Русский
Русский
English
Статистика
Реклама

Акселерометр

Акселерометр в системе ПИД-регулирования круиз-контроля автомобиля

26.08.2020 02:14:36 | Автор: admin
Я эксплуатирую в общем-то довольно современный, напичканный электроникой американский автомобиль. Из того, что управляет движением, в нем есть электронная система стабилизации, ПБС с эмуляцией блокировки дифференциала, естественно АБС, и конечно же, круиз-контроль. Последний еще не адаптивный (то есть без функции поддержания дистанции до впереди идущего авто). В машине электронная педаль газа (это принципиальный момент для данной статьи позже объясню, почему).
Всем, кто хочет знать, чем не угодил круиз-контроль, и что предлагается улучшить welcome под кат.

Вообще, современные электронные системы автомобиля, отвечающие за непосредственно движение, довольно сложны. В частности, ECU вместе с PCU (powertrain control unit, контроллер АКПП, может быть отдельным устройством, или интегрирован с ECU), знают не только характеристики (то есть имеют и используют физическую модель) двигателя и трансмиссии, но и физическую модель самого автомобиля.

Почему последнее важно, и какие преимущества это дает вкупе с электронной педалью газа? Потому что, в отличие от механического привода дросселя, электронная педаль лишь задающий (командный) орган наподобие машинного телеграфа корабля.

Если механический привод императивно определяет расход воздуха двигателем, и ECU ничего не остается, как поддерживать стехиометрию согласно заданному расходу, то в случае электронной педали контроллер, независимо от водителя а) формирует динамику открытия или закрытия дросселя для защиты трансмиссии от пиковых моментов, б) ограничивает момент на колесах максимально реализуемым тяговым усилием (согласно физической модели трансмиссии и самого автомобиля), в) ограничивает частоту вращения ведущих колес при обнаружении пробуксовки, г) поддерживает скорость автомобиля через слежение за частотой ведущих колес в режиме круиз-контроля то есть, контроллер всегда знает текущую расчетную (если бы знал еще и фактическую, например, через датчик угловой закрутки носка коленвала относительно маховика был бы вообще космос) величину подводимого к колесам момента и целевую функцию управления, поскольку управляет этим моментом сам. Это и является принципиальным отличием систем с электронной педалью от механических.

Что же мне не понравилось во всем этом огороде? А вот что несмотря на наличие информации о физических свойствах системы двигатель-трансмиссия-автомобиль (контроллер по идее даже может вычислить текущую загрузку автомобиля через статистический анализ динамических характеристик (отклик ускорения в ответ на действующий на колесах момент), но вряд ли делает это), круиз-контроль в нем очень примитивен он реагирует на факт изменения скорости, а не на факт изменения сопротивления движению, следствием чего является изменение скорости, и следовательно, в отличие от человека-водителя, борется со следствием, а не с причиной.

Теперь давайте рассмотрим, чем может быть вызвано изменение сопротивления движению. Оно, с точностью до о-малого, складывается из четырех составляющих: а) все конструктивные потери (например, из-за вязкого трения в трансмиссии), б) потери на трение качения колеса-дорога (зависит в основном от типа и качества покрытия, типа резины, массы автомобиля), в) потери от сопротивления воздуха (зависят в основном от воздушной скорости (термин из авиации, но здесь должно быть понятно), г) проекция силы тяжести на ось движения (может ускорять или тормозить автомобиль в зависимости от знака).

Давайте сделаем оценку важности этих факторов в плане их влияния на качество регулирования скорости и возможности их автоматического учета и компенсации в течение времени работы круиз-контроля:
фактор а) доступен для моделирования (зависит от температуры трансмисии, включенной передачи, параметров вязкости ATF все эти данные контроллеру доступны), но малозначим в установившемся режиме движения в диапазоне авторегулирования (прогретая трансмиссия, скорость включения круиза > 30 км/ч) им в ПИД-модели можно просто пренебречь
фактор б) достаточно значимый, по крайней мере, в диапазоне разрешенных ПДД скоростей, и состоит из статического (тип шин, масса автомобиля), динамического (скорость автомобиля) и стохастического (тип покрытия под колесами) компонентов.
В совокупности факторы а) и б) можно просто заложить в модель в виде усредненных параметров, либо выводить их коэффициенты статистическим анализом текущей динамики автомобиля, как отклика на расчетный момент на колесах.
Далее, фактор в) зависит в основном от текущей скорости, проекции скорости ветра на ось движения, и наличия нештатных элементов, меняющих мидель и Cx автомобиля. Базовые параметры (мидель, Сх, плотность воздуха при стандарнтых условиях) можно закодировать в модели автомобиля, конструктивные отклонения определить долговременным анализом динамики на больших скоростях (когда сила сопротивления воздуха превалирует над остальными), краткосрочные (от проекции скорости ветра на ось движения) считать случайным возмущающим моментом (ограничив его величину сверху разумным пределом [скажем, 20 м/c при большей скорости ветра не то что на круизе в ручном режиме на скорости удержать автомобиль сложно]), текущую скорость относительно дороги контроллер знает практически точно итого, фактор в) с определенной стохастической составляющей можно посчитать
Наконец, фактор г) достаточно значимый; имеет 100% стохастическую составляющую при отсутствии акселерометра, и практически нулевую при его наличии.

Вот так, двигаясь по холмистой местности с включенным круизом, и наблюдая за его запоздалой реакцией на изменение значения скорости вследствие движения автомобиля на подъем, мне пришла идея добавить в систему управления акселерометр. Многие системы управления уже даже содержат датчик неровной дороги (нужен для игнорирования анализа неравномерности вращения коленвала вследствие движения по кочкам) это по сути тот же акселерометр, только интерпретируемый по-другому.

Замечу, что акселерометр сам по себе (без API) не гироскоп и не чудо-прибор в наших гаджетах, который якобы знает истинное положение нормали к поверхности земли (на самом деле рекалибруется с запоминанием разложения по осям в те моменты, когда модуль вектора ускорения, выдаваемого датчиком ускорения, равен строго 1g), но поскольку инициатором тяги на колесах может быть только сам контроллер (привет системам с электронной педалью), то величина продольного ускорения относительно оси автомобиля может быть легко вычислена и скомпенсирована и мы после усреднения получим хорошее приближение величины продольного профиля дороги, который сможем ввести в модель управления скоростью.

Вот и вся идея. Понятно, что реализовать ее в прошивке контроллера на уровне DIY (вне автозавода) дело практически нереальное. Однако, мы можем построить свой вычислитель рядом с основным контроллером автомобиля, анализировать текущие параметры движения через CAN, и туда же отдавать управляющие воздействия. Я не уверен, что текущий момент на колесах можно взять с CAN'а, но включенную передачу, расход воздуха и обороты точно можно (это позволяет косвенно рассчитать момент). Дальше, командовать дросселем напрямую скорее всего, через CAN нельзя (это было бы очень опасно) но мы можем, скорее всего, давать упреждающие команды на увеличение или уменьшение установленной круизной скорости, или (если CAN это не поддерживает ) подключиться к соответствующим кнопкам на руле автомобиля. Все остальное, похоже, можно реализовать в этом внешнем контроллере.
Подробнее..

МЭМСы. Как устроены современные датчики?

12.12.2020 16:04:40 | Автор: admin
Микроэлектромеханические системы (МЭМС) устройства, объединяющие в себе микроэлектронные и микромеханические компоненты. Сейчас довольно трудно встретить системы в которых не используются датчики, выполненные по данной технологии. Но как устроены современные датчики и какие преобразователи используются для работы с ними? Постараемся детально разобраться в этом вопросе, основываясь на работе современных МЭМС-акселерометров.


Простейший акселерометр, как он работает?


Акселерометр прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Принцип работы можно объяснить с помощью простой модели.


Модель устройства механического акселерометра (оригинал)

При увеличении ускорения, масса будет растягивать пружину. По закону Гука из школьной программы физики можно с легкостью найти ускорение системы:

$a=\frac{k\cdot\delta x}{m}$, где k -коэффициент упругости пружины, $\delta x$ ее растяжение и m масса груза.

Используя три перпендикулярно расположенных датчика, можно узнать ускорение предмета по 3-м осям, и зная начальные условия определить положение тела в пространстве.

Эта незамысловатая модель представляет собой основу работы большинства акселерометров, которые можно поделить на 3 основные подгруппы:

  • механические
  • электронные
  • пьезоэлектрические

Есть еще термальные и оптические, однако их рассматривать не будем. Если с механическими все понятно (по сути, их работу отражает модель сверху), то с электронными и пьезоэлектронными немного поинтереснее.

Пьезоэлектронный акселерометр


Основывается данный тип датчиков на пьезо-эффекте, который был открыт в 1954 году Смитом в таких полупроводниках как германий и кремний. Это открытие дало сильный толчок в развитии датчиков и генераторов. Эффект заключается в генерации напряжения пьезоэлементом при деформации.


Анимация пьезоэффекта (оригинал)

При увеличении ускорения, инертная масса увеличивает/уменьшает давление на пьезоэлемент. Благодаря пьезоэффекту происходит генерация сигнала, который зависит от внешнего ускорения.


Устройство пьезоэлектрического акселерометра (оригинал)

Датчики такого типа требуют дополнительного усилителя, который увеличивает амплитуду сигнала, и создает низкоимпедансный выход для работы с внешними устройствами. Для калибровки нулевого значения ускорения используется Preload Bolt, масса которого рассчитана так, чтобы соответствовать нулевой точки ускорения в системе.

Датчики такого типа до сих пор сильно распространены, и в основном применяются в системах, требующих высокую надежность automotive. Для коммерческой электроники зачастую используют электронные акселерометры, которые имеют меньший размер и цену.

Электронные акселерометры


Принцип работы электронных датчиков основан на изменении емкости конденсаторов при изменении ускорения. Простейшая модель работы представлена на картинке.


Устройство 2-х осевого электро-механического акселерометра

При изменении ускорения, масса изменяет расстояние между обкладками конденсатора. Из простейшей формулы емкости конденасатора $C=\frac{\varepsilon\varepsilon_0S}{d} $ следует, что при изменении d расстояния между обкладками емкость конденсатора будет также изменяться. Широкое применение данный метод получил, благодаря развитию МЭМС (MEMS) микроэлектромеханических систем.

МЭМС технологии позволяют создавать конденсаторы с подвижными обкладками на кремниевой подложке, что существенно уменьшает размер устройства, и что не маловажно его стоимость.


Устройство 2-х осевого электро-механического акселерометра (оригинал из книги Introductory MEMS. Дальнейшие иллюстрации тоже взяты из этой книги)

У читателя наверняка возник вопрос: как именно детектировать изменение емкости конденсатора? Постараюсь дать на этот вопрос исчерпывающий ответ.

Устройство МЭМС акселерометра. Как превратить изменение емкости в сигнал?


Емкостной полумост


Итак прежде, чем описывать работу самого датчика, обратимся к довольно популярной схеме в схемотехнике емкостному полумосту (Capacitive half-bridge).

Емкостной полумост основа МЭМС-датчиков

Напряжения $e_1$ и $e_2$ являются входными, а $e_3$ выходной сигнал для последующего преобразования. Емкости обоих конденсаторов зависят от внешнего ускорения, и изменяются на величину x(t). При x = 0, заряды на емкостях являются идентичными, и при этом $C_1=C_2=C_0$. При условии, что x <<d найдем как зависит изменение емкости конденсаторов от изменения положения обкладки.

Вывод формулы для изменения емкости
Запишем изменение каждой емкости при сдвиге обкладки на x:
$\Delta C_1=C_1-C_0$; $\Delta C_2=-C_2+C_0$(1.1)

Запишем через формулу емкости:
$\Delta C_1=\frac{\varepsilon S}{d-x}-\frac{\varepsilon S}{d}$; $\Delta C_2=-\frac{\varepsilon S}{d+x}+\frac{\varepsilon S}{d}$

Упростив данные формулы, получаем следующее:

$\Delta C_1=\frac{\varepsilon Sx}{d^2-xd} $$\Delta C_2=\frac{\varepsilon Sx}{d^2+xd}$

Учитывая условие, что x <<d, а xd несущественно по сравнению с d^2 можем записать формулу изменения емкости конденсатора, в зависимости от смещения обкладки:

$\Delta C\left(x\right)=\frac{\varepsilon S}{d^2}x $(1.2)
Итак часть пути пройдена, мы получили как зависит значение изменения емкости от изменения положения обкладки (то есть внешнего ускорения). Пора это изменение детектировать: вводим дополнительные токи $i_1, i_2, i_3$. Теперь остается вычислить как выходной ток будет зависеть от изменения положения обкладки.

Вывод формулы зависимости выходного тока от изменения емкости
По правилу Кирхгофа для токов получаем следующее уравнение:
$i_1+i_2=i_3$

Учитывая тот факт, что ток является производной заряда dq/dt, а заряд q=CU, преобразуем данное уравнение в следующий вид:
$i_3=\frac{d}{dt}\left[C_1\left(e_1-e_3\right)\right]+\frac{d}{dt}\left[C_2\left(e_2-e_3\right)\right]$(1.3)

Пусть потенциалы $e_1= e_2= e_s$, тогда исходя из формулы (1.1):
$i_3=\frac{d}{dt}\left[\left(C_0+\Delta C\right)\left(e_s-e_3\right)\right]+\frac{d}{dt}\left[\left(C_0-\Delta C\right)\left(e_s-e_3\right)\right]$


Итак если использовать одинаковые потенциалы входных напряжений $e_1= e_2= e_s$ получаем зависимость тока:

$i_3=\frac{d}{dt}\left[2C_0\left(e_s-e_3\right)\right]$



Результат получился довольно странный: выходной ток никак не зависит от изменения емкости. Для того, чтобы детектировать изменение емкости, необходимо задавать на обкладках напряжения разной полярности, то есть: $e_1=e_s$, а $e_2=-e_s$. Тогда переделаем уравнение с учетом данной модификации.

Зависимость тока от изменения положения обкладки с учетом разной полярности входных напряжений
Перепишем уравнение 1.3:

$i_3=\frac{d}{dt}\left[\left(C_0+\Delta C\right)\left(e_s-e_3\right)\right]+\frac{d}{dt}\left[\left(C_0-\Delta C\right)\left(-e_s-e_3\right)\right]$


Упрощаем:

$i_3=2\frac{d}{dt}\left(\Delta C e_s-C_0e_3\right)$


Берем производную:

$i_3=2\left(e_s\frac{d}{dt}\left(\Delta C\right)+\Delta C\frac{d}{dt}\left(e_s\right)-C_0\frac{d}{dt}\left(e_3\right)\right)$


Учитывая уравнение 1.2 для изменения емкости, получаем:

$i_3=2\left(e_s\frac{\varepsilon S}{d^2}\dot{x}+x\frac{\varepsilon S}{d^2}\dot{e_s}-C_0\dot{e_3}\right)$(1.4)

Из этого уравнения видны следующие факты:

  • если положение пластин не меняется во времени, то $\dot{x}=0$
  • аналогично если источник сигнала es постоянный (DC), то $\dot{e_s}=0$

Для эффективной работы емкостного полумоста необходимо использовать переменные входные сигналы e1 и e2, смещение фаз между которыми будет равно 180 градусов (для того, чтобы потенциалы имели разный знак). Поэтому получаем следующий вид сигналов:

$e_1=+e_s=+Bsin\left(\omega t\right)$

$e_2=-e_s=-Bsin\left(\omega t\right)$

, где $\omega$ частота переменного сигнала (определяется на этапе разработки, в зависимости от полосы пропускания системы и нормальной работы механических емкостей).

Итак, мы получили уравнение (1.4), которое показывает, как изменение емкости конденсатора влияет на выходной сигнал системы. Однако такой сигнал будет довольно малый по амплитуде, к тому же если подключим к нему нагрузку для общения с внешним миром вся система рухнет. Тут нужен усилитель

Просто добавь усилитель


Добавим в нашу систему усилитель (будем считать, что коэффициент усиления $\infty$ сл-но работает принцип виртуальной земли).


Емкостной полумост + интегратор

Итак теперь найдем зависимость выходного напряжения усилителя от изменения емкости.

Выходное напряжение усилителя
Запишем уравнение Кирхгофа для этой системы:
$i_4+i_5=i_3$
Ток через конденсатор $C_f$ можно записать через изменение заряда dq/dt, поэтому исходя из полученного уравнения (1.4) получаем:
$2\left(e_s\frac{\varepsilon S}{d^2}\dot{x}+x\frac{\varepsilon S}{d^2}\dot{e_s}-C_0\dot{e_3}\right)=\frac{d}{dt}\left[C_f\left(e_4-e_3\right)\right]+\frac{e_4-e_3}{R_f}$(1.5)
Данное уравнение показывает, что выходной сигнал зависит не только от положения обкладки x, но и от ее скорости движения (что не желательно). Для того чтобы компонента, вносимая скоростью, была незначительной, необходимо использовать высокочастотный входной сигнал (обычно такую частоту выбирают в районе 1 ГГц). Запишем компоненты уравнения как гармонические сигналы:

$e_s\dot{x}+x\dot{e_s}=\dot{x}Bsin{\omega t}+x\omega Bcos{\omega t}$


Выбираем частоту достаточно высокую, чтобы $ x\omega\gg\dot{x}$:

$2\frac{\varepsilon S}{d^2}x\dot{e_s}=C_f\dot{e_4}$


Учитывая, что сигналы es и e4 имеют одинаковую частоту переходим к отношению их амплитуд:

$\mid\frac{e_4}{e_s}\mid=\frac{2\varepsilon S}{C_fd^2}x$


В итоге мы получили зависимость выходного сигнала усилителя от изменения положения обкладки конденсатора. Внимательный читатель должен сразу обратить внимание это же амплитудная модуляция! Действительно, в данной системе мы имеем сигнал x(t), который перемножается с сигналом $e_s(t)$ и усиливается на величину $\frac{2\varepsilon S}{C_fd^2}$. Следующий шаг убрать несущую частоту $e_s(t)$, и мы получим усиленный сигнал x(t) который пропорционален ускорению. Долгий путь вычислений привел нас к пониманию архитектуры МЭМС-акселерометра.

Архитектура МЭМС акселерометра


Рассмотрим сначала функциональную схему датчика:


Функциональная схема МЭМС-акселерометра

Изначально у нас есть сигнал x(t) который отражает изменение ускорения. Далее мы перемножаем его с несущим сигналом $e_s(t)$ и усиливаем с помощью операционного усилителя (в режиме интегратора). Далее происходит демодуляция простейшая схема диод и RC фильтр (в реальности используют усложненную схему, синхронизируя процесс модуляции и демодуляции одной несущей частотой $e_s(t)$). После чего остатки шума фильтруются с помощью фильтра низких частот.

В качестве примера приведу один из первых МЭМС акселерометров компании Analog Devices ADXL50:


Структурная схема ADXL50

Наверное, приведя структурную схему датчика в начале статьи многим читателям не было бы понятно назначения некоторых блоков. Теперь завеса приоткрыта, и можем обсудить каждый из них:

  • Блок, который называется MEMS sensor является емкостным полумостом.
  • Блок oscillator генерирует сигнал на частоте 1ГГц.
  • Сигнал осциллятора также используется для синхронной демодуляции.
  • Выходной усилитель и дополнительные резисторы создают нулевую точку, относительно которой можно смотреть знак изменения ускорения (обычно это VDD/2- половина питания, для биполярных датчиков земля).
  • Внешняя емкость $C_1$ определяет полосу измерения системы.
  • Внутреннего фильтра низких частот в данной схеме нет, но в современных схемах они имеются.

Какой преобразователь выбрать для работы с датчиками?


Выбор преобразователя для работы с датчиками зависит от точности, которую вы хотите получить. Для работы с датчиками подойдут АЦП с архитектурой SAR или Delta-Sigma с высокой разрядностью. Однако современные датчики обладают встроенными преобразователями. Лидерами этого направления являются STMicroelectronics, Analog Devices и NXP. В качестве примера, можно привести новую микросхему с 3-х осевым акселерометром и встроенным АЦП ADXL362.


Структурная схема ADXL362

Для работы с АЦП в схему добавлены антиэлайзинговые фильтры, чтобы исключить попадания в спектр дополнительных гармоник.

Где достать такие технологии?


Сейчас для fabless компаний доступно множество фабрик, которые предлагают технологии МЭМС. Однако для создания современных микросхем требуется интегрировать емкости с подвижными пластинами в стандартный маршрут проектирования, ведь помимо такой емкости необходимо спроектировать дополнительные блоки (генератор, демодулятор, ОУ и тд) на одном чипе. В качестве примера можно привести фабрики TSMC и XFab, которые предлагают технологию для реализации МЭМС датчика вместе со всей обвязкой. На картинке представлены емкости, которые позволяют создать трехосевой акселерометр:


Трехосевой емкостной полумост от TSMC

В России также существует фабрика по выпуску МЭМС датчиков Совтест, однако предприятие не обладает технологией интегрирования дополнительных схемотехнических блоков, которые необходимы для создания конечного устройства и единственный выход применять технологию микросборки.


МЭМС-акселерометр разработки Совтест

Какие наработки есть у нашей компании в этом направлении?


У нас есть несколько преобразователей, которые предназначены для работы с датчиками. Из новых продуктов это:

  • 5101НВ035 16-канальный преобразователь на основе 8-ми Дельта-Сигма АЦП, предназначена для работы с токовыми датчиками
  • 1316НХ035 4-х канальный интегрирующий преобразователь напряжение-частота (ПНЧ), предназначенный для работы с 3-х осевыми акселерометрами и гироскопами.

Как я писал в предыдущей статье, период ожидания пластин с фабрики может занять довольно долгий промежуток времени. После первого тестового запуска АЦП 400МГц, время прихода пластин и дальнейших измерений заняло более полугода. За это время наша команда успела сделать ПНЧ 1316НХ035 (развитие предыдущей схемы 1316ПП1У), о котором могу немного рассказать.

Преобразователь напряжение-частота


Для преобразования данных с датчика обычно используются SAR или delta-sigma АЦП, однако существует еще один тип преобразователей интегрирующие ПНЧ, которые имеют существенные преимущества:

  1. Занимают меньшую площадь и имеет меньшее потребление при том же показателе линейности и шума.
  2. Простая архитектура.
  3. Высокая устойчивость к входному шуму и сигналам помех.
  4. Устойчивость к шуму и помехам выходного сигнала.
  5. Возможность передачи данных без обработки на радиочастотный канал связи.

Микросхема 1316НХ035 представляет собой четырехканальный преобразователь напряжения в частоту и цифровой код, к трем основным высокоточным каналам подключаются выходы трехосевого акселерометра. 4-ый канал имеет входной 4-канальный мультиплексор, к которому можно подключать дополнительные датчики системы: температуры, влажности и др. Под микроскопом схема выглядит так:


ПНЧ под микроскопом

Каждый из трех основных каналов преобразует входное напряжение в диапазоне 4В в частоту до 1250кГц на 3-х выходах, соответствующих положительному и отрицательному входным напряжениям. Также микросхема имеет в каждом канале 16 битный реверсивный счетчик, для подсчета частотных импульсов. SPI интерфейс служит для управления режимами преобразования и выборки содержимого счетчиков импульсов каналов. Основными требованиями к параметрам ПНЧ являлись:

  1. высокая термо и временная стабильность выходной частоты при нулевом входном сигнале (заземленных входах)
  2. динамический диапазон преобразования не менее 22 бит
  3. непрерывность преобразования входного сигнала и недопустимость потери ни одного частотного импульса.

Для обеспечения требований 1 и 2 используется аналоговая автокалибровка, которая выполняется автоматически при включении схемы, а также может запускаться в любой момент по команде через SPI интерфейс. Требование 3 обеспечено и гарантируется схемотехническими решениями. Удалось достичь довольно приличных параметров точности: типовая нелинейность преобразования составила 30 ppm, а смещение нуля менее 0.1 Hz при коэффициенте преобразования 200 kHz/V. Динамический диапазон преобразования: fmax/fmin = 2*1.25МГц / 0.3Гц 8.33млн., что соответствует более 23 битам.

Есть только одно но биполярное питание. Для обеспечения хорошей стабильности нуля (напряжение, которое соответствует ускорению 0g) необходимо использовать биполярное питание. Такое решение довольно эффективное ведь когда 0g соответсвует земля, система априори будет стабильной. Также это улучшает проектирование системы. В современных датчиках в качестве нуля используют половину питания Vdd/2, однако если значение напряжения на преобразователе будет отличаться от напряжения на датчике мы автоматически получаем смещение, которое нужно дополнительно калибровать.

Наверное, для многих потребителей биполярное напряжение немного отпугивает, и мы как разработчики это понимаем. Возможно, в дальнейшем сделаем коммерческий вариант для МЭМСов (или интегрируем датчик в ПНЧ). Пока, конечно, это всего лишь планы, но уверен они увидят свет.

P.S. Нашел бонусные фотографии с процесса исследования образцов. Вообще это, как по мне, самое интересное в процессе разработки. Тебе дают в руки твое детище с пылу жару с завода, ты подаешь на него питание и скрестив пальцы ждешь работает или нет?.


P.P.S. Кому понравилась тема датчиков, в будущем коллега из центра проектирования аппаратуры хотел бы рассказать про создаваемую инерциальную систему на основе МЭМС датчиков БИНС.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru