Русский
Русский
English
Статистика
Реклама

Сельское хозяйство

Анонс как с помощью машинного обучения выращивают марихуану и помидорки

14.02.2021 20:12:30 | Автор: admin

Завтра, в 20:00 в наших соцсетях выступит Валерия Коган выпускница физтеха, со-основательница стартапов Fermata и Smartomica.

Лера пришла идея контролировать растения в теплицах за счет машинного обучения, когда ее знакомые рассказали ей о своих проблемах с массовым выращивании огурцов и помидоров. Тогда она с приятелями основала Fermata и начала разрабатывать платформу для мониторинга растений в реальном времени.

В 2019-ом компания привлекла $1,1 млн инвестиций от частного инвестора, а уже в в марте 2020-го, в ходе раунда А получила еще $3,7 млн. инвестиций от британского фонда Massa Innovations и нескольких частных инвесторов.

Кроме агротеха, Лера занимается разработкой новых методов диагностики рака и является приглашенным ученым в Roswell Park Cancer Institute. В Smartomica они разрабатывает технологии анализа медицинских и научных данных для диагностики и лечения онкологических пациентов

Лера большой поклонник биотехнологий и считает крайне важным поддерживать передовые исследования. Она старается влиять на изменение ситуации в лечении и диагностике онкологии, как научной работой, так и поддержкой благотворительных фондов, которые делают их разработки доступными для пациентов.

Во время эфира Лера расскажет, как искусственный интеллект меняет выращивание овощей, почему с марихуаной легче работать, чем с помидорами, как собрать датасет больных растений и как она использует одну и ту же технологию в сельском хозяйстве и в онкологии.



Тезисы выступления


  • Как в Fermata следят за растениями
  • Почему лучше выращивать марихуану, а не помидоры
  • Как пожухлый салат может привести фермера к разорению
  • Почему для эффективного сельского хозяйстве недостаточно людей
  • Почему и как Fermata стала первопроходцем в умных теплицах
  • Как в Fermata собрала десятки тысяч фотографий помидоров для машинного обучения
  • Как фермеры и агрономы помогали собирать разметку данных
  • Что за датчики используются в теплицах, что можно измерять и контролировать через ML и как это влияет на здоровье растения
  • Как устроена работа в теплице, за какими параметрами надо следить
  • Какие задачи остаются за человеком в умных теплицах
  • Какие задачи стоят перед R&D отделом Fermata
  • Как на основе визуального анализа узнать состав растения
  • Почему Fermata работает с теплицами и как дроны помогают выращивать растения
  • Как Лера начала заниматься анализом генетических данных и помогать онкологам бороться с раком
  • Как одна команда одновременно работает и над агротехом и над онкологией


До встречи в эфире!



Подробнее..

Наша огромная гордость мирные советские роботы-комбайны убрали первый урожай в южных регионах

11.08.2020 14:11:07 | Автор: admin
image
А ведь в прошлом году это делали senior-разработчики.

Возможно, вы помните, что мы говорили про то, как можно сильно улучшить работу обычного сельскохозяйственного комбайна, если использовать нейросетки для распознавания культур и препятствий и робота для автопилотирования. Всё это (кроме процессоров Nvidia и ещё части железа) наша разработка. А радость в том, что в некоторых южных регионах страны закончилась уборочная страда, и наши комбайны показали себя лучше, чем ожидалось. Слава роботам!

image

В этом году мы поставили несколько сотен блоков из мощного графического ядра (для нейросетей), камер, гидравлических насосов или CAN-модулей для подруливания. Если в прошлом году агропилоты были в опытной эксплуатации, то сейчас речь идёт уже про серийные модели. И они справились.

Более того, они справились лучше, чем мы ждали. Кроме того, в релиз вошли далеко не все фичи. В релизе осталось, по сути, ядро, но одно только это позволило получить очень заметный экономический эффект.

Конечно, обошлось не без сюрпризов. Но давайте расскажу более конкретно, с числами и примерами.

image
Можно разглядеть камеру 2 Мп сверху. NVIDIA TX2 в специальном кожухе и с огромным радиатором монтируется внизу в подкабинном пространстве. Экран в кабине.

image

О чём идёт речь


Сельскохозяйственный комбайн по сложности управления похож на церковный орган. Когда в кабине комбайнёр и помощник, то один рулит (держит кромку), а второй управляет мотовилом, ветрами, барабанами и вообще следит за сбором. Третий в это время может делать отгрузку на ходу в грузовик, едущий рядом. Четвёртый следит за препятствиями. В эпоху СССР в кабине было двое, потом остался один. В итоге он или рулит, или собирает зерно нормально. Стоя на месте, собирать зерно нормально не выходит, поэтому он рулит. Про то, как там всё хитро закручено и почему комбайны регулярно перемалывают людей, врезаются в тракторы и бегущие через поле столбы ЛЭП, наш первый пост.

Вторая особенность каждая из ролей, даже если выполнять её не отрываясь, очень монотонная и требует постоянной бдительности. Это как смотреть на трассу 10 часов в день при условии, что нужно поймать буквально два момента за сутки, когда нужна быстрая реакция.

Третья особенность комбайнёры часто предпочитают убирать быстрее с меньшим КПД (поскольку оплата идёт за отгруженные тонны), а не получать максимум зерна с гектара.

В серию вошли фичи удержания кромки (комбайн сам следит за тем, как едет, и сам рулит) и предотвращения столкновений (комбайн внимательно смотрит по сторонам и прогнозирует движение всего, что видит, от людей до тракторов). Тут наработки беспилотного трамвая после езды вокруг ВДНХ очень пригодились. В поле куда спокойнее с препятствиями. Про видеоаналитику есть вот здесь.


Отдельное подразделение занимается обучением нейросетей (фотографированием ситуаций и разметкой данных), чтобы определять, где какая культура, как выглядит полёгшая пшеница и так далее. Поскольку обучающих выборок нет, мы ездим в поля и снимаем сами. Это важно, потому что одна и та же культура от сорта к сорту и от климата к климату отличается визуально.

image

Ещё одно подразделение занимается разработкой железа. У нас есть радар собственной разработки для тепловозов и трамваев, но на комбайне только камеры, потому что оснащать их нужно как можно дешевле. Сложная история это разбор протоколов управления (иногда утерянных вместе с производителем, и тогда нужно реверсить) или же установка гидравлики для подмешивания нашего сигнала в руление. Вычислительные модули на каждом комбайне автономные.


Что случилось в этом году


В поля вышли не инженеры и специально обученные испытатели, а обычные работяги, для которых всё это и разрабатывалось. Они убирали реальный урожай. И да, они проверяли нашу систему на прочность, как в том анекдоте про бензопилу.

Больше всего мы боялись, что именно конечные пользователи (комбайнёры) станут мешать внедрению, потому что почувствуют угрозу своей работе. Но всё обошлось успешно. Они понимают ограничения автопилота, понимают, что нужны в кабине, понимают, как он их разгружает и что именно они могут делать лучше. У них увеличивается выработка, а значит, увеличивается заработок за уборочную. Причём значительно: примерно на 1015 %. Они хотят работать с нашим роботом в паре. В одном хозяйстве они бились за машины с ним.

Человек полностью разгружен. Он включает систему, отпускает руль, в лучшем случае контролирует работу машины, в худшем сидит в телефоне. Недели уборочной для комбайнёров это работа-сон-работа-сон-работа. Сил ни на что не бывает в принципе, потому что за месяц нужно заработать на полгода. Наши пилоты стали рассказывать, что у них остаются силы для домашней работы. Машины стали лучше смотреть, потому что после работы хотелось не упасть и уснуть, а можно было заняться техобслуживанием. Те, кто осознанно выбирал больший рабочий день, говорили, что можно легко работать на два часа больше. Они и работали бы больше, но совсем ночью нельзя: роса.

Вот пара картинок, которые соседние механизаторы увидели из своих машин и потом полезли смотреть, как всё устроено:

image

image
Сидит там, чай пьёт, гад! *** [зачем] теперь механизатор нужен?. Потом смотрели, что робот всё же может далеко не всё, и понимали, что это просто как новый комбайн с парой особенностей. И успокаивались.

Есть числа:

  1. Увеличилась производительность смены по времени комбайнёр не устаёт. Это может показаться численным преимуществом в 1015 %, но там всё гораздо интереснее. Дело в том, что это даёт три дополнительных дня на уборку. Это значит, что если будет плохая погода (проливные дожди, в которые зерно прорастает или осыпается), то урожай не пропадёт, а будет убран целиком с куда большей вероятностью.
  2. Комбайнёр разгружен. Он может смотреть за функционалом комбайна, высотой подъёма жатки и забивкой жатки всё время. Это работа на чувствительность и навык, и раньше она не могла быть качественной из-за постоянного поворота головы в другую сторону, где кромка. Теперь мастера могут вытаскивать из машины 100 % возможной производительности. Это уменьшает себестоимость зерна.
  3. Внимания начало вполне хватать для выгрузки на ходу. Это важно, потому что не нужно ездить куда-то на край поля опустошать бункер в грузовик. Грузовик может ехать за комбайном, а комбайнёр будет сгружать в него урожай меньше простоев, меньше пробег, больше производительность смены.
  4. Поскольку комбайн контролирует режим, наш робот защищает от ошибок. Владельцы сельхозхозяйств говорят, что теперь можно смело сажать менее опытных комбайнёров. Обычно нужно три сезона, чтобы человек набил руку (это примерно 1,6 единицы убитой техники).
  5. Меньше зазоры: раньше промежутки контролировал человек, и они брались с допуском на усталость (к концу смены получались очень большие непрокошенные участки). А роботу плевать, он держит норматив в любое время смены.

Получается механизаторы и руководители в один голос говорят, что работа стала проще. У кого не было перегрузчиков зерна, задумались, чтобы их докупить. В разных хозяйствах разные дневные нормы, обычно это 2025 гектаров. Мы видели, что спокойно ставят 30, и люди на этом не выматываются. Для кого-то это оказалось возможностью сократить парк комбайнов на следующий год: не нужно будет закупать две-три машины. Знаю, звучит очень странно, но два хозяйства (примерно из сотни) сказали, что сделают именно так.

image

Уборочная началась с того, что Герман Греф попробовал в Песчанокопской аграрной группе (на крупной серийной партии) и сказал, что освоил за три минуты. Мы гордимся этим видео. Если президент банка справился, то работяги в полях справятся точно.


Ну и если вдруг у кого-то освободится в регионе несколько сотен чиновников, то можно быстро переквалифицировать их в операторов техники. Вы задумайтесь: Русагро подписала контракт на 240 машин. Многие хозяйства дозаказали на следующий год комплекты на весь парк.

Не без сюрпризов


К слову о том, как мужики быстро освоили технику. Хозяйство взяло четыре комплекта протестировать, мы приехали, установили их на машины, сделали пусконаладку. Не до конца откалибровали одометрию, потому что для этого нужен дневной свет. Решили сделать с утра. Утром приходят установщики, а мужики на этих машинах на дефолтных настройках уже вышли в поле, всё инициализировали и снимают из кабины, что творит робот. Возможно даже, это был стрим в Инстаграме для остальных на поле. С одной стороны, конечно, хотелось сделать калибровку, а с другой приятно, что мужики всё сами запустили и всё поднялось на настройках по умолчанию.

После первых дней во многих хозяйствах в нашего робота то ли начинали верить, как во всемогущий интеллект вроде Терминатора, то ли просто тестировали на прочность. Так или иначе, в одном хозяйстве решили попробовать убирать ночью. Иногда люди думают, что робот должен думать, как человек. Были несколько разочарованы тем, что ночью он справляется хуже. Дело в том, что в боевом релизе нет ночной уборки: это требует дообучения и немного других алгоритмов обработки данных. Пока мы гарантируем нормальную ночную работу только при достаточно широком освещении (оно такое на иностранных комбайнах трёх-четырёхлетней давности почти везде), а здесь наши испытатели вышли в поле на отечественном комбайне 16-летней давности с узким мерцающим конусом света впереди. Поскольку ночную уборку большая часть хозяйств не практикует, мы отложили эту фичу на следующий год.

Второе место, где были завышенные ожидания, это сложные условия по пыли. Например, комбайны, когда идут друг за другом, поднимают облака пыли. Ветер иногда такой, что порывом тучу пыли сносит на комбайн, который сзади. Поскольку ориентируется он не по дорогущему радару, а по обычной камере, ему не видно, что впереди. Видимость в облаках пыли бывает шесть метров. В такие моменты наша система перестаёт видеть: она сигнализирует механизатору и отпускает управление. Нам даже говорили, что лидар отказал. Но лидара на комбайне нет. Механизаторы ругались: Ну как он не видит?. В итоге именно это почему-то их успокоило насчёт работы. Человек-то помнит и понимает: до комбайна метров 10, мы едем с такой-то скоростью, порыв пронесёт через минуту, ничего не случится, если дольше надо вставать. И Пётр Михалыч впереди точно не встанет. Наверное. Система жизненным опытом не обладает и с Михалычем годами не бухала, поэтому она в таком случае останавливает машину и отпускает управление. Так в очередной раз человеческий интеллект побеждает бота.

В релиз не вошли автоповороты. Это та фича, которая невероятно поражала всех комбайнёров, но она же оказалась самой сложной по тестированию: при огромной ширине жатки нужно строить очень много гипотез про то, что выпадает из поля зрения. На каждой машине свои особенности. Плюс это же требует сложной системы управления с тем, чтобы задавать маршрут заранее или как-то его программировать. Мы за естественное управление: щёлкнул рубильником робота, ведёшь машину, выходишь на поле, начинаешь убирать. Робот говорит: Мужик, дай я порулю, щёлкаете вторым рубильником и он рулит. Нужно повернуть просто делаете это, ко-пилот отпускает управление, потом ищет новую кромку. Когда находит снова просит вернуть управление. Всё интуитивно понятно и просто. В итоге поворачивать между проходами мы доверили людям. С автоматизацией ждём конца тестов на сложном рельефе. Обычно проходка длиной до пяти километров, то есть сами повороты занимают меньше 1 % времени работы комбайнёра.

image

Камера на комбайне одна, потому что приоритет цена. Вторая не очень увеличивает цену, но очень увеличивает нагрузку на вычисления, а вычислительный блок на 4 Tflops большая часть стоимости железа. Камера смотрит влево на жатку. Есть несколько экзотических схем (редко используемых в РФ), когда всё интересное происходит не только слева, но и справа. Вообще у нас две основные системы уборки: загонкой и челноком. Работа загонкой: отрезается кусок поля, и вокруг него всё обкашивают по сужающемуся прямоугольнику или кругу, стремясь к центру. Соответственно мы это делаем против часовой стрелки. Челноком: с одной стороны заезжают и ездят туда-сюда как на принтере. Образуются пустые прогоны между проходками, но зато можно взять участок любой формы. Так вот, для полей сложной формы есть более оптимизированные схемы, которые требуют смотреть в обе стороны. Возможно, в одном из следующих релизов предложим переключение между камерами.

image
Канадская схема.

Потом монтаж. В середине лета в самый разгар карантина наши комбайны впервые с прошлого года вдруг все увидели и заметили. Точнее, наверное, заметили ещё в том году, но заказывать комплекты стали прямо перед уборочной (это связано, возможно, с кредитованием хозяйств с короткими сроками). В итоге мы ездили по стране в условиях карантина, что наложило неповторимый отпечаток на работу специалистов по нейросетям. Установщики где-то сидели 14 дней, где-то ходили чуть ли не в скафандрах, но получилось справиться с 50 хозяйствами (и предстоит ещё столько же).

Сталкивались с техсложностями: на некоторых зарубежных моделях (и одной российской) компоновка отсеков крайне плотная. Разница как между заглянуть под капот Жигулей и заглянуть в Макбук. Из полей присылали размеры, мы срочно заказывали новые кронштейны или новые системы крепления под конкретную модель.

Из-за пандемии сменили поставщика оборудования. Гидроблоки были от немецкого производителя. Они нам в марте сказали: Приходите через четыре месяца. Это была паника, потому что от этого зависела вся история. Нашли российского производителя, они всё поняли, оказались лёгкими на подъём и сделали нам гидравлику. Оперативно, но тоже не без сюрпризов да и не без нервов при постановке задачи, конечно. Но до этого года мы не верили, что это вообще возможно в России.

Что дальше


Роботы убирали злаковые: пшеницу, ячмень, овёс, рожь в южных регионах. Ещё не было серийной эксплуатации на кукурузе и подсолнечнике (это позже по агрономическим срокам). Нам интересны ещё рапс и соя. Рапс это Центральная Россия, пока там ждём уборки. Соя Сибирь, Алтай, юг Сибири, Хабаровский край, это уже совсем скоро.

Сарафанное радио не стоит на месте. За последние месяца полтора пришло около десятка очень крупных холдингов из первых 50 со своими кастомными запросами. Какие-то уже приобретают комплекты для тестирования на эту уборочную. Кто-то делает для нас собственное ТЗ и особые хотелки мы будем думать в межсезонье. Задачи стоят подвязать мониторинг урожайности (комбайн же считает зерно в телеметрии и видит координаты, то есть можно снимать данные по урожайности участков почв до метра), мониторинг работы комбайна (отправка телеметрии в центр). Какие-то хозяйства приходят только к цифре, многим для севооборота важно, чтобы были отмечены критические точки на полях. Важно понимать годовую среднюю урожайность и оценивать каждый год живые деньги. Аналитика нужна для того, чтобы примерно понимать загрузку тракторов и технику: докупить или убавить. Там много нюансов вплоть до заказа ГСМ перед сезоном: это всё неприятные предоплаты. Как сказал крупный руководитель крупного хозяйства: Мы работаем с рынком. Рынок мы не контролируем. Чтобы больше зарабатывать, можем только уменьшать себестоимость. Если не уменьшать нас съедят тупо.

Срок жизни комбайна пишут 1012 лет (но мы часто видим 2005 год, ставили в этом году даже на 2001-й). Мы их все дооснащаем. Потому что, пока лошадка живая, на ней ездят. Когда починка становится дороже стоимости нового, берут новый. Кончается, кстати, тем, что старый комбайн становится донором запчастей для других таких же. Да, это просаженная печень и сломанные ноги, но год-два они работают. Потом всё это сгнивает.

И ещё замечательное отзывы о том, что с этой экономикой комбайн окупается быстрее. Стоит машина, например, 25 миллионов рублей (зависит от производителя и модели). В хозяйстве считают: пять лет на отечественные машины, иномарка окупается за восемь лет. Теперь минус год примерно.

Сейчас мы закончим уборку в этом году на серийных моделях и ещё нескольких экспериментальных, сведём экономику и будем публиковаться в международных экономических обзорах. Наши модули будут ставиться как в таком виде отдельной коробки на комбайны, так и войдут в виде интегрированных устройств в новые комбайны, если всё кончится хорошо. У нас получилось. Два с половиной года жизни команды, кажется, немного меняют мир.
Подробнее..

Как мы первыми в мире роботизируем кормоуборочные комбайны

18.08.2020 14:15:47 | Автор: admin
Недавно мой коллега рассказал как мы роботизируем зерноуборочные комбайны и чему научились за этот сезон.

Начинается уборка кормовых культур и мы активно осваиваем кормоуборочную технику.
Кормоуборочный комбайн технически более сложная и мощная машина. В связке с ним идут сразу несколько транспортных средств для сбора урожая (трактора с прицепом, грузовики, силосовозы). К работе на такой технике допускаются только опытные механизаторы, у которых за спиной несколько лет работы.

Работа на комбайне во время уборки кормовой кукурузы похожа на езду в машине в густом тумане, только вместо тумана на протяжении всего пути высокая зеленая стена из растений, из которой может выскочить кабан, столб или человек. Перемолов человека (история есть в моей прошлой статье), комбайнеры седеют и больше не могут работать. Кроме этого, в этом зеленом тумане надо суметь не врезаться в рядом едущий силосовоз, следить за точностью загрузки силоса с хоботом длиной до 7 метров, из которого вылетает по 50-60 кг силоса в секунду, и равномерно заполнять фургон, чтобы он не гонял полупустым туда сюда.



Фактически один комбайнёр работает за троих, следит за процессом уборки кукурузы (одно рабочее место), ведёт технику (второе рабочее место), загружает силосовоз (третье рабочее место). В итоге что-то страдает. Если плохо вести, можно сломать дорогую технику (минимальная цена кормоуборочного комбайна 16 млн рублей, есть модели и по 50 миллионов), поэтому обычно ухудшается качество уборки и загрузки.

Большую часть работы мы автоматизируем, сейчас расскажу какие сложности мы преодолеваем и что делаем.

Отсутствует видимость


Высота спелой кукурузы в среднем 2-2,5 метра, высота комбайна 2,5 метра, механизатор находится чаще всего на уровне чуть выше стоящего на земле человека и видит перед собой только растения, дальше своего носа он по сути уже не видит и так на протяжении всего рабочего дня, а это 12 часовая смена, немногие могут выдержать такое напряжение на глаза и держать темп сборки, а еще на пути могут выскочить кабанчики или столб!



Существуют комбайны, например KRONE, с телескопической кабиной, которая поднимается на высоту до 3 метров, или Acros RSM-142 высотой 4 метра, но это скорее исключение из правил.



Поэтому работать за таким комбайном могут только опытные комбайнеры, которые проработали уже 3-4 сезона.

Потери во время работы


В отличии от зерноуборочных, кормоуборочный комбайн не может хранить урожай в бункере, а сразу выдает его через выгрузной хобот в едущее рядом транспортное средство. Как я говорил, скорость выброса силоса может достигать 50 кг в секунду, в зависимости от модели комбайна, длина хобота при этом 5-7 метров. Немного отъехал от машины вбок или притормозил и потерял полтонны силоса за 10 секунд. В среднем до 7-10% урожая остается на поле. Потерянный силос никто уже не собирает, потери на ГСМ будут гораздо больше. На видео видно как высыпается силос, если немного сдвинуть хобот.



Равномерное заполнение фургона


В бригаде с одним комбайном до 7 машин, заполняется одна машина примерно за 20 минут. За день они могут совершить свыше 10 рейсов до силосной ямы. Все зависит от длины плеча доставки. Если поле рядом с ямой, то плечо короткое и можно совершить больше рейсов для выгрузки, если дальше, рейсов становится меньше и здесь становится очень важным правильное заполнение фургона (силосовоза), чтобы не возил воздух. Привез половину прицепа, считай потерял на топливе, комбайнер должен максимально правильно направлять хобот, чтобы равномерно наполнить силосовоз.



Что мы можем автоматизировать в кормоуборочных комбайнах?


Как уже говорилось выше, для работы на таких комбайнах допускаются только опытные комбайнеры. Почти все эффективные механизаторы обучались при СССР, после чего технологические секреты этой цивилизации были утеряны. Конкретно ослабло обучение, и приходящие молодые, естественно, работают хуже. Это нормально почти для всех рабочих профессий, но конкретно здесь наш робот как нельзя больше востребован в первую очередь из-за этого эффекта.

Второе, наш робот видит кромку, препятствия на поле, видит другую технику. Работа комбайнера максимально упрощается, теперь он может следить за техническим состоянием комбайна, за калибровкой фракции кукурузы, которая наиболее подходит для данного типа скота.


Также наш робот может полно и равномерно, а главное точно заполнить силосовоз, это уменьшает потери на ГСМ и сводит потери на уборке к нулю.



Нормой считается потеря на уборке 7% урожая, если их свести к нулю, то поскольку силос делается в основном не для продажи, а для корма своего скота, мы можем уменьшить засев под кукурузу на 7% и отдать его под пшеницу, что более выгодно. Скажем если выделено 1000 га на кукурузу, из них 70 га отдать под пшеницу, то даже по минимальным оценкам при урожае в 30 центнер с 1 Га мы соберем 210 тонн, а это примерно 1,5 млн рублей прямой прибыли. При этом за счет более полной сборки уменьшается расход ГСМ за счет сокращения числа поездок от силосной ямы до поля.

Как мы обучаем нейронные сети для анализа сцен уборки кукурузы


Уборка кукурузы ведется с помощью специальных приставок для пропашных культур. Для этого случая предусмотрен режим работы, при котором комбайн пытается удержать жатку посередине междурядья. Получив карту сегментации кадра (сцены) и зная положение жатки, можно найти так называемую vanishing point и рассчитать отклонение зуба жатки от необходимого положения.



В отличие от пшеницы, где мы следим за краем убранного поля и ведем комбайн по кромке, здесь задача нейронной сети увидеть междурядье между растениями. Нейронная сеть прекрасно видит ряды между кукурузой, в отличии от человека, камера находится над культурой, и при этом она не устает.

Изображения приходят к нам в формате видео потока, либо отдельными изображениями. Данные обрабатываются и хранятся в Сognitive Agro Data Factory. Кроме сырых данных с камеры, здесь также присутствуют и целевые размеченные кадры, которые при необходимости можно добавить в обучающий датасет.

Для более точного подбора возможных сцен уборки урожая необходимо правильно скомпоновать обучающий датасет. Кроме реальных изображений, полученных с камеры в процессе уборки культур, используется подход генерации синтетических изображений с помощью процедуры аугментации на основе естественных изображений.

На вход сеть принимает 3-хканальное RGB изображение. Далее в процессе обучения нейронной сети к входному тензору применяются яркостные/цветовые искажения в HSV пространстве, локальные искажения каналов в HSL пространстве процедура добавления искусственных теней, геометрические искажения и добавление шумов. Подбор параметров аугментации нетривиальная процедура, требующая детального анализа сцен, полученных в реальных условиях.

Обученная сеть способна выдавать сегментационные карты, определяющие междурядное пространство.

Уборка сенажа


Помимо силоса, кормоуборочные комбайны используют также для сбора сенажа, с помощью приставки подборщика. Процесс сбора аналогичный кукурузе, разница только в том, что комбайн идет по валку. Валок может не отличаться по цвету от общей массы и комбайнер часто может ехать в холостую.



Например, на видео выше видно, что валок практически не отличим от травы и насколько точно надо комбайнеру вести машину по валку и при этом постоянно наблюдать за процессом загрузки сенажа в грузовик. Работа очень напряженная, к концу 12 часовой смены, комбайнеры просто валятся с ног, с полной сменой справляются только при опыте от 3-4 сезонов работ.

Если комбайнер неопытный, то работа в холостую это потери на ГСМ. Кормоуборочный комбайн в отличие от зерноуборочного только 10% ГСМ тратит на движение самого комбайна, остальные 90% уходят на прорезку, измельчение, протяжку, швыряние силоса или сенажа. Поэтому очень важно работать с полной загрузкой комбайна.

Нейронная сеть отлично справляется с валком, пример того как сеть видит валки.



Здесь наша система может помочь комбайнеру в ведении комбайна по валку, также наш робот может полно и равномерно, а главное точно заполнить силосовоз, это уменьшает потери на ГСМ и сводит потери на уборке к нулю, комбайнер становится уже оператором комбайна, а всю работу берет на себя автопилот.

Сейчас осваиваем кормовую кукурузу, подсолнечник, сенаж. По окончании сезона, если интересно, расскажем как наши роботы справились с кормобурочными комбайнами.

P.S. Если вашего агронома нет на Хабре, а ему это интересно, то можно тут найти контакты: promo.cognitivepilot.com и предметно обсудить, для какого комбайна какой конкретно набор техники нужен, сколько примерно стоит, и как это можно быстро посмотреть-испытать.
Подробнее..

Дикие гены помогут домашним

21.08.2020 22:11:51 | Автор: admin
Китайские генетики запустили программу исследования диких соевых бобов. Цель найти генетические участки, отвечающие за взаимодействие с полезными бактериями, которые были потеряны в одомашненных соевых бобах. Как пишет издание Американской Ассоциации развития науки EurekAlert! генетики надеются повысить устойчивость сои одного из основных продуктов питания, особенно в Азии к болезням.

image
Генетика начиналась с бобовых
и постоянно к ним возвращается


Одномашнивание растений и животных стало поворотным этапом в развитии человечества. Селекция работала на увеличение продуктивности сельскохозяйственных культур, однако искусственный отбор, уход и защита со стороны человека привели к утрате одомашненными видами многих свойств, прежде всего устойчивости ко многим болезням. Генетические исследования дикороссов могут помочь восполнить утраченные функции. Кроме того, получив доступ к генетическому разнообразию дикой сои, ученые рассчитывают значительно улучшить биологическую фиксацию азота у современных сортов соевых бобов, а значит, увеличить их продуктивность.

Есть уже первые результаты. В ходе исследований генетики культивировали несколько линий сои, в которую были интегрированы части ДНК диких соевых бобов. В результате они обнаружили, что некоторые линии по-разному реагируют на разные штаммы полезных бактерий, известных как Sinorhizobium fredii. Оказалось, что разные реакции связаны с наличием или отсутствием у бактериальных штаммов некоторых систем секреции, используемых бактериями для взаимодействия с растительными клетками. В итоге было выявлено, что белок DRR1 активно взаимодействует с бактериями и при этом влияет на развитие корневой системы сои. Подробнее об этом можно узнать здесь.

Следует отметить, что генетические исследования являются важной частью развития глобального рынка FoodNet, который объединяет новые высокотехнологичные направления производства и дистрибуции продуктов питания. Специалисты рассчитывают ускорить процесс селекции видов, выводить новые разновидности животных и растений с заранее заданными и просчитанными свойствами. Лидируют в исследованиях американцы на них приходится около 50% рынка генетических исследований в аграрке, далее идут Швейцария, Германия, Франция, Япония. Доля России сравнительно невелика исследования жестко ограничены федеральным законом 358-ФЗ. Он фактически запрещает выращивать и разводить генно-модифицированые животные и растения на территории РФ. В этих условиях российские специалисты вынуждены искать обходные пути, например, развивать эпигенетику методы, влияющие на работу генов, но не затрагивающие при этом ДНК. Ну и, конечно, надеяться, что ограничения на исследования рано или поздно будут сняты.
Подробнее..

На других надейся, а сам не плошай Как погоня за уникальностью приводит к разочарованиям десятилетия

21.01.2021 16:23:47 | Автор: admin

История проекта OpenAg MIT

Фото: Harry GoldsteinФото: Harry Goldstein

Жизнь современного человека трудно представить без инновационных технологических решений. Также, как и развитие сельского хозяйства. Многие страны выделяют ресурсы на поощрение сельскохозяйственных инновационных проектов. Это основано на предположении, что существование в сельской местности напрямую зависит от сельского хозяйства, а сами инновации приведут к увеличению производства и доходов фермерских хозяйств. Поскольку финансирование таких проектов находится под давлением растущего населения и деградации природных ресурсов, правительства и спонсоры хотят быть уверены, что передовые исследования и технологии оказывают влияние на производительность сельских хозяйств. Они хотят видеть успех и перспективу дальнейшего развития территорий сельского хозяйства.

Как раз для таких целей и был создан проект OpenAg (Открытое сельское хозяйство) в рамках медиа-лаборатории Массачусетского технологического института (MIT) в 2005 году. Основным направлением OpenAg было создание мини-теплицы с контролируемой средой, которая бы использовала технологии беспочвенного земледелия, включая гидропонные и аэропонные системы для выращивания сельскохозяйственных культур в помещении. Такая платформа получила название Food Computer (Продовольственный/Пищевой компьютер). При его работе использовалось огромное количество датчиков для мониторинга внутреннего климата, а настройки подбирались таким образом, чтобы условия окружающей среды оставались постоянными и оптимальными.

Предполагалось, что климат внутри камеры выращивания будет строго контролироваться для повышения производства и качества продуктов питания. Данные о климатических условиях в течение каждого цикла сбора урожая вносились бы в публичную базу данных, а наблюдаемые характеристики растения можно было бы отслеживать и реагировать на их изменения в режиме онлайн.

Фото: Harry Goldstein / Food Computer v3.0 на выставке в музее Cooper Hewitt, Сентябрь 2019. Позади код для выращивания базиликаФото: Harry Goldstein / Food Computer v3.0 на выставке в музее Cooper Hewitt, Сентябрь 2019. Позади код для выращивания базилика

Термин "Food Computer" обычно применялся к любой из систем контролируемой окружающей среды проекта OpenAg. Однако важно отметить, что существовало несколько размеров этих самых мини-теплиц. Например, устройство размером со столешницу предназначалось для использования в домах, классах и небольших экспериментальных лабораториях. Модель среднего размера была похожа на международный стандартизированный транспортный контейнер и должна была использовать вертикальные сельскохозяйственные системы. Она предназначалась для использования в кафетериях, ресторанах, местных бакалейных лавках и крупномасштабных экспериментальных лабораториях. А самые большие версии должны были стать складскими центрами обработки пищевых данных, которые функционировали бы на уровне промышленного растениеводства.

Различные климатические условия, включая температуру, относительную влажность, уровень углекислого газа и кислорода, электропроводность воды и воздействие питательных веществ, удобрений и химических веществ, влияют на темп и качество роста растения. Эти условия могут привести к различным фенотипическим проявлениям у растений, которые на уровне генотипа очень похожи или идентичны. Признаки, которые представляют растение, включая цвет, размер, текстуру, урожайность, скорость роста, вкус и плотность питательных веществ, составляют его геном. OpenAg стремился к массовым исследованиям и созданию открытой библиотеки геномных данных, которая связывает внешние климатические условия со специфическими фенотипическими проявлениями у различных растений. В конечном счете, это позволило бы создать открытую базу-данных, информация из которой помогала бы множеству сельских хозяйств повышать эффективность и производительность выращивания различных культур.

Фото: Harry GoldsteinФото: Harry Goldstein

Идея создания мини-теплиц с контролируемой средой без почвы и солнечного света получила положительные отклики со стороны общественности. Калеб Харпер, ведущий специалист проекта, заручившись поддержкой региональных спонсоров и крупных международных компаний, таких как Target, Unilever и Welspun, совместно с командой ученых и небольших стартапов отправился воплощать мечту в реальность. На протяжении нескольких лет Харпер кормил публику фальсифицированными промежуточными результатами. Перед каждой демонстрацией работоспособности мини-теплиц для спонсоров он приказывал подчиненным помещать в устройства растения, выращенные в других местах. Например, одного из младших сотрудников попросили купить травы на соседнем цветочном рынке, смахнуть пыль с земли, в которой она была выращена, и поместить ее в теплицу для фотосессии. И так происходило каждый раз с разными сельскохозяйственными культурами.

По словам сотрудников, цель состояла в следующем: сделать все возможное, чтобы устройства соответствовали заявлениям Харпера в СМИ. Среди частых выступлений Калеб также упомянул о том, что теплицы способны выращивать такие продукты, как брокколи, в четыре раза быстрее традиционных методов. Эти утверждения вызвали общественный резонанс и привели Харпера и его команду к публикации статей в различных популярных изданиях, начиная от Wall Street Journal и заканчивая Wired и National Geographic.

Спустя 15 лет с начала проекта, ученые, работавшие в лаборатории, подтвердили изданию Business Insider информацию о том, что устройства никогда не работали так, как задумано, и вместо того, чтобы признаться в этом спонсорам или в интервью, Харпер продолжал настаивать на их уникальности и эффективности. Зачастую сотрудникам лаборатории отдавали приказ купить растения в магазине, смахнуть с них грязь и поместить в пищевые компьютеры перед презентацией публике.

Однако наряду с научной ложью, Калеба Харпера и его проект обвинили и в нанесении вреда окружающей среде. Дело в том, что какие-то опыты и исследования все-таки проводились, но больше для галочки. А отходы, которые оставались по окончании процессов сливали в сточные воды города Массачусетс. В сентябре 2019 года бостонская радиостанция WBUR опубликовала отчет с подробным описанием обвинений в том, что лаборатория OpenAg в исследовательском и инженерном центре Бейтса Массачусетского технологического института в Мидлтоне сбрасывала азотсодержащий гидропонный раствор в систему сточных вод в несколько раз выше установленных государством норм. Это в свою очередь заинтересовало Департамент охраны окружающей среды города Массачусетс. Он провел собственное расследование, по итогам которого обязал MIT выплатить штраф в размере 25 000 тысяч долларов.

Как можно было догадаться, проект закрыли, Калеб Харпер покинул научную лабораторию, Массачусетский технологический институт понес определенные репутационные риски, а уровень доверия к разработкам в области сельского хозяйства значительно упал. Теперь к проектам медиа-лаборатории общественность и СМИ относятся с пристальным вниманием, дабы не попасться на еще одну утку. Вот к каким последствиям приводит погоня за уникальностью. Это был пример неудачных проектов в сельскохозяйственной сфере. Оставайтесь с нами, чтобы не пропустить новые истории.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru