.е. противодействует этому нейромедиатору). Для ацетилхолина есть два вида рецепторов: типа Н, никотиновые, и типа М, мускариновые. У них есть свои подтипы, вот у мускариновых рецепторов их 4 штуки. И все 4 блокируются скополамином, если тот оказывается в организме. Результат - седативное и снотворное действие, возможные кратковременные потери памяти и т.п., но ничего, связанного с желанием говорить правду, только правду и ничего, кроме правды. От укачивания ещё помогает...

Все остальные препараты избогатого арсенала спецслужбфантазий писателей действуют примерно так же. Заторможенность - да, правдивые ответы - ну, как повезёт. Так что, способы заставить говорить правду, конечно, есть, но они имеют мало отношения к биохимии, нейрохимии и фармакологии. По крайней мере,пока. ;-) Такое вот резюме... многообещающее.

Первоисточник: наш однозначно правдивый канал "Биохимикум" на Яндекс.Дзен.Сначала посты мы размещаем там, и на то есть простая причина: тамошней аудитории химический/биохимический ликбез нужнее. Нам вообще показалось, что для уровня Хабра прописные истины формата "сыворотки правды не бывает" или там "глутамат на самом деле безвреден" - это не совсем то, но нас уверили, что подойдёт :) Поглядим.

Подробнее..

Суперклей 2.0 адгезивный материал, вдохновленный морскими обитателями

09.06.2021 10:16:43 | Автор: admin


Когда-то давно по тв крутили креативную рекламу суперклея. Основной фишкой в ней был мужчина, чьи ботинки были приклеены к потолку и спокойно держали его в подвешенном состоянии. Это необычное зрелище плюс уверенный голос диктора, рассказывающего о невероятной силе рекламируемого продукта, внушали потенциальному покупателю вполне ожидаемую мысль купить. Меня же всегда смущало одно радостное выражение лица этого новоявленного Бэтмена: кто-то присобачил его к потолку, а он радуется. В общем, странная реклама, очевидно гиперболизирующая свойства продукта в угоду повышения его продаж. Однако адгезивный материал способный на такое был бы крайне полезен во многих отраслях, посему многие ученые пытаются из года в год создать все более липкий клей. Так ученые из университета Тафтса (США) в попытках создать новый тип клея обратились за вдохновением к морским обитателям. Новость об этом исследовании уже была, но мы, как обычно, рассмотрим его подробнее. Какие именно существа вдохновляют на мысли о клее, как именно их физиология и биохимия помогли в разработке адгезивного материала, и насколько клейкий такой клей? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


В водах морей и океанов полно не только снующих туда-сюда рыб и млекопитающих, но и существ, предпочитающих сидеть на одном месте и не двигаться без особой на то причины. На первый взгляд это кажется весьма простой задачей достаточно какой-то присоски, плоской поверхности и вуаля постоянное место жительства готово. Однако морская среда неоднородна: регион, глубина, течения, температура, соленость, и даже соседи могут тем или иным образом влиять на способность сидячих существ прикрепляться к поверхностям. Из менее очевидных, но не менее важных аспектов, является химический состав воды.

Одним из самых именитых природных адгезивных материалов, применяемый в морской среде, это биссус, выделяемый некоторыми двустворчатыми моллюсками (например, мидиями). Биссус представляет собой полипептидное волокно, состоящее из адгезивных белков, специфически консервативных олигопептидов, богатых остатками лизина, гидроксипролина и дигидроксифенилаланина (ДОФА или DOPA от dihydroxyphenylalanine).


Биссус

У моллюска имеется биссусовая железа, выделяющая биссус, который застывает в воде и образует своеобразный корень, с помощью которого и происходит крепление к поверхности. Отодрать моллюска, полностью присоединившегося к поверхности, бывает крайне сложно.

Столь высокая адгезионная способность обусловлена механизмом адгезии, включающему катехиновые остатки L-DOPA, которые окисляются до реакционноспособных хиноновых фрагментов, дополнительно способствуя сшиванию с другими связанными с белками остатками, такими как амины и тиолы. Ученые считают, что окисление остатков* L-DOPA требуется для когезии*, возникающей за счет образования поперечных связей. А неокисленные остатки DOPA способствуют способности прикрепляться к разным поверхностям.
Остаток* структурная единица биополимера, состоящего из аминокислот и сахаров.
Когезия* связь между одинаковыми молекулами (атомами, ионами) внутри тела в пределах одной фазы, т.е. взаимное притяжение одинаковых молекул.



Баланусы

Помимо мидий необычайно крепкой хваткой обладают морские желуди (баланусы, Balanus), способные прикрепляться как к природным, так и к искусственным материалам. Клейкое вещество (иногда называемое цемент), выделяемое баланусами, основано на нерастворимых адгезивных нановолокнах, которые состоят из множества белковых компонентов с высоким содержанием -листов*. Этот цемент способен выдержать воздействие сильных кислот, органических растворителей, щелочей и даже температуры в 200 C.
-лист* форма регулярной вторичной структуры белков, состоящая из бета-цепей, связанных с боков двумя или тремя водородными связями, образуя слегка закрученные, складчатые листы.
Клей баланусов богат амилоидоподобными -листовыми доменами, которые организованы как очень компактные водородно-связанные структуры, ориентированные перпендикулярно основной оси полимера. Данные структуры очень стабильны и способны прилипать к любой поверхности.

В рассматриваемом нами сегодня труде ученые предложили объединить механизмы адгезии мидий и баланусов вида Cirripedia для создания клея, в основе которого будет композит, состоящий из регенерированного водного раствора фиброина шелка (SF от silk fibroin) и полидофамина (PDA от polydopamine). PDA использовался в качестве молекулы, несущей катехол, что позволяет имитировать адгезию мидий. PDA представляет собой полимер, полученный в результате окислительной полимеризации дофамина, с различными мономерными и олигомерными фрагментами. В нем содержится большое количество донорных и акцепторных водородных связей и ароматических колец.

Имитация клея баланусов была выполнена путем применения фиброина* шелка Bombyx mori (тутовый шелкопряд), так как он способен собираться в домены из -листов.
Фиброин* фибриллярный белок, выделяемый паукообразными и некоторыми насекомыми, является основой нитей паутины и коконов.
Дело в том, что фибрион и клей баланусов очень похожи по аминокислотному составу и имеют общее эволюционное происхождение. Обе эти структуры характеризуется исключительными механическими свойствами, такими как высокая прочность на разрыв и растяжимость.


Изображение 1

В основе создания клея лежал процесс смешивания SF и PDA в различных пропорциях путем прямой окислительной полимеризации дофамина в водном растворе SF. За счет объединения SF и PDA полученный адгезионный материал берет лучшее от обеих сторон (от мидий, и от баланусов). В частности, сшиваемые и хелатирующие железо части DOPA из мидий вводятся катехинами PDA, в то время как структурная стабильность обеспечивается -листовым амилоидоподобным клеем балануса через основную цепь полипептида SF ().

Кроме того, сила адгезии была значительно увеличена за счет отверждения* FeCl3/HCl в результате комплексообразования катехоловых единиц (как у мидий) и агрегации SF, наблюдаемой в кислой среде.
Отверждение* процесс преобразования жидких олигомеров и/или мономеров в твердые неплавкие и нерастворимые сетчатые полимеры.
Одним из основных свойств, которым хотели ученые наделить свой SF-PDA клей, это сохранение адгезивности в водной среде, что им успешно удалось. В сухой среде адгезия клея составляла 2.5 МПа, а в водной 2.4 МПа.

В качестве практической демонстрации ученые собрали модельку самолета, применив при этом композитный клей SFPDA 200 х 10-3 м, отвержденный с помощью FeCl3 (1c).

Результаты исследования


Во время приготовления клея к раствору SF (7.3%, т.е. 73 мг/мл) добавляли различное количество дофамина (до концентраций 2 х 10-3, 20 х 10-3 или 200 х 10-3 м). Далее смесь оставляли в покое при комнатной температуре на два дня, чтобы начался процесс самопроизвольной полимеризации дофамина.

Чтобы проверить адгезионную прочность композита, 20 мкл полученных растворов SF-PDA были налиты на стеклянные предметные стекла размером 25 х 10 мм (1b). После высыхания в течение 1 часа смесь подвергали воздействию различных отвердителей (4 мкл): бидистиллированная вода, HCl (55 х 10-3, 550 х 10-3 м) и FeCl3 (30 х 10-3, 300 х 10-3 м). Затем второе предметное стекло помещалось поверх первого. Полученная конструкция зажималась биндерами (скрепками) и оставлялась на ночь.

Далее стекла подвергались тестированию прочности на разрыв. Во всех проведенных экспериментах было обнаружено, что разрушение связи имеет когезионную природу, поскольку полимер распределялся на обеих подложках после разрыва связи ().


Изображение 2

HCl использовался в качестве отвердителя для предотвращения окисления катехолов до хинонов, что часто происходит при pH выше 5.5, а также в качестве контрольной группы для образца, обработанного FeCl3, который также является кислым и имеет такие же свойства pH.

FeCl3 необходим для запуска хелатирующей способности катехолов по отношению к Fe3+, что впоследствии приводит к образованию прочных комплексов и, следовательно, к высокой степени адгезии при одновременном создании кислой среды, как и в случае с HCl. Кроме того, FeCl3 способствует агрегации SF за счет координации полярных аминокислот, таких как остатки тирозина и серина.

Результаты тестов на разрыв при использовании различных отвердителей показаны на 2b. Стоит отметить, что чистый PDA не смог склеить два стекла без SF. Следовательно, PDA действует как эффективный сшивающий агент между реакционноспособными фрагментами SF, но не приводит к каким-либо заметным явлениям когезии. Другими словами, PDA помогает SF склеивать стекла, но самостоятельно на это не способен.

SF в чистом виде также показал плохую адгезию, сравнимую с большинством полностью натуральных клеев. Прочность сцепления 20 мкл раствора SF (7.3%) составила всего лишь 0.2 МПа.

Добавление дофамина, который свободно самополимеризуется в растворе SF, увеличивает адгезионные свойства пленок SF по мере увеличения концентрации дофамина. Максимальная концентрация, использованная в экспериментах (200 х 10-3 м), увеличивала прочность сцепления чистого SF в три раза, т.е. до 0.6 МПа (слева на 2c).

Добавление HCl дополнительно улучшило адгезионную прочность образцов (2b/2 и 2b/4). В частности, SF-PDA 200 х 10-3 м, отвержденный самой высокой концентрацией HCl (550 х 10-3 м), показал прочность адгезии до 2 МПа (слева на 2c).

Высокая прочность адгезии также может быть достигнута, если использовать Fe3+ в качестве отвердителя (2b/1 и 2b/3). В результате использования FeCl3 с концентрацией 30 х10-3 м было получено значение прочности в 2.0 МПа.

Выбор FeCl3 в качестве отвердителя был обусловлен механизмом адгезии, проявляемым мидиями, которые накапливают Fe3+ и используют его в качестве сшивающего агента между катехиновыми звеньями. Для комплексообразования железа требуются депротонированные катехиновые (пирокатехиновые) единицы, и поэтому хелатирование зависит от значений pH.

Это подтверждается результатами тестов, в которых SF-PDA 200 х 10-3 м отвержденные как 550 х 10-3 м HCl, так и 300 х 10-3 м FeCl3, которые имеют примерно одинаковый pH (0.96), демонстрируют практически одинаковую силу сцепления: 1.2 и 1.3 МПа соответственно.

Но у образцов, отвержденных с помощью FeCl3 30 х 10-3 м (1.96 pH), сила адгезии превышает 2 МПа, вероятно, из-за более высокого отношения Fe3+/H+, поскольку оба конкурируют за взаимодействие с катехолами.

Дополнительно были проведены аналогичные тесты с образцами из стали, алюминия и фанеры, которые показали прочность на сдвиг 4.7, 2.2 и 0.8 МПа соответственно.

Далее была проведена оценка морфологии тестируемых смесей с помощью сканирующей электронной микроскопии (СЭМ), показавшей, что после процесса отверждения полученная структура напоминает натуральный биссус (3a/6).


Изображение 3

На изображениях 3a/1-3a/4 показаны СЭМ снимки высушенных адгезивов SF-PDA до и после отверждения с помощью FeCl3, на 3a/5 показано расслоение адгезивов. При этом толщина слоя клея между стеклами составляла всего лишь 3 мкм (3a/8).

Ученые отмечают, что перед отверждением адгезивы демонстрируют повышенную шероховатость с увеличением процентного содержания дофамина. Сравнение клея SF-PDA и клея мидий (т.е. биссуса) показало сходство как в морфологии структуры, так и в размерах пор.

Пористость структуры клея напоминает ту, что присутствует у мидий и других морских организмов. Им она помогает повысить эластичность клея и свести к минимуму резкое несоответствие модуля упругости между жесткими частицами и гибким цементом (биссусом).

Немаловажной особенностью клея мидий и баланусов является сохранение его клейкости в водной среде. Чтобы выяснить, обладает ли SF-PDA клей такой же характеристикой, ученые провели тест с тремя образцами, отвержденными с помощью H2O, HCl и FeCl3. Каждый из образцов после добавления отвердителя помещался в бидистиллированную воду на сутки.
Спустя это время образцы подвергались тестам на сдвиг либо в воде (отмечено A на графиках), либо в сухой среде (отмечено B на графиках) (2b/5 2b/8). Дополнительно был проведен такой же тест, но в обычной воде (pH 9; отмечено C на графиках) для проверки влияния уровня pH на адгезию.

Находясь в воде, стеклянные пластины, соединенные SF-PDA клеем отвержденным самой водой, самопроизвольно отделялись друг от друга спустя 24 часа. Чистый SF также не мог обеспечить сцепление пластин даже после отверждения с помощью HCl или FeCl3. Сцепление смогли обеспечить лишь варианты клея SF-PDA, отвержденные до их помещения в воду.

Измерения показали (справа на 2c), что кислотное отверждение с помощью HCl было необходимо для получения адгезии под водой, которая улучшается за счет увеличения концентрации дофамина до 1.5 МПа.

Лучшие результаты адгезии показали образцы после отверждения FeCl3 (справа на 2c) 2 МПа. Концентрация PDA в составе клея также играла важную роль в показателях адгезии: самое высокое значение (1.9 МПа) наблюдалось при высокой концентрации, а при низкой адгезия была либо резко падала, либо практически отсутствовала. Рекордной значение адгезии (2.4 МПа) в рамках данного исследования было получено во время тестов в обычной воде.

Если же сравнивать образцы, отвержденные HCl или FeCl3, то именно вторые показали лучшее сцепление в водной среде. Это объясняется взаимодействием Fe3+ с SF-PDA, которое происходит через хелатирование, и окислительно-восстановительной природой FeCl3.

Процесс отверждения также вызывает увеличение гидрофобности смесей SF-PDA, что было оценено путем измерения угла смачивания (3b), когда стекло, покрытое PDA, показывало полную смачиваемость (капли полностью растеклись по поверхности). Соответственно, по мере увеличения содержания PDA увеличивалась смачиваемость смесей SF-PDA.

После отверждения с помощью HCl углы смачивания в каждой смеси увеличивались с 14 до 43, что свидетельствует об увеличении гидрофобности поверхности. Наибольшая модификация наблюдалась в SF-PDA (200 х 10-3 м), угол смачивания которого достигал 93.22.

Аналогичную картину можно было наблюдать и при использовании FeCl3 в качестве отвердителя. Увеличение кислотности среды, вызванное ионами Fe3+, приводило к увеличению угла смачивания. А незначительно повышенная смачиваемость по сравнению с HCl объясняется присутствием значительного количества ионов Fe3+ в смеси SF-PDA (3c).

Ученые заявляют, что среди коммерческих клеев, используемых под водой, лучшим является клей на основе полиуретана, так как в нем достигается компромисс между его свойствами, проявляемыми в сухой и подводной среде. Прочность адгезии такого клея составляет 2.8 МПа в сухой среде и 2.5 МПа в подводной (если применено 13.5 мг клея). Есть варианты клея, способные показать 3 МПа под водой, но для их применения используется хлороформ.

Вышеописанный клей действительно показывает отличные результаты, однако он является синтетическим и включает использование вредных реагентов и растворителей. А для получения рекордных 3 МПа необходимо было использовать 13 мг клеевой смеси, что примерно в 13 раз выше, чем в случае с разработанным SF-PDA, которого достаточно всего лишь 1-2 мг для получения прочной адгезии.

Ученые отмечают, что среди имеющихся на данный момент адгезивов природного происхождения максимальные значения адгезии составляют 0.4 МПа в сухой среде (14 мг чистого SF в качестве клея) и те же 0.4 МПа в подводной среде (100 мг смеси хитозан-PDA). А это наглядно показывает превосходство разработанного SF-PDA над другими адгезивами.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые описали новый тип клея, способного прочно соединять различные поверхности как под водой, так и на суше. Главным вдохновением этого труда послужили морские обитатели, способные намертво прикрепляться к разным поверхностям с помощью веществ, выделяемых их организмом.

Ученые решили объединить в своем клее лучшее от мидий и баланусов, обладающих своей уникальной техникой адгезии. Это позволило создать полностью натуральный клей на водной основе с использованием фиброина шелка и дофамина (SF-PDA).
Важно и то, что во время изготовления и применения созданного клея используются практически безвредные реагенты. А сила адгезии сравнима с лучшими коммерческими вариантами доступными на данный момент. При этом достаточно всего лишь 1-2 мг SF-PDA клея для достижения эффекта, сравнимого с тем, что и можно получить с помощью 14 мг коммерческого синтетического клея, в котором используется хлороформ.

Конечно, многие синтетические вещества, материалы и т.д. намного лучше своих природных эквивалентов. Однако в последние годы, когда общество начало куда больше думать об экологии, мы часто выбираем что-то природное, хоть и с худшими свойствами. Но это исследование показало, что бывают случаи, когда природный во всех аспектах лучше синтетического.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Краткая история азота

10.06.2021 10:07:14 | Автор: admin


Всех приветствую! Сегодня я расскажу вам, что общего у птичьего помёта, снарядного баланса и бума химической промышленности в Первой Мировой Войне, Нобелевской премии по химии и нашего с вами общего воздуха. Готовы? Поехали!


Как известно, к концу Средневековья одним из решающих факторов успешной войны стало превосходство в огневой мощи. И, если в случае луков все более-менее понятно (подводы со стрелами для лучников, специально тренированные по королевскому указу крестьяне, все дела), то с пороховым оружием все обстоит куда проще и вместе с тем сложнее. Проще потому что обучать пехотных юнитов стрельбе из ручниц, кулеврин, мушкетов, пищалей и прочего, прочего гораздо легче, чем готовить профессионалов в стрельбе из лука. Сложнее потому что для того, чтобы вести тот самый огонь, нужны ресурсы, причем немалые.

Рассмотрим состав среднего пороха до появления всяческих бездымных смесей. По то примерно 15 процентов угля (причем хорошего, не забитого золой древесного угля из несмолистых пород дерева), 10 процентов серы (к качеству также предъявляются требования), и, самое главное, почти 75 процентов окислителя для всей этой радости селитры. Только где же ее взять в отсутствие современной промышленности?


Гранулированный дымный порох

В Средневековье, о котором мы уже упоминали, этот вопрос решался с помощью так называемых селитряных ям. В них обильно загружали растительные и животные отходы, смешанные с разнообразным строительным мусором, содержащим в основном известняк. Образующийся в результате гниения аммиак окислялся при участии специальных бактерий кислородом воздуха, в результате чего в гниющей и бурлящей жиже (bon appetit) последовательно образовывались нитрит-, а затем нитрат-анионы. В соединении с солями кальция они давали норвежскую селитру Ca(NO3)2. Это первая известная человеку селитра пока что маломощная и плоховатая, но уже дающая взрыв. Дальше люди научились образовавшийся на стенках ямы беловатый налет растворять в воде, выщелачивать поташом (карбонат калия K2CO3) и в ходе этой реакции начал получаться нерастворимый карбонат кальция и более приятная в обращении калийная, или индийская селитра (KNO3) в растворе, который затем упаривался и тщательно высушивался.

Неудобства такого способа добычи селитры очевидны каждому чтобы получить довольно маленькое количество селитры, необходимо в течение нескольких лет заполнять вонючую, гнилостную яму, а потом производить над ней череду довольно сложных операций, понижающих выход целевого продукта. Само собой, все искали замену такому способу и, наконец, нашли.

Выяснилось, что так называемое гуано (слежавшийся помет птиц, столетиями скапливавшийся на скалистых островах Южной Америки) содержит огромное количество азота в процентном отношении и, самое главное, почти весь этот азот в гуано содержится в форме чилийской, или натриевой селитры (NaNO3). В 1840 году французский химик Александр Коше открыл способ получения чистого нитрата натрия из гуано, и всё заверте

Стратегическое значение данного ресурса было неописуемо велико. По факту наличие в распоряжении гуано могло озолотить Боливию, Чили и Перу (однако, как всегда, все сливки от ресурса достались всевозможным дельцам и концессионерам). Как только в США узнали о чудесном свойстве гуано, в 1856 году был принят знаменитый Акт о гуано, позволяющий гражданам США завладевать любыми бесхозными островами с гуано и наделяющий Штаты односторонним правом использовать военную силу для защиты интересов новоиспеченных гуановых магнатов. А позже, в 1879 году, началась война между Чили с одной стороны и Боливией и Перу с другой за селитроносные месторождения в регионе. Вообще-то эту войну так и называют войной за гуано (Guerra del Guano y el Salitre исп.). Кому война, а кому тонна гуана.


То самое гуано (птички прилагаются)

Тем не менее, прогресс не стоял на месте, и к концу 19 века человечество начало изобретать новые и новые виды взрывчатых веществ. В 1884 году французский ученый Поль Вьель изобрел белый, бездымный порох на основе желатинизированной нитроцеллюлозы (азотсодержащий полимер, в сухом виде похожий на вату); в 1887 году был изобретен баллистит, в 1889 году кордит (оба этих пороха основаны на смеси пироксилина и нитроглицерина). И вот тут-то мы и подходим к самому интересному. Оказывается, для производства всех трех порохов нужна азотная кислота (причем концентрированная), а делают ее правильно, из селитры, спрос на которую теперь увеличивается тем более. Остается прибавить сюда все возрастающую плотность огня на единицу длины фронта и понятно, что теперь человечеству для военного дела понадобится просто ГРОМАДНОЕ количество азота.

Проблема в том, что азот как химический элемент может принимать огромное количество всяких степеней окисления (ВСЕ возможные от -3 в аммиаке и до +5 в азотной кислоте), однако извлечь его из ехидного простого вещества с энергией порядка 1 мДж на моль задача не из легких. Фигурально представим это так: чтобы разорвать тройные связи в 28 граммах атмосферного азота и сделать из него хоть что-то путное, надо условно сжечь килограмм дров (со 100%-ным КПД). Что характерно, азота в атмосфере 75%, поэтому тот, кто придумает способ извлекать азот из атмосферы, станет самым настоящим королем шаманов без всяких там.

Королем шаманов стал бывший студент Гейдельбергского университета, крещеный еврей Фриц Габер, ученик крайне известного химика Роберта Бунзена (а этот-уж был известен тем, что практически в каждой области химии успел оставить ОЧЕНЬ заметный след). В ходе исследований в университете Карлсруэ его научный коллектив сумел сотворить почти чудо по тем временам: при адекватных температуре и давлении (600 градусов Цельсия, 17.5 мПа) был получен первый синтетический аммиак. Следует отметить, что процессом фиксации азота из воздуха занимались многие крупные ученые того времени (как, например, Анри ле Шателье), но до каких-то сравнимых с нормальными выходов и условий они не добрались.

В 1913 году инженером Бошем в Германии была построена первая в мире колонна для промышленного синтеза аммиака. Вскоре было показано, что лучшим катализатором для процесса является плавленое железо с добавлением оксидов алюминия, калия и кальция. Также в скором времени было открыто каталитическое окисление аммиака кислородом воздуха до оксида азота (II), чье превращение в азотную кислоту является уже просто делом техники. Таким образом, блокировка сообщения через Атлантику со странами Латинской Америки в Первой Мировой Войне не так сильно ударила по Германии лишившись природных источников азота, она успешно нашла способ создавать все необходимое для снарядной промышленности самостоятельно. За разработку же процесса синтеза аммиака Габер был удостоен Нобелевской премии по химии в 1918 году.


Вот за это давали Нобеля сто лет назад

Сам же Габер после своего открытия еще долго подвизался на почве химии в 1915 году его коллектив участвовал в создании боевых отравляющих веществ для нужд Германии, в 1919 году им совместно с Максом Борном была развита теория энтальпии образования кристаллических решеток, в 1920-х годах Габер безуспешно пытался найти способ выделения из морской воды такого количества золота, которое покрыло бы долги Германии по контрибуциям, а в 1933 уехал из Германии в Великобританию и принял предложение Хаима Вейцмана возглавить НИИ на территории Британского мандата в Палестине. Последнему, увы, не суждено было случиться Фриц Габер скончался в гостинице Базеля 29 января 1934 года на шестьдесят пятом году жизни.

Детище Габера пережило его на многие годы процесс Габера до сих пор остается главным способом фиксации азота из атмосферы. Помимо военной функции, азот теперь выполняет и мирные цели более половины получаемого аммиака идет на производство удобрений, что позволило человечеству в определенной степени преодолеть мальтузианскую ловушку: наконец-то население земного шара избавилось от призрака глобального голода.


Фриц Габер

В историю изобретение Габера вошло как чудо хлеб из воздуха. На этом светлая страница в карьере доктора закрыта, и открылась тёмная в которой больше уже про соединения хлора. Но об этом как-нибудь в другой раз.

Автор: Павел Ильчук



Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Искусственный фотосинтез. Перспективы и проблемы

12.06.2021 16:15:59 | Автор: admin

Зеленая энергетика не сходит с веб-страниц и из всевозможных заголовков. Зеленый уже давно понимается как экологически благоприятный, но здесь напрашивается две важные оговорки:

  1. Далеко не все методы зеленой энергетики так уж безвредны для окружающей среды. Например, ячейки солнечных панелей и лопасти ветряков необходимо утилизировать уже через пару десятков лет эксплуатации

  2. По-настоящему зеленую энергетику могли бы обеспечить зеленые растения, которые и являются первичными накопителями солнечной энергии.

Как ни странно, мы до сих пор не умеем в промышленных масштабах воспроизводить фотосинтез. Фотосинтез является одним из основных процессов в жизнедеятельности зеленых растений. При фотосинтезе углекислый газ и вода расщепляются в листьях, вернее, в хлоропластах клеточных органеллах, содержащих зеленый пигмент хлорофилл. По строению хлорофилл близок к гему небелковой части гемоглобина.

Хлорофилл решает две задачи, особенно важные для современной экологии: 1) расщепляет углекислый газ, помогая таким образом купировать глобальное потепление и 2) позволяет получать водород, являющийся одним из наиболее экологически чистых видов топлива.

Естественный фотосинтез, будучи продуктом биологической эволюции, не отличается эффективностью. Его КПД составляет всего 1-2%, чего вполне хватает для поддержки медленного жизненного цикла растений. Атом магния, хорошо заметный в вышеприведенной формуле, играет роль катализатора. Но растения используют в таком качестве магний, так как биологическая эволюция использует в основном легкие металлы, один из них магний (12-й элемент). Оптимизируя фотосинтез, нам следовало бы изобрести искусственные листья, а также повысить эффективность самого процесса. Для этого нужно было бы заменить магний другими катализаторами металлами, способными его заменить, а значит, схожими с магнием в соответствии с периодическим законом.

Кроме того, нам нужно было бы создать искусственные листья и искусственные хлоропласты, которые улавливали бы солнечный свет лучше естественных, а также производили бы именно энергию, а не белки и углеводы, необходимые для жизнедеятельности растений. Наконец, особенно интересно было бы использовать солнечный свет для получения более сложной органики, нежели растительных углеводов.

Давайте об этом поговорим.

Биохимия фотосинтеза

Высшие растения, бактерии и водоросли преобразуют солнечную энергию в углеводы и углеводороды. Но растения не подходят для крупномасштабного производства топлива на основе солнечной энергии, так как задействуют сложную цепочку биохимических реакций, позволяющих преобразовать CO2 в конечный продукт. КПД растений слишком низок, чтобы они могли играть роль серьезного энергетического ресурса. Эффективность растений обычно зависит не только от освещенности, но и от других экологических факторов, в том числе, от доступности CO2, воды и питательных веществ.

Фотосинтез протекает в четыре этапа:

Сбор света. На данном этапе происходит поглощение и накопление электромагнитного излучения антенными молекулами (прежде всего хлорофиллом, но также и каротином). Эти молекулы сосредоточены в виде белковых комплексов или органелл и служат для концентрации захваченной энергии в реакционных центрах.

Разделение зарядов. В реакционном центре (так называемой фотосистеме - II) происходит разделение зарядов: молекула хлорофилла испускает электрон (отрицательно заряженную частицу), на месте электрона остается положительно заряженная дырка. Таким образом, энергия солнечного света применяется для разграничения положительных и отрицательных зарядов.

Расщепление воды. На третьем этапе собирается множество положительных зарядов, которые идут на расщепление молекул воды: получаются ионы водорода и кислород. Расщепление воды происходит в отдельном отсеке клетки, а не там, где проходит этап разделения зарядов; на достаточном удалении, чтобы предотвратить потерю заряда при поступлении нового фотона, но достаточно близко, чтобы положительный заряд эффективно накапливался и затем использовался для катализа.

Синтез топлива. Электроны, полученные при разделении зарядов, подхватываются цитохромом b6f и маленькими мобильными переносчиками и транспортируются в еще один белковый комплекс, фотосистему I. В фотосистему I поступает дополнительная энергия, которую также приносят солнечные фотоны, и с ними также идет химическая реакция, в результате которой получаются углеводороды.

Немного простой химии.

Расщепление воды на кислород и водород:

Образовавшиеся протоны идут на синтез углеводов.

Реакция фотосинтеза в общем виде

Итак, для организации и последующей оптимизации фотосинтеза нам нужно превратить двухступенчатую реакцию в одноступенчатую, а также избавиться от выращивания листьев.

История

Процесс искусственного фотосинтеза in vitro, без участия листьев, был впервые осуществлен в 1972 году в Токийском университете. Кеничи Хонда и его аспирант Акира Фудзисима сообщили о том, что смогли смоделировать фотосинтез, подавая свет на электрод из диоксида титана, погруженный в воду. Электроны под действием света покидали металл, оставляя на своем месте положительно заряженные дырки, куда затем захватывались электроны из окружающей воды. Хонда и Фудзисима продемонстрировали, что таким образом получение кислорода катализировалось на фотоаноде, а свободный водород скапливался на платиновом катоде. Так впервые удалось разложить воду на составляющие при помощи светочувствительного элемента.

В 1998 году Джон Тёрнер и Оскар Хаселев из Национальной лаборатории возобновляемой энергетики из штата Колорадо разработали первый искусственный лист: интегрированное фотоэлектрическое устройство, позволяющее расщеплять воду, получая на вход в качестве энергии свет и ничего более. В результате КПД при производстве водорода достиг целых 12,4%, но материалы для поддержки реакции оказались очень дорогими: в состав устройства входил полупроводник на основе галлий-индиевого фосфида, а также платина в качестве катализатора.

Далее предпринимались усилия по удешевлению такого фотоэлектрического элемента, и в 2011 году группа Дэвида Носеры из Массачусетского технологического института представила беспроводное устройство для расщепления воды, в котором электроды изготавливались с применением сравнительно дешевых индия и олова, а вода была буферизована ионами кобальта.

Впрочем, неорганические фотосинтезирующие устройства вряд ли способны конкурировать с традиционными солнечными батареями в качестве источника энергии, а сами быстро выходят из строя по причине коррозии, связанной с резким увеличением уровня pH, возникающем при их работе. Неорганические фотосинтезирующие элементы в целом близки к пределу производительности. Устройство, разработанное в 2018 году специалистами из технического университета Ильменау и Калифорнийского технологического института, работает на основе диоксида титана. В нем предусмотрена дополнительная защита от коррозии, оно работает на протяжении 20 часов и достигает КПД 19%.

Вместо неорганических полупроводниковых сборок также пытаются синтезировать органические молекулы, для которых характерна высокая стабильность при нахождении в растворе. Кроме того, конфигурацию органической молекулы удобно целенаправленно корректировать, чтобы она улавливала свет как можно лучше. Но чисто органические молекулы такого рода плохо переносят воздействие солнечного света и быстро распадаются под воздействием лучей. По-видимому, наиболее перспективный подход встраивать молекулу хлорофилла в неорганическую катализирующую оправку.

Рубиско или как ускорить фотосинтез

За катализ биохимических процессов в клетке отвечают разнообразные ферменты. Некоторые жизненно важные реакции без участия ферментов попросту не идут. Одним из древнейших, важнейших и при этом наиболее громоздких ферментов является рибулозобисфосфаткарбоксилаза, сокращенно рубиско.

Вот такая монструозная молекула направляет реакцию фотосинтеза делая это исправно, но очень медленно. Кстати, сам рубиско использует в качестве катализатора тот самый атом магния, что входит в состав молекулы хлорофилла, показанной выше. Каждая молекула рубиско успевает обработать 1-3 молекулы углекислого газа в секунду, что, конечно же, очень медленно. Более того, рубиско потребляет на собственную работу и часть кислорода, образующегося в результате фотосинтеза, что приводит к фотодыханию.

В целом рубиско пока почти не поддается генной инженерии. Дело в том, что хлоропласты когда-то сами были простейшими, а около 3,5 миллиардов лет назад были захвачены клетками цианобактерий, где превратились сначала в симбионтов, затем в паразитов, а еще позже в обычные органеллы. Но у хлоропластов есть остаток собственного генома, и работа рубиско кодируется как генами растения, так и генами хлоропластов. Растения повышают эффективность фотосинтеза, попросту до отказа набивая свои хлоропласты рубиско. Только в прошлом году китайским ученым удалось навязать растениям более эффективный подход. В одноклеточную водоросль хлореллу внедрили специальный полимер, который активизирует в хлоропластах захват фотонов. Когда рубиско получает больше фотонов, как эффективность, так и скорость его работы улучшается примерно в полтора раза, но и это весьма скромный успех. Вполне возможно, что эти опыты попросту предвосхищают биологическую эволюцию: есть данные, что из-за повышения содержания CO2 в атмосфере фотосинтез у растений начинает идти быстрее.

На этой иллюстрации, взятой с сайта Naked Science, показано, как с повышением температуры меняется темп фиксации углерода (слева) и выделения углекислого газа (справа).

Очевидный недостаток фотосинтеза заключается в том, что хлоропласты извлекают энергию лишь из сравнительно узкой (зеленой) части спектра.

Упоминавшийся выше диоксид титана также поглощает фотоны именно в зеленой части спектра. Но фотосинтезирующие свойства фотоэлектрического элемента можно улучшить, задействовав в нем другие материалы, в частности, кремний, улавливающий свет в области спектра примерно до 1100 нм. Для максимально полного использования спектра ведутся эксперименты по включению в фотоэлектрические элементы других металлосодержащих соединений: оксида цинка ZnO, оксида железа Fe2O3, висмут-ванадиевого соединения с кислородом BiVO4, нитрида тантала Ta3N5 и некоторых других.

Фотосинтез и солнечная энергетика

Из вышеизложенного напрашиваются следующие выводы. В настоящее время фотоэлектрические элементы, действующие в водяной среде, работоспособны, но явно несовершенны. Масштабное производство ячеек для искусственного фотосинтеза, которые могли бы послужить конкурентоспособным источником возобновляемой энергии в лучшем случае дело будущего. Но искусственный фотосинтез все-таки вполне эффективен в качестве инструмента для связывания атмосферного углерода, и при этом дает стабильный поток заряженных частиц (протонов и электронов).

Таким образом, фотосинтезирующие элементы можно было бы сочетать с солнечными батареями например, уже сегодня устанавливаемыми на крышах частных домов в США. Солнечная батарея могла бы отдавать часть получаемой энергии на электролиз. В таком случае подключенные к ней фотоэлектрические элементы участвовали бы в связывании углекислого газа и расщеплении воды с получением водорода, который, в свою очередь, является экологически чистым топливом.

Развитие катализаторов для таких процессов позволило бы не ограничиваться воспроизведением обычного фотосинтеза, а синтезировать, например, белки или ферменты. Мы уже научились масштабировать солнечные батареи, поэтому могли бы вместе с ними масштабировать и фотоэлектрические элементы. Наконец, подобные технологии могли бы поспособствовать разложению токсичных отходов или пластика, давая на выходе водород и энергию.

Заключение

Изложенные возможности являются во многом гипотетическими, но вполне реализуемыми, так как основаны на модели, отточенной в зеленых растениях более чем за миллиард лет. Мне они представляются значительно более интересными, чем луддистские по сути и практически невыполнимые призывы снизить количество парниковых выбросов, отказаться от авиаперелетов или застроить прибрежные области ветрофермами. Избыток углекислого газа должен превратиться из проблемы в ресурс, а переход на водородную энергетику стать максимально безболезненным. Возможно, ключ ко всем этим решениям в освоении и доработке искусственного фотосинтеза.

Подробнее..

Вкусная экология преобразование пластика в ванилин

16.06.2021 10:13:29 | Автор: admin


У современного мира много современных проблем, которых не существовало триста и даже сто лет назад из-за отсутствия нынешнего уровня технологического прогресса. Как правило, большая часть проблем уходит в сторону экологии. А когда разговоры заходят о загрязнении окружающей среды, то одним из лидеров в этом аспекте является вездесущий пластик. Этот универсальный материал можно найти и в производстве сложнейших аппаратов, и на кухне. Полезность пластмассы никто не может оспорить, а поиски замены пока не увенчались успехом, ибо пластик легок в производстве и стоит дешево, в отличие от предлагаемых более экологичных вариантов. Поcему исследований, нацеленных на решение проблемы пластиковых отходов, достаточно много, и каждое из них предлагает свой уникальный подход. На Хабре уже была новость об этом исследовании, но мы, как обычно, рассмотрим его подробнее. Ученые из Эдинбургского университета (Великобритания) предложили использовать бактерию E. coli (кишечная палочка) для преобразования пластиковых отходов в ванилин. Какую роль исполняет бактерия, какие процессы лежат в основе столь необычного преобразования, и можно ли употреблять в пищу полученный таким путем ванилин? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Важность и полезность пластика сложно преуменьшить. Он используется во многих отраслях производства, не говоря уже о его распространенности в быту. Попросите кого-то показать три предмета из пластика, лежащие в квартире, и эта задача будет выполнена моментально. Для примера, я сижу за столом с пластиковыми деталями, на нем стоит лампа с пластиковым корпусом, мышка с пластиковым корпусом, ноутбук с пластиковыми клавишами и т.д. В общем, картина яснее некуда.

Однако проблема пластиковых отходов является на данный момент одной из самых серьезных в аспекте экологии. К тому же существует и экономический подтекст (который куда важнее экологии для многих предпринимателей и производств) из-за того, что 95% пластиковых изделий теряют свою материальную стоимость уже после первого использования, мировая экономика теряет примерно 110 миллиардов долларов в год.

Неудивительно, что исследования, нацеленные на решение проблемы с пластиковыми отходами, столь многочисленны. Среди них в последнее время все чаще встречаются труды, основанные на микробиологии, биокатализе, направленной эволюции, синтетической биологии и неферментативном катализе. В частности, ученые достигли хороших результатов в области ферментативному разложению ПЭТ (полиэтилентерефталат, (C10H8O4)n). Одними из самых многообещающих ферментами стали варианты ПЭТазы из бактерии Ideonella sakaiensis и кутиназы (фермент, катализирующий гидролиз кутина) из компоста ветвей и листьев (LCC от leaf and branch compost cutinase). Отличие в том, что ПЭТаза и ее модифицированные варианты работают при температуре окружающей среды (3037 C), высвобождая бис- и моно-(2-гидроксиэтил) терефталат. Фермент из LCC является термостабильным (72 C).

Помимо очевидного плюса в виде ускоренного разложения пластикового мусора, вышеописанные методы также имеют свое применение и в повторном производстве. К примеру, в ходе разложения ПЭТ методом LCC образуется ТА (thioacrylate, т.е. тиоакрилат), который можно использовать в качестве сырья для производства ПЭТ второго поколения и в качестве строительного блока для синтеза металлоорганических каркасов.

Учитывая эти изыскания, ученые предложили свой метод, результатом которого должно стать преобразование полученного в ходе LCC разложения ТА в ванилин посредством ферментации (1b). Ванилин (в обычных условиях) получают из экстракта стручков ванили. Это широко используют в пищевой промышленности, в косметике, и даже в фармакологии. По данным на 2018 год глобальное потребление ванилина составляет порядка 37000 тонн в год. По прогнозам эта цифра возрастет до 59000 тон к 2025 году.

Спрос на ванилин, как мы видим, очень велик, но он не соответствует мощностям его производства естественным путем (из ванили). Посему проводилось немало исследований, нацеленных на создание искусственного (синтетического) ванилина. Самым широко используемым на данный момент считается производство ванилина из биомассы лигнина (вещество, характеризующее одеревеневшие стенки растительных клеток). Также существуют методы ферментации ванилина из феруловой кислоты, глюкозы, глицерина, L-тирозина, ксилозы, куркумина, эвгенола и изоэвгенола, когда используются микробные и грибковые организмы-носители (1c).


Изображение 1

Авторы исследования заявляют, что о преобразовании ТА в ванилиновую кислоту (VA от vanillic acid, C8H8O4) известно, но на практике никто еще не пытался это реализовать. В своем труде они предложили объединить этот метод с LCC разложением ПЭТ для получения ванилина непосредственно из бытовых пластиковых отходов при температуре окружающей среды и в водных условиях.

Результаты исследования


Дабы получить желаемый результат, ученым в первую очередь необходимо было создать новый ферментативный путь для превращения ТА (тиоакрилат) в ванилин. В качестве организма-носителя был выбран штамм E. coli MG1655 RARE, так как данная бактерия способна восстанавливать альдегиды до соответствующего спирта. Ранее этот штамм уже использовался для получения ванилина, но из глюкозы.

Предположительно ТА может превращаться в ванилин с помощью ферментативного пути, включающего (2a):

  • терефталат-1,2-диоксигеназа (TPADO);
  • дегидрогеназа дигидрокси-3,5-циклогексадиен-1,4-дикарбоновой кислоты (DCDDH);
  • редуктаза карбоновой кислоты (CAR);
  • катехол-O-метилтрансфераза (COMT).


Изображение 2

Ученые отмечают, что CAR и O-MT принимают PC (протокатеховая кислота, C7H6O4), дигидроксибензальдегид (DHBAl) и ванилиновую кислоту (VA) в качестве субстратов, так что ферментативный путь может протекать через два возможных промежуточных продукта (VA или DHBAl) с образованием ванилина.

Ферменты данного ферментативного пути были собраны в две плазмиды*, названные pVan1 и pVan2.
Плазмиды* молекулы НДК, отделенные от хромосом и способные к самостоятельной репликации.
pVan1 кодирует TPADO (гетеротример, содержащий субъединицы TphA1, TphA2 и TphB2) и DCDDH от бактерии Comamonas sp., которые вместе катализируют превращение TA в PC с использованием кислорода из воздуха в качестве окислителя. Оба фермента экспрессируются в E. coli.

pVan2 кодирует редуктазу карбоновой кислоты из бактерии Nocardia iowensis (NiCAR) и одноточечный мутант растворимой формы катехол-O-метилтрансферазы (S-COMT Y200L) из бактерии Rattus norvegicus (2b). Этот мутант был выбран из-за его высокой стереоселективности в отношении метилирования в мета-положении PC и DHBAl. NiCAR был выбран для стадии восстановления.

Кроме того, клетки были котрансформированы третьей плазмидой, кодирующей фосфопантетеинилтрансферазу (pSfp) из бактерии Bacillus subtilis, которая необходима для посттрансляционной модификации NiCAR.

В процессе создания работающего пути ферментации были проведены тесты. Так, варианты, в которых экспрессировалась только pVan1 либо отсутствовал ТА-субстрат ванилина в результате не было обнаружено. Зато в опытах, где клетки экспрессировали все три плазмиды с добавленным ТА (5 мМ) было образование ванилина (5 мкМ, конверсия < 1%; 2c). При этом промежуточные соединения PC, DHBA1 и ванилиновая кислота также обнаруживаются при концентрациях 18 мкМ, 10 мкМ и 2 мкМ соответственно.

Однако таких результатов недостаточно, потому процесс обходимо было оптимизировать. Анализ сред для экспрессии белка показал, что лучшим вариантом питательной среды* является М9 с примесью казаминовых кислот (M9-CA).
Питательная среда* субстрат для культивирования микроорганизмов или культур клеток высших организмов. М9 среда минимальная (минимально необходимая) питательная среда, используемая для бактериальных культур.


Изображение 3

Ресуспендирование (повторное суспендирование*) целых клеток в среде M9 оказалось более эффективным, чем добавление ТА к экспрессирующим культурам во время фазы экспоненциального роста, что дало 4-кратное увеличение титров ванилина (77 11 мкМ; 3a).
Суспендирование* образование суспензии, т.е. частиц твердого вещества, распределенных в жидкой среде во взвешенном состоянии.
Добавление в питательную среду микроэлементов привело к увеличению титров PC в 1.5 раза (3c). При этом добавление бензилового спирта (BnOH) без каких-либо микроэлементов повышало уровень титров PC в два раза.

Далее было проведено исследование влияния условий биотрансформации целых клеток на превращение ТА в ванилин и промежуточных продуктов ферментативного пути.

Поскольку TPADO является O2-зависимым, увеличение свободного пространства реакции должно повысит конверсию TA в PC. Это было подтверждено увеличением титров ванилина (от 5 3 мкМ до 327 15 мкМ), когда отношение свободного пространства к реакционному объему было увеличено с 1:5 до 1:99.

Дополнительное улучшение преобразования TA в ванилин было достигнуто путем увеличения проницаемости клеточных мембран E. coli для ТА. Для этого к буферу биотрансформации было добавлено 1% N-BuOH, что приводило к трехкратному увеличению преобразования TA в ванилин (3b).

Важную роль для этого процесса играл и уровень pH. Если он нейтрален, то диффузия TA через клеточную мембрану не происходит. Анализ показал, что pH 5.5 является идеальным вариантом для достижения баланса максимальной диффузии ТА в клетку и минимального индуцированного кислотой стресса для клетки.

Еще более важным аспектом была температура (3e). Снижение температуры реакции с 30 C до 22 C дало 5-кратное увеличение выхода ванилина (577 22 мкМ по сравнению с 117 40 мкМ при 30 C). Дальнейшее снижение температуры (до 16 C) более не давало каких-либо положительных эффектов.

Ученые предположили, что применение методики ISPR* может увеличить выход ванилина за счет снижения его токсичности для E. coli и за счет увеличения потока к ванилину наиболее гидрофобной молекуле в этом пути.
Удаление продукта на месте* (ISPR от in situ product removal) это быстрое удаление продукта из продуцирующей клетки, предотвращающее его последующее вмешательство в клеточные компоненты или компоненты среды.
Из трех исследованных вариантов реализации ISPR (слои органических растворителей; захват продукта биосовместимыми мицеллами или -циклодекстрином; улавливание продукта посредством обратимого нуклеофильного присоединения к альдегидной части DHBAl и ванилина) был выбран второй вариант. Если точнее, то были использованы биосовместимые мицеллы TPGS-750-M, полученные из олеилового спирта (OA) и витамина E. Этот вариант давал максимальный выход ванилина при минимальных уровнях промежуточного DHBAl. При использовании OA из 1 мМ ТА удалось получить 744 мкМ 100 мкМ ванилина. Исследование динамики реакции показало, что максимальный результат достигается спустя не менее 16 часов (3f).

Результатом вышеописанных анализов и исследований стала оптимизированная процедура преобразования TA в ванилин. Основные аспекты оптимизации: клетки E. coli штамма RARE_pVanX ресуспендировали в M9-глюкозе с добавлением L-Met и nBuOH; уровень pH был 5.5; инкубация с TA в течение 24 часов при комнатной температуре; применение олеилового спирта.


Изображение 4

Методика была готова, оставалось лишь проверить ее на практике. Для практического опыта был выбран термостабильный фермент LCC WCCG15 (далее LCC) в качестве биокатализатора, чтобы способствовать гидролизу ПЭТ в ТА. В отличие от ПЭТазы из Ideonella sakaiensis, LCC высвобождает ТА напрямую и не требует дополнительного фермента для гидролиза моно-2-гидроксиэтилтерефталата для высвобождения ТА.

ПЭТ (в данном случае использованные пластиковые бутылки) обрабатывали полуочищенным LCC при 72 C (). Реакционную смесь охлаждали до комнатной температуры и добавляли свежеприготовленную E. coli RARE_pVanX и концентрат буфера для биотрансформации. Спустя 24 часа проводился анализ реакции.

Ванилин был обнаружен еще до оптимизации (68 мкМ; 4b). В контрольных группах, где не было либо ПЭТ, либо клеток, экспрессирующих ферменты, ванилина не было. В случае без LLC ванилин был, но в очень малом количестве, что предположительно связано с фоновым гидролизом ПЭТ в реакционном буфере LCC (pH 10) в отсутствие LCC. Добавление олеилового спирта не привело к значительному увеличению титров ванилина, что предположительно связано с более низкими концентрациями ТА в результате разложения ПЭТ (300400 мкМ).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые решили описать крайне необычный, но весьма эффективный метод борьбы с пластиковыми отходами преобразование в ванилин. Для реализации этого процесса использовалась бактерия E. coli. Сама же реакция является достаточно простой, так как в ней используется цельноклеточный катализатор, полученный из возобновляемого сырья. Сама же реакция протекает в условиях окружающей среды (комнатная температура и pH 5.5-7), в водной среде и не требует дополнительных реагентов или кофакторов. Кроме того, реакция не производит никаких опасных побочных продуктов.

В ходе практических опытов удалось достичь выхода ванилина в 785 мкМ (119 мг/л), т.е. конверсия составила 79%. Столь впечатляющие результаты были получены не сразу, а спустя множество попыток, нацеленных на оптимизацию процесса.

Полученный ванилин, по словам ученых, вполне безопасен для человека и может использоваться в пищевой промышленности, как и его естественный эквивалент. Однако для пущей уверенности они намерены провести ряд дополнительных тестов, подтверждающих это.

К сожалению, многие предприятия готовы задуматься об экологии только в том случае, если использование экологически небезопасного сырья или технологии грозит им экономическими потерями. Конечно, это цинично и меркантильно с их стороны, но их опасения в случае полного перехода на экологически чистое производство вполне осязаемы. Ведь никто не говорит, что это сделают все одновременно, в том числе и их конкуренты. Тем более подавляющее большинство людей, к сожалению, предпочтут продукт дешевый и неэкологичный, нежели дорогой, но безопасный для окружающей среды. Не все, конечно, но все же большинство.

Посему разработки подобного плана удовлетворяют обе стороны тех, кто готов отдать все за экологию, и тех, кто в первую очередь думает о прибыли. Пока не придумано идеального универсального метода решения экологической проблемы, который подойдет всем, нам придется использовать такие вот компромиссные варианты. Хорошо это или плохо, сказать пока сложно, однако это лучше, чем ничего.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Получение питьевой воды для городской квартиры опыт использования кувшинных фильтров

10.04.2021 16:09:58 | Автор: admin

В этом небольшом обзоре я хочу поделиться своим опытом по выбору системы водоочистки для городской квартиры. Ни для кого не секрет, что качество водопроводной воды оставляет желать лучшего, хотя водопроводная вода соответствует санитарным нормам. Это значит, что она не токсична и не опасна для здоровья, т. е. концентрация вредных веществ не превышает пределов, установленных стандартом.

Конечно, можно покупать высококачественную бутилированную воду или воду из артезианских скважин или использовать воду из проверенных природных источников. Для начала я попытался найти доступную информацию на просторах интернета. В условиях городской квартиры воду хорошего качества можно получить из обычной водопроводной воды, используя различные фильтры для очистки от примесей или системы очистки на основе обратного осмоса. В зависимости от количества потребляемой воды, применяют систему из последовательно соединенных фильтров, которые устанавливают непосредственно на водопроводе в квартире. Поскольку в моем случае питьевая вода необходима только для приготовления пищи, то свой выбор я остановил на кувшинном фильтре, из-за простоты и неплохих отзывов.

Фильтры-кувшины

Эта система очистки воды представляет из себя емкость в виде кувшина, в которую сверху помещается другая емкость меньшего размера с установленным в неефильтрующим элементом. Кувшин изготовлен из специального высококачественного пластика. Вода наливается сверху в кувшин и просачивается сквозь фильтрующий элемент и уже без примесей скапливается в нижней емкости. Подобных изделий предостаточно. Все отличие только в объемах кувшина и конструкции самого картриджа с фильтрующим элементом.

Мне не удалось выяснить, насколько унифицированными являются эти фильтры-кувшины. В некоторые кувшины картридж вворачивается, в какие-то просто плотно вставляется. Поэтому, купив кувшинный фильтр какого-либо производителя, придется и в дальнейшем покупать расходники этой же фирмы. В продаже можно найти более дорогостоящие модели кувшинных фильтров импортных производителей. В них уже присутствуют механические или электронные счетчики, которые подсказывают, когда необходимо произвести замену фильтра. Поэтому, сравнив цены и наличие расходников, я выбрал наиболее распространенный. Фильтрующий картридж необходимо выбирать, исходя из качества водопроводной воды, которое можно определить субъективно, на глаз.

Определение качества воды на глаз

Прозрачность и цвет можно определить при помощи белого листа бумаги с напечатанным текстом, налив воду в обычный прозрачный стеклянный стакан и рассматривая текст сквозь воду в стакане.

Если вода имеет повышенную жесткость, то в ней плохо вспенивается мыло.

Вкус выявляется пятью минутами кипячения. После воду остужают до 25-20 градусов по Цельсию.
Если присутствует сладковатый вкус, то в составе есть гипс, если горечь, то соли магния, если терпкий вкус соли железа.

Для выявления постороннего запаха воду нагревают до 20 градусов, а потом до 60 градусов по Цельсию. Если появился гнилостный запах, то значит есть сероводород. Но если естьжелание точно узнать состав воды, то лучше сдать пробы в лабораторию на хим. анализ.

Конструкция картриджа

Есть стандартные картриджи, которые удаляют только запах хлорки и неприятный привкус, есть фторирующие, бактерицидные, есть модели для удаления соединений железа, есть для умягчения воды и удаления жесткости.

Картридж с фильтрующим элементом для кувшина обычно представляет собой жесткий пластмассовый корпус с перфорацией, чтобы вода могла свободно проникать к фильтрующему элементу. Сам фильтр обычно сделан многослойным и состоит из различных сорбентов, мелко-пористых веществ искусственного или природного происхождения. От величины пор как раз и зависит фильтрующая способность. Содержимое картриджа можно посмотреть тут.

Самым популярным наполнителем для очистки воды является активированный уголь и ионообменная смола. Уголь дополнительно обрабатывают серебром, чтобы внутри картриджа во влажной среде не размножались бактерии. Но с микробиологией в самой отфильтрованной воде подобные фильтры не справляются, поэтому воду после кувшинного фильтра необходимо кипятить.

Ионообменная смола используется для умягчения воды. Когда ресурс такого фильтра заканчивается, в чайнике при кипячении опять появляется накипь. В составе фильтрующих элементов дополнительно используют природные минералы цеолит и шунгит.

Цеолиты широко распространены в природе. Они имеют более пористую структуру, чем кварцевый песок. Обладают избирательной адсорбцией, в зависимости от своей структуры. Цеолит хороший сорбент и катионообменный материал. Хорошо поглощает тяжелые металлы и органические соединения.

Ионообменная смола вещество как органического, так и неорганического происхождения. С виду напоминает скопление мелких шариков до 1 миллиметра в диаметре. Визуально похожа на рыбью икру. Производится из полимерных материалов. Позволяет задерживать ионы примесей металлов и солей жесткости, тем самым, замещая ионы вредных для организма веществ на безопасные.

Шунгит это смесь разных модификаций углерода, чьи кристаллические решетки, соединены аморфным углеродом. Обладает хорошими сорбционными и каталитическими свойствами.

Обычного картриджа хватает на месяц, полтора. Важно вовремя его менять, иначе вместо очищенной, легко можно получить загрязненную воду, что и происходило у меня. Через какое-то время вода в кувшине начинала зацветать и зеленела на дне кувшина. Мытье кувшина и замена картриджей не спасала надолго. В интернете есть сравнительные обзоры и тесты фильтров картриджей различных производителей, например, тут.

Регламент использования картриджа

Как оказалось, при кажущейся однотипности и схожести характеристик фильтры разных производителей все же имеют различные фильтрующие свойства. К тому же, при эксплуатации кувшинных фильтров необходимо придерживаться определенного регламента.

  1. Картридж необходимо менять в установленный срок, иначе, когда он израсходует свой ресурс, станет источником бактерий и накопленных вредных примесей, влияя на наше здоровье.

  2. Отфильтрованную воду используют первые 12 часов. Поскольку без хлора в ней разводятся микроорганизмы.

  3. Для продления хранения воды ее необходимо перелить в отдельную емкость и хранить в холодильнике не более 3 дней.

  4. Картридж нельзя оставлять без воды и держать на солнце.

  5. Перед заменой новый картридж замачивают в холодной воде в течение 20 минут.

  6. Если фильтрующий картридж оборудован механическим счетчиком, то необходимо установить дату замены, вращая календарную шайбу на верхней части картриджа.

  7. Необходимо плотно вкручивать картридж в кассету и дно воронки, чтобы фильтруемая вода не просачивалась мимо фильтрующего картриджа.

  8. Если кувшинный фильтр долго не использовался, то необходимо отфильтровать и слить две порции воды.

  9. Если есть перерыв в использовании кувшинного фильтра, то картридж упаковывают в полиэтиленовый пакет и убирают в холодильник, не допуская высыхания, а при последующем использовании необходимо обязательно слить первую порцию отфильтрованной воды.

Выводы

Из всего вышесказанного следует, что объем кувшинного фильтра лучше выбирать, исходя из необходимого количества воды и лучше иметь меньший объем свежей отфильтрованной воды, чем держать в запасе давно отфильтрованную воду. Необходимо вовремя менять картридж с фильтром, а непродолжительный срок службы фильтров ведет к дополнительным финансовым затратам. Поэтому я решил отказаться от постоянного использования кувшинного фильтра и установить в квартире систему очистки воды с использованием обратного осмоса.

Подробнее..

Бактерии в шахтах внутриклеточное преобразование сульфата меди в одноатомную медь

28.04.2021 10:12:44 | Автор: admin


Планету Земля часто называют колыбелью жизни, и в этом титуле совсем мало преувеличений. Жизнь можно найти и в вечнозеленых тропиках, и в знойных пустынях, и на бескрайних ледяных просторах, и даже в жерлах подводных вулканов. Как сказал Ян Малкольм в фильме Парк Юрского периода: life finds a way. Ученые из Хьюстонского университета провели исследование любопытных бактерий, проживающих в шахтах Бразилии и способных преобразовывать ионы сульфата меди (CuSO4) в одноатомную нуль-валентную медь (Cu0). Чем столь интересен это процесс, и как его можно применить в мире людей? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Тяжело представить современный мир без меди. Диэлектрические, магнитные, оптические, антимикробные и каталитические свойства позволяют применять медь во множестве отраслей, от солнечных элементов до антимикробных покрытий. При этом химический синтез одноатомной металлической меди является крайне сложным процессом, требующим инертных или восстановительных условий, а также использования токсичных реагентов. Но вот некоторые организмы способны делать это без труда.

Недавние исследования показали, что многие микроорганизмы, такие как бактерии и грибы, могут продуцировать неорганические наночастицы (НЧ): Ag, Au, Cu, CuO, магнетит и т.д. Особенно любопытны труды, где описан синтез наночастиц меди в диапазоне от 10 до 40 нм внутри- и внеклеточно с использованием бактерий. В данном случае использовались ферменты редуктазы, такие как NADPH (восстановленная форма никотинамидадениндинуклеотидфосфата, C21H29N7O17P3), обладающих окислительно-восстановительным потенциалом для восстановления ионов металлов. Но то, как микроорганизмы естественным образом синтезируют CuO (в размере от 170 до 179 мкм), ранее было неясно.

Почему синтез одноатомной меди столь привлекателен? Дело в том, что отдельные атомы можно использовать и в катализе, и в легировании, и в энергетике. Однако, как мы уже знаем, одноатомный синтез сопряжен с рядом трудностей, среди которых необходимость в использовании токсичных реагентов. Альтернативные методы (осаждение из паровой фазы, распыление и фемтосекундная лазерная абляция) пока еще остаются малоэффективными.

Именно потому ученые решили детально изучить бактерии, которые самостоятельно выполняют одноатомный синтез меди без каких-либо токсичных реагентов.

Результаты исследования


В качестве подопытных были выбраны бактерии, обитающие в рудниках Бразилии (62715.848 ю.ш. и 50437.507 з.д.).


Изображение 1

Обнаружение изолята из рода Bacillus, способного продуцировать одноатомную медь внутриклеточно, было зарегистрировано с помощью визуального наблюдения изменений цвета среды для роста бактерий с CuSO4 через 48 часов. Изменение цвета с зеленого (CuSO4 + бактерии) на оранжевый указывает на преобразование CuSO4 в Cu0 (1A). Дополнительным подтверждением наличия Cu0 стали результаты просвечивающей электронной микроскопии (ПЭМ), где показаны бактерии после 48 часов инкубации в сульфате меди (1B). На 1C и 1D показаны снимки бактерии с большим и меньшим увеличением соответственно. Также на 1D отчетливо видны отдельные атомы меди.

Для определения габаритов атомов меди было проанализировано около 13000 атомов (1E). Радиус каждого атома находился в пределах от 1.7 до 1.85 . На диаграмме размаха (1F) суммированы фактическое распределение населенности и размеры всех измеренных атомов, обнаруженных на ПЭМ снимках. Более 75% атомов меди имели радиус 1.89 0.19 . Более крупные размеры ученые рассматривают как перекрытие атомов меди на снимках, когда один атом находится слишком близко к другому.

Данные размеры говорят о том, что обнаруженные атомы это именно нейтральные атомы меди (с нулевой валентностью, Cu0). Радиусы Cu1+, Cu2+ и Cu3+ находятся в диапазоне от 0.54 до 0.63, т.е. не попадают в диапазон наблюдаемых радиусов. Это дополнительно подтверждает, что присутствующая в образцах медь это именно Cu0.

Распределение элементов в клетках было определено с помощью энергодисперсионной спектроскопии (EDS от energy dispersive spectroscopy). Молибденовая сетка гарантировала, что все медные сигналы, обнаруженные EDS, принадлежат исключительно бактериям (снимки ниже).


Изображение 2

Визуализация в режиме обратного рассеяния показывает четкий контраст между более тяжелыми и более легкими атомами, в данном случае между медью и углеродом, азотом и кислородом.

Следовательно, медь является одним из наиболее распространенных элементов в образце, а Cu0 самым распространенным типом меди. Это было дополнительно подтверждено анализом результатов рентгеновской фотоэлектронной спектроскопии (3A).


Изображение 3

На графиках 3B и 3C показана спектроскопия характеристических потерь энергии электронами (EELS от electron energy loss spectroscopy) меди. В первом EELS спектре (3B) можно увидеть присутствие углерода, азота и кислорода, которые являются типичными компонентами органического вещества, входящего в состав бактерий. Уровень энергии для каждого из этих элементов составил: 290 эВ углерод; 400 эВ азот и 530 эВ кислород.

Медь обычно обнаруживается в диапазоне от 931 до 953 эВ. Но в данном случае обнаружить ее с помощью EELS было невозможно (3C). Ученые объясняют это толщиной одноатомной меди, что является известным ограничением этого метода. Однако с помощью EELS удалось установить, что атомы меди распространены в клетках остаточно равномерно, а вероятность их кластеров крайне мала в отличие от углерода, азота и кислорода.

На графиках 3D-3F показаны результаты рентгеновской фотоэлектронной спектроскопии C 1s, O 1s и Cu 2p на уровне ядра, полученные от меди, синтезированной Bacillus, спустя 48 часов инкубации.

Спектр C 1s (3D) представляет три компонента при 285.8, 287 и 288.9 эВ, соответствующих связям между белком/пептидами и атомарной медью. Область XPS-спектров O 1s на уровне ядра (3E) показывает максимум энергии связи при 532.8 эВ, соответствующий карбоксильным группам, которые принадлежат белкам на поверхности атомарной меди. Cu 2p показывает два пика при 932.3 и при 952.0 эВ, которые соответствуют энергиям связи 2p3/2 и 2p1/2 электронов Cu0 (3F). Эти наблюдения указывают на то, что тип меди, синтезируемой бактериями, это именно одноатомная медь, т.е. Cu0.

Полностью удостоверившись в том, что бактерии производят одноатомную медь, ученым осталось понять, как именно это происходит.

Сначала белки бактерий идентифицировали в двух различных условиях роста: культивирование без сульфата меди (контрольная группа) и с сульфатом меди (CuSO4; 100 мг/л). В контрольной группе было зафиксировано экспрессию 652 белков, а в группе с CuSO4 458 белка. Из этих 458 белков 313 одинаково экспрессировались в обоих условиях роста, а 145 белков экспрессировались только в присутствии сульфата меди.

Большинство белков (102 белка) участвовали в первичном метаболизме (углерод и энергия). Следовательно, Cu влияет на клетку негативным образом, вызывая выработку большей энергии, дабы пережить это воздействие. Пятнадцать белков участвовали в функциях устойчивости и стресса, а три из них выполняли функции транспорта и поглощения Cu клеткой.

Среди белков, задействованных в транспорте меди, были регулируемый железом транспортер SufB, переносящая медь аденозинтрифосфатаза P-типа (ATPase) и Copz.

Copz это шаперонный* белок, выполняющий роль внутриклеточной секвестрации (накопления) и транспорта Cu+ из цитоплазмы* в периплазму*.
Шапероны* белки, выполняющие функцию восстановления правильной нативной третичной или четвертичной структуры белка, а также образование и диссоциация белковых комплексов.
Цитоплазма* полужидкое содержимое клетки.

Периплазма* обособленный компартмент клеток грамотрицательных бактерий.
Остальные 11 белков, идентифицированные в присутствии сульфата меди, были белками, которые могут участвовать в биосинтезе и стабилизации одноатомной меди. Шесть из них восстанавливают либо сульфат, либо металлы: тиолдисульфид изомераза / тиоредоксин; тиоредоксинредуктаза (TRXR), дикластер 4Fe-4S, ферредоксин 4Fe-4S, дисульфидредуктаза семейства TlpA и сульфатаденилилтрансфераза.

Учитывая функции этих белков, можно предположить, что они восстанавливают сульфат из CuSO4, оставляя свободную токсичную медь (Cu2+) внутри клеток.


Изображение 4

Продукция наночастиц Se с помощью Stenotrophomonas maltophilia показала возможную ассоциацию с алкогольдегидрогеназой. В рамках данного исследования в бактериях Bacillus были идентифицированы два белка-гомолога: NADH (восстановленная форма никотинамидадениндинуклеотида) зависимая бутанолдегидрогеназа А и NADH-зависимая бутанолдегидрогеназа.

Подобная находка указывает на то, что белки могут участвовать в биогенном синтезе одноатомной меди. Также в бактериях были выявлены белки семейства Ferritin Dps и индуцируемый голоданием ДНК-связывающий белок (Dps от DNA binding protein). Ранее высказывалось мнение, что пути синтеза наночастиц с участием этих белков включают процессы автоокисления, гидроксилирования или восстановления. Но пока это лишь теория.

В данном труде ученые предположили, что в процессе преобразования Cu2+ в Cu0 важную роль играет белок ферритин*.
Ферритин* сложный белковый комплекс, выполняющий роль основного внутриклеточного хранилища железа.
Вероятно, комбинация этого белка и других белков, экспрессируемых в Bacillus, в среде с добавлением сульфата меди напрямую связано с биосинтезом одноатомной меди (изображение 4).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые исследовали довольно любопытный организм бактерию Bacillus, способную внутриклеточно синтезировать одноатомную медь (Cu0) из сульфата меди (CuSO4). Данный процесс, являющийся естественным для бактерий, крайне сложно воспроизвести с помощью даже самых современных технологий и методик. Для производства одноатомной меди люди вынуждены применять токсичные реагенты, тогда как бактерии в этом не нуждаются.

По словам авторов труда, их результаты позволяют лучше понять, как столь малые организмы способны регулировать столь сложные химические реакции. Кроме того, это исследование может стать основой для промышленного производства атомарной меди, которое будет лишено прежних недостатков, но обретет новые преимущества, такие как снижение стоимости производства.

Учитывая, что медь используется во многих направлениях (от антибактериального покрытия до электроники), подобного рода открытия действительно несут в себе немалый потенциал.

Важно отметить и то, что изученные бактерии могут быть далеко не единственными микроорганизмами, способными синтезировать одноатомные металлы, которые найдут свое применение в науке, технике и медицине.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Бережливые испытания, или Как мы заглянули в пекло

13.05.2021 10:08:31 | Автор: admin
Спойлер. Во время испытаний ни одна камера не пострадала. Но это не точно.

Давайте знакомиться меня зовут Ольга. Я работаю в компании Datana. Чем мы занимаемся в Datana? Помогаем производить лучшую сталь в мире, из которой делают рельсы, трубы, здания, мосты, ледоколы, автомобили и даже шарики в шариковых ручках.


В нашем арсенале вся мощь искусственного интеллекта и технологий индустрии 4.0. Мы уже рассказывали, как внедряли искусственный интеллект на металлургическом заводе.

Сегодня я расскажу вам, как мы поместили камеру в самое пекло, что мы там увидели и при чем тут бережливые испытания.

Зачем мы это делали


Повышение наблюдаемости за процессом и предоставление объективных данных оператору одна из самых частых задач, которую мы решаем. В этом нам помогают камеры, газоанализаторы, вибродатчики, термопары, лазеры все, что угодно, что позволяет получать в режиме реального времени данные о наблюдаемом процессе.

В этот раз мы решали задачу помочь сталевару: проводить качественную продувку металла аргоном один из важных этапов в процессе производства стали. Без продувки аргоном сделать высококачественную сталь невозможно. Но сама продувка происходит под крышкой установки печь-ковш. Сталевар ведет плавку вслепую, опираясь только на данные, которые видит на экране (расход и давление аргона), и словесное описание продувки, которое по рации передает подручный сталевара у него есть возможность заглянуть в технологическое окно (опасная зона) и посмотреть, как идет продувка. Ну как тут не ошибиться и принять верное решение?

Здесь на помощь приходим мы. В нашей продуктовой линейке есть интеллектуальная система мониторинга продувки металла аргоном. Что она делает? Если коротко, то мы в режиме реального времени, с помощью камеры, установленной под крышку установки печь-ковш, получаем видеоизображение поверхности расплава, анализируем картинку с помощью машинного зрения и рекомендуем сталевару, как продувку провести оптимально.


Для одной производственной площадки мы делали кастомизацию этого решения. Нам нужно было выполнить три требования.

  1. При просмотре видеоряда глаза сталевара не должны уставать.
  2. Мы должны были контролировать свободный борт, т.е. нам нужно было измерять расстояние от поверхности металла до края сталь-ковша.
  3. Мониторинг должен осуществляться на всем протяжении внепечной обработки: 30-40 минут под куполом и температурой от 1000-1500С.

Оборудование и его монтаж штука дорогая. Никому не хочется оказаться в ситуации, когда большие деньги потрачены не на то оборудование. Поэтому, прежде чем закупать промышленное оборудование, нужно провести испытания, не потратив на это много денег. Бережливые испытания способ получить ответы на вопросы с небольшими затратами.

Как мы решали задачу


Как решить первую задачу понятно. Можно установить синее защитное стекло, которое бы с одной стороны защищало и матрицу камеры, а с другой стороны давало бы комфортную для глаз картинку. Но если мы так сделаем, то сможем ли мы определять свободный борт (наша вторая задача)? Не будет ли картинка слишком темная?

Мы взяли простую камеру GoPro. Ее можно найти за 4-6 тысяч. Сконструировали специальный защитный корпус и штангу.


Такой корпус на какое-то время защитит камеру от температуры внутри установки ковш-печь. Секунд на 20 его вполне хватает, и этого времени для эксперимента вполне достаточно.

Можно ли обойтись без защитного корпуса?


Можно, но секунды две.


В общем, защита нужна.

Итак, мы заказали стекла с разной интенсивностью защиты и приступили к испытаниям.


Через технологическое окно мы на разных режимах продувки опускали камеру внутрь и снимали двадцатисекундные ролики.

Что мы узнали


Нам нужна широкоугольная камера. Чтобы контролировать свободный борт, его нужно видеть. Камера со стандартным обзором дает картинку только поверхности и не захватывает борт.

Стандартная защита (такая же используется в очках сталевара) не подходит для нас.


Слишком темным получается борт, и мы не можем определить нужное нам расстояние от его края до расплава.


А вот если сделать защиту чуть слабее, то обе задачи прекрасно решаются.


Итак, первая и вторая задача решаются с помощью широкоугольной камеры видимого спектра и защитного стекла средней интенсивности.

А что с третьей задачей? Сможет ли камера видимого спектра наблюдать за продувкой во время нагрева и отдачи материалов?

В чем тут сложность? Во-первых, во время отдачи материалов под крышкой будет дымно. Материалы угорают, и видимость становится нулевая. Во-вторых, во время нагрева и интенсивного перемешивания поверхность бурлит, как в жерле вулкана.


С помощью камеры видимого спектра третья задача не решается. Нужна длинноволновая. Только она сможет пробиться сквозь задымление. Значит, наше конечное решение будет комбинированное. Мы будем наблюдать за поверхностью и в видимом спектре и длинноволновом.

Что делать со всплесками? Они в три секунды забрызгают объектив и выведут камеру из строя. Тут нам поможет воздушная защитная шторка. Нужно будет сконструировать гнездо для камеры таким образом, чтобы объектив всегда обдувался потоком воздуха, создавая воздушную защиту и не давая попасть на него каплям металла.

Что в итоге


С помощью доступного оборудования и технологии бережливых испытаний мы получили ответы на вопросы: какими характеристиками должно обладать оборудование, чтобы решить все наши задачи; что нам нужно предусмотреть для защиты самого оборудования.

Теперь можно приступать к закупке промышленного оборудования и быть уверенным, что мы закупим то, что нужно.

Всегда есть способ провести испытания с минимальными затратами. Найди его и сделай.

В следующий раз мы расскажем, как научить нейронку следить за поверхностью расплава и определять, где тут шлак, где металл, а где посторонние предметы. Подписывайтесь на Datana. Хабр.

Свои производственные заметки мы, помимо Хабра, выкладываем в Telegram-канал. Присоединяйтесь!
Подробнее..

Рисуем молекулы с помощью PostScript

18.04.2021 18:19:42 | Автор: admin

Векторная графика очень удобна для иллюстраций. Молекулы состоят из атомов соединённых связями. Хочется, чтобы операции редактирования рисунка химической структуры осуществлялись согласно физическому устройству молекул: выделил атом, перенес его, повернул фрагмент молекулы, подписал Практически все визуализаторы атомных структур экспортируют вид в растр, что усложняет подготовку иллюстраций. В этой заметке я расскажу о способе отрисовки 3D структур в векторном формате, а также о том, как в этом поможет язык PostScript.

Вместо красивой растровой картинки (слева) получим винтажную иллюстрацию (справа).Вместо красивой растровой картинки (слева) получим винтажную иллюстрацию (справа).

Достаточно много программ умеют экспортировать структуру в векторную графику: SVG, PDF, EPS. Однако, часто это сделано лишь формально - полученные изображения состоят из множества примитивов, разобрать их по атомам и связям практически невозможно. Размер такого векторного файла тоже большой, словом, беда. Из множества молекулярных конструкторов лишь два удовлетворяют по качеству кода векторной картинки: GaussView и Molden. Последняя программа доступна всем желающим, так что примеры построены с её помощью, тем не менее, все приведенные ниже рецепты применимы (с некоторыми модификациями) и к векторным иллюстрациям сделанными программой GaussView. Итак, Molden!

MoldenMolden

Открываем файл со структурой, сохраняем в PostScript.

PostScript

В файле видим человеческий текст:

%!PS-Adobe-2.0 EPSF-2.0%%Title: Molden%%For: Schaft%%Creator: Drs G Schaftenaar%%DocumentFonts: Courier%%Pages (atend)%%BoundingBox: 0 0 612 792%%EndComments%%###### User Preferences ############%%---- SIZE AND ORIENTATION OF THE PLOT ---%/size    {  0.24 } def%---- These number can be negative -------/originx {  39.0 } def/originy { 753.0 } def/angle   { -90.0 } def%For Portrait use%/originx { 40.0 } def%/originy { 240.0 } def%/angle   { 0.0 } def%and BoundingBox: 25 255 535 765

За отрисовку сфер-атомов отвечает процедура \doatom, за стержни - \dorod. Сначала отключим вывод логотипа Molden.

%---- Include Tabel & Logo, Fontsize -----/tabel {true} def/titleandlogo {true} def % ставим здесь false!

Без дальнейших модификаций рисунок будет таким, 4082 графических примитива. Несколько неудобно.

4082 примитива4082 примитива

Число примитивов можно значительно сократить небольшой правкой.

%---- SET BOND RENDERING:  ---------------%---- shadedrod, whiterod, blackrod  -----%/doatom { dosketchysmoothatom } def /dorod  { sketchyshadedrod }    def%% облегченные версии (меньше примитивов)/dosketchysmoothatom  % вместо прежнего doatom{ gsave  rx ry translate  90 -15 1 % вместо прежнего цикла 90 1 1 - это единственное изменение  { gsave    dup cos hue exch satu exch sethsbcolor sin dup scale    newpath    0 0 rad 0 360 arc    closepath fill grestore } for    grestore } def/sketchyshadedrod{ gsave  x1 y1 translate  x2 x1 neg add  y2 y1 neg add  {atan neg rotate} stopped not {  85 -15 0 % вместо 87 -3 0 - это единственное изменение  {dup  gsave  newpath   cos 1.0 cosb 0.5 mul neg add mul   hue exch satu exch sethsbcolor   sin 1.0 scale   1 cosb scale   0 0 hd 0 180 arcn   x2 x1 neg add dup mul   y2 y1 neg add dup mul   add sqrt  0 cosb eq {/cosb 1.0 def} if 0 exch cosb div translate   0 0 hd 180 360 arc  closepath fill  grestore } for  } if  grestore } def
Здесь уже 410 примитивов вместо 4082.Здесь уже 410 примитивов вместо 4082.

Пойдем дальше и напишем на сей раз свои собственные процедуры!

/doatom { docirclecoloratom } def/dorod { dostick } def% ширина связи, цвет её линии, толщина штриха/stickwidth {16} def/stickgreycolor  {0} def/strokelinewidth {4} def/docirclecoloratom{ gsave    strokelinewidth setlinewidth    rx ry translate    newpath 0 0 rad 0 360 arc closepath    gsave    hue satu 1.0 sethsbcolor fill    grestore    stroke    0 0 rad 0.75 mul -60 0 arc    stroke    grestore} def% процедура dostick уже создана Molden

Этот код произведет такую картинку:

Это очень простой рисунок, легковесный. Каждый атом - 3 примитива. Окружность, окрашенный круг, дуга. Связь - одна линия. Легко разобрать на запчасти и сделать всё что угодно.

/docircleatom{ gsave    strokelinewidth setlinewidth    rx ry translate    newpath 0 0 rad 0 360 arc closepath    gsave    1 setgray fill    grestore    stroke    gsave    1.00 0.55 scale    0 0 rad 0 180 arc    stroke    grestore    0.55 1.00 scale    0 0 rad -90 90 arcn    stroke    grestore} def

Этот код радикально сведет рисунок к черному и белому. Как в старых книгах.

Я добавил подпись - длину водородной связи. Я добавил подпись - длину водородной связи.

Заключение

PostScript удивительно хорош в создании иллюстраций. Он лёгок в освоении. В этой заметке я привёл способ как сделать простые, но подчас очень и очень нужные вещи при подготовке публикации или постера на конференцию. Однако, можно пойти дальше! Очень рекомендую книгу Mathematical Illustrations.

Подробнее..

Перевод На месте испытаний первой атомной бомбы обнаружен квазикристалл

19.05.2021 14:18:09 | Автор: admin
Плитки Пенроуза (мозаика Пенроуза) наглядный пример структуры, которая упорядочена, но не повторяется

В июле 1945 года впервые испытали атомную бомбу. Прогремевший взрыв был эквивалентен 21 килотонне тротила и разрушил все вокруг. На месте взрыва сплавились кварц и полевой шпат. Полученный стекловидный минерал зеленого цвета назвали тринититом. Вместе с ним на месте испытаний нашли и некие кристаллические структуры красного цвета. Сейчас ученые из Италии и США опубликовали работу, в которой заявили, что найденное соединение Si61Cu30Ca7Fe2, со структурой икосаэдра, можно смело назвать квазикристаллом. Как правило, подобные структуры обнаруживают в метеоритах или получают синтетическим путем. Найденный квазикристалл является первым из созданных руками человека.

Почему квази?


Для начала разберемся, что такое квазикристалл. Нормальные кристаллы состоят из атомов, упакованных в кристаллическую решетку с четкой структурой. Они напоминают детальки трехмерного паркета, симметрично уложенного одинаковыми блоками. Так вот у квазикристаллов повторяемость блоков отсутствует, хотя есть упорядоченная структура как у нормального кристалла. Другими словами, упорядоченная структура квазикристаллов не периодическая.

Изначально далеко не все ученые считали возможным существование квазикристаллов, но в итоге научное сообщество приняло эту идею, и подобные структуры стали изучать. Как оказалось, из-за отличий структуры квазикристаллов от структуры обычных кристаллов квази могут обладать уникальными свойствами. Поэтому исследование этих структур особенно интересно ученым.

В весьма специфических лабораторных условиях квазикристаллы впервые синтезировали в 80-х годах прошлого века. И после открытия считали, что их можно получить лишь путем быстрого охлаждения определенных сплавов и спеканием с порошком при строго заданном интервале температур. Предполагается, что образование квазикристаллических структур в природе не происходит само по себе.

Сейчас ученые не отрицают, что в местах испытаний других атомных бомб также можно обнаружить новые квазикристаллы.

Как нашли необычный кристалл


Образец тринитита

Обнаружение американскими и итальянскими учеными квазикристалла в составе красного тринитита особенно неожиданно и важно для исследований будущего. Красный тринитит похож по свойствам на зеленый. Минерал приобрел красный окрас за счет входящего в его состав оксида меди. Вещество также образовалось из сплава кварца, полевого шпата и других примесей во время взрыва атомной бомбы на полигоне в Аламогордо. Но, в отличие от зеленого тринитита, красный описан и изучен намного меньше.

В ходе лабораторных исследований ученые выяснили, что в состав минерала входит квазикристалл с химической формулой Si61Cu30Ca7Fe2. Этот кристалл имеет икосаэрическую структуру. Он содержит оси симметрии пятого, третьего и второго порядка. На данный момент это единственный кристалл с подобной структурой и формулой, синтезированный вне лаборатории.

Не только в лабораториях


В природе квазикристаллы ранее все же встречались, но только в метеоритах. Например, похожий квазикристалл обнаружен во фрагментах метеорита Хатырка. Этому метеориту больше нескольких сотен миллионов лет.

Исследователи детально разобрали состав кристалла. Они выяснили, что данные изотопного состава характерны для условий, существовавших в первые секунды в 50-60 метрах от эпицентра ядерного взрыва. Специалисты предполагают, что температура в этом месте во время взрыва составляла 1,5 тыс. градусов, а давление составляло от 50 тыс. до 80 тыс. атмосфер. Ученые считают, что причина образования этих структур взрыв, произошедший до падения метеорита на Землю.

Изучение свойств новых веществ помогает ученым все глубже погружаться в загадки и открывать тайны Вселенной.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru