Русский
Русский
English
Статистика
Реклама

Углекислый газ

Простейший измеритель CO2 за 2000 рублей и полчаса

06.01.2021 16:04:08 | Автор: admin
Измеритель уровня углекислого газа (CO2) наверное самый недооценённый прибор, который на мой взгляд должен быть в каждой квартире, ведь он показывает, насколько воздух пригоден для дыхания и с помощью него всегда видно, когда пора проветривать.

Такой измеритель в квартирах большая редкость прежде всего из-за высокой цены. Свой первый измеритель AZ Instruments 7798 CO2 datalogger я покупал за $139 и это была самая дешёвая модель на рынке.

Сейчас готовый измеритель CO2 стоит около 4000 рублей, а самодельный обойдётся вдвое дешевле.




Я разобрался с подключением датчиков углекислого газа с Aliexpress, нашёл примеры их использования и сделал простейшие измерители уровня CO2, которые очень просто повторить.

В большинстве самоделок используют датчик MH Z19B, но у него есть нехорошая особенность если помещение не проветривается до состояния уличного воздуха каждый день, показания начинают уплывать (датчик автоматически калибруется каждый день и считает минимальный уровень CO2 в помещении за 400 ppm). Я заказал два более продвинутых датчика Sensair S8 004-0-0053 (он обошёлся мне в $28.86, сейчас стоит $32.30) и Telaire T6703 (его я купил за $19.41, сейчас он стоит $28.35).



Я подключил датчики к Arduino Nano (его можно купить за $2.98), но можно использовать и другую плату Arduino. Для отображения значения CO2 используется дешёвый светодиодный экранчик TM1637 (он стоит $0.67). Для соединения удобно использовать готовые провода с коннекторами Dupont F-F (20 штук по 10 см стоят $0.87), для подключения сенсоров их можно разрезать пополам и подпаять.

Помимо индикации на экранчике, мои измерители передают данные в порт, поэтому их можно подключить к компьютеру, зайти в режим платформы Arduino Монитор порта (скорость 9600), наблюдать значения CO2 и использовать измеритель, как даталоггер (нужно просто скопировать данные из окошка монитора порта в Excel).



Кстати, экран можно не подключать и пользоваться только монитором порта.

Оба сенсора дают точные результаты (я сравнивал с хорошими измерителями уровня углекислого газа Даджет МТ8057s и AZ Instruments 7798 CO2 datalogger). Более дешёвый Telaire T6703 мне понравился даже больше он выходит на правильные показания секунд за тридцать после включения и его результаты ближе к результатам дорогих приборов с двухлучевыми сенсорами.

Если вы захотите повторить одну из этих простых конструкций, я собрал всё, что нужно в одном архиве там и скетчи для Arduino, и схемы подключения и необходимая библиотека.

Я планирую добавить к моим измерителям поддержку дешёвого цветного TFT-экрана и трёх или четырёх реле для управления вентиляцией в зависимости от уровня углекислого газа в помещении. Как только сделаю это, напишу такую же инструкцию для повторения этих самоделок.

2021, Алексей Надёжин
Подробнее..

Перевод Итак, вы хотите создать компанию по улавливанию и хранению углерода

16.05.2021 02:16:45 | Автор: admin
image

Хотите выиграть приз в миллион долларов от Илона Маска? Улавливание углерода (УУ) в наши дни тема чрезвычайно популярная. Десятки новых компаний занимаются вопросом удаления лишнего CO2 из атмосферы с целью стабилизации климата.

Сам я не эксперт по УУ, но периодически мне задают вопросы на эту тему. Поэтому я предлагаю вам данную статью, чтобы помочь организовать наши мысли и уточнить стратегию по разработке и оценке широкого спектра систем улавливания углерода (СУУ).

Стоит ли чего-то наша технология УУ? Давайте изучим нашу гипотетическую машину для УУ с двух точек зрения: физической и экономической.

Физика


Не является ли наша машина скрытым вечным двигателем?


В прошлой жизни я несколько лет занимался проектированием маглев-систем, и часто натыкался на концепции других проектировщиков, эффективность которых была слишком идеальной для реального мира. Если сопротивление системы отрицательно, это вечный двигатель.

Если на концентрацию CO2 система тратит меньше энергии, чем на выпуск его в воздух это вечный двигатель. Если наша машина сжимает поток газа без расхода энергии или генерации паразитного тепла, она нарушает законы термодинамики. Вечные двигатели, очевидно, не существуют так что проверяйте математику!

Что такого известно нам, чего не знают все остальные?


Что это за неочевидный противоречивый факт? Как наша система его использует?

Сколько энергии реально потребляет наша система?


СУУ иногда используют температурное чередование в слоях сорбента или электрохимическое разделение для увеличения концентрации CO2 с обычной, 420 частей на миллион (0,042 об. %), до почти 100%. Требуется ли для работы нашей системы много электрической или тепловой энергии? Откуда она берётся?

Если это электрохимическая система, она использует больше или меньше энергии на моль CO2 по сравнению с выплавкой алюминия (1500 кДж/моль)? Используется ли там большой ток малого напряжения? Есть ли у нас под рукой униполярный генератор? Сколько меди требует система? Если при напряжении ячейки Y нам требуется Х электронов на молекулу CO2, получается X*Y*95 кДж/моль. Насколько близко мы подобрались к этому ограничению?

Уменьшает ли наша система суммарное количество CO2 в воздухе?


Если наша система по сбору CO2 выделяет оксид кальция (негашёную известь), образующуюся при термическом кальцинировании и сжигании природного газа, она будет выделять больше CO2, чем уловит за весь срок службы. Оп-па.

Более общий вопрос: сколько лет она должна работать, чтобы превысить количество CO2, выделенное за время работы?

Как мы подходим к оценке теоретических ограничений?


Энтропия Гиббса растворения CO2 в атмосфере равняется примерно 19,4 кДж/моль. Это небольшое значение поэтому никто не занимается генерацией энергии при помощи осмотического градиента концентрированного CO2 в атмосфере. Приближается ли наша система к этому параметру хоть сколько-нибудь заметно? А надо ли это ей? Может ли она к нему приблизиться? Если мы используем электрохимическое разделение, как мы справляемся с омическим нагревом и вязкостью?

Является ли электрическая эффективность одним из основных ограничений нашей системы? Нужно ли ей быть эффективной, и каковы альтернативные издержки повышения эффективности на 1%? Если электричество будет дешеветь на 1% в год, эквивалентно ли это будет виртуальному увеличению её эффективности на 1%?

Действительно ли наша машина концентрирует атмосферный CO2?


Наш агрегат мигает лампочками, а из трубы у неё выходит CO2 с концентрацией в 100%. Значит, всё норм? Не совсем. Сохраняет ли она углерод? Не сжигаем ли мы случайно части нашей машины? Точно?

Думаю, что в данном случае идеальным стандартом будет нулевой радиоуглеродный возраст CO2, полученного концентрацией из атмосферы при этом CO2 полученный, допустим, в результате случайного электролиза добытого из земли карбоната будет очень старым и не радиоактивным. Для проверки углерода-14 требуется масс-спектрометр. В США полно лабораторий, которые за несколько сотен долларов проведут такой тест, хотя обычно образец сначала нужно будет превратить в графит.

Однако датирование углерода не лишено недостатков органические источники углерода, типа растительных масел, дерева или угля, молодые с точки зрения радиоуглеродного датирования. Так что если наша машина использует, допустим, кондитерский жир для смазки, нам нужно тщательно проверить математику, а также задуматься о том, что мы вообще делаем.

Можем ли мы подтвердить наши результаты?


Понимаем ли мы нашу систему тестирования? Описали ли мы каждый аспект работы машины количественно? Не запутает ли видео с презентацией её работы инвесторов? Очевидны ли ключевые вехи? Сможет ли человек, посмотревший видео, сам построить такую машину и провести такое же испытание? Хорошо ли описаны информация по тесту и результаты для того, чтобы их мог проверить независимый эксперт? Хорошо ли мы понимаем, как должен выглядеть и восприниматься хорошо задокументированный эксперимент, или нам надо пойти прочесть работу-другую по биологии?

В области УУ можно встретить множество слабо разбирающихся в этом людей, и нам нужно задать высокий уровень стандартам документирования. Мы не планируем публиковать секреты наших разработок, но вряд ли можно ожидать, что инвесторы будут расставаться со своими деньгами в обмен на обещания и надежды.

Можно ли масштабировать наш проект?


Есть ли фундаментальные физические ограничения на реализацию проекта? Если мы собираемся собирать по 10 Гт CO2 в год, высаживая деревья, сколько воды потребуется, чтобы их поливать? Сможет ли фотосинтез конкурировать с добычей ископаемых? Какие фундаментальные ограничения на масштабирование нашего проекта? Есть ли доступ к капиталам? Окупаемость инвестиций? Нужны ли редкие реагенты? Нет ли у компании подозрительных сооснователей? Есть ли доступ к энергосетям достаточной мощности? Каков легальный статус углеродных налогов?

Готова ли наша СУУ к выходу из лаборатории?


Система питания двигателя, использовавшаяся компанией Tesla на заре деятельности, была чрезвычайно ненадёжной. Там использовались десятки аналоговых операционных усилителей, крутивших асинхронный мотор переменного тока. История полна проектов, которые не могли окупиться, поскольку были недостаточно взрослыми для выхода в производство.

Есть ли у нас какая-то лабораторная модель, которую можно показать людям? Работает ли она? Ясно ли, какие её части сделаны наскоро, а какие имеют реальное значение? Безопасно ли находиться с ней в одной комнате?

Готова ли технология к производству? Можем ли мы дать прототип среднему инженеру, недавно закончившему институт, и сказать сделай нам 10 000 штук таких, и быть достаточно уверенными в том, что получатся рабочие, надёжные и достаточно эффективные приборы? Разобрались ли мы со всеми ошибками перед тем, как искать крупных инвестиций, или машина находится на уровне научного эксперимента?

Финансы


Сколько стоит наш CO2?


Можем ли выдавать CO2 по $1000 за тонну, по $100 или по $10? Сколько стоит наш CO2? Сколько мы хотим, чтобы он стоил? А сколько нужно, чтобы он стоил? Как мы выглядим в сравнении с конкурентами? Насколько можно доверять нашим планам по улучшению машины?

Насколько дорогая наша СУУ?


Какова структура капитальных расходов? Сколько тонн CO2 машина должна уловить, чтобы окупить себя за вычетом операционных расходов, стоимости финансирования, амортизации? Сколько времени на это уйдёт?

Если наша машина улавливает килограмм CO2 в день при стоимости $100 за тонну, она заработает $36,5 в год. Если стоимость постройки нашей машины составит $500, то чтобы окупить только эту стоимость, потребуется 15 лет. Траты в $500 за запчасти и труд находятся где-то в промежутке от большого торта до простейшей посудомойки, если говорить о масштабе и сложности проекта. Любой мало-мальски умелый техник должен собирать пяток таких машин в день, то есть, мы должны выдавать примерно 1500 машин в год. И всё равно прибыль составит всего $50 000, чего не хватит даже на обучение в институте [в США / прим. пер.].

Если капитальные расходы амортизируются за 10-30 лет работы, как оценить капитальные затраты? Рассчитываем ли мы на правительственные займы с низкой процентной ставкой? Будем ли мы андеррайтерами для наших клиентов, покупающих у нас устройства? Как диверсифицировать риски в данной области, учитывая их сильную корреляцию (как в технологических, так и в регуляторных областях)?

Или мы сможем отбить затраты за несколько месяцев или лет, и рассчитывать на кратковременный кредит или даже собственные средства?

Как быстро машина изнашивается? Не обесценивается ли она быстрее, чем окупается?

Какова стоимость работы СУУ?


Какие у нас операционные расходы? Нужны ли рабочие для обслуживания? Какие у машины расходники реагенты, клапана, фурнитура, насосы, электроды, ПО?

Как операционные расходы укладываются в график амортизации капитальных расходов? Не тратит ли машина на работу больше, чем на амортизацию? Оправдается ли усложнение конструкции с целью уменьшения текущих расходов? Или же машина настолько надёжная, что её можно включить и забыть и НАСА сможет использовать её для работы с атмосферой на Луне?

Развёртываем мы машину у себя во дворе или где-нибудь в пустыне? Как мы будем добираться до клиентов и осуществлять поддержку оборудования в удалённых или труднодоступных местах?

Вернёмся к энергии


Важна ли стоимость энергии для финансового плана? Десять лет назад стоимость электричества делала зелёный водород (полученный при помощи электролиза из воды) слишком дорогим по сравнению с голубым (полученным из природного газа паровой конверсией). Сегодня солнечная электроэнергия в пиковые часы обходится в 10 раз дешевле. Как изменятся наша бизнес-модель и оптимизация системы, если электричество станет дороже, или, наоборот, дешевле во время срока службы нашей машины?

Энергоёмкий ли наш процесс? Сравним ли он с охлаждением или электроочисткой магния? Не привлечём ли мы внимания властей как нелегальная плантация запрещённой травы или дата-центр?

Насколько хрупкая у нас цепочка поставок?


Зависит ли наша машина от редких материалов? Чего мы не сможем купить в стройматериалах или на сайте Alibaba? Или на сайте Шёлковый путь? Легко ли нам поменять поставщиков, или наш проект зависит от состояния бизнеса и доброй воли единственной фирмы где-то во Внешней Монголии? Поглощаем ли мы CO2 при помощи амидов, цеолитов или металл-органических каркасных структур? Насколько дороги эти особые материалы? Работают ли в лаборатории, способной их производить, наши родственники или супруг(а)? Могут ли они масштабировать производство так же быстро, как мы бизнес, и с какой маргинальной стоимостью? Сколько стоят металл-органические каркасные структуры?

Есть ли у нас в списке покупок хоть что-нибудь более токсичное, чем считается приемлемым, или требующее особо осторожного обращения? Плутоний? Запрещённые вещества? Диоксидифторид? Раствор пиранья? Нужны ли нам сертифицированные специалисты? Потянем ли мы их медстраховку? Не заинтересуем ли мы управление по борьбе с наркотиками или министерство внутренней безопасности?

Зависит ли наш процесс от доступности и доброй воли одного или нескольких узкоспециализированных докторов наук? Есть ли у нас план удержания талантов? Насколько экзотичен наш процесс?

Нужны ли нам волшебные материалы?


Работает ли наша система только с веществами, чистыми на 99,999999%? Что будет в случае загрязнения никаких проблем, понизится эффективность или всё внезапно может рвануть? Испортят ли наши катализаторы обычные загрязнители воздуха водяной пар, кислород, запах пад-тай?

Расходуются ли катализаторы в системе? Не являются ли они тайными расходными материалами? Есть у нас план по поставкам, обслуживанию и замене того, что мы не планировали портить? Сколько кобальта нам нужно на тонну CO2?

Нужно ли нам волшебство масштабирования?


Все знают, что относительная дешевизна автомобилей возможна за счёт огромных и дорогих производств, благодаря которым можно ежегодно производить сотни тысяч абсолютно одинаковых экземпляров.

Есть ли у нашей СУУ та же проблема, из-за которой мы не можем снизить капитальные расходы до приемлемых, пока не построим полностью автоматическую фабрику в миллион квадратных метров? Почему её нельзя собирать на манер LEGO? Строили ли мы сами огромную автоматическую фабрику? Идут ли эти знания на пользу делу? Может, нам лучше предлагать людям полностью автоматические фабрики в миллион квадратных метров как услугу?

Есть ли вообще критический масштаб, ниже которого у нашей системы нет смысла? Можем ли мы оправдать экономику масштаба, или мы просто фантазируем, из-за того, что построить нашу систему будет дороже, чем заработать за 20 лет, получая по $1000 за тонну?

Есть ли у нас поток доходов?


Или нам нужно полагаться на скоординированные действия нескольких десятков правительств, утверждающих надёжные налоговые льготы или выплаты, образующие рынок бесконечной глубины с нулевой эластичностью для продажи CO2?

Куда пойдёт наш концентрированный CO2? Превратится в топливо? Пластик? Копоть? Графит? Цемент? Пойдёт под землю? В газировку? Какова ежегодная ёмкость этих рынков? Какой её процент мы уловим?

Если мы продаём наш CO2 только PepsiCo, он очень быстро вернётся а втмосферу. Есть ли у нас план по более надёжному хранению CO2?

Кто будет покупать у нас CO2, в какой форме, сколько и по какой цене? Как будет выглядеть наш бизнес, если этот рынок будет насыщен? Допустим, если мы продаём 1000 тонн в год по $100 за тонну, доход нашего бизнеса составляет $100 тысяч в год. Достаточно ли этого для работы команды?

Где в бизнесе создаётся ценность?


Если мы делаем СУУ, которую через 20 лет надо амортизировать, мы продаём очень дорогие виджеты любителям долгов, и хорошо бы в больших количествах. Что в машине самое дорогое? Где мы добавляем ценность?

Допустим, мы делаем СУУ на качающихся цеолитовых ячейках, типа таких, что используются на МКС. Большую часть их стоимости составляют новые цеолиты. Для уменьшения стоимости и улучшения контроля качества мы решили интегрировать в процесс производство цеолитов, улучшив стоимость на 20%. Поскольку цеолиты составляли порядка 90% капитальных расходов машины, теперь более 95% ценности компании состоит в производстве цеолитов. И что, мы теперь замаскированная цеолитовая фабрика?

И если в долгосрочной перспективе улавливание CO2 промышленных масштабов будет сильно зависеть от массового производства экзотических материалов, как компьютерная индустрия зависела от фотолитографии на безумно чистых кремниевых кристаллов, имеет ли смысл вертикализация промышленности? С чего мы начинаем в этой цепочке ценностей, и где заканчиваем? Поставка химических веществ как услуга?
Подробнее..

Из песочницы Оливиновый песок очистит воздух от углекислого газа

15.07.2020 12:10:08 | Автор: admin


Ученые из Project Vesta считают, что их особый зелёный песок способен замедлить изменение климата, очищая воздух на пляжах от углекислого газа. Что это за странный материал и чем он может быть полезен миру? Рассказываю подробности.

Идея


Компания Project Vesta была основана в 2019 году в Сан-Франциско на базе научного центра Climitigation. Целью стартапа было создание технологии, способной эффективно удалять углекислый газ из атмосферы, поскольку простое снижение выбросов CO не слишком-то эффективно. Участники проекта знали, что у природы есть работающий уже миллиарды лет способ делать это с помощью вулканических пород. Когда дождь падает на эти породы и вымывает их в океан, то происходит реакция, которая вытягивает углекислый газ из воздуха и прячет его в известняке на дне океана.

Идея газирования, то есть перевода избытка углекислого газа в горные породы и минералы, сам по себе является огромным полем для научных исследований. А почему бы не развить эту тему? подумали в Project Vesta. И после многочисленных экспериментов остановились на использовании оливина, измельчённого до состояния песка.

Оливин это минерал магматического происхождения, широко распространённый не только в недрах земной коры, но и в её мантии. На Земле часто встречается внутри вулканических бомб, в виде вкраплений в базальтовую лаву и в железо-каменных метеоритах. При разрушении вулкана морским прибоем иногда образуются пляжи из зелёного оливинового песка.

Когда волны омывают оливин, происходит маленькая химическая реакция выветривание оливина, в результате чего из воздуха вытягивается немного углекислого газа, CO. Побочным продуктом реакции является гидрокарбонат HCO, который служит для снижения и регулирования кислотности как человеческого организма, так и океана.



Как только гидрокарбонат смывается в океан, где морские организмы переваривают их и превращают в стабильный твердый карбонат кальция, из которого состоят их оболочки и скелеты, а также в коралловые структуры. Когда кораллы и моллюски умирают, их останки оседают на дно океана и образуют слои известняка и подобных пород. Углерод остается взаперти в течение миллионов или сотен миллионов лет, пока не будет снова выпущен в результате вулканической активности. Поскольку кокколитофоры (планктон) являются углеродными фиксаторами, которые выводят углекислый газ из окружающей среды, ученые предложили использовать их для решения проблем глобальных выбросов и изменения климата.

Project Vesta


Этот естественный механизм позволяет избавиться примерно от полумиллиарда тонн углекислого газа в год. Проблема в том, что общество стабильно вырабатывает более 35 миллиардов тонн в год. Итак, главный вопрос: есть ли способ радикально ускорить и расширить этот процесс?

Многочисленные исследования теоретически доказали, что процесс работает, но до сих пор никто не пытался сделать это на пляжах. Мы изучили все материалы, накопленные за 30 лет научных исследований, в том числе массу теоретических работ и лабораторных экспериментов, утверждает Том Грин, исполнительный директор Project Vesta.

Собрав всю информацию про выветривание оливина и изучив все исследования про улавливание CO и другие реакции, способные помочь им в работе, учёные начали работу над более эффективным способом борьбы с изменением климата. Они поставили себе цель улучшить созданную природой технологию, повысив её скорость. И для этого решили использовать измельчённый оливин, рассыпая его на пляжах.



Логика здесь простая. Добавление большего количества HCO, может увеличить производство безвредных оболочек и других известняковых и кальциевых элементов. Измельчение оливина в песок создаёт большую площадь поверхности для ускорения поглощения CO.

Объективности ради замечу, что идея использования процессов вывода CO не нова. В опубликованной газа 30 лет назад статье предлагается использовать силикаты для улавливания углекислого газа. Пять лет спустя исследователь Exxon Харун Хешги предложил использовать негашеную известь для той же цели, и в том же году Клаус Лакнер, эксперт в удалении углеродов, детально исследовал множество типов породы.

Но эти идеи и сами по себе сложны, и по цене были недёшевы. А песок из оливина, по расчётам Project Vesta, будет на порядок эффективнее при низких затратах. Где-то порядка 10 долларов за тонну углекислого газа, если их технология будет использоваться в больших масштабах.

Project Vesta обнародовал планы проведения исследования-эксперимента в Карибском бассейне в ближайшее время. Это последовало вскоре за заявлением Stripe о том, что она заплатит стартапу за удаление 3333 тонн углекислого газа за 75 долларов США за тонну в рамках своего обязательства тратить не менее 1 миллиона долларов ежегодно на проекты с вредными выбросами.

Работа будет вестись на двух пляжах. В ходе исследования один пляж будет покрыт оливиновым песком, а второй пляж оставят в нормальном состоянии в качестве контрольного образца. На предварительном этапе также будет проведена работа с некоторыми из научных неизвестных, которые касаются прибрежных районов с повышенным уровнем выветривания.

Эксперимент, вероятно, продлится год или два. В конечном счёте команда надеется получить данные, которые демонстрируют, насколько быстр и эффективен этот процесс. Полученные результаты могут быть использованы для уточнения научных моделей.

Проблемы и возможные последствия




При изучении идеи стартапа рождается масса вопросов. Самый очевидный из них звучит так: Когда вы добываете, измельчаете, отгружаете и рассыпаете по пляжам огромное количество оливина, то не производите ли больше выбросов, чем сможет вытянуть из воздуха этот минерал?. Представители Project Vesta уверяют, что польза перевешивает. Исследования и лабораторное моделирование показали, что волны значительно ускорят расщепление оливина. А в одном документе сделан вывод, что реализация этого проекта на 2% самых энергичных шельфовых морей мира способно компенсировать все годовые выбросы человека.

Но главная проблема заключается в том, что материалы должны быть тщательно отшлифованы, чтобы химические процессы шли годами, а не десятилетиями. Некоторые исследователи подсчитали, что процесс шлифовки настолько дорогостоящ и энергоёмок, что весь подход кажется нежизнеспособным. Тем не менее, другие приходят к выводу, что оливиновый песок удалит значительно больше углекислого газа, чем произведёт.

Также есть вопрос к конечному итогу работы Project Vesta. Пока сложно предсказать, помогут ли волны ускорить процесс вывода CO, насколько хорошо можно будет измерить и проверить поглощение углекислого газа или насколько легко общественность примет идею рассыпания зелёных минералов вдоль берега моря.

Ещё одна проблемная область, за которой нужно внимательно следить это возможные побочные эффекты для окружающей среды. Минералы являются фактически геологическим антацидом, поэтому они должны снижать подкисление океана, по крайней мере, на очень локальных уровнях, что может принести пользу некоторым чувствительным прибрежным видам. Но оливин также может содержать следовые количества железа, силиката и других материалов, которые могут стимулировать рост некоторых видов водорослей и фитопланктона, и в противном случае изменить экосистемы и пищевые цепи способами, которые трудно предсказать.

Учёных беспокоят экологические проблемы, которые могут возникнуть в результате распространения минерала на пляжах, где его не было раньше. Некоторые критики полагают, что оливин может выделять тяжелые металлы, такие как никель. Однако представители Project Vesta заверяют скептиков, что никель, выделяющийся в воду, не является биодоступным, что означает, что он не должен воздействовать на морские виды.

Конкуренты


Проект имеет некоторые преимущества по сравнению с другими подходами для удаления CO. Во-первых, стоимостью. Во-вторых, основная альтернатива,восстановление лесов, необязательно приведёт к снижению углекислого газа, так как они часто горят, а деревья вырубаются. А в случае с Project Vesta основную работу берёт на себя океан.

Мне также кажется нужным упомянуть и другие проекты, которые развиваются в том же направлении. Исследователи в Исландии направляют раствор углекислого газа, захватываемого электростанциями или специальными механизмами, в базальтовые образования глубоко под землей, где вулканическая порода покрывает его устойчивыми карбонатными минералами. Центр Leverhulme проводит полевые испытания, чтобы оценить, может ли базальтовая каменная пыль, добавленная на поля кукурузы и сои, действовать как удобрение и как средство вытягивания углекислого газа.

А учёные из Университета Британской Колумбии вместе с коллегами из других университетов в Канаде и Австралии изучает различные варианты использования минеральных ископаемых, добываемых как побочный продукт при добыче никеля, алмазов и платины. Идея состоит в том, чтобы просто рассыпать их по полю, добавить воду и довести до состояния суспензии. Они ожидают, что так называемые шахтные хвостохранилища будут быстро вытягивать и минерализовать углекислый газ из воздуха, образуя прочный блок, который можно захоронить. Их модели показывают, что это может устранить углеродный след шахт.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru