Русский
Русский
English
Статистика
Реклама

Цап

Делаем из старого усилителя многофункциональный медиа сервер с помощью Raspberry pi

08.01.2021 18:05:33 | Автор: admin

У кого из нас нет добротной техники из прошлого, которая работает так, как и не снилось множеству ширпотребных вещей из настоящего. Старые усилители, проигрыватели пластинок и радиолы. Да, было время, когда не умели делать хрупко и недолговечно в погоне за дешевизной. Эти вещи еще проработают долго. И звучание какого-нибудь старого усилителя будет радовать и нас и наших детей.

Правда, в них отсутствует много всяких цифровых штучек. Разные flac и тому подобные форматы. Управление проигрыванием, музыкой и фильмами через телефон или компьютер. Возможность запустить музыку с Youtube, Last.fm или выбрать интернет радио. Удаленное проигрывание медиа через DLNA. Или просто возможность подключить ваш компьютер через Bluetooth и выводить весь звук через большие колонки. Или что там еще напридумывают нам в будущем для облегчения нашей аудиофильской жизни.

Но что нам мешает использовать все эти технологии в старой технике? Да и почему обязательно в старой У вас есть RCA, miniJack 3.5 или S/PDIF разъем на вашей магнитоле? Тогда мы идем к вам и И делаем из старого усилителя многофункциональный медиа сервер с помощью Raspberry Pi. Подключаем нашу Raspberry Pi через RCA и обновляем нашу технику до "острия технологической атаки". Не обязательно использовать RCA. Найдите аналоговый или цифровой вход на своей технике и выберите нужную комплектацию вашей Raspberry Pi. Я буду рассматривать вопрос сугубо с практической точки зрения. Как настроить все быстро на Raspberry Pi? Ведь статей профессионалов об особенностях работы той или иной технологии достаточно, чтобы не останавливаться на этом. Я возьму в качестве примера Raspberry Pi и плату для цифровой обработки звука на основе чипа PCM 5102 A.

Существует множество различных вариантов музыкальных DAC систем на любой вкус и цвет. Выбор только за вами. Вот некоторые из них для Raspberry Pi. DAC на русском ЦАП цифро-аналоговый преобразователь. Я возьму один из самых недорогих аналогов данного устройства. Судя по различным отзывам на веб просторах, очень даже неплохо себя зарекомендовавшую PCM 5102 A . На ней 6 контактов, и мы с легкостью подключим ее к нашей Raspberry Pi через GPIO разъем. Причем, подойдет любая серия нашей Малинки. Ведь для проигрывания музыки производственных мощностей хватит и самой младшей из них Raspberry Pi Zero. Хотя, без точных входных данных для любой поставленной задачи перед нашей Raspberry Pi, все относительно. И подобное утверждение является оценочным мнением автора. Далее для подключения к GPIO нашей платы используем следующую схему:

BCK -> Pin 12 (GPIO18) DATA(SCLK) -> Pin 40 (GPIO21)LRCK -> Pin 35 (GPIO19) GND -> Pin 39 (GND)GND -> Pin 34 (GND) VCC -> Pin 2 (5v) 

И нам потребуется подключить драйвер устройства в config.txt :

sudo nano /boot/config.txt

меняем на:

dtoverlay=hifiberry-dac #dtparam=audio=on 

Перезагрузимся у убедимся, что в журналах ядра все ок:

dmesg |grep hifi

И посмотрим нашу карточку через листинг доступных устройств alsa:

aplay -l

**** List of PLAYBACK Hardware Devices **** card 0: sndrpihifiberry [sndrpihifiberry_dac], device 0: HifiBerry DAC HiFi pcm5102a-hifi-0 [HifiBerry DAC HiFi pcm5102a-hifi-0] Subdevices: 1/1 Subdevice #0: subdevice #0

Если что-то пошло не так, включаем режим отладки:

sudo nano /boot/config.txt dtdebug=1

И смотрим, что происходит:

sudo dmesg sudo vcdbg log msg

И, по идее, запустив плеер, допустим, mplayer с каким-нибудь mp3, можно услышать музыку через канал на вашей аппаратуре, к которой вы подключились.

Подключаем Bluetooth

Технология Bluetooth не устаревает и активно развивается. Bluetooth передатчики постоянно обновляют версию. Слушать музыку через нее в HiEnd качестве можно. Она рождена для использования радио канала с большой загруженностью радио эфира. Это немаловажно при использовании ее в городе для передачи медиа контента. Правда, при использовании встроенного передатчика на Малинке не все гладко. И помехи при прослушивании музыки через нее могут быть слышны. Как вариант использовать внешнюю USB Bluetooth антенну. Она позволит избежать потерь, что, в общем-то, отдельная тема, требующая изучения. И тем не менее, достаточно просто и быстро через Bluetooth пробрасывать звук. Скажем, с компьютера на Raspberry Pi и далее через усилитель на колонки. Или с телефона подключаться в Raspberry и слушать музыку. Поэтому, запускаем Bluetooth на Малине. Для запуска нам понадобятся три компонента

Bluetooth сервер

Pulse-audio

Bluetooth клиент

Это не обязательный набор, но, как показала практика, все три компонента позволяют быстро и прозрачно запускать Bluetooth на Raspberry Pi. В результате, мы должны получить три работающие службы:

bluetooth.service

bt-agent.service

pulseaudio

Первая используется как серверная часть, Bt-agent как блютуз клиент для обработки входящих запросов по авторизации. Это удобно для автоматизации процессов подключения без заморочек ручного подключения к нашему каналу. И pulse аудио как сервер, обрабатывающий звук, и как прозрачная прослойка для автоматического перенаправления его между устройствами. Установим необходимые пакеты: sudo apt-get install pulseaudio pulseaudio-module-bluetooth bluez-tools

Bключим в группы pulse-access bluetooth пользователя pi:

sudo usermod -a -G bluetooth pi

sudo usermod -a -G pulse-access pi

sudo adduser pi pulse-access

Запускаем при старте аудио сервер pulseaudio:

systemctl --user enable pulseaudio

Для работы нашей Малины в режиме блютуз с постоянным обнаружением и с профилем A2DP приемника поправим конфигурацию:

sudo nano /etc/bluetooth/main.conf

и в нем:

  Class = 0x41C  DiscoverableTimeout = 0 A2DP

Стандарт позволяет передавать звук стереосигналом и с определенными кодеками сжатия звука и согласованными параметрами по битрейду и частотой дискретизации. Класс устройства наглядно описан тут.

И Class = 0x41C в соответствии с этим ресурсом соответствует параметрам:

Major Device Class -> Audio/Video

Minor device class -> Portable Audio

Это те параметры, которые будут видны сканирующему Bluetooth устройству, чтобы разобраться, какие сервисы доступны через это устройство. В общем, можно не заморачиваться этими параметрами и выставить, например, Class = 0x20043C Что просто будет соответствовать большему количеству сервисов. Если вас вдруг не устраивает звук, тогда переходим к настройкам звука pulseaudio:

sudo nano /etc/pulse/daemon.conf

и смотрим "основные" настройки типа:

; resample-method = speex-float-1 ; default-sample-format = s16le; default-sample-rate = 44100 ; alternate-sample-rate = 48000

В качестве мануала по pulseaudio есть неплохой ресурс.

Кто-то рекомендует resample-metod=ffmpeg или resample-metod=speex-float-9, решать вам, если услышите разницу. Выставляем нужные параметры и убираем ";" чтобы раскомментировать строчку.

После изменений перезапускаем pulseaudio:

pulseaudio -k && pulseaudio --start

И не забываем посмотреть, сколько процессорного времени отъест pulseaudio при ваших HI-FI настройках:

htop

По загрузке процессора 3-ей Raspberry Pi с использованием ЦАП (DAC) аудио платы на основе микросхемы PCM5102 файл flac 24bit читается с загрузкой около :

10-15% для resample-metod=speex-float-1

30% для resample-metod=ffmpeg

60% для resample-metod=speex-float-9

Ну и напоследок, посмотрим теперь в сторону передачи звука через WiFi с помощью технологии DLNA.

MiniDLNA сервер

Если у вас на вашей Raspberry Pi находится медиа сервер, то для того чтобы ваша коллекция музыки была видна на других устройствах, поддерживающих DLNA, вам необходимо установить DLNA server. Здесь все просто: sudo apt-get install minidlna Рекомендую ознакомиться с возможностями Minidlna здесь.

В файле конфигурации правим папку с нашей медиатекой:

sudo nano /etc/minidlna.conf

И там указываем правильно папку:

media_dir=/home/pi/Music

Права на папку должны быть следующими:

sudo chmod -R 755 папка

Проверяем командой:

sudo -u minidlna ls -l папка

Cтартуем сервис:

sudo sevice minidlna start

И теперь в нашем проводнике в закладке сеть должно быть что-то вроде:

И, кликая на эту ссылку, открываем в браузере статус нашего сервиса:

А проиграть файлы можно скажем через "проигрыватель windows media":

Или запустить их на андроид с помощью "HI-FI Cast" приложения:

Если задача обратная и мы хотим воспроизводить музыку и фильмы, просматривать фото, которые находятся где-то удаленно на сервере через нашу Raspberry Pi, то нам потребуется установить на нее dlna render. С устройства из приложения, позволяющего находить наш raspberry media render, мы будем перенаправлять медиа контент на Raspberry Pi.

Я нашел два рендера прекрасно работающих на Raspberry Pi. У каждой из них есть свои плюсы.

DLNA Render Gmediarenderer

Проект развивается и полон последователей. Из основных возможностей стоит отметить что, этот рендер переключает устройства вывода, настраивает громкость и имеет уникальный идентификатор. Это позволит настроить в сети несколько подобных устройств. Есть более подробная статья про использование всех возможностей DLNA/UPnP как распределенной структуры устройств, взаимодействующих по этим протоколам и конкретно этого рендера. Инсталляция не должна вызвать сложностей. Проинсталлируем необходимые пакеты и gstreamer как движок для нашего рендера:

sudo apt-get install autoconf automake libtool gitsudo apt-get install libupnp-dev libgstreamer1.0-dev gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly  gstreamer1.0-libavsudo apt-get install gstreamer1.0-alsa sudo apt-get install gstreamer1.0-pulseaudio

Возьмем копию проекта и соберем его:

git clone https://github.com/hzeller/gmrender-resurrect.git cd gmrender-resurrect ./autogen.sh ./configure make sudo make install

и запускаем:

gmediarenderer

Найти и управлять нашим сетевым проигрывателем через Android устройство удаленно позволит программа типа DLNA Controller. Воспользуйтесь одной из подобных программ для этого: HiFi Cast, Airpincast, Bubbleupnpcast

Rygel DLNA Рендер

https://wiki.gnome.org/Projects/Rygel

Проект представляет из себя не только dlna рендер. Это полноценный медиа сервер UpnPMedia Server, который позволит и расшаривать и перенаправлять музыку видео и фото на любое UPnP/DLNA поддерживающее устройство. Из заявленных возможностей есть конвертация на лету записи в тот формат, который будет поддерживаться устройством воспроизведения. Взаимодействие со сторонними media плеерами такими как Totem, Rhythmbox, VLC. Удаленные запросы UPnP конвертируются в MPRIS запросы и позволяют взаимодействовать с этими media проигрывателями. Пример такого взаимодействия Rygel и VLC рассказан на странице David Wiencer.

Суть в том, что мы запускаем VLC плеер. Устанавливаем в конфигурационном файле mpris поддержку. И при работающем Rygel приложении vlc воспроизводит медиа контент, который мы посылаем ему через DLNA Rygel.

Проинсталлируем Rygel и VLC:

sudo apt-get install rygel vlc rygel-playbin

Если у вас еще не стоят gstreamer библиотеки:

sudo apt-get install libupnp-dev libgstreamer1.0-dev  gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly  gstreamer1.0-libav 

Убедимся, что в конфигурации включена поддержка MPRIS:

nano ~/.config/rygel.conf

[general]upnp-enabled=trueenable-transcoding=false[Tracker]enabled=false[MediaExport]enabled=false[Playbin]enabled=false[GstLaunch]enabled=false[MPRIS]enabled=true[External]enabled=false

И далее, создаем скрипт David Wiesner, который запускает сначала VLC затем Rygel:

sudo nano rygel-vlc.sh

И в нем:

#!/bin/bashvlcCall="vlc  intf dummy  fullscreen  no-osd"function cleanup(){for pid in $(pgrep -f "$vlcCall"); dokill -9 $piddonekillall rygel}function waitCpuDecrease(){pid=$1lastCpu="0.0"while true; docpu=$(ps S -p $pid -o pcpu=)sleep 0.2[ $(bc <<< "$cpu < $lastCpu") == 1 ] && breaklastCpu=$cpudone}killall rygel and vlccleanuplaunch vlc in background$vlcCall &wait until vlc has done most stuffwaitCpuDecrease $!start rygelrygel

Запустим его в фоновом режиме:

sudo ./rygel-vlc.sh &

И проверим наш DLNA render также через Andriod с помощью: HiFi Cast, Airpincast, Bubbleupnpcast.

И если вы не готовы экспериментировать с Linux , то в качестве собранных, готовых к работе "из коробки" Raspberry Pi с вышеописанным функционалом мы можем вам предложить наборы ViaMyBox "Музыка флер"!

Дистрибутив и код вы можете найти здесь.

https://github.com/viatc/viamybox

Надеюсь со временем, мы увидим и рассмотрим новые интересные проекты для Raspberry Pi на эту тему!

Подробнее..

Power-line communication. Часть 1 Основы передачи данных по линиям электропередач

25.08.2020 02:16:19 | Автор: admin
Не так давно передо мной встала нетривиальная задачка собрать устройство, которое могло бы по линиям электропередач (0,4 кВ), в сетях обычных бытовых потребителей, передавать некоторую информацию, а точнее показания электросчетчиков.



Перед началом работы над созданием этого устройства, я мало понимал в цифровой обработке сигналов и в том, как работают компьютерные сети на физическом уровне. Нужно было быстро погрузиться в вопрос и выстроить план по созданию рабочего прототипа.
В процессе изучения я нашел очень много специализированной литературы по электронике, микроконтроллерам и цифровой обработке сигналов, которая очень помогла мне в этом. Но в самом начале пути для выбора направлений изучения мне бы пригодились обзорные статьи вроде этой.

Дальнейший материал это выжимка из профессионального опыта в том виде, в котором я бы хотел это рассказать самому себе из прошлого. Многие факты сильно упрощены для лучшей читаемости.



Коммуникация


Начнём с абстракций. Представим, что нужно передать порцию информации от одного человека другому. На изображении: красный человечек это передатчик, а синий приёмник.



Для передачи информации будем использовать голос. Информация это какой-то текст в нашей голове. Текст можно разбить на буквы и каждую букву представить в виде звукового сигнала. Таким образом можно кодировать каждую букву каким-то соответствующим звуковым сигналом.



Проводник


Звук, как известно, распространяется в виде волн колебаний частиц воздуха или иной среды. В нашем случае средой для распространения сигнала служит воздух. От красного человечка звуковые волны по воздуху распространяются во все стороны.

Полезный сигнал




К счастью, информацию из нашей головы мы не можем мысленно передать напрямую в голову собеседнику. Поэтому буквы из нашей головы на аппаратном уровне мы преобразуем (кодируем) в звуковые сигналы (наборы звуковых волн). Будем называть это полезным сигналом.
Важно: каждая буква кодируется устойчивым набором звуковых волн. Из этих волн мы можем распознать определенную букву (если мы ее знаем, конечно же). Происходит преобразование из буквы в звук и обратно из звука в букву.

Шум



Шум это такой же сигнал, но он не несёт в себе полезной информации. Шум искажает полезный сигнал и уменьшает дальность уверенного приема. Это может быть толпа людей, громко говорящих о чем-то своем, а может быть даже эхо или другие посторонние звуки, которые смешиваются с полезным сигналом. Шум обычно мешает прохождению полезного сигнала до приемника.

Протокол



В таком виде сигнал доходит до приемника. Приёмник из набора звуковых волн узнаёт (декодирует) буквы и собирает из них слова. Если ему кажется, что это бессмысленный набор звуков, то он их отбрасывает либо пытается восстановить исходный сигнал по сложному алгоритму. Отчасти, из-за этого мы иногда сначала переспрашиваем Что?, а уже потом понимаем, что всё расслышали.

Протокол это, по сути, набор правил и алгоритмов, по которым мы из полезного сигнала сможем вычленить информацию. В данном примере это наш язык, на котором мы общаемся с собеседником. По нему мы узнаем смысл переданных звуков. Всё это происходит неосознанно можно сказать на аппаратном уровне.

Всё описанное выше в очень упрощенном виде показывает, как работает передача данных не только между людьми, но и между электронными устройствами. Только физическим воздействием у них будет, например, электрическое напряжение, а проводником медный кабель. Информация, хранящаяся в устройстве, может быть передана с помощью различных физических сред передачи и протоколов, но суть примерно одна и та же: проводник, физическое воздействие, протокол.


Линии электропередач как канал связи



Далее мы по шагам разберемся, как передавать данные по линиям электропередач, и по ходу дела придумаем свой велосипед протокол. Основные идеи из открытого промышленного стандарта X10.

Чтобы использовать линии электропередач в качестве канала связи, нужно понять, как они устроены, и какие физические процессы в них происходят.
Взглянем на схему доставки электроэнергии от подстанции до жилых домов. Электрические сети трехфазные, и от подстанции идут три фазы (A, B и С), которые электрически изолированы друг от друга.



Для простоты условимся, что каждая фаза это отдельный канал связи. Устройства, подключенные к разным фазам, не слышат друг друга.
Сейчас на рынке есть устройства, которые умеют общаться между фазами, для них вся подстанция это один канал связи. Но пока для понимания это не играет особой роли.
Далее на схемах будем рассматривать только фазу А (в других всё аналогично).



При подключении нескольких приемо-передающих устройств к одной фазе образуется сетевая топология типа общая шина. Сигнал, отправленный одним из устройств, получат все остальные устройства, находящиеся в пределах распространения сигнала.



Проводник


Подробнее изучим среду передачи сигнала. Для этого рассмотрим, в каком виде передается электрическая энергия, и узнаем, как через этот поток мы можем передать свой полезный сигнал.
Электроэнергия передается в виде переменного тока. Проводниками обычно выступают алюминиевый или медный кабели. Напряжение в электрической сети имеет форму синусоиды с периодом 20 миллисекунд (частота 50 Гц).



Так как ток переменный, он периодически меняет направление течения, и в момент смены направления мощность практически не передается (если не учитывать сдвиг из-за сильной емкостной или индуктивной нагрузки). Наступают мгновения затишья. Это называется zero cross (далее ZC) момент, в который напряжение равно нулю.



В этот момент в сети также наблюдается наименьший уровень шума. Это самый благоприятный момент для генерации полезного сигнала.

В электрической сети с частотой 50 Гц (как в России) момент ZC происходит 100 раз в секунду. И если передавать по одному символу за один переход через ноль, то скорость соединения будет равна 100 бод/сек. Скорость передачи в байтах уже зависит от формата кадра, от того, сколько служебных бит, помимо самих данных, будет в кадре (о формате кадров ниже по тексту).

Синхронизация


Еще один немаловажный момент это синхронизация момента передачи и приема между устройствами.
Для нашего нового протокола будем использовать синхронную передачу данных, так как это проще в реализации.
Передатчику нужно знать, в какой конкретный момент надо включить ЦАП для генерации сигнала. Приемнику нужно понимать в какой конкретный момент надо включить АЦП для измерения и оцифровки входящего сигнала. Для этого кто-то должен подавать сигнал процессору.
Этим будет заниматься отдельная часть схемы устройства Zero Cross Detector. Он просто дожидается, когда напряжение на линии будет 0 вольт, и подает об этом сигнал. В сетях с частотой 50 Гц, сигнал будет приходить каждые 10 миллисекунд.



Электрическое напряжение распространяется со скоростью света, и поэтому можем условно принять, что момент ZC во всех точках сети происходит одновременно.

В интернете можно найти примеры схем детектора под названиями Детектора нуля или Zero Cross Detector.


Полезный сигнал


Существуют различные варианты кодирования информации для передачи по ЛЭП. Мы будем использовать узкополосную передачу с частотной модуляцией, т.к. она проще для понимания и надежнее. Минусом является низкая скорость передачи данных, но для нас это пока не играет особой роли.
Полезный сигнал это обычная синусоида фиксированной амплитуды. Изменяется у только частота сигнала. Выберем пару частот и скажем, что сигнал с одной частотой это 0, а сигнал с другой частотой это 1.



Другой вариант: как в стандарте X10, наличие сигнала означает 1, а его отсутствие 0.

Физически этот сигнал можно генерировать с помощью модуля ЦАП, который есть почти в любом современном микроконтроллере. На вход ЦАП принимает программным путем цифры (уровень сигнала), а на выходе выдает соответствующий этой цифре уровень напряжения. Таким нехитрым образом можно по таймеру подавать в модуль ЦАП массив чисел, а на выходе получать синусоиду с нужной нам частотой.


Подробнее о том, как эффективно генерировать синусоидальный сигнал, расскажу в следующей статье.

Шум


В ЛЭП изначально присутствует довольно мощный сигнал это передаваемая электрическая энергия от подстанции до жилых домов. И при нагрузке появляется большое количество шума на широкой полосе частот. Бытовая техника, блок питания компьютера, зарядные устройства они испускают широкий спектр частот в электрическую сеть.

Для понимания, сравним выделенную линию передачи данных с ЛЭП.
Выделенная линия это отдельный провод, по которому общается некоторое количество устройств. Можно сравнить с пустой комнатой, в которой можно комфортно общаться.



А ЛЭП можно сравнить с коридором, в котором проводят работы перфоратором, и по середине едет поезд (очень шумно). В этих условиях передать информацию сложно, но реально.



Протокол


Кодирование очень простое выбираем несколько символов и ставим в соответствие каждому какую-либо частоту сигнала. Для простоты сделаем три символа:

  • Start по этому символу устройство поймёт, что началась передача кадра;
  • 0 это символ бита 0;
  • 1 это символ бита 1.


Передатчик по сигналу из ZC детектора на короткое время генерирует синусоиду нужной частоты. И таким образом передается по одному символу (S, 0 или 1) за один переход напряжения сети через ноль (каждые 10 миллисекунд). Приемники измеряют этот сигнал, узнают его частоту и записывают соответствующий этой частоте символ (S, 0 или 1) в буфер.


Теперь мы умеем сообщать о начале кадра и передавать некоторый набор единиц и нулей. Далее из них будем складывать слова или кадры. Целостные порции информации.

Формат кадра


Нужно ещё придумать формат кадра, который мы будет передавать с помощью этих символов. Есть несколько важных моментов, которые отразятся на формате данных: длина кадра, адресация, проверка целостности.

Длина кадра
Чем больше порция данных, тем меньше накладных расходов на передачу данных, так как помимо самих данных в кадре есть служебная информация вроде контрольной суммы и адреса назначения. Но чем меньше порция данных, тем больше вероятность успешной передачи. Тут важно найти золотую середину. Определяется это обычно опытным путем. Если взять пример из компьютерных сетей, то в Ethernet кадре было выбрано ограничение в 1500 байт данных (несмотря на то, что эта цифра быстро устарела, она используется до сих пор).


При сильном увеличении длины кадра, вероятность передать хоть какие-то данные стремится к нулю.

Адресация
Нужно ещё не забыть, что у нас топология сети общая шина. Информацию, отправляемую в эту шину, будут получать все устройства. И чтобы общение у них хоть как-то заладилось, у них должны быть адреса.
Адрес добавим в самое начало кадра, чтобы принимающая сторона, для которой не предназначены эти данные, не тратила время на прослушивание и ожидание всего кадра, так мы немного освободим процессор от бесполезной работы.

Длина адреса выбирается исходя из максимального количества устройств, которые могут одновременно находится в одной области видимости. Например, 8 бит это максимум 255 устройств (если 0 оставить как широковещательный).

Проверка целостности
При передаче информации по ЛЭП очень большая вероятность потерять часть данных. Поэтому обязательно должна быть проверка целостности. Для этих целей в кадр добавляется концевик. Это некоторая избыточная информация, с помощью которой приёмник сможет убедиться в том, что данные не искажены.

Придумаем окончательный вид кадра. Пусть длина адреса будет 8 бит (255 устройств в канале + 1 широковещательный адрес). Затем идут данные 8 бит (1 байт).
Концевиком у нас будет просто результат сложения адреса и байта. Но есть один нюанс: устройство может стабильно ловить сильный шум на частоте наших символов 0 или 1 и думать, что это полезный сигнал. И есть большая вероятность ложно считывать крайние значения типа 0x00 или 0xFF. Для защиты от этого, при подсчете концевика, просто будем прибавлять число 42.

Примерно так будет выглядеть один кадр данных: отправляем число 110 на устройство с адресом 17, концевик 169 (110 + 17 + 42).


Целый кадр будем собирать по кусочку из приходящих символов 0 и 1 после символа Start.

Опишем алгоритм приема кадра.
Изначально устройство находится в ожидании символа Start. Буфер отключен, в него ничего не пишем.
Когда пришёл символ Start, для удобства очищаем буфер приема и запускаем счетчик бит (по счетчику бит будем определять целый кадр).


Каждый следующий символ (0 или 1) последовательно пишем в буфер приема и инкрементируем счетчик бит.


Когда соберется нужное количество бит (полный кадр), проверяем целостность. Выделяем из кадра Адрес и Данные. Подсчитываем по алгоритму Концевик и сравниваем с тем, что в кадре.



Если значения сошлись, извлекаем из кадра данные и отправляем в вышестоящий протокол.



Если значения не сошлись, продолжаем ждать символ Start. И всё заново.

Примерно таким образом мы можем медленно, но верно передавать байт за байтом от одного устройства другому. Приемник будет складывать эти байты в приемный буфер протокола на уровень выше физического и там уже будет решать, что делать: выполнить входящую команду или вернуть какие-то данные в ответ.

Итог


В этой статье я постарался общим и понятным языком ввести читателя в тему передачи данных по линиям электропередач. Надеюсь, кому-то это информация пригодится, возможно, не только в области PLC.
В следующей части хотелось бы рассказать про алгоритм быстрой генерации синуса, который я применял. И о том, как из массива чисел оцифрованного сигнала узнать его частоту (ДПФ). Немного расскажу про железки для всего этого.

Возможно кто-то в комментариях подкинет ещё идей. Буду рад обратной связи!


Ссылки и материалы по теме:
Про шум в сетях
Ещё про шум в сетях
Один из вариантов Детектора нуля
Wiki: Связь по ЛЭП
Wiki: Трёхфазная система электроснабжения
ГОСТ Р 51317.3.8-99 (МЭК 61000-3-8-97) Совместимость технических средств электромагнитная. Передача сигналов по низковольтным электрическим сетям.
Подробнее..

Power-line communication. Часть 2 Основные блоки устройства

26.01.2021 02:10:54 | Автор: admin

Часть 1 Основы передачи данных по линиям электропередач

В первой части статьи мы кратко ознакомились с основными понятиями при передаче данных по линиям электропередач. Узнали, что такое полезный сигнал, как с его помощью можно кодировать передаваемую информацию. Но ни слова не было о том, как это устройство должно быть выполнено физически, как оно будет генерировать сигнал, и каким образом его вообще подключить к сети 220 В.

В этой и следующей частях статьи опишем, какие основные блоки должны быть в простейшем устройстве передачи данных по PLC. Постепенно, как конструктор, будем добавлять в общую картину блок за блоком и разберемся для чего нужен каждый блок и как он работает.

- Введение
- Мозги устройства микроконтроллер
- Основные требования к микроконтроллеру
- Выбор подходящего микроконтроллера
- Особенности питания устройства

Дисклеймер: статья не является руководством по созданию устройства и не является справочником по электронным компонентам. Это просто результаты моих экспериментов и некоторый накопленный практикой опыт, который, надеюсь, будет полезен тем, кто интересуется темой. Если есть какие-то замечания, интересные ссылки и книги, обязательно оставляй это в комментах.

Введение

Для начала кратко вспомним из части 1, как происходит передача данных. На изображении одна из фаз ЛЭП. Красное устройство передает, синие слушают. Биты данных один за одним передаются в виде синусоидальных сигналов различной частоты (FSK модуляция).

В мозге устройства микроконтроллере зашит протокол, по которому передаются/принимаются данные. Также в прошивке микроконтроллера для каждого передаваемого символа (или бита) задана соответствующая частота сигнала.

Для примера: если передается символ 0, то генерируется полезный сигнал в виде синусоиды 74 кГц. А если передается 1, то генерируется синусоида с частотой, например, 80 кГц. Номиналы частот не особо важны, просто выбираются любые из разрешенных диапазонов. Главное, чтобы приемник смог их различить.

В первой части статьи упоминалось про третий символ S, который означал начало кадра. Он также кодировался своей определенной частотой. Когда устройство получало символ S, входной буфер очищался. Для простоты в этой статье будут упоминаться только 0 и 1.

Передающие и принимающие устройства синхронизируются между собой с помощью отдельного блока устройства zero cross детектора.

Представим передающее устройство, в котором есть подготовленный кадр данных некий массив нулей и единиц, и этот кадр нужно передать по PLC каналу связи (ЛЭП). Передача/прием кадра происходит по одному биту за один синхросигнал из ZC детектора.

Физически это значит, что за один синхросигнал из ZC детектора генерируется один полезный сигнал определенной частоты. В нашем случае это синусоиды 74 кГц или 80 кГц.

Таким образом, бит за битом, передается кадр данных в PLC канал. Совместно с микроконтроллером генерацией сигналов будет заниматься отдельная часть схемы. Назовём её Выходная цепь.

Задача принимающих устройств каждый раз, по сигналу ZC детектора, оцифровывать полезный сигнал из PLC канала и узнавать, какой символ там был закодирован.

Но сначала сырой сигнал нужно грубо очистить от шума, подогнать уровень очищенного сигнала под пригодный для оцифровки и уже затем передать на АЦП микроконтроллера для дальнейшего цифрового анализа. Этой подготовкой полезного сигнала для АЦП будет заниматься Входная цепь.

Чтобы не раздувать эту часть статьи, расскажу только про задачи, решаемые микроконтроллером и некоторые особенности питания устройства.

В следующей части рассмотрим как устройство можно согласовать с сетью 220 В, работу ZC детектора, а также про входную и выходную цепи.

Мозги устройства микроконтроллер

Центральная часть устройства микроконтроллер, который будет контролировать всю схему: обрабатывать входной сигнал, генерировать полезный сигнал, управлять усилителями, хранить данные и т.д.

Микроконтроллер это такой мини-компьютер, который в одном корпусе содержит процессор (ЦПУ), память (ПЗУ и ОЗУ), ввод-вывод и периферийные устройства. По сути, внутри уже все есть для работы: подаем питание и поехали. Дальше все зависит уже от программы прошивки, которую мы в него записали.

Рисунок с сайта digikey.comРисунок с сайта digikey.com

Сейчас выпускают микроконтроллеры с большим количеством различной встроенной периферии. Это очень удобно, так как меньше необходимости во внешних компонентах, что экономит место на печатной плате (и, конечно же, ваши денежки). Внутри может иметь ЦАП и АЦП, часы с календарем. Даже встроенный USB уже не удивляет.

На рынке огромное разнообразие микроконтроллеров с разной вычислительной мощностью и периферией. Обычно они группируются в серии и подходят под разные классы задач. Например, чтобы помигать светодиодом в миниатюрном устройстве, нам не нужен мощный камень, на котором можно запустить Linux, подойдет ATtiny. Но для нашего устройства его уже не хватит, так как нужны ЦАП, АЦП и быстрые вычисления в реальном времени.

Поэтому к выбору камня нужно подойти немного поразмыслив. Подумаем, что же требуется от микроконтроллера в нашем случае.

Основные требования к микроконтроллеру

Производительность

Основной нагрузкой на ЦПУ будет обработка оцифрованного входного сигнала с помощью ДПФ для выяснения того, какой символ был закодирован в сигнале: 0 или 1. Далее этот символ будет отправляться в протокол на уровень выше. Больше всего вычислений будет происходить именно при подсчете гармоник в ДПФ.

Циклично, с интервалом 10 миллисекунд, АЦП будет оцифровывать входящий сигнал и сохранять его в виде массива чисел. Затем этот массив несколько раз прогоняется через ДПФ для выяснения амплитуд гармоник каждой из интересующих нас частот в полезном сигнале.

Результат визуально можно представить в виде эквалайзера, на котором нарисованы полоски определенных частот разной высоты (амплитуды). Для подсчета высоты каждой отдельной полоски нужно сигнал прогонять через ДПФ.

После подсчета некоторого количества гармоник, делаются выводы о том, какой символ закодирован.

В самом простом случае можно просто сравнить амплитуды гармоник 74 и 80 кГц между собой. Если в сигнале преобладает гармоника с частотой 74 кГц, записываем в входной буфер бит 0.

Если в сигнале преобладает гармоника с частотой 80 кГц, записываем в входной буфер 1.

В таком случае, любой шум что-то означает: 0 либо 1, даже если ничего не передавалось. Отделением зерен от плевел будет заниматься отдельная подпрограмма уровнем выше которая будет проверять целостность кадра и прочие прелести.

Задача же этого уровня просто, как конвейер, подавать 0 и 1 наверх, а дальше из них будут складываться правильные целостные кадры данных. Или не будут.

Также можно заморочиться и дополнительно рассчитывать амплитуды смежных гармоник и узнавать уровень шума относительно полезного сигнала. Можно программно фильтровать сигнал и тд. Вариантов много.

Суть в том, что считать, возможно, придется много. Успевать считать нужно гарантированно, так как это реалтайм-конвейер.

Если разложить всю нагрузку на которую ЦПУ тратит время друг за другом, то получим примерно это:

  • оцифровка сигнала

  • подсчет амплитуд гармоник через ДПФ и анализ результата

  • прочая нагрузка (обработка прерываний из интерфейсов USB или CAN, обработчики таймеров, моргания светодиодами, работа с памятью, какие-то вычисления по протоколу и т.д.)

Это должно циклично выполняться каждые 10 миллисекунд снова и снова. ЦПУ никогда не должен быть загружен на 100%, иначе есть риск не успеть посчитать что-то важное. Поэтому всегда нужно оставлять запас по производительности.

Энергоэффективность

Обратная сторона быстрых вычислений большее потребление энергии. Чем быстрее контроллер считает, тем больше он потребляет энергии. Поэтому нам не нужен слишком мощный процессор.

Подобрать нужную производительность ЦПУ можно опытным путём: берём микроконтроллер с запасом вычислительной мощности и памяти, пишем код, запускаем и смотрим за какое время он справляется с конкретными задачами. Выбираем из линейки контроллеров подходящий, оставляя небольшой запас мощности и памяти (для возможных обновлений и улучшений).

Должен быть достаточно быстрый АЦП

Нам нужно оцифровывать входной аналоговый сигнал и желательно, чтобы был встроенный АЦП. Точность тут не так важна, как скорость. Так как измеряемый сигнал имеет частоту до сотни килогерц. Для корректных вычислений гармоник есть условие.

Частота дискретизации должна быть минимум в два раза больше частоты измеряемого сигнала [Теорема Котельникова].

Это значит, что для распознавания сигнала нужно сделать от двух точек измерения на период. А по-хорошему 4-5. Посмотрим на примере.

Представим, что мы измеряем сигнал, в котором есть нужная нам гармоника частотой 80 кГц. У сигнала с частотой 80 кГц период 1/80000 = 12,5 микросекунд. Чтобы оцифровать 5 точек на период нужно успевать делать измерение раз в 2.5 микросекунды для адекватного распознавания сигнала.

С пятью точками измерений на период уже выглядит неплохо. ДПФ с этим отлично справится.

Но для чего брать с запасом? Что если измерять по минимуму, только две точки на период? Вот такой сигнал мы оцифруем при удачном попадании.

А так будет выглядеть оцифрованный сигнал, если попасть в момент, когда сигнал в нуле.

Не похоже на синусоиду.

Если интересно посмотреть, что будет, если проводить измерения частотой меньше двух точек за период, то поищите в гугле картинки Эффект алиасинга.

Должен быть достаточно быстрый ЦАП

Для полезного сигнала нужно сгенерировать синусоиду большой частоты. Чем больше точек на период синусоиды успеет генерировать ЦАП, тем плавнее будет сигнал на выходе (меньше лесенка, которую затем сгладит конденсатор).

Представим на примере синусоиды с частотой 80 кГц, период 12.5 микросекунд. Возьмем для начала 4 точки на период. Генерация каждые 3.125 микросекунды.

Такой сигнал сложновато будет сгладить конденсатором, чтобы сделать его похожим на синус.

Увеличим количество точек вдвое. Генерация каждые 1.56 микросекунды.

Нужна достаточная скорость ЦАП для того, чтобы сигнал был хотя бы похож на синус. В нашем случае, с сигналом частотой до 80 кГц, будет достаточно чтобы ЦАП успевал менять уровень сигнала раз в 1.5 микросекунды. Если успеет быстрее, то еще лучше.

С выхода ЦАП этот угловатый сигнал проходит через пассивный фильтр нижних частот и в сглаженном виде идет на усилитель выходной цепи.

Если нет АЦП

Помню, в самом начале я проводил эксперименты на 8-битных AVR от Atmel серии ATmega8, и у них в распоряжении не было АЦП. Но на них было очень удобно начинать знакомство с миром микроконтроллеров. Низкий порог вхождения и никаких танцев с бубнами при запуске.

Ну так вот, входной сигнал я решил оцифровывать простой ножкой в режиме входа. Если входное напряжение выше 2.5В, то у ножки было логическое состояние 1, если ниже 2.5В, то 0. В равные промежутки времени просто считывалось текущее состояние ножки и эти значения записывались в массив.

И этот оцифрованный сигнал прогонялся через ДПФ и вычислялось наличие нужных гармоник. Ни о какой точности или чувствительности речи и не шло, но это работало.

Если нет ЦАП

Аналогичная ситуация на ATmega8 была с ЦАП. Его там нет, и мне очень не хотелось заморачиваться с внешним ЦАП.

Оказалось, что можно пожертвовать логическими выходами микроконтроллера и подключить к ним резисторную матрицу R-2R. Таким образом из горстки резисторов собрать свой ЦАП с нужной разрядностью.

Картинка с сайта easyelectronics.ruКартинка с сайта easyelectronics.ru

Подавая 0 и 1 на выходы микроконтроллера, можно получать нужный уровень напряжения на выходе OUT. Чем больше выходов будет использовано, тем выше разрядность ЦАП. По схеме R-2R оставил ссылку в конце.

Выбор подходящего микроконтроллера

После экспериментов на ATmega8 мне захотелось улучшить то, что есть. Выбирая из разных вариантов, я положил глаз на STM32. А конкретно на STM32F103 это 32-битные микроконтроллеры на ядре ARM Cortex-M3 (до 72 MHz).

Эксперименты проводил на отладочной плате, которая, наверное, есть в любом магазине электроники. На отладочной плате сразу располагался программатор, с помощью которого прошивается на МК.

Немного пострадав с его запуском, сразу же побежал проверять его по своему чек листу.

Производительность?

Схема тактирования позволяет работать ЦПУ на частоте 72 MHz, что после 8-битных на 20 MHz было с запасом. Хватало для более точных расчетов по алгоритму ДПФ.

Энергоэффективность?

При почти максимальной нагрузке потреблял около 40-50 мА. Дешевый стабилизатор напряжения в схеме питания на 100 мА с этим справлялся. Даже с учетом остальной маложрущей периферии этого было достаточно.

Достаточно быстрый АЦП?

Разобрался, как разогнать до максимальной скорости АЦП при частоте ЦПУ 72 MHz. Так как ранее было сказано, что полезный сигнал будет частотой в районе 80 кГц, то будем считать исходя из этого.

В доках для STM32 нашел, как вычислять минимальное время преобразования: нужно к настраиваемому времени семплирования (минимум 1.5 цикла) прибавить 12.5 машинных циклов. Получается 14 машинных циклов на одну точку измерения.

При определенной настройке схемы тактирования на модуль АЦП приходится 14 MHz. Если перевести в секунды, то 14 циклов при частоте тактирования 14 MHz это одно измерение в 1 микросекунду.

Идеально! Даже если полезный сигнал будет частотой 100 кГц, я смогу измерить 10 точек за один период сигнала. С минимальной точностью, но быстро.

Примерно так будет выглядеть оцифровка синусоиды 80 кГц.

Достаточно быстрый ЦАП?

По той же логике нам нужно сгенерировать синусоиду частотой около 80 кГц. И если мы хотим, чтобы синусоида была похожа на синусоиду, а не на странную угловатую фигуру, нужно генерировать одну точку хотя бы раз в 1.5 микросекунды, как мы выяснили ранее.

Почитав документацию, я понял, что в ЦАП STM32F103 встроенный ОУ имеет ограничение в 1 MSPS. Получилось настроить генерацию каждой точки сигнала раз в 1 микросекунду.

Примерно так при этом будет выглядеть синусоида с частотой 80 кГц на выходе из ЦАП.

Периферия

Что еще мне понравилось в STM32F103 это наличие встроенного USB. Там есть режим эмуляции COM порта. Мне показалось это очень удобным, особенно после внешних преобразователей USB-UART.

Можно подключать устройство к ПК обычным шнурком от телефона и через терминал посылать на устройство какие-нибудь отладочные команды.

Для экспериментов подключал два PLC устройства к двум компам, и они посылали друг другу ASCII символы, вводимые с клавиатуры. Получилось что-то вроде чата через розетку 220 В.

Особенности питания устройства

Сразу отмечу, что я не спец в проектировании блоков питания, для подробностей есть специализированная литература. Но считаю важным отметить некоторые моменты, которые влияют на стабильность системы, и с которыми у меня были проблемы.

Блок питания можно либо собирать самому, либо взять готовый модуль с нужными характеристиками, это неважно. В любом случае, нужно адекватно развести линии питания по печатной плате.

Схема питания устройства зависит от потребителей. В нашем случае основные жрущие потребители это микроконтроллер и выходная цепь, так как в ней усилитель для отправки сигнала в ЛЭП.

Остальные потребители вроде усилителей входного сигнала во входной цепи, EEPROM памяти или какие-то UART конвертеры потребляют немного.

Стабильное питание микроконтроллера

Первое и самое важное на что нужно обратить внимание это стабильность питания микроконтроллера. Он не любит скачки напряжения и может в самый неподходящий момент перезагружаться или просто начать себя странно вести (пропускать блоки кода).

И тут у нас проблемка: как назло, под боком у микроконтроллера находится выходная цепь с усилителем полезного сигнала. Этот блок устройства во время генерации сигнала импульсами потребляет мощность, что может прилично потрясти всю систему питания, обнулив при этом микроконтроллер.

Примерная картина потребления мощностиПримерная картина потребления мощности

При передаче кадра это происходит каждые 10 миллисекунд длиной в 1 миллисекунду.

С этим у меня возникли трудности. Иногда устройство работало нормально, но чаще предсказуемо перезагружалось. Сначала пытался решить проблему блоком питания помощнее, но не помогало. В поисках решений много интересного узнал из форумов по робототехнике. Там похожие проблемы были в основном из-за сервоприводов, которые потребляют приличное количество энергии и, при неправильной разводке платы, могут внезапно перезагружать микроконтроллер.

Для тяжелых случаев есть пара советов, которые помогут уменьшить влияние скачков напряжения.

Совет 1 - Разделить землю на аналоговую и цифровую

Первый важный момент это обеспечение минимального влияния аналоговой части схемы на цифровую.

Для этого нужно разделить дорожки GND в самом начале схемы питания возле минуса блока питания. Ни в коем случае нельзя их пересекать или как-то замыкать в других частях схемы.

Для питания условно цифровых компонентов схемы (микроконтроллер, EEPROM память и т.д.) от самого блока питания должна идти отдельная линия, можно назвать её DGND.

Для питания аналоговой схемы генерации полезного сигнала от блока питания, соответственно, должна идти отдельная линия AGND. Подробнее можно почитать в статьях или литературе по заземлению.

Совет 2 - Не забыть про керамику

Конденсаторы нужно ставить перед каждой ножкой питания микроконтроллера и как можно ближе к ним. Обязательно выполнить минимум обвеса, который указан в Datasheet на микроконтроллер.

Картинка с сайта allexpress.comКартинка с сайта allexpress.com

Также желательно добавить в цепи питания микроконтроллера дополнительную емкость, в виде электролитического или танталового конденсатора, чтобы он мог даже выдерживать кратковременное отключение питания.

С танталовыми осторожнее, они красиво взрываются :).

Еще надо не забыть защитить ножку Reset микроконтроллера, как указано в Datasheet. В противном случае микроконтроллер может внезапно перезагружаться. Если нет светодиодной индикации запуска программы микроконтроллера, то можно этого даже не заметить.

Совет 3 - Экранировать цифровые компоненты

Может получиться так, что недалеко от микроконтроллера расположен высокочастотный трансформатор, который во время передачи сигнала генерирует электромагнитные помехи.

Мне помогло расположение микроконтроллера на другой от ВЧ трансформатора стороне печатной платы и наличие земляного полигона под корпусом микроконтроллера.

Картинка с сайта caxapa.ru "Помехоустойчивые устройства, Алексей Кузнецов"Картинка с сайта caxapa.ru "Помехоустойчивые устройства, Алексей Кузнецов"

Подробнее можно почитать в статье по ссылке в конце.

Заключение

В этой части мы в общих чертах разобрали чем занимается микроконтроллер. Узнали некоторые особенности питания устройства и возможные проблемы.

Статья вышла довольно объемной. Я постарался максимально коротко передать основные моменты. Может сложиться ощущение незаконченности и это нормально. Для углубленного изучения оставлю ссылки внизу.

В следующей части подробнее разберём оставшиеся блоки устройства: входная и выходная цепи, zc детектор и согласование устройства в сетью 220 В. После этого должна сложиться целостная картинка. В заключительной части пробежимся по программной части: обработке оцифрованного сигнала, генерация синуса и т.д.

У кого был/есть какой-либо опыт в PLC обязательно делитесь этим с остальными в комментариях :)

Полезные ссылки

https://nag.ru/articles/article/24485/strasti-po-plc.html - интересная статья по истории PLC
https://www.electronshik.ru/catalog/interfeys-modemy-plc - заводские PLC микросхемы с datasheet (там много схем и характеристик)
https://ru.wikipedia.org/wiki/Частотная_манипуляция - FSK модуляция
http://www.atmega8.ru/ - про ATmega8

STM32
https://www.st.com/en/microcontrollers-microprocessors/stm32f103.html - STM32F103
https://themagicsmoke.ru/courses/stm32/led.html - Помигать светодиодом на stm32
https://blog.avislab.com/stm32-clock_ru - схема тактирования stm32
http://personeltest.ru/aways/habr.com/ru/post/312810/ - подробнее про ЦАП в stm32
https://blog.avislab.com/stm32-adc_ru/ - АЦП в stm32
https://blog.avislab.com/stm32-usb_ru/ - USB в stm32

Аналоговая часть
http://easyelectronics.ru/parallelnyj-cifro-analogovyj-preobrazovatel-po-sxeme-r-2r.html - преобразователь по схеме R-2R
http://caxapa.ru/lib/emc_immunity.html - "Помехоустойчивые устройства", Алексей Кузнецов
https://www.ruselectronic.com/passive-filters - пассивные фильтры

Подробнее..

Power-line communication. Часть 3 Основные блоки устройства

25.05.2021 00:13:35 | Автор: admin

Во второй части статьи мы начали знакомиться с основными блоками устройства для передачи данных по PLC. Это будет заключительная часть статьи, которая касается описания железа.

Осталось разобраться, что такое ZC детектор, на примере одной из его возможных реализаций. Посмотрим, как можно реализовать входную и выходную сигнальные цепи, и как их подключить к сети 220 В.

В статье не рассматриваются какие-либо серьёзные темы в области PLC. Как и в первых двух частях, кратко описываются блоки устройства и их взаимодействие. Темы выстроены так, чтобы у новичка примерно выстроилась общая картина простейшего PLC устройства. Также повествование касается множества сложных тем, которые не раскрываются. Поэтому в конце постарался оставить побольше ссылок.

Zero cross детектор

Как говорилось ранее, передающие и принимающие устройства синхронизируются между собой с помощью отдельного блока zero cross детектора.

Передающее устройство, отправляет подготовленный кадр данных по одному биту за один синхросигнал из ZC детектора. Физически это значит, что за один синхросигнал из ZC детектора генерируется один полезный сигнал определённой частоты, которым кодируется один бит.

В электросетях с частотой 50 Гц, синусоида напряжения пересекает ноль 100 раз в секунду.

Есть несколько вариантов исполнения ZC детектора. Ниже я покажу пример реализации на оптопаре.

Начнём с конца схемы сначала представим, как сигнал с ZC детектора попадает на контроллер.

На картинке схема с подтягивающим pull-up резистором и ключом. При замыкании ключа, на вход МК будет подаваться логический 0, а при размыкании ключа, pull-up резистор будет подтягивать напряжение на входе МК до логической единицы.

На место ключа ставим оптрон. Оптрон (оптопара) это простой элемент, в котором с одной стороны светодиод, а с другой фототранзистор.

При подаче напряжения на светодиод, фототранзистор будет пропускать ток. Оптрон также служит гальванической развязкой между сетью 220 В и цифровой частью схемы.

Остается только подавать на светодиод переменное напряжение из сети 220 В, но перед этим его необходимо выпрямить и уменьшить до приемлемого уровня, который выдержит светодиод оптопары.

Для выпрямления можно использовать smd мостовой выпрямитель.

После выпрямления на фотодиод пойдёт пульсирующее с удвоенной частотой напряжение от 0 до 310 В. Разумеется диод не выдержит такого размаха напряжения, поэтому после мостового выпрямителя поставим сопротивление.

Номинал сопротивления можно вычислить исходя из характеристик фотодиода в оптопаре

В datasheet на оптопару пишут максимальный ток, на который рассчитан фотодиод, исходя из этого нужно выбрать сопротивление с расчётом на 310 В. Чтобы резистор не перегрелся, можно вместо одного последовательно поставить несколько резисторов для эффективного отвода тепла (это особенно полезно если у вас SMD резисторы).

Из datasheet на PLC817Из datasheet на PLC817

На примере PC817 видно, что максимальный ток, который выдержит светодиод - 50 мА. Максимальный коэффициент передачи при 20 мА. И "замыкать ключ" он будет уже и при >1 мА.

SMD резисторы типоразмера 1210 выдерживают рассеивание до 0.5 Вт мощности. Максимальный постоянный ток, который мы может пропускать при 310 вольт равен 0.5/310 = 0.00161 А. С учетом, того что у нас пульсирующее напряжение, округлим до 0.002 А (2 мА). Этого тока достаточно, чтобы "ключ замыкался". Номинал сопротивления при этом равен 310/0.002 = 155000 Ом. Итог: ставим последовательно три SMD резистора, типоразмером 1210, номиналом 51 кОм каждый.

В итоге, схема ZC детектора выглядит примерно так.

Теперь микроконтроллеры PLC устройств, подключенных к одной фазе могут синхронизироваться между собой с помощью сигнала на ножке "ZC input" из такого ZC детектора.

Схема согласования сигнальных цепей с линией 220 В

Схема согласования закрывает собой компоненты входной и выходной цепей. Входная и выходная сигнальные цепи обычно выполнены на микросхемах усилителях, которые питаются небольшим постоянным напряжением (3-12 В). Подключить их напрямую к 220 В не получится.

Из электросети должны проходить только высокочастотные сигналы. Основная гармоника 50 Гц, на которой передаётся электроэнергия, не должна попасть в сигнальные цепи устройства. Также в этой схеме обычно располагается защита от скачков напряжения и перегрузок.

Эта часть схемы принимает различный вид в разных datasheet на готовые PLC микросхемы. Опишем минимально работоспособный вариант.

Для первых опытов

Можно взять ферритовое кольцо типа 17,5x8,2x5 М2000Н, есть в любом магазине электроники. Провод МГТФ наматываем сразу 3 обмотки в 20 витков.

Конденсатор плёночный из серии MKP или любой аналогичный, который выдерживает от 220 В переменки (с запасом).

Для отсечения ненужных низкочастотных гармоник ставится конденсатор, который выдержит 220 В. После него, для гальванической развязки и также фильтрации, высокочастотный трансформатор. Трансформатор можно сделать с отдельными обмотками для входной и выходной цепей (как на изображениях) или использовать одну обмотку на "вход"/"выход".

Для защиты усилителей от импульсных перенапряжений можно поставить защитные диоды (супрессоры) и/или варисторы с предохранителем. Тема защиты устройства от электрических неприятностей довольно обширная, в этой статье не рассматривается. Но забывать про это не стоит.

Варианты схемы согласования можно подглядеть в готовых решениях различных фирм, выпускающих PLC микросхемы. Каждая схема согласования разрабатывается под входные/выходные усилители, используемые в этих решениях.

Входная цепь измерение полезного сигнала

Входная цепь должна выполнить как минимум две задачи:

  • отфильтровать грубый входящий сигнал, срезав все лишнее;

  • после этого усилить сигнал до приемлемого уровня, подходящего для измерения и оцифровки с помощью ЦАП микроконтроллера.

Фильтрация

Существует большое разнообразие вариантов исполнений фильтров. В нашем случае подойдёт простой пассивный полосовой фильтр. При узкополосной передаче можно грубо отсечь ненужные частоты сверху и снизу. Фильтр нужно рассчитываем так, чтобы наши рабочие частоты попадали по центру полосы пропускания и меньше всего срезались.

В самом простом случае можно особо не заморачиваться с фильтром, так как в линиях электропередач запросто могут быть шумы с частотами близкими к полезным. Нам просто нужно примерно совместить полосу пропускания фильтра с полезной полосой частот, срезав все сверху и снизу. Остальное можно решить программным путём.

Важно помнить, что элементы пассивного фильтра изготавливаются с большими погрешностями и характеристики сильно завязаны на температуру. Поэтому при расчетах нужно оставлять небольшой запас с учётом этих погрешностей и влияния температуры.

Усиление

У АЦП есть такая характеристика как разрешение. Оцифровка сигнала происходит с некоторой дискретностью. А после пассивной фильтрации входной сигнал заметно похудеет в амплитуде. И если подать на АЦП очень слабый сигнал, то его форма сильно исказится и потеряется большая часть информации о сигнале.

Амплитуду сигнала нужно поднять до приемлемой для измерений и оцифровки. В этом помогут операционные усилители (ОУ), которых на рынке огромное количество, и про которые написано тонны статей.

Самое сложное это выбрать подходящий ОУ по полосе пропускания и коэффициенту усиления. Выходная мощность ОУ в этом случае не важна, так как нам нужно лишь оцифровать форму сигнала.

Бывает, что одного ОУ не хватает для усиления сигнала до приемлемого уровня. В этом случае можно сразу после первого ОУ поставить второй по аналогичной схеме. В продаже есть микросхемы сразу с двумя ОУ в одном корпусе.

Ссылки на статьи про операционные усилители и их про каскадное подключение оставил в конце статьи.

Выходная цепь генерация полезного сигнала

Задача выходной цепи фильтровать и усиливать сигнал из ЦАП микроконтроллера.

Микроконтроллер по специальному алгоритму генерирует полезный сигнал, нужной длительности и частоты, соответствующей передаваемому символу. На выходе из ЦАП у нас получается просто болванка полезного сигнала, угловатая, примерно похожая на синусоиду, но (самое главное!) нужной нам частоты.

Далее сигнал сглаживается фильтром и отправляется в аналоговую часть схемы (усилитель и схема согласования с 220 В).

Можно подумать, что форма сигнала не особо важна при кодировании, так как преобразование Фурье всё равно может вычленить основную гармонику полезного сигнала, отбросив всё лишнее. Но чем сигнал ближе по форме к синусоиде, тем меньше энергии мы будем тратить в пустоту, просто добавляя высокочастотный шум в сеть. И выходной усилитель будет работать стабильнее. Как уже говорилось на входе важна лишь основная гармоника сигнала. Остальные гармоники это шум.

Так как мощности сигнала на выходе ЦАП микроконтроллера недостаточно для отправки его напрямую в линию электропередач, после ЦАП нам обязательно нужен внешний усилитель.

При выборе усилителя разбегаются глаза. Не буду рассказывать про всё многообразие, но подскажу вариант для ленивых, как я. Можно использовать одну из готовых микросхем для усиления аудио сигналов в аудиоплеерах. Мощность у них обычно не большая около 1W.

Гуглить их можно по фразе audio amplifier btl 1w. Но тут нужно учесть, что они обычно рассчитаны на аудио сигналы до 20 кГц, и производитель не рассчитывал, что их будут использовать в PLC модеме. Есть модели, которые хорошо усиливают частоты до 100-150 кГц, и обычно в datasheet об этом не пишут.

Плюсы:

  • они очень удобны тем что там встроенная стабилизация сигнала;

  • есть режим mute - мизерное потребление в режиме простоя;

  • хватает однополярного питания не надо париться с блоком питания.

Минусы:

  • во включенном состоянии из-за обратной связи съедают входящий сигнал, поэтому усилитель надо выключать, когда устройство в режиме прослушивания (приёма);

  • большой минус это их незащищённость от импульсных помех в электросети. Сгорают мгновенно. Но от этого можно спастись, поставив на выходе усилителя супрессоры, что-то наподобие P4SMAJ5.0A или аналогичный.

Примерно так выглядит усиление с однополярным питанием.

Также нужно не забыть на выходе усилителя ставить конденсатор, чтобы отсечь постоянную составляющую сигнала.

Итого

Во второй и третей частях мы коротко пробежались по основным блокам простейшего PLC устройства, создали общую картину их взаимодействия. Так как затрагиваемых тем очень много и они дольно глубокие, подробнее осветить их в статье не получилось (да и я в них не специалист). Для более серьезного изучения есть специализированная литература. Но новичку иногда сложно понять в какую сторону копать. Поэтому конце оставил много ссылок на различные обзорные статьи по связанным темам.

В следующей части статьи планировал на примерах показать, как можно программно генерировать синус нужной частоты для ЦАП в STM32. И заодно как обработать приходящий на АЦП сигнал и выяснить наличие в нём нужных гармоник (частот) полезного сигнала.


Полезные ссылки

Общее:

Фильтры:

Операционные усилители:

ZC детекторы:

Схемы согласования с 220 В в доках на PLC микросхемы:

Подробнее..

Stereo to mono downmix. ZK-502T, ZK-100, TPA3116, NE5532, AC20B. Доработка стерео в моно. Схема, устройство, хак

08.04.2021 14:12:31 | Автор: admin

Зачем это вообще нужно?! Резонный вопрос. Иногда бывает нужно. Всегда, когда надо подключить один источник звука, например сабвуфер. Или, как в моём случае стояла задача озвучить open-air танцевальное мероприятие. В наличии был гитарный комбик, в который я воткнул плату усилителя D класса ZK-502T на TPA3116 и переделал на питание от литиевой батареи. И всё было хорошо, только воспроизводить он мог только один канал, поскольку динамик один. На самом деле вопросов и решений больше, чем один. Но мы их пропустим и перейдём сразу к технике.

ZK-502T hackZK-502T hack

На плате есть усилитель на TPA3116 класса D, микропроцессор с ЦАПом, АЦП, MUX, USB и blutooth, регулировка высоких и низких частот. Вот совсем не high-end, имеет недостатки, но для наших целей то, что надо.

Проблема заключается в том, что выходные каскады активных устройств в аналоговой цепи как правило имеют малый импеданс и просто закоротить правый и левый каналы нельзя. В лучшем случае устройство уйдёт в защиту, в худшем - сгорит.

Есть разные способы решения данной задачи. Рассмотрим две из них:

  • сумматор на резисторах

  • сумматор на операционном усилителе

Сумматор на резисторах

Вероятно самый простой способ. Берём 3 резистора и паяем по схеме прямо на вход комбика. Потом подаём на один из каналов платы-усилителя и всё.

Простейший сумматор аналогового сигналаПростейший сумматор аналогового сигнала

Не вдаваясь в подробности, будет т.н. взаимопроникновение каналов, что приводит к искажениям. Кроме того, на плате усилителя есть blutooth модуль и его ЦАП прошить будет проблематично.

Сумматор на операционном усилителе

Этот вариант близок к идеальному. Правда посложнее. Тема довольно большая, поэтому ограничимся поверхностным описанием неинвертирующего сумматора, точнее буфера или повторителя на NE5532:

Неинвертирующий сумматор на op-ampНеинвертирующий сумматор на op-amp

Не вдаваясь в подробности, получаем на выходе сумму сигналов обоих каналов без взаимного проникновения и искажений.

Теперь надо найти точку, где вклиниться в схему. Вероятно самое удачное место будет после ЦАПа и мультиплексора и перед операционниками регуровки тембра.

Дальше я снял видео доработки с пояснениями и описаниями работы отдельных блоков схемы:

Операционники живут на двухполярном питании, я делал на однополярном. Это возможно с т.н. виртуальной землёй и блокирующими ёмкостями для ограничения постоянной составляющей. Подробности в видео.


Я поставил себе цель понять, как работают операционные усилители и сделать рабочую схему. И это мне удалось. Заодно разобрался в схеме вышеуказанного усилителя. И вообще узнал много нового.

Надеюсь, кому-нибудь будет полезно!

Подробнее..

E2V Впереди планеты всей. АЦПЦАП гигагерцового диапазона

12.03.2021 18:21:40 | Автор: admin

Развитие электроники идет по нескольким направлениям. Одно из них - увеличение рабочих частот. И если лет 10-15 назад АЦП/ЦАП можно было встретить лишь в трактах ПЧ, то сейчас возможно производить прямую оцифровку СВЧ сигналов до 4 ГГц, а их прямой синтез - до 24 ГГц. Одним из бесспорных лидеров рынка в этом сегменте является подразделение компании Teledyne E2V, которая успешно конкурирует с аналогичными продуктами компаний Analog Devices и Texas Instruments.

Подразделение Teledyne E2V производящее АЦП/ЦАП располагается в Grenoble, France. Как известно, для поставки высокотехнологичных микросхем как правило нужна лицензия. АЦП/ЦАП тут не исключение, хотя некоторые 8-ми / 10-ти битные модели поставляются и без нее. В любом случае, получить европейскую лицензию обычно существенно легче, нежели американскую.

Рассмотрим же ряд иноваций и применений для продуктов этой компании.

1. Одно ядро - значит одно ядро !

Одним из способов увеличения скорости работы АЦП является чередование каналов (interleaving). Но, все в этой жизни имеет свою цену. Обычно это приводит к возникновению паразитных составляющих в спектре. Поэтому некоторые недобросовестные производители об этом умалчивают. Но это не Teledyne E2V !

Рис. 1 Паразитные составляющие при чередовании каналов

В ряде приложений это может не иметь большого значения. Но, например в радарных применениях эти паразитные составляющие обычно видны как мнимые цели, что критично.

Рис. 2 Мнимые цели

2. Интерфейс ESIstream

Его выгоды по сравнению с распространенным стандартом JESD204 показаны в таблице ниже.

Таблица 1 Сравнение ESIstrem и JESD204

ESIstream

JESD204

Эффективность

Заголовки 12.5%

Заголовки 25%

Упрощенная реализация

Спецификация 10 страниц

Спецификация 160 страниц

Требуется логических элементов

1000

8000

Меньше задержка

40 нс на весь линк

Зависит от LMFC синхронизации. Может меняться при каждом включении питания

Синхронизация

медленная PRBS

нужен внешний SYNC

Исходный код

Доступен на esistream.com

В ряде случаев является интеллектуальной собственностью

3. Последовательная синхронизация

Для работы скоростного АЦП обычно требуется два синхронных сигнала: тактовый, который нужен для работы ядра, и сигнал синхронизации, который нужен для УВХ. Одно это требует тщательного проектирования печатной платы (ПП) с учетом возникающих на ней задержек распространения.

Представьте, насколько все усложняется в многоканальной системе, когда необходимо оцифровать синхронно несколько сигналов. Например в антенной фазовой решетке. Для этого случая комания Teledyne E2V вместо параллельных сигналов синхронизации использует специальную кодовую последовательность, которая передается последовательно от АЦП к АЦП и обеспечивает их синхронизацию, независимо от топологии ПП.

Рис. 3 Последовательная синхронизация

4. Сколько бит выбрать, или коварный ENOB

ENOB -> (Effecive Number of Bits), или эффективное число бит, важный параметр АЦП, особенно на больших скоростях. Казалось бы, понятно что 12 лучше чем 10, а 10 чем 8. Но это не всегда так, особенно если сравнивать скоростные АЦП разных производителей. На рисунке ниже проведено сравнение ENOB от частоты для EV12AD550 (12 бит) и ADC12D1600 (12 бит). Условия сравнения строго говоря неизвестны, но, вполне возможна ситуация, когда ENOB у 12-ти битного АЦП будет как 10-ти битного или близко к нему. Что, вообще говоря, может быть обидно - стоят то они по разному.

Рис. 4 ENOB в зависимости от частоты

5. О зонах Найквиста замолвите слово

У дискретных систем есть интересное свойство, а именно стробоскопический эффект, когда быстро меняющийся сигнал воспринимается как медленный. Все видели медленно вращающиеся блики на колесах автомобиля, или же почти застывшие лопасти вертолета на видеозаписи. Все дело в наложении частот, когда объект вращается почти кратно к частоте кадра.

В случае с ЦАП, выходной сигнал можно сформировать таким образом, что он будет содержать гармоники порядка N. Лишь бы полоса выходного усилителя ЦАП позволяла, да стоял бы затем соответствующий фильтр. Понятно, что они будут меньше по амплитуде, но в ряде случаев ее вполне достаточно для прямого синеза СВЧ сигналов. Аж до 8-й зоны Найквиста, как говорит нам компания Teledyne E2V. Дело в том, что выход ЦАП может работать в 4-х различных режимах: NRZ, когда выходное напряжение меняется только в момент смены состояния; RTZ, когда генерируется однополярный короткий импульс заданной амплитуды; NRTZ- по сути рзновидность предыдущего и RF, когда генерируется пара коротких разнополярных импульсов заданной ЦАП амплитуды. При этом зоны Найквиста, как мы видим, распределяются по разному.

Рис. 5 Зоны Найквиста

Ниже приведен спектр сигнала около 12 ГГц, полученный данным способом. Его SFDR около 50 дБн - вполне достаточно для многих применений.

Рис. 6 Сигнал 12 ГГц

Аналогичный подход можно использовать и при приеме, для синусоидальных или же повторяющихся импульсных сигналов, даже при больших значениях N.

6. Прямое преобразование вниз

Пример такого преобразования из 2-й зоны Найквиста показан на рисунке ниже.

Рис. 7 Прямое преобразование вниз для L-диапазона

7. Отладки

Пока еще гигагерцовые АЦП/ЦАП удовольствие не дешевое. Помимо сложной обвязки, как правило их использование подразумевает совместную работу с высокопроизводительными цифровыми системами SOC/FPGA. Например, такими как Altera, Xilinx или Lattice.

Для облегчения жизни разработчикам, и получения быстрого результата Teledyne E2V предлагает уже готовые демо-киты. Выглядят они, прямо скажем, несколько фантастично. Стоят наверно тоже. Хотя по любому видимо это будет дешевле, нежели сваять самому.

Рис. 8 Демо-кит FPGA Board EV12AD600

За сим желаю всем доброго здравия, и успешного применения гигагерцовых АЦП/ЦАП в своих проектах.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru