Русский
Русский
English
Статистика
Реклама

Частотные характеристики

3. ЧАСТОТНЕ ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (АФЧХ, ЛАХ, ФЧХ) ч. 3.1

07.12.2020 02:05:58 | Автор: admin

Лекции по курсу Управление Техническими Системами, читает Козлов Олег Степанович на кафедре Ядерные реакторы и энергетические установки, факультета Энергомашиностроения МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.


Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.


В предыдущих сериях:
1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 2.3, 2.3 2.8, 2.9 2.13


В этом разделе мы будем изучать частотные характеристики, тема сегодняшней статьи:
3.1. Амплитудно-фазовая частотная характеристика: годограф АФЧХ, ЛАХ, ФЧХ


Будет интересно познавательно и жестко.




3.1. Амплитудно-фазовая частотная характеристика: годограф АФЧХ, ЛАХ, ФЧХ


Определение: Частотными характеристиками называются формулы и графики, характеризующие реакцию звена (системы) на единичное синусоидальное воздействие в установившемся режиме, т.е. в режиме вынужденных гармонических колебаний звена (системы).



Рис. 3.1.1 Схематическое представление синусаидального воздействия

Формула синусаидального воздействия может быть записана как:

$sin(\omega \cdot t+\phi) = sin \left[ \omega(t + \frac{\phi}{\omega}) \right] = sin \left[ \omega(t + \Delta t) \right];$



Рисунок 3.1.2 График представления синусаидального воздействия

$\phi $ сдвиг фазы (не редконазывают фаза);
$A$ амплитуда;
$A \equiv A(\omega); \phi \equiv \phi( \omega) $ т.е. амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия x(t).


Используем показательную форму записи функции единичного гармонического воздействия и отклика на это воздействие (рис. 3.1.1):

$sin(\omega \cdot t) = e^{i \cdot \omega \cdot t}$


$$display$$\left \{ \begin{align} x(t)&= e^{i \cdot \omega \cdot t} = cos (\omega \cdot t) + i \cdot sin(\omega \cdot t)\\ y(t)&= A\cdot sin(\omega \cdot t+ \phi) \Rightarrow A \cdot e^{i(\omega \cdot t+\phi)}=A \cdot e^{i\cdot \omega \cdot t} \cdot e^{i \cdot\phi} = A(\omega) \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi(\omega)} \end{align} \right.\ \ \ \ \ \mathbf{(3.1.1)} $$display$$


Определим связь между передаточной функцией и гармоничным воздействием, пользуясь показательной формой.
Рассмотрим звено уравнение динамики которого имеет следующий вид:

$T^2_2y''(t)+T_1y'(t) = K[\tau \cdot x'(t)+x(t)].\ \ \ \ \ \mathbf{(3.1.2)} $


В показательной форме:

$(T^2_2\cdot s^2+T_1 \cdot s+1)\cdot Y(s) = K[\tau \cdot s+1] \cdot X(s)$


Передаточная функция:

$W(s)= \frac{K(\tau \cdot s +1)}{T^2_2 \cdot s^2+T_1 \cdot s+1}\ \ \ \ \ \mathbf{(3.1.3)} $


Запишем в показательной $x, x', y, y', y''$ форме используя соотношения 3.1.1:

$x(t)=e^{i \cdot \omega \cdot t};\\ x'(t)=i \cdot \omega \cdot e^{i \cdot \omega \cdot t};\\ y(t) = A \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};\\ y'(t)=A \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};\\ y''(t)=A \cdot (i \cdot \omega)^2 \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};$


Подставим эти соотношения в (3.1.1) получим:

$T^2_2\cdot A \cdot (i \cdot \omega)^2 \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi} +T_1\cdot A \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi} + A \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi}= \\ =K[\tau \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t}+e^{i \cdot \omega \cdot t}] \Rightarrow \\ A \cdot e^{i \cdot \phi} \cdot [T^2_2\cdot (i \cdot \omega)^2+ T_1 \cdot (i \cdot \omega)+1] = K[\tau \cdot (i \cdot \omega)+1] \\ $


Поскольку $A \equiv A(\omega); \phi \equiv \phi( \omega) $ (амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия), то можно записать:

$A(\omega) \cdot e^{i \cdot \phi(\omega)}=\frac{K[\tau \cdot i \cdot \omega+1]} {T^2_2(i \cdot \omega)^2+ T_1(i \cdot \omega)+1}\ \ \ \ \ \mathbf{(3.1.4)}$


если вспомнить, что в преобразования Лапаласа $s = i \cdot \omega$, то:

$\frac{K[\tau \cdot i \cdot \omega+1]} {T^2_2(i \cdot \omega)^2+ T_1(i \cdot \omega)+1} = \frac{K[\tau \cdot s+1]} {T^2_2 \cdot s^2+ T_1\cdot s+1} =W(s);$


Получаем выражение для передаточной функции

$A(\omega) \cdot e^{i \cdot \phi(\omega)} = W(i \cdot \omega) =W(s)\ \ \ \ \ \mathbf{(3.1.5)}$


$W(i \cdot \omega) $ Амплитудно-фазовая частотная характеистика (АФЧХ)
Иногда $W(i \cdot \omega) $ называют частотной передаточной функцией.
Модуль АФЧХ=$mod W(i \cdot \omega) $ тождественно равен амплитуде выходного сигнала:

$A(\omega) = |W(i \cdot \omega)|\ \ \ \ \ \mathbf{(3.1.6)}$


Сдвиг фазы выходного сигнала:

$\phi(\omega) = arg( W(i \cdot \omega))\ \ \ \ \ \mathbf{(3.1.7)} $


Обычно АФЧХ $W(i \cdot w)$ изображается на комплексной плоскости. Формулы (3.1.6) и (3.1.7) позволяют изобразить $W(i \cdot w)$ в полярных координатах $(r, \phi).()$
Так же можно изображать в традиционных декартовых координатах:

$W(i \cdot \omega) = \underbrace { U(\omega)}_{Re} + i \cdot \underbrace { V(\omega)}_{Im} \ \ \ \ \ \mathbf{(3.1.8)} $


Если использовать для представления W(s) форму W(s)=KN(s)/L(s), где L(s)- полиномы по степеням s, (причем свободные члены равны 1), а К общий коэффициент усиления звена (системы), то

$W(i \cdot\omega) = \frac{K \cdot N(i \cdot\omega)}{L(i \cdot \omega)} \Rightarrow | W (i \cdot \omega)| = \frac{K|N(i \cdot \omega)|}{|L(i \cdot \omega)|} = A(\omega)\ \ \ \ \ \mathbf{(3.1.9)} $


Сдвиг фазы $\phi(\omega)$ можно определить по виду многочленов $N(i \cdot \omega)$ и $L(i \cdot \omega)$ (см. формулу (3.1.9)) т.е. как разность фаз (аргументов) числителя и знаменателя:

$\phi(\omega) = arg(N(i \cdot\omega))-arg(L(i \cdot \omega))\ \ \ \ \ \mathbf{(3.1.10)}$


Постоим АФЧХ для абстрактного звена (системы) с передаточной функцией:

$W(s) = W(i \cdot \omega) = W(s) |_{s =i \cdot \omega} = \frac{K \cdot N(i \cdot \omega)}{L(i \cdot \omega))}$


Подставляя в формулу различные значения $\omega$ получаем набор векторов, на комплексной плоскости

Рисунок 3.1.3 Годограф абстрактного звена.

Рассмотрим действительную и мнимую части полученных векторов Из рисунка 3.1.3 видно, что:

$$display$$\left \{ \begin{align} u( \omega)&= A( \omega) \cdot cos( \phi(\omega)) \\ v(\omega)&= A( \omega) \cdot sin( \phi(\omega)) \end{align} \right.$$display$$


Амплитуда и сдвиг фазы рассчитываются, для векторов соответсвующих положительным частотам и лежащих в 4 квадранте $\omega_1,\omega_2, \omega_3$ по формулам:

$$display$$\left \{ \begin{align} A( \omega)&= \sqrt {u^2( \omega)+v^2( \omega)} ,\\ \phi(\omega)&= arctg \frac{v(\omega)}{u(\omega)} .\end{align} \right.$$display$$


В общем случае для любых углов сдвига, необходимо учитывать переход между квадрантами на плоскости, формула принимает вид:

$\phi(\omega) = -\pi \cdot j + arctg \frac{v(\omega)}{u(\omega)}\ \ \ \ \ \mathbf{(3.1.11)}$


где:
j = 0, 2, 3, 4..., если вектор в I и IV квадрант;
j = 1, 3, 4, 4..., если вектор в II и III квадранте.

Во всех технических системах отклик системы как правило отстает от входного воздействия, то есть сдвиг фазы всегда отрицательный. Исходя из формулы 3.1.10 степень полинома L(s) выше, чем полинома N(s). Поскольку обычно степень полинома L(s) выше, чем полинома N(s), то с увеличением частоты на входе в звено (в систему) сдвиг фазы обычно отрицателен, т.е. сигнал на выходе звена еще больше отстает по фазе от входного сигнала при увеличении частоты.
В предельном случае, если частота растет до бесконечности, мы можем вообще не получить выходного воздействий. Обычно при величина амплитуды на выходе звена стремится к 0, то есть lim A() = 0.


$W(i \cdot \omega)$ при замене $\omega$ на $-\omega$ имеет зеркальное изображение.


Анализируя годографы АФЧХ при $\omega$ > 0 (сплошная линия на рисунке 3.1.3) и при $\omega$ < 0 (пунктирная линия) видим, что:
$u(\omega) = u(-\omega)$ четная функция, следовательно график симметричен относительно оси ординат, а
$v(\omega) = -v(-\omega)$ нечетная функция и ее график центрально-симметричен относительно начала координат.



Рисунок 3.1.4 Зеркальная симметрия относительно оси ординат.

Рисунок 3.1.5 Центральная симметрия относительно начала координат.

Кроме анализа свойств звена (системы) по годографу АФЧХ широкое распространение получили анализ логарифмической амплитудной характеристики (ЛАХ) и фазочастотной характеристики (ФЧХ).


ЛАХ определяется как Lm()=20lgA().


Поскольку зачастую удобнее использовать десятичные логарифмы (lg), чем натуральные(ln), в теории управления (также и в акустике) значительно чаще используется специальная единица децибел (1/10 часть Бела):
+1Бел единица, характеризующая увеличение в 10 раз.
+1дБ (децибел) соответствует увеличению в $\sqrt[10]{10}$ раз.


В формуле Lm()=20lgA() величина Lm() измеряется также в децибелах. Происхождение множителя 20 таково: A() амплитуда, линейная величина, а мощность квадратичная величина (например, напряжение в сети измеряется в Вольтах, а мощность ($N = \frac{U^2}{R}$) пропорциональна квадрату напряжения, поэтому в формуле для Lm() стоит множитель 20 (чтобы привести ЛАХ (Lm()) к традиционной мощностной характеристике).


Если $Lm(_1)$ больше $Lm(_2)$ на 20 дБ, то это означает, амплитуда $А(_1)$ больше амплитуды $А(_2)$ в 10 раз, $\frac{А(_1)}{ А(_2)} =10$

Окончательно: Lm()=20lgW(i)= 20lgA()


Из этого следует, что +1 децибел (+1 дБ) соответствует увеличению амплитуды в $\sqrt[20]{10}$ раз (очень малая величина); -1 дБ уменьшение амплитуды в $\sqrt[20]{10}$ раз.


Графики A() и () имеют вид:



Рисунок 3.1.6 пример графика АЧХ

Рисунок 3.1.7 пример графика ФЧХ

Учитывая, что обычно изменяется на порядки и значение A() также на порядки, график Lm() строится, фактически, в логарифмических координатах, т.е. Lm() =Lm(lg()), например:



Рисунок 3.1.8 пример графика ЛАХ

Наклон ( 40 дБ/дек) соответствует уменьшению амплитуды в 100 раз при увеличении частоты в 10 раз.



Рисунок 3.1.9 пример графика ЛФЧХ

Рассмотренные характеристики Lm(), то есть ЛАХ и ФЧХ имеют широкое распространение при анализе динамических свойств звена (системы), например, при анализе устойчивости САР (см. раздел Устойчивость систем автоматического управления).



Рисунок 3.1.10 пример ЛАХ и ФЧХ для сложной системы

Пример 1


В качестве примера построим АФЧХ для демпфера, модель которого, разобрана в этой статье.... Добавим на схему блок Построение частотных характеристик качестве входа возьмем возмущающее воздействие, в качестве выхода положение положение груза. Для наглядности иллюстрации примем в качестве выхода положение в миллиметрах (х1000), поскольку модель у нас размерная и результат получается в метрах уже достаточно маленьким примерно 0.004 метра. см. рис. 3.11



Рисунок 3.1.11 Схема для построения частотных характеристик.

Параметры блока Построение частотных характеристик приведены на рисунке 3.1.12, для илюстации зависимости АЧХ и ЛАХ. Результат работы блока график с выбранными параметрам изображен на рисунке 3.1.13:



Рисунок 3.1.12 Парамеметры блока Частотные характеристики.

Рисунок 3.1.13 Частотные харатктеристики в АЧХ, ЛАХ, ФЧХ в линейном масштабе по .

Анализ графика в линейном масштабе по чаще всего не очень удобен, поскольку весь график собиается в узкой области, а дальше график абсолютной амплитуды практически сливается с 0. Если мы хотим исследовать частоты хотя бы до 1000 Гц, мы увидем практически вертикальные и горизонтальные прямые. Изменения масштаба шакалы АЧХ и на логарифмический позволяет более удобно исследовать частотные характеристики (см. рис. 3.1.14).


На рисунке 3.1.14 представлены частотные характеристики демпфера в логарифмическом масштабе и иллюстарция соотношения между абсолютной величиной амплитуды АФЧХ и ЛАХ в децибелах.



Рисунок 3.1.14 Частотные харатктеристики в АЧХ, ЛАХ, ФЧХ в логарифмитическом масштабе по .

Пример 2


Постоим частотные характеристики для чуть более сложной модели. А именно гидравлического демпфера рассмотренного в предыдущей лекции....

Для начала посмотрим модель в виде блоков.


Модель подготовленная для анализа представлена на рисунке 3.1.15. В отличие от исходной модели, описанной ранее, входное воздействие задается блоком ступенька с скачком с 0 до 1 на 10 секунде расчтеа. В блоке линейная функции происходит пересчет сигнала ступенька:
0 соответствует 200 бар в камере, (конечное состояние в предыдущем примере),
1 соответствует 400 бар в камере.
Это сделано для того, что бы можно было подавать синусоидальный сигнал и не получать отрицательное давление в камере плунжера. Так же для наглядности графика, мы усиливаем выходное перемещение переводя его из метров в миллиметры.



Рисунок 3.1.15 Модель гидравлического демпфера.

Частотные характеристики рассчитанные в конце рассчета приведены на рисунке 3.1.16. Видно что характеристики отличаются от простого пружинного демпфера сравните с 3.1.14



Рисунок 3.1.16 Частотные хараткеристики гидравлического депфера

Блок "Построение частотных характеристик" осуществляет расчет характеристик для линеаризованной модели, в окрестности заданной точки, это означает что частотные характеристики системы в разные моменты времени могут отличатся для нелинейных моделей. Например в нашем случае характеристики в начале рассчета будут отличатся от характеристик полученных в конце рассчета.


Для подробных и нелинейных моделей, блок Построение частотных характеристик, может не работать из за наличия разрывов и нелинейностей в модели. Например для точной модели демпфера, которую мы проверяли в предыдущей статье. В этом случае возможно построить частотные характеристики непосредственно моделированием, путем подачи синусоидального сигнала с разной частотой и измерения отклика. В SimInTech для этого используется блок Гармонический анализатор, который подключается к входу модели и генерирует синусоидальной воздействие, в этот же блок направляется отклик системы и производится вычисление необходимых параметров для построения различных характеристик системы, которые можно вывести на графики с помощью блока фазовый портрет.


Модель гидравлического демпфера собранного из библиотечных блоков SimInTech представлена на рисунке 3.1.7


Рисунок 3.1.17 Модель гидравлическогго демпфера для рассчета частотных характеристик.

Расчеты с моделью показывают, что при сохранении общего вида графиков, значения полученные при для подробной модели отличаются от линеаризованной модели, (см. рис. 3.18 3.19)



Рисунок 3.1.18 АЧХ подробной модели привода, полученная прямым моделированием.

Рисунок 3.1.19 ЛАХ подробной модели привода, полученная прямым моделированием.

Использование прямого моделирования, для получения характеристик, является более надежным способом и работает не только с линейными моделями, но может быть использован для построения характеристик некоторых реальных объектов, если их можно подключить к среде моделирования и воздействовать в реальном режиме времени. Однако затраты на вычисления значительно больше. Например для получения характеристик демпфера пришлось выполнить процесса 40 000 секунд модельного времени, на обычном компьютере это заняло порядка 35 минут. График процесса перемещения плунжера в процессе вычисления характеристик приведен на рисунке 3.1.20.


Рисунок 3.1.20 Перемещения плунжера в процессем моделирования.

Блок Гармонический анализаторимеет выходы:
Re(w*t) текущее значение действительной части амплитудно-фазовой частотной характеристики исследуемой системы;
Im(w*t) текущее значение мнимой части амплитудно-фазовой частотной характеристики.
Это позволяет построить годограф исследуемой системы с помощью фазового портрета. (см. рис. 3.1.21)



Рисунок 3.1.21 Годограф системы гидравличесого демпфера.

Модели, использованные для илюстарции в лекции можно взять здесь...

Продолжение следует.

Подробнее..

3. Частотные характеристики систем автоматического управления. ч. 3.3 Апериодическое звено 1го порядка

25.01.2021 00:11:48 | Автор: admin

3.3. Апериодическое звено 1го порядка (инерционное звено)

Вывод свойств(характеристик) апериодического звена сделаем на примере фрагмента (части) ядерного реактора, а именно входной камеры смешения.

Рисунок 3.3.1 Расчетная схема камеры смешенияРисунок 3.3.1 Расчетная схема камеры смешения

Сделаем следующие допущения:

  1. расход теплоносителя постоянен: G = const;

  2. теплоемкость теплоносителя C_p = const;

  3. входящий в камеру смешения теплоноситель полностью перемешивается в камере смешения, т.е. температура жидкости, поступающей в каждый тепловыделяющий канал, одинакова;

  4. теплообмен камеры смешения с окружающей средой пренебрежимо мал.

Уравнение теплового баланса:

\rho \cdot C_p \cdot V \cdot \frac{dT(t)}{dt} = G \cdot C_p \cdot \left[T_{ВХ}(t) -T_{ВХ}(t) \right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.1)}

где: \rho - плотность теплоносителя, кг/м^3
C_p удельная теплоемкость, Дж/(кг \cdot K)
V объем камеры смешения, м^3 ;
G расход теплоносителя, кг/с ;
T_{ВХ}(t), T_{ВХ}(t) температура теплоносителя на входе и выходе, K соответственно;
T(t) температура (перемешанного) теплоносителя в камере смешения T(t) T_{ВХ}(t) .

Условие стационара когда левая часть уравнения равна нулю:

\frac{dT(t)}{dt} =0 \Rightarrow T_{ВХ}=T_{ВХ} =T_0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.2)}

Введем новые переменные:

\tilde{T}_{ВХ} = \frac{T_{ВХ}(t)-{T}_{ВХ}(0)}{{T}_{ВХ}(0)}=\frac{T_{ВХ}(t)-T_0}{T_0}; \Rightarrow T_{ВХ}(t)= T_0 \left[1+ \tilde{T}_{ВХ}\right];\\ \tilde{T}=\tilde{T}_{ВХ} = \frac{T_{ВХ}(t)-{T}_{0}}{{T}_{0}}; \Rightarrow T_{ВХ}(t)= T_0 \left[1+ \tilde{T}_{ВХ}\right]=T(t);

Подставляя эти соотношения в (3.3.1), получаем:

\rho \cdot C_p \cdot V \cdot T_0 \cdot \frac{d\tilde{T} }{dt} = G \cdot C_P \left[ T_0+T_0 \cdot \tilde{T}_{ВХ}(t) - T_0 - T_0 \cdot \tilde{T}(t)\right] = \\ =G \cdot C_P \cdot T_0 \left[ \tilde{T}_{ВХ} - \tilde{T}(t)\right];

Сокращая на T_0 и C_p , получаем:

\rho \cdot V \cdot \frac{d\tilde{T} }{dt} = G \cdot \left[ \tilde{T}_{ВХ}(t) - \tilde{T}(t)\right] \Rightarrow \\ \frac{\rho \cdot V}{G} \cdot \frac{d\tilde{T} }{dt}+ \tilde{T}(t) = \tilde{T}_{ВХ}(t)

Введем новую переменную \tau - постоянная времени:

\tau = \frac{\rho \cdot V}{G}\tau \cdot \frac{d\tilde{T}(t)}{dt} +\tilde{T}(t) = \tilde{T}_{ВХ}(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.3)}

Таким образом получили линейное дифференциальное уравнение, причем переменные {T}_{ВХ}(t) и \tilde{T}(t) - нормализованные, что обеспечивает равенство их нулю при t 0

\tau постоянная времени;
\frac{d\tilde{T}(t)}{dt} аналог y(t);
\tilde{T}(t) аналог y(t);
\tilde{T}_{ВХ}(t) аналог x(t);

Уравнение (3.3.3) соответствует типовому апериодическому звену 1-го порядка, в котором коэффициент K = 1. В общем случае уравнение динамики апериодического звена 1-го порядка имеет вид:

T \cdot y'(t)+y(t) = K \cdot x(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.4)}

Если начальные условия нулевые, томожно перевести в изображения:

y(t) \rightarrow Y(s) \\ y'(t) \rightarrow s \cdot Y(s) \\ x(t) \rightarrow X(s)

Уравнение динамики в изображениях:

 [ T \cdot s +1 ] \cdot Y(s) = K \cdot X(s) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.5)}

Уравнение динамики в изображениях:

W(s) = \frac{Y(s)}{X(s)} = \frac{K}{T \cdot s+1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.6)}

Найдем выражение для АФЧХ:

s = i \cdot \omega \Rightarrow W(i \cdot \omega) = W(s)\mid_{s = i \cdot w} = \frac{K}{T \cdot i \cdot \omega+1} \ \ \ \ \ \ \mathbf{(3.3.7)}

Умножим на комплексно сопряженное значение (1 - i \cdot T \cdot \omega) :

W(i \cdot \omega) =\frac{K \cdot(1- i\cdot T \cdot \omega)} {(1+ i \cdot T \cdot \omega)(1 - i \cdot T \cdot \omega)} = \underbrace {\frac{K}{1+T^2 \cdot \omega^2}}_{Re =u(\omega)} - i \cdot \underbrace {\frac{K\cdot T \cdot \omega}{1+T^2 \cdot \omega^2}}_{Im =v(\omega)}\Rightarrow u(\omega) = \frac{K}{1+T^2 \cdot \omega ^2} \ \ \ \ \ \mathbf{(3.3.8.a)}\\ v(\omega)= -\frac{K \cdot T \cdot \omega}{1+ T^2 \cdot \omega^2}\ \ \ \ \ \mathbf{(3.3.8.b)}

Анализируя поведениеu()иv()при \omega \rightarrow 0 и при \omega \rightarrow \infty , получаем:

\omega \rightarrow 0 \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow K \\ v(\omega) \rightarrow 0\ \end{gathered} \right.\omega \rightarrow \infty \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow 0 \\ v(\omega) \rightarrow 0\ \end{gathered} \right.

Подставляя в формулы (3.3.8) различные значения частоты , найдем соответствующие значенияu() иv(). Построим эти вектора на комплексной плоскости:

Рисунок 3.3.2 Годограф АФЧХ апериодического звена 1-го порядкаРисунок 3.3.2 Годограф АФЧХ апериодического звена 1-го порядка

Анализ показывает, что годограф АФЧХ полукруг радиусомK/2. Формулы для дейстивительной части вектора u(\omega) и мнимой части вектораv(\omega), позволяют вычислить частоту, на которой вектор находится в нижней точке окружности \omega_3 (см. рис. 3.3.2).

\omega_3 = \frac{1}{T} \Rightarrow \left \{ \begin{gathered} u(\omega_3) = \frac{K}{2} \\ v(\omega_3) = - \frac{K}{2} \ \end{gathered} \right.

Угол сдвига фазы при данной частоте: \phi_3 = \phi(\omega_3)=\frac{\pi}{2}

Найдем зависимость амплитуды от частоты:

A(\omega) = \sqrt{ \left( \frac{K}{1+T^2 \cdot \omega^2} \right)^2+\left( \frac{K\cdot T \cdot \omega}{1+T^2 \cdot \omega^2} \right)^2} = \frac{K}{\sqrt{1+T^2\cdot \omega^2}}\ \ \ \ \mathbf{(3.3.9)}

Учитывая, что годограф АФЧХ находится вIV-ой квадранте:

\phi(\omega)= - arctg \frac{v(\omega)}{u(\omega)} =-arctg\frac{K \cdot T\cdot \omega \cdot(1+T^2\cdot \omega^2)}{K \cdot(1+T^2 \cdot \omega^2)} \Rightarrow\\\phi(\omega) =-arctg(T \cdot\omega) \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.3.10)} Рисунок 3.3.3 АЧХ апериодического звена 1-го порядкаРисунок 3.3.3 АЧХ апериодического звена 1-го порядкаРисунок 3.3.4 ФЧХ апериодического звена 1-го порядкаРисунок 3.3.4 ФЧХ апериодического звена 1-го порядка

Логарифмическая амплитудная характеристика (ЛАХ) и фазочастотная характеристика (ФЧХ).

Lm(\omega) = 20\cdot lg (A(\omega))=20 \cdot lg \frac{K}{\sqrt{1+T^2\cdot \omega^2}} \Rightarrow \\Lm(\omega)=20\cdot lg(K) - 20 \cdot lg \sqrt{1+T^2 \cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{3.3.11}Рисунок 3.3.5 ЛАХ и ЛФЧХ апериодического звена 1-го порядкаРисунок 3.3.5 ЛАХ и ЛФЧХ апериодического звена 1-го порядка

Анализируя частотные свойства данного звена, видим, что

  1. при << \frac{1}{T} свойства звена приблизительно совпадают со свойствами идеального усилительного звена, т.е.W(i\cdot \omega) \ \approx K \Rightarrow W(s) \approx K K=> W(s) K.

  2. при >>\frac{1}{T}свойства звена приблизительно совпадают со свойствами идеального интегрирующего звена, т.е.W(i\cdot \omega) \ \approx \frac{K}{i \cdot \omega \cdot T} \Rightarrow W(s) \approx \frac{K}{T \cdot s}.

  3. при \approx \frac{1}{T} на свойства звена оказывают примерно равное влияние свойства идеального усилительного и идеального интегрирующего звена.

Принято называть частоту, при которой происходит излом ЛАХ

\omega_{сопр} = \frac{1}{T}сопрягающей частотой,

причем не трудно показать, что присопр величина амплитуды А(сопр) меньше амплитуды при нулевой частоте A(0) = Kв\sqrt{2}раз:

A(\omega_{сопр}) = \frac{K}{\sqrt{2}}

Частотой срезасрназывают такое значение частоты, при которой модуль (амплитуда) выходного сигнала (воздействия) равна 1.

A(\omega_{ср})=\frac{K}{\sqrt{1+T^2 \cdot \omega_{ср} ^2}}=1 \Rightarrow\\ \omega_{ср} =\frac{\sqrt{K^2-1}}{T}

ЕслиK>>1 , то частота среза  \omega_{ср} = \frac{K}{T}

Если K<1 , то частоты среза не существует !

Найдем переходную функцию звена (реакция на единичное ступенчатое воздействие):

h(t) = L^{-1} \left[ H(s)\right] = L^{-1} \left[ \frac{ W(s)}{h}\right] = L^{-1} \left[ \frac{K}{s \cdot (T\cdot s+1)}\right]

Используя обратное преобразования Лапласа (см. пример в разделе 2) получим:

h(t) = K \cdot \left[ 1- e^{-\frac{t}{T}}\right]

Тогда, дифференцируя по времени, получаем весовую функцию(t):

w(t) = \frac{K}{T} \cdot e^{-t/T} \cdot1(t)

Множитель 1(t) обеспечивает равенство нулю приt 0

Рис.3.3.6 Переходная функция апериодического звена 1-го порядкаРис.3.3.6 Переходная функция апериодического звена 1-го порядкаРис.3.3.7 Весовая функция апериодического звена 1-го порядкаРис.3.3.7 Весовая функция апериодического звена 1-го порядка

Постоянная времени Т характеризует инерционность переходных процессов в звене. Чем больше Т, тем инерционнее звено (т.е. медленнее идет переходной процесс).

Примерами апериодического звена 1- го порядка являются:

1) пассивныеRLилиRCцепочки (см. рисунок 3.3.8);

Рисунок 3.3.8 Примеры апериодических звеньев 1-го порядкаРисунок 3.3.8 Примеры апериодических звеньев 1-го порядка

2) упрощенная модель гидротурбины, гдеx(t) - приводной момент;y(t) скорость вращения ротора турбины;

3) электродвигатель (постоянного тока или асинхронный) с учетом инерционности якоря (ротора), гдеx(t) напряжение в обмотке возбуждения, аy(t) скорость вращения якоря (ротора) выходного вала;

4) тепловые датчики, например, термопара, где:x(t) температура одного (горячего) спая, аy(t) термо Э.Д.С.

5) выходная камера смешения в реакторе (приближенно)

6) различные элементы реактора, описываемые в рамках точеных моделей (например, активная зона или ядерное горючее) с использованиемзакона Фурье:

c \frac{dT(t)}{dt} = N_{out}(t)-\alpha_{v}[T(t)-T_*]

где: T(t) температура топлива;

\alpha_v объемный коэффициент теплоотдачи;

N_{out} выделяющаяся энергия;

T_* температура кипения теплоносителя.

Пример

Лично мне всегда было интересно, насколько теория совпадает с практикой, особенно для элемента ядерного реактора. Идеальный вариант это разобрать туалетный бачок и сделать из него модель реактора, но, боюсь, домашние не одобрят, поэтому сравнивать будем с цифровым двойником.

Рассмотрим расчет характеристик камеры смешения, в которую подается вода при температуре 20 С и атмосферном давлении.

В качестве единичного воздействия будем считать изменение температуры на 1 C.

Свойства воды при 20 градусах и атмосферном давлении:

  • теплоёмкость:C_p= 4183 \frac{Дж}{кг \cdot град} ;

  • плотность:\rho = 998.2 \frac{кг}{м^3} .

Параметры системы:

  • объем камеры смешения:V= 0.1 м^3 ;

  • массовый расход воды: G = 50 \frac{кг}{с} .

Решим задачу в двух приближениях:

  • В первом случае используем стандартный блок Инерционное звено первого порядка, который есть в любой системе структурного моделирования, и модель общего вида.

  • Во втором воспользуемся расчетным тепло-гидравлическим кодом НS, который используется для создания профессиональных моделей в атомной отрасли.

Параметры блока Инерционное звено первого порядка задаем с помощью скриптового языка при инициализации проекта, где рассчитывается постоянная времени. (см. рис. 3.3.9). В качестве входного воздействия задаем ступеньку на пятой секунде расчета величиной 0.05, что соответствует повышению на 1 C от начальных 20 C .

На схеме присутствует также блок Построение частотных характеристик, обеспечивающий расчет ЛАХ и ФЧХ в заданном диапазоне 0.1 1000 1/с.

Расчетная схема и результаты расчета приведены на рисунке 3.3.9:

Рисунок 3.3.9 Частотный анализ модели камеры смешения в виде стандартного апериодического звенаРисунок 3.3.9 Частотный анализ модели камеры смешения в виде стандартного апериодического звена

Видно, что расчетные характеристики в модели совпадают с теоретическими:

1)Постоянная времениT= 1.996

2)Сопрягающая частотаwсп= 1/T= 0,5009

Годограф звена, построенный с помощью Гармонического анализатора, представлен на рисунке 3.3.10, Видно, что получена полуокружность с центром в точке(0, 0.5) и диаметром К = 1, как и предсказано в теоретической части.

Рисунок 3.3.10 Годограф модели камеры смешения в виде Инерционного звена первого порядка.Рисунок 3.3.10 Годограф модели камеры смешения в виде Инерционного звена первого порядка.

Второй вариант модели в камере смешения моделируется с помощью тепло-гидравлическогорасчетного кода - НS. Данный код входит в состав Среды динамического моделирования технических системSimTech. В коде решается более подробная система уравнений теплофизики, описание можно посмотреть здесь. Модель камеры смешения будет состоять из 4 элементов:

  1. Блок Подпитка обеспечивает подачу теплоносителя с заданными параметрами и заданным расходом. В нашем случае это вода при атмосферном давлении и температурой 20 C.

  2. Блок Внутренний узел (Node_1), - модель камеры смешения.

  3. Блок Канал общего вида моделирует обобщенно каналы отвода теплоносителя от камеры смешения (состоит из 10 участков).

  4. Блок Граничный узел задает температуру и давление на выходе из каналов. В нашем случае атмосферное давление и температуру.

Общий вид модели приведен на рисунке 3.3.11 Цветовая шкала показывает распределение давления в канале, который идет после камеры смешения. Исходя из уравнений физики, система рассчитывает перепад давления, соответствующий заданному расходу по каналу (50 кг/с) с учетом его геометрии, свойств жидкости, шероховатости и т.п.

Рисунок 3.3.11 Модель камеры смешения в коде НS.Рисунок 3.3.11 Модель камеры смешения в коде НS.

Если вывести график температуры в узле, то можно увидеть, что в начальный момент расчёта происходит какой-то переходной процесс, несмотря на то что никакого внешнего воздействие на систему нет (см. рис. 3.3.12).

Рисунок 3.3.12 Температура в узле в начальный период расчета.Рисунок 3.3.12 Температура в узле в начальный период расчета.

Все дело в том, что система у нас динамическая, и распределение расхода и температур по узлам модели в начале расчёта не соответствует стационарному состоянию. И некоторое время происходят колебания расходов и, соответственно, температур до достижения равновесия.

Чтобы в расчётах не учитывать данные колебания, и не заставлять пользователя задавать вручную состояние каждой точки системы, используется специальный инструмент Файл рестарта. В этот файл сохраняются состояния системы в конце расчета или с заданным шагом.И эти состояния можно загрузить при старте системы. Если сохранить состояние системы, находящейся в стационаре один раз, то потом можно использовать его для начала расчёта, тем самым избегая колебаний системы. Для этого необходимо:

  1. В настройках проекта задать имя файла, в который мы хотим сохранить стационарное состояние в конце расчета.

  2. В следующих расчетах указать этот файл как начальное состояние при старте нового расчета, и изменить в нем модельное время на 0 (см. рис. 3.3.13).

  3. Не забываем снять галочку Сохранять рестарт при останове, если мы не хотим каждый раз получать новое состояние после каждого расчета.

Рисунок 3.3.13 Настройка файлов рестартов.Рисунок 3.3.13 Настройка файлов рестартов.

Теперь если загрузить систему из файла рестарта, созданного в стационарном состоянии, то колебания температуры на начальном этапе исчезнут. И можно проводить эксперименты с воздействием.

Для того, чтобы сравнить модель в виде динамического звена и модель в тепло-гидравлическом коде, сделаем пакет из двух проектов:

  • гидравлическая модель в коде НS;

  • модель виде одного звена.

Обмен данными будет идти через базу данных сигналов. Передадим результаты расчета из гидравлического кода в модель с одним звеном и выполним сравнение результатов. Вид пакета представлен на рисунке 6.

В главном скрипте гидравлической схемы пропишем переменнуюT_input температуру на входе в камеру, на 5 секунде расчёта увеличим эту температуру на C. А температуру в узле будем записывать в базу данных сигналов в категориюnodе_HS, переменнаяT_out.

В модели общего вида прочитаем значение сигнала в базе данныхnodе_HS_T_out.

Сравним с выходом из апериодического звена (модель камеры смешения) и выведем на один график.

Рисунок 3.3.13 Пакет для сравнения моделей узла смешения.Рисунок 3.3.13 Пакет для сравнения моделей узла смешения.

Результаты совместного расчета представлены на рисунке 3.3.14

Если на общем графике в масштабе 20 21 C графики практически совпадают, то анализ графика сравнения показывает наличие расхождения в момент ступенчатого изменения температуры. Причем максимальное расхождение 0.0085 C отмечено именно в момент переключения, а потом происходит выравнивание температуры (см. рис. 3.3.14).

Рисунок 3.3.14 Сравнение переходного процесса для разных моделей камеры смешения.Рисунок 3.3.14 Сравнение переходного процесса для разных моделей камеры смешения.

Разница связанна как раз с более сложной и детализированной моделью в тепло-гидравлическом коде НS. Дело в том, что в реальности и плотность и теплоёмкость воды не являются постоянными, а зависят от параметров давления и температуры, и даже изменение температуры на один градус ведет к изменению подведения.

Если в масштабе посмотреть на поведение давления в камере смешения и расхода из нее, мы увидим, что несмотря на то, что расход в камеру задавался постоянным, увеличение температуры скачком привело к возникновению колебательного процесса в давлении и массовом расходе из камеры (см. рис. 3.3.15).

Рисунок 3.3.15 Колебания давления и расхода при ступенчатом изменении температуры.Рисунок 3.3.15 Колебания давления и расхода при ступенчатом изменении температуры.

Колебания незначительны по времени и по амплитуде, но тем не менее они влияют на расчетный процесс и хорошо наблюдаемы при масштабировании графиков.

Проведем исследования с помощью блока "Гармонический анализатор". Создадим пакет проектов, состоящий из:

  1. тепло-гидравлической модели (см. рис. 3.3.11);

  2. модели частотного анализа. (см. рис. 3.3.16).

Рисунок 3.3.16 Модель частотного анализа внешней системы.Рисунок 3.3.16 Модель частотного анализа внешней системы.

В предыдущей лекции у нас блок гармонического анализа и анализируемая модель были в одном проекте. В данном проекте блок гармонического анализа передает воздействие в базу сигналов и забирает из нее отклик температуру в камере смешения.

Особенностью данной модели является то, что в начале расчёта на низких частотах нам нужен большой шаг интегрирования, чтобы считать медленный процессы быстрее. В начале анализа у нас частота 0.001 Гц.

А в конце процесса частота 1000 Гц, и нам нужно сократить шаг интегрирования, чтобы получить достаточное количество точек в синусоидальном сигнале при высокой частоте.

Поэтому в базу данных записывается не только тестовое воздействие, но и текущая частота (см. рис. 3.3.17).Это позволяет при увеличении частоты воздействия уменьшить минимальный шаг расчета тепло-гидравлической схемы.Скрипт модели приведен на рисунке 3.3.17.

Рисунок 3.3.17 Скрипт гидравлической модели.Рисунок 3.3.17 Скрипт гидравлической модели.

Как работает этот скрипт?

Начальное значение температуры 20 C.

Если частота воздействия больше 100, то минимальный шаг модели 0.00001, иначе (при частоте воздействия меньше 100) минимальный шаг модели 0.0001.

Температура в блоке подпиткиT_inputрассчитывается как сумма начальной температуры 20C и величины воздействияnode_inputиз базы данных сигналов, которое формирует блок гармонического анализатора в диапазоне -1 +1 C.

Температура в узле передаётся в базу данных для гармонического анализатора.

Результат длительного расчёта представлен на рисунке 3.3.18.

Рисунок 3.3.18. Результаты анализа частотного анализа гидравлической модели. Рисунок 3.3.18. Результаты анализа частотного анализа гидравлической модели.

Мы видим, что несмотря на различия в математических моделях, частотные характеристики камеры смешения в тепло-гидравлическом коде отлично совпадают в диапазоне частот 0.001 до 50 Гц. Сравни с рисунком 3.3.9

Однако на частотах выше 70 ФЧХ ведет себя не так, как в идеальном апериодическом звене. Если открыть график давления в камере смешения и график массового расхода в канале, можно наблюдать увеличение амплитуды колебаний с ростом частоты воздействия (см. рис. 3.3.19).

Рисунок 3.3.19 Давление в узле и расход в выходном канале с ростом частоты воздействия по температуре.Рисунок 3.3.19 Давление в узле и расход в выходном канале с ростом частоты воздействия по температуре.

Таким образом изначальная модель, в которой можно было пренебречь колебаниями давления и массового расхода, с ростом частоты воздействий выше 50 Гц превращается в модель, где принятые допущения уже не работают.

Выводы.

Теория автоматического управления действительно работает, и даже ядерный реактор можно представить в виде набора динамических звеньев.

Однако нужно внимательно смотреть за параметрами процессов, и определять диапазоны, где принятые упрощения настолько изменяют систему, что делают модель не верной .

Примеры моделей из лекции для самостоятельного изучения.

Предыдущая лекция.

Ссылки по теме моделирования систем:

Подробнее..

3. Частотные характеристики звеньев и систем автоматического регулирования. 3.5 Колебательное звено

07.04.2021 08:12:05 | Автор: admin

Колебательное звено является наиболее интересным случаем из всех типовых звеньев, во-первых,за счет сильной похожести по своим динамическим свойствам на более сложные реальные САУ (САР), во-вторых, близкой идентичности переходных процессов в звене к аналогичным в реальных САР, и, в-третьих, существенной зависимости динамических свойств от величины параметра звена.

Выведем формулу колебательного звена на примере электрического колебательного контура, который изучают в курсе школьной физики. Пример такого контура приведен на рисунке 3.5.1

Рисунок 3.5.1 Модель электического колебательного контураРисунок 3.5.1 Модель электического колебательного контура

Электрическая цепь содержит источник напряжения и последовательно соединённые индуктивность, сопротивление, конденсатор.

Входное ступенчатое воздействиеx(t), формирующее внешнюю Э.Д.С в цепи, подключено к блоку источнику напряжения х(t) =Uвх(t).

Результирующий отклик звена - напряжение на конденсатореy(t) =Uс(t) =Uвых(t).

Согласно второму закону Кирхгофа для замкнутого контура, сумма Э.Д.С равна сумме напряжения на резистивных элементах контура.

U_R+U_C =U_{вх} +\xi_L \Rightarrow \\ \Rightarrow -\xi_L+U_R+U_C= U_{вх}

где:

\xi_L = -L \cdot \frac{dI}{dt}- ЭДС индукции на катушке, (направлено против изменения тока);

U_R=R \cdot I- падение напряжении на сопротивлении.

Поскольку в замкнутом контуре сила тока одинакова на всех элементах, перепишем уравнения, выразив силу тока через напряжение на конденсаторе. Сила тока в цепи равна изменению заряда конденсатора:

I =\frac{dq}{dt} где:

q=C\cdot U_C- заряд кондесатора.

Тогда сила тока в цепи связана с напряжение на конденсаторе соотношением:

I = C \cdot \frac{ dU_c}{dt}

После замены силы тока, ее выражением через U_C получим следующие выражение:

L \cdot C \cdot \frac{d^2U_c}{dt^2} +R\cdot C \cdot \frac{d U_c}{dt}+U_c = U_{вх}

Заменив U_C=y(t) и U_{ВХ} = x(t) получим уравнение колебательного звена:

\underbrace{L \cdot C}_{T_2^2} \cdot y''(t)+\underbrace{R \cdot C}_{T_1} \cdot y'(t) +y(t) =\underbrace{1 \cdot }_Kx(t)

Уравнение динамики звена описывается уравнением, аналогичным рассмотренном в предыдущем разделе (апериодическое звено второго порядка):

T^2_2 \cdot y''(t)+T_1 \cdot y'(t)+ y(t) =K\cdot x(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.1)}

причем T_1<T_2 , т.е. D= T_1^2-4 \cdot T_2^2 \leq 0

Учитывая, что D \leq0 , удобнее представить уравнение динамики в другой форме, а именно:

Введем новые параметры: T\equiv T_2 и \beta = \frac{T_1}{2 \cdot T_2} , где \beta - параметр (коэффициент) затухания (демпфирования).

Подставляя новые параметры в (3.5.1):

T^2 \cdot y''(t)+2 \cdot \beta \cdot T\cdot y'(t)+y(t) = K \cdot x(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.2)}

Уравнение 3.5.2 - наиболее удобная форма представления уравнения динамики.

Перейдем к изображениям: x(t) \rightarrow X(s) и y(t) \rightarrow Y(s) уравнение динамики в изображениях Лапласа:

(T^2_2 \cdot s^2+2 \cdot \beta \cdot T \cdot s+1) \cdot Y(s)=K \cdot X(s)

Передаточная функции колебательного звена:

W(s) =\frac{Y(s)}{X(s)}= \frac{ K}{ T^2 \cdot s^2+2 \cdot \beta \cdot T \cdot s + 1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.3)}

Еще раз подчеркнем, что параметр (коэффициент) затухания (демпфирования) 0 \le \beta \le 1 , причем при \beta > 1 свойства колебательного звена совпадают с аналогичными свойствами соответствующего апериодического звена 2-го порядка, а при \beta = 0 звено выражается вконсервативное, в котором могут существовать незатухающие гармонические колебания.

Выражение для АФЧХ получается после подстановки в (3.5.3) значения s=i\cdot \omega :

W(i \cdot \omega)=\frac{K}{T^2 \cdot (i \cdot \omega)^2+2 \cdot \beta \cdot T \cdot i \cdot \omega+1}=\\= \frac{K}{(1-T^2\cdot \omega^2)+2 \cdot \beta \cdot T \cdot i \cdot \omega} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.4)}

Домножим числитель и знаменатель формулы 3.5.4 на компексно сопряженное выражения для знаменателя (1-T^2\cdot \omega^2) - 2 \cdot \beta \cdot T \cdot i \cdot \omega :

W(i \cdot \omega) = \frac{K(1-T^2\cdot \omega^2) - K \cdot 2 \cdot \beta \cdot T \cdot \omega \cdot i}{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}

Выражения для вещественной и мнимой частей принимают вид:

u( \omega) = \frac{K(1-T^2\cdot \omega^2) }{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.5)}v(\omega) = \frac{ - 2 \cdot K \cdot \beta \cdot T \cdot \omega }{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \ \cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.6)}

Амплитуда АФЧХ

A(\omega) = \sqrt{u(\omega)^2+v(\omega)^2} =\sqrt{\frac{K^2 \left( (1-T^2\cdot \omega^2)+4\cdot K^2 \cdot \beta^2 \cdot T^2 \cdot \omega^2 \right)}{((1-T^2\cdot \omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2)^2}}A(\omega) = \frac{K }{\sqrt{(1-T^2\cdot \omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}} \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.7)}

Сдвиг фазы

\varphi (\omega) = \left \{ \begin{gathered} -arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1- T^2 \cdot \omega^2}, \ если \ \omega \le \frac{1}{T}; \\ -\pi- arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1- T^2 \cdot \omega^2}, \ \ если \ \ \omega > \frac{1}{T}. \ \end{gathered} \right. \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.8)}

Анализ формул (3.5.5 3.5.8) показывает, что:

\omega \rightarrow 0 \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow K; \\ v(\omega) \rightarrow 0; \\ A(\omega) \rightarrow K; \\ \varphi(\omega) \rightarrow 0; \end{gathered} \right. \ \ \ \ \ \ \ \omega \rightarrow \infty \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow 0; \\ v(\omega) \rightarrow 0; \\ A(\omega) \rightarrow 0; \\ \varphi(\omega) \rightarrow - \pi; \end{gathered} \right. \ \ \ \ \ \ \ \mathbf{(3.5.9)}

Одной из главных особенностей АФЧХ является возможность существования экстремума в зависимостиA(). Выполним исследование на экстремум:

\frac{dA(\omega)}{d\omega}=\frac{d}{d\omega} \left( \frac{K}{\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot T^2\cdot \omega^2}}\right)=0\frac{\frac{d}{d\omega}K\cdot\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}-K \cdot \frac{d}{d\omega}\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}}{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2} = \\ =\frac{-0.5\cdot K\cdot((1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2)^{-1.5}\cdot[2\cdot(1-T^2\cdot\omega^2)\cdot(-2)\cdot T^2\cdot \omega+8 \cdot \beta^2\cdot\omega]}{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}

Очевидно что, для того, что бы выражение равнялось нулю необходиом равенство нлую следующего выражения:

-4\cdot(1-T^2\cdot \omega^2)\cdot T^2 \cdot \omega+8 \cdot \beta^2\cdot T^2 \cdot \omega = 0

Отсюда вырражение для экстермума:

\omega_m=\frac{1}{T}\sqrt{1-2\cdot \beta^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.10)}

Очевидно, что \omega_m существует если (1- 2 \cdot \beta^2)\ge 0 \Rightarrow \beta \le\frac{\sqrt2}{2}

Если \beta < \frac{\sqrt{2}}{2} , то заивисмость A(\omega) имеет экстремум.

Если \beta >\frac{\sqrt{2}}{2} , экстремума в заивсимости A(\omega) нет.

Вычислим максимальное значение A(\omega) , под ставим выражение для \omega_m 3.5.10 в формулу 3.5.7, получим:

A(\omega_m) =\frac{K}{\sqrt{\left [1 -T^2 \frac{1}{T^2}(1-2\beta^2) \right ]^2+4\beta^2T^2\frac{1}{T^2}(1- 2\beta^2)}} \RightarrowA(\omega_m) = \frac{K}{2 \cdot\beta \sqrt(1- \beta^2)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.11)}

Анализ вышеприведенных соотношений показывает, что при \beta < \frac{\sqrt{2}}{2} графикA(\omega)имеет горб, который при уменьшении \beta растет и при \beta \rightarrow 0 \ \ \ \ \ \ A(\omega) \rightarrow \infty , что означает разрыв в зависимостиA(\omega).

Частоту мбудем отождествлять с тем значением частоты входного гармонического воздействия, при которой имеет местомаксимальноезначение амплитуды выходного сигнала.

Поскольку \beta = \frac{T_1}{T_2} , то очевидна роль постоянных времени :

T_2 раскачивает колебания, а T_1 демпфирует их. Рассмотрим соответствующие графики:

Рисунок 3.5.2 АЧХ колебательного звенаРисунок 3.5.2 АЧХ колебательного звенаРисунок 3.5.3 ФЧХ колебательного звенаРисунок 3.5.3 ФЧХ колебательного звена

Данные графики аналогичны для случаев резонансов в теоретической механике, физике, электротехнике и т.д.

Величину \omega = \frac{1}{T} принято называть частотой свободных колебаний и обозначать 0.

Рассмотрим колебательное звено в котором = 0. Очевидно, что в данном звене при ступечатом воздействии устанавливаются незатухающие колебания, а само звено вырождается в консервативное. При этом согласно формуле 3.5.10 выражение экстремума для такого звена:

\omega_m=\frac{1}{T}\sqrt{1-2\cdot 0^2} = \frac{1}{T}

Величину \omega = \frac{1}{T} принято называть частотой свободных колебаний и обозначать 0.

Подставляя различные значения в формулу (3.5.5) или (3.5.6) построим годограф АФЧХ на комплексной плоскости:

Рисунок 3.5.4 АФЧХ колебательного звенаРисунок 3.5.4 АФЧХ колебательного звенаРисунок 3.5.5 Годограф АФЧХ консервативного звенаРисунок 3.5.5 Годограф АФЧХ консервативного звена

Построение ЛАХ Lm() не может быть сделано так же просто, как для предыдущих позиционных звеньев, т.е. она не сводится к комбинации отрезков прямых.

Будем использовать для построения графика ЛАХнормированную(безразмерную) частоту\tilde{\omega} = \frac{\omega}{\omega_0}, где \omega_0 - частота свободных колебаний, имеющим место в консервативном звене со следующим уравнением динамики:

T^2 \cdot y''(t)+y(t) = K \cdot x(t)

Решим данное уравнение динамики, используя корни характеристического уравнения L(\lambda )=0 :

T^2\cdot \lambda^2+1=0 \Rightarrow \lambda_{1,2} = \pm i\cdot\frac{1}{T} = \pm i \cdot \omega_0y_{собств} = С_1\cdot e^{i \cdot \omega_0\cdot t}+C_2\cdot e^{-i\cdot \omega_0 \cdot t} \approx sin(\omega_0\cdot t)

На этом месте у меня всегда выносится мозг, как могут прыгающие на пружинке шарике, и электроны в электрическом контуре, описаны с помощью одиникового выражения, формулы синуса - соотношения стороно в прямоугольном треуголнике. Как это работает?!

Введя новую переменную\tilde{\omega}в выражение дляLm() = 20 lg (А()):

Lm(\omega) =20\cdot lg(K) - 20 \cdot lg(\sqrt{(1-T^2\cdot \omega^2)^2+4 \cdot \beta^2\cdot T^2\cdot \omega^2}) = =20\cdot lg(K) - 20 \cdot lg(\sqrt{\left (1-\frac{\omega^2}{\omega_0^2} \right)^2+4 \cdot \beta^2\cdot \frac{\omega_2}{\omega_0^2}} \RightarrowLm(\omega) =20\cdot lg(K) - 20 \cdot lg(\sqrt{\left (1-\tilde{\omega}^2 \right)^2+4 \cdot \beta^2\cdot \tilde {\omega}^2} \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.12)}

Таким образом мы получаем выражение, которое не зависит от Т. Такая форма представления позволяет свести различные ЛАХ при различныхТк автомодельному (универсальному) виду графиков.

На рисунке ниже представлен графикLm() в форме (3.5.12), построенный фактически в логарифмических координатах, причем коэффициент усиленияK=1.

Рисунок 3.5.6 ЛАХ колебательного звенаРисунок 3.5.6 ЛАХ колебательного звена

Подчеркнем, что при такой форме представления все ЛАХ при различныхT1иT2можно собирать вместе.

ВеличинаHm(см. рис. 3.5.6) называетсяпревышением:

H_m=20\cdot lg \frac{1}{2\cdot\beta\cdot \sqrt{1-\beta^2}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.13)}

Если, \beta <<1, \ \ \beta \approx 0 то в упрощенных расчетах величину превышенияHmможно оценить, как:

H_m = 20 \cdot lg \frac{1}{2\cdot \beta}=-20lg(2\cdot \beta) \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.14)}

при =m(эта формула работает для ярко выраженных горбов).

Вычислим переходную функцию звенаh(t):

h(t)= L^{-1}[H(s)] =L^{-1}\left[\frac{W(s)}{s}\right] = L^{-1}\left[ \frac{K}{s(T^2\cdot s^2+2 \cdot \beta \cdot s+1)} \right] \Rightarrowh(t) =\frac{K}{T^2}L^{-1} \left[ \frac{1}{s(s^2+\frac{2\cdot \beta}{T}\cdot s)+\frac{1}{T^2}} \right]

Для вычисления переходной функции воспользуемся формулой Хэвисайда сначала найдем полюса s_1,s_2,s_3:

s \cdot \left(s^2+\frac{2 \cdot \beta}{T}+ \frac{1}{T^2} \right) =0 \Rightarrow \\ s_1 =0;\\s_2 = -\frac{\beta}{T}+i \cdot \frac{1}{T}\sqrt{1- \beta^2} \\s_3 = -\frac{\beta}{T}-i \cdot \frac{1}{T}\sqrt{1- \beta^2}

По формуле Хэвисайда

h(t)= \frac{K}{T^2} \sum_1^3 \lim_{s \to s_j } \left[ \frac{(s-s_j)}{s \cdot(s^2+\frac{2 \cdot \beta}{T}\cdot s+\frac{1}{T^2})} \cdot e^{st} \right]\ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.15)}

Разберем отдельно каждый предел:

\lim_{s \to 0} \left [ \frac{(s-0)}{s \cdot(s^2+\frac{2 \cdot \beta}{T}\cdot s+ \frac{1}{T^2})} \cdot e^{st}\right]=\frac{1}{0+0+\frac{1}{T^2}}\cdot1=T^2

Для вычисления 2-го и 3-го предела в формуле Хэвисайда более удобно использовать новые переменные m и n:

m=-\frac{\beta}{T}; \ \ \ \ \ \ \ n = \frac{1}{T}\sqrt{1-\beta^2}

Тогда корни s_1, s_2 выраженные через переменные m и n будут записаны как:

s_2 =m+i\cdot n; \ \ \ \ \ \ \ \ s_3=m-i\cdot n

Разложим квадратный трех член в скобках в занаментели на множетели и использованием корней s_2, s_3 :

s^2+\frac{2\cdot\beta}{T} \cdot s+\frac{1}{T^2} =(s-s_2)\cdot(s-s_3)

тогда 2-й предел в фомуле Хевисайда можно записать как:

\lim_{s \to (m+i \cdot n)} \left [ \frac{s -m-i\cdot n}{s (s - m-i\cdot n)(s-m+i \cdot n)} \cdot e^{s\cdot t}\right] =\\ = \frac{1}{(m+i\cdot n)(m+i\cdot n-m+i \cdot n)} \cdot e^{(m+i \cdot n)\cdot t} = \\ = \frac{1}{(m +i\cdot n)\cdot 2 \cdot i\cdot n} \cdot e^{m\cdot t}\cdot e^{i\cdot n\cdot t}

домножая на комплексно сопряженное число (m-i \cdot n)\cdot i числитель и знаменатель получим значение второго предела:

-\frac{n+m \cdot i}{(m^2+n^2)\cdot 2 \cdot n}\cdot e^{m\cdot t}\cdot e^{i\cdot n \cdot t }

Анологично 3-й предел в формуле Хевисайда можно записать как:

\lim_{s \to (m-i \cdot n)} \left [ \frac{s -m+i\cdot n}{s (s - m-i\cdot n)(s-m+i \cdot n)} \cdot e^{s\cdot t}\right] =\\ = \frac{1}{(m-i\cdot n)(m-i\cdot n-m-i \cdot n)} \cdot e^{(m-i \cdot n)\cdot t} = \\ = -\frac{1}{(m -i\cdot n)\cdot (-2) \cdot i\cdot n} \cdot e^{m\cdot t}\cdot e^{i\cdot n\cdot t}

домножая на комплексно сопряженное число (m+i \cdot n)\cdot i , числитель и знаменатель получим значение третьего предела:

\frac{-n+m\cdot i}{(m^2+n^2)\cdot 2\cdot n}e^{m\cdot t}\cdot e^{-i\cdot n\cdot t}

Отдельно сложим второе и третье слогаемое в формуле Хевисайда:

\sum_2^3 =-\frac{e^{m\cdot t}}{2 \cdot n \cdot (m^2+n^2)} \left [ (n+i \cdot m)\cdot e^{i \cdot n \cdot t}+(n-i \cdot m)\cdot e^{-i \cdot n \cdot t} \right ]==-\frac{e^{m\cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left[ n \cdot e^{i \cdot n \cdot t} +i \cdot m \cdot e^{i \cdot n \cdot t}+n \cdot e^{-i \cdot n \cdot t}-i \cdot m \cdot e^{-i \cdot n \cdot t} \right] == -\frac{e^{m \cdot t}}{2 \cdot n \cdot (m^2+n^2)} \left [ n\cdot(\underbrace{e^{i \cdot n \cdot t}+ e^{-i\cdot n \cdot t}}_{2 \cdot cos(n \cdot t)})+ i \cdot m \cdot(\underbrace{e^{i \cdot n \cdot t}-e^{-i \cdot n \cdot t}}_{2\cdot i \cdot sin(n \cdot t)})\right ]== -\frac{e^{m \cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left [n \cdot cos (n \cdot t)- m \cdot sin(n \cdot t)\right ] == -\frac{e^{m \cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left [cos (n \cdot t)- \frac{m}{n} \cdot sin(n \cdot t)\right ]

подставляя значения n и m:

(m^2+n^2)=\frac{\beta^2}{T^2}+\frac{1-\beta^2}{T^2}=\frac{1}{T^2}\\ \frac{m}{n}=-\frac{\beta}{T}\cdot \frac{T}{\sqrt{1-\beta^2}}

и собирая все слагаемые формулы 3.5.15 получаем:

h(t)=\frac{K}{T^2}\left [T^2 - T^2 \cdot e^{m \cdot t} (cos(n \cdot t)+\frac{\beta}{\sqrt{1-\beta^2}}\cdot sin(n \cdot t)) \right] \Rightarrow h(t) = K \left [ 1 -e^{-\frac{\beta}{T}\cdot t} \left(cos \frac{\sqrt{1-\beta^2}}{T}\cdot t+\frac{\beta}{\sqrt{1-\beta^2}}sin\frac{\sqrt{1-\beta^2}}{T} \cdot t \right) \right ] \ \ \ \ \ \mathbf{(3.5.16)}

Введем новую переменную \omega_c = \frac{1}{T}\sqrt{1-\beta^2} и перепишем формулу для переходной функции:

h(t) = K \left [1 -e^{-\frac{\beta}{T} \cdot t} \left( cos(\omega_c \cdot t)+\frac{\beta}{\sqrt{1 -\beta^2}}sin(\omega_c \cdot t)\right) \right ] \ \ \ \ \ \ \ \mathbf{(3.5.16.a)}

Величина \omega_c = \frac{1}{T}\sqrt{1-\beta^2} называется частотой собственной колебаний при 0<\beta< 1 .

Таким образом в описании колебательного звена появилосьтриновых частоты \omega_m < \omega_m <\omega_c

  • \omega_0 - частота свободных колебаний;

  • \omega_m- частота, соответствующая максимальной амплитуде;

  • \omega_c- частота собственных колебаний.

Причем \omega_m < \omega_m <\omega_c

Рассмотрим предельные случаи для (т.е. = 1 и = 0):

Если \beta \to 0 , то \omega_c \to \omega_0=\frac{1}{T} :

h(t) = K \left [1 -e^{0\cdot t} \left ( cos \frac{t}{T} +0 \cdot sin \frac{t}{T} \right ) \right]h(t) = K \left [ 1 - cos \frac{t}{T}\right ] \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.17)}

3.5.17 - переходная функция консервативного звена.

Рисунок 3.5.6 Переходная функция консервативного звенаРисунок 3.5.6 Переходная функция консервативного звена

Если \beta \to 1 , то \omega_c \to 0 , т.е. собственных колебаний в звененет, процесс без колебательный.В этом случае возникают трудности со вторым слагаемым в круглых скобках формулы (3.5.16).

Раскрываем неопределенность типа\frac{0}{0}:

\lim_{\beta \to 1 } \left[ \frac{\beta}{\sqrt{1-\beta^2}} \cdot sin \left (\frac{\sqrt{1-\beta^2}}{T} \cdot t \right ) \right ] = \lim_{\beta \to 1} \left [ \frac{\beta \cdot t}{T} \cdot \frac{sin(\frac{\sqrt{1-\beta^2}}{T}\cdot t)}{\underbrace{\frac{\sqrt{1-\beta^2}}{T}}_{\approx \frac{sin x}{x}}} \right ]=\frac{t}{T}h(t)_{\beta=1} = K \left [ 1 - e^{-\frac{t}{T}}\cdot \left (1 +\frac{t}{T} \right)\right] \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.18)}

эта формула соответствует также аналогичной формуле для апериодического звена 2-го порядка приD= 0 (совпадающиеполюса).

Рисунок 3.5.8 Переходная функция колебательного звена (при = 1)Рисунок 3.5.8 Переходная функция колебательного звена (при = 1)Рисунок 3.5.9 Переходная функция колебательного звена (при 0 < < 1)Рисунок 3.5.9 Переходная функция колебательного звена (при 0 < < 1)

Если 0<\beta<1 , то \beta =T\cdot \frac{\omega_c}{\pi} \cdot \ln \frac{A_1}{A_2}

Дифференцируя во времени формулы (3.5.16 3.5.18), найдем соответствующие весовые функции для крайних значений \beta (w(t)):

Если \beta =0 \Rightarrow

 w(h)_{\beta =0} = h'(t)= \frac{K}{T} sin \left ( \frac{t}{T} \right ) \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.19)}Рисунок 3.5.10 Весовая функция колебательного звена при = 0.Рисунок 3.5.10 Весовая функция колебательного звена при = 0.

Если \beta =1 \Rightarrow

 w(h)_{\beta =1} = h'(t)= K \left [ \frac{1}{T} \cdot e^{-\frac{t}{T}}\cdot \left( 1+ \frac{t}{T} \right) - e^{-\frac{t}{T}} \cdot \frac{t}{T} \right ]w(h)_{\beta =1} = \frac{K}{T^2} \cdot t \cdot e ^{-\frac{t}{T}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.20)}Рисунок 3.5.11 Весовая функция колебательного звена при = 1.Рисунок 3.5.11 Весовая функция колебательного звена при = 1.

Если 0<\beta <1 \Rightarrow

w(t) = h'(t) = \frac{K}{T\cdot \sqrt{1 -\beta^2}}\cdot e^{-\frac{\beta \cdot t}{T}} \sin \left ( \frac{\sqrt{1-\beta^2}}{T} \cdot t \right) \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.21)}\beta = T\cdot \frac{\omega_c}{\pi}\cdot \ln\frac{B_1}{B_2}Рисунок 3.5.12 Весовая функция колебательного звена при 0 < < 1.Рисунок 3.5.12 Весовая функция колебательного звена при 0 < < 1.

Примерами колебательного звена можно считать:

  1. RCL цепь см. начало статьи;

  2. Упругиемеханические передачи;

  3. Гироскопический маятник;

  4. Управляемый двигатель постоянного тока (при некоторых условиях).

Пример

В качестве примера для исследования колебательного звена возьмем электрический колебательный контур, который был рассмотрен в начале статьи и сравним его с моделью колебательного звена.Модель контура представлена на рисунке 3.5.13:

Рисунок 3.5.13 Модель колебательного контураРисунок 3.5.13 Модель колебательного контура

Схема модели содержит в себе:

  1. модель электрического контура в виде электрической схемы;

  2. модель контура в виде колебательного звена.

Параметры электрической схемы задаются в виде общих сигналов проекта. См. рис. 3.5.14:

Рисунок 3.5.14 Общие сигналы проекта.Рисунок 3.5.14 Общие сигналы проекта.Рисунок 3.5.15. Вычисление параметров для колебательного звена.Рисунок 3.5.15. Вычисление параметров для колебательного звена.

В общем скрипте проекта выполняется вычисление постоянной времениTи коэффициента демпфирования \beta

Для сравнения модели в виде электрической схемы и модели в виде колебательного звена, выполним моделирование ступенчатого возрастания напряжения, с 0 до 1 В.

Рисунок 3.5.16. Графики напряжений источника и на конденсаторе.Рисунок 3.5.16. Графики напряжений источника и на конденсаторе.

Выполним гармонический анализ данной модели, аналогично тому, как мы это делали для модели демпфера и камеры смешения реактора демпфера.

Рисунок 3.5.17 Сравнение модели контура и колебательного звенаРисунок 3.5.17 Сравнение модели контура и колебательного звена

На графике рис. 3.5.16 видно возникновение колебательного процесса и его затухание с течением времени. График на рис. 3.5.17 показывает практически полное совпадение модели в виде электрической схемы и модели в виде колебательного звена:

Выполним гармонический анализ данной модели, аналогично тому, как мы это делали для модели демпфера и камеры смешения реактора демпфера (см. разделы 3.3 Апериодическое звено 1-го порядка. и 3.1 Амплитудно-фазовая частотная характеристика). Расчетная схема для такого анализа приведена на рисунке 3.5.18.

Рисунок 3.5.18. Частотный анализ электрического контураРисунок 3.5.18. Частотный анализ электрического контура

Амплитуда входного тестового сигнала - 1 В, аналогична амплитуде ступенчатого воздействия из предыдущего численного эксперимента.

Результаты анализа представлены на рисунке 3.5.19

Рисунок 3.5.19 Результаты гармонического анализа.Рисунок 3.5.19 Результаты гармонического анализа.

Результаты моделирования показывают практическое совпадение теоретических значений частоты, при которой достигается максимальная амплитуда сигнала, и значений, полученных в результате моделирования электрической схемы: Теоретическое значение = 111,75 Гц Полученное моделированием = 112,2 Гц

Для исследования влияния параметров модели добавим на схему управляющие элементы, которые буду менять сопротивление резистора и емкость конденсатора во время расчёта.

 Рисунок 3.5.20 Модель с изменяемыми параметрами контура. Рисунок 3.5.20 Модель с изменяемыми параметрами контура.

Также выведем на схему значения коэффициента демпфирования с помощью текста и стрелочного прибора. Чтобы можно было отслеживать влияние параметров цепи на процесс, заменим ступенчатое воздействие на меандр. Схема модели примет вид, как это представлено на рисунке 3.5.20

Чтобы данная конфигурация заработала, необходимо добавить в скрипт программы код, который заберёт значения с ползунков и передаст их в параметры модели (см. рис 3.5.21)

Рисунок 3.5.21. Скрипт изменения параметров моделиРисунок 3.5.21. Скрипт изменения параметров модели

Данная модель позволяет изменить сопротивление резистора и емкость конденсатора, и оценить влияние этого изменения на переходной процесс. Подобное изменение мы делали в предыдущем примере, где изменение силы терпения в механическом демпфере выполнялось автоматически, и апериодическое звено второго порядка превращалось в колебательное. В текущем примере мы можем вручную, с помощью ползунков, изменить параметры цепи и получить из колебательного звена апериодическое звено второго порядка.

Например, при положении ползунков, изображенном на рисунке 3.5.22, колебательный контур превращается в апериодическое звено второго порядка (см. рис. 3.5.23.)

Рисунок 3.5.22. Настройки контура для устранения колебанийРисунок 3.5.22. Настройки контура для устранения колебанийРисунок 3.5.23. Графики изменения переходных процессов в контуре при изменении R и С.Рисунок 3.5.23. Графики изменения переходных процессов в контуре при изменении R и С.

При увеличении сопротивления резистора и емкости кондесатора происходит увеличение коэффициента демпфирования, и когда Если \beta >1 \Rightarrow колебательное звено превращается в апериодическое 2-го порядка. (см. график на рис 3.5.23.

Поскольку мы рассматриваем общую тему частотных характеристик, доработаем наш виртуальный стенд с контуром так, чтобы можно было вручную исследовать частотные воздействия на контур.

Заменим в качестве источника блок меандр, на блок синусоида и добавим ползунок, изменяющий частоту этого источника, а также добавим на схему текстовые надписи, отображающие частоты максимальной амплитуды, частоты собственных колебаний и частоты свободных колебаний. Расчетная схема будет выглядеть как на рисунке 3.5.25

Рисунок 3.5.24 Схема колебательного контура с настройками частоты источника.Рисунок 3.5.24 Схема колебательного контура с настройками частоты источника.

Добавляем в скрипт необходимый код, обеспечивающий расчет частот максимальной амплитуды, собственных колебаний и свободных колебаний, а также код для изменения частоты источника напряжения. Данный код скрипта приведен на рисунке 3.5.25

Рисунок 3.5.24 Скрипт для управления и отображения частоты.Рисунок 3.5.24 Скрипт для управления и отображения частоты.

Данная модель позволяет независимо настраивать параметры цепи и частоту источника напряжения.

В частности, можно убедится, что при различных настройках колебательного контура максимальная амплитуда колебаний напряжения достигается тогда, когда частота источника совпадает с частотой максимальной амплитуды, рассчитанной по формуле 3.5.10 см.скрипт на рис. 3.5.24.

Видео с управлением данным контуром можно посмотреть по ссылке.

А, например, на следующем графике изображено изменение напряжения на конденсаторе при повышении частоты источника от 0 до 300 Гц с шагом 1 Гц 1 сек.

График построен путем давления в скрипте строки, передвигающей ползунок каждую секунду на 1 единицу (Гц) BarW.Value=Round(time) .

Как видим результат ручного управления совпал с результатом гармонического анализа максиму амплитуды теоретической частоте максимума - 112 Гц.

Примеры проектов для самостоятельного изучения можно взять по ссылке здесь.

Предыдущая лекция. 3.4 Апериодическое звено 2го порядка.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru