Русский
Русский
English
Статистика
Реклама

Co2

Простейший измеритель CO2 за 2000 рублей и полчаса

06.01.2021 16:04:08 | Автор: admin
Измеритель уровня углекислого газа (CO2) наверное самый недооценённый прибор, который на мой взгляд должен быть в каждой квартире, ведь он показывает, насколько воздух пригоден для дыхания и с помощью него всегда видно, когда пора проветривать.

Такой измеритель в квартирах большая редкость прежде всего из-за высокой цены. Свой первый измеритель AZ Instruments 7798 CO2 datalogger я покупал за $139 и это была самая дешёвая модель на рынке.

Сейчас готовый измеритель CO2 стоит около 4000 рублей, а самодельный обойдётся вдвое дешевле.




Я разобрался с подключением датчиков углекислого газа с Aliexpress, нашёл примеры их использования и сделал простейшие измерители уровня CO2, которые очень просто повторить.

В большинстве самоделок используют датчик MH Z19B, но у него есть нехорошая особенность если помещение не проветривается до состояния уличного воздуха каждый день, показания начинают уплывать (датчик автоматически калибруется каждый день и считает минимальный уровень CO2 в помещении за 400 ppm). Я заказал два более продвинутых датчика Sensair S8 004-0-0053 (он обошёлся мне в $28.86, сейчас стоит $32.30) и Telaire T6703 (его я купил за $19.41, сейчас он стоит $28.35).



Я подключил датчики к Arduino Nano (его можно купить за $2.98), но можно использовать и другую плату Arduino. Для отображения значения CO2 используется дешёвый светодиодный экранчик TM1637 (он стоит $0.67). Для соединения удобно использовать готовые провода с коннекторами Dupont F-F (20 штук по 10 см стоят $0.87), для подключения сенсоров их можно разрезать пополам и подпаять.

Помимо индикации на экранчике, мои измерители передают данные в порт, поэтому их можно подключить к компьютеру, зайти в режим платформы Arduino Монитор порта (скорость 9600), наблюдать значения CO2 и использовать измеритель, как даталоггер (нужно просто скопировать данные из окошка монитора порта в Excel).



Кстати, экран можно не подключать и пользоваться только монитором порта.

Оба сенсора дают точные результаты (я сравнивал с хорошими измерителями уровня углекислого газа Даджет МТ8057s и AZ Instruments 7798 CO2 datalogger). Более дешёвый Telaire T6703 мне понравился даже больше он выходит на правильные показания секунд за тридцать после включения и его результаты ближе к результатам дорогих приборов с двухлучевыми сенсорами.

Если вы захотите повторить одну из этих простых конструкций, я собрал всё, что нужно в одном архиве там и скетчи для Arduino, и схемы подключения и необходимая библиотека.

Я планирую добавить к моим измерителям поддержку дешёвого цветного TFT-экрана и трёх или четырёх реле для управления вентиляцией в зависимости от уровня углекислого газа в помещении. Как только сделаю это, напишу такую же инструкцию для повторения этих самоделок.

2021, Алексей Надёжин
Подробнее..

Перевод Итак, вы хотите создать компанию по улавливанию и хранению углерода

16.05.2021 02:16:45 | Автор: admin
image

Хотите выиграть приз в миллион долларов от Илона Маска? Улавливание углерода (УУ) в наши дни тема чрезвычайно популярная. Десятки новых компаний занимаются вопросом удаления лишнего CO2 из атмосферы с целью стабилизации климата.

Сам я не эксперт по УУ, но периодически мне задают вопросы на эту тему. Поэтому я предлагаю вам данную статью, чтобы помочь организовать наши мысли и уточнить стратегию по разработке и оценке широкого спектра систем улавливания углерода (СУУ).

Стоит ли чего-то наша технология УУ? Давайте изучим нашу гипотетическую машину для УУ с двух точек зрения: физической и экономической.

Физика


Не является ли наша машина скрытым вечным двигателем?


В прошлой жизни я несколько лет занимался проектированием маглев-систем, и часто натыкался на концепции других проектировщиков, эффективность которых была слишком идеальной для реального мира. Если сопротивление системы отрицательно, это вечный двигатель.

Если на концентрацию CO2 система тратит меньше энергии, чем на выпуск его в воздух это вечный двигатель. Если наша машина сжимает поток газа без расхода энергии или генерации паразитного тепла, она нарушает законы термодинамики. Вечные двигатели, очевидно, не существуют так что проверяйте математику!

Что такого известно нам, чего не знают все остальные?


Что это за неочевидный противоречивый факт? Как наша система его использует?

Сколько энергии реально потребляет наша система?


СУУ иногда используют температурное чередование в слоях сорбента или электрохимическое разделение для увеличения концентрации CO2 с обычной, 420 частей на миллион (0,042 об. %), до почти 100%. Требуется ли для работы нашей системы много электрической или тепловой энергии? Откуда она берётся?

Если это электрохимическая система, она использует больше или меньше энергии на моль CO2 по сравнению с выплавкой алюминия (1500 кДж/моль)? Используется ли там большой ток малого напряжения? Есть ли у нас под рукой униполярный генератор? Сколько меди требует система? Если при напряжении ячейки Y нам требуется Х электронов на молекулу CO2, получается X*Y*95 кДж/моль. Насколько близко мы подобрались к этому ограничению?

Уменьшает ли наша система суммарное количество CO2 в воздухе?


Если наша система по сбору CO2 выделяет оксид кальция (негашёную известь), образующуюся при термическом кальцинировании и сжигании природного газа, она будет выделять больше CO2, чем уловит за весь срок службы. Оп-па.

Более общий вопрос: сколько лет она должна работать, чтобы превысить количество CO2, выделенное за время работы?

Как мы подходим к оценке теоретических ограничений?


Энтропия Гиббса растворения CO2 в атмосфере равняется примерно 19,4 кДж/моль. Это небольшое значение поэтому никто не занимается генерацией энергии при помощи осмотического градиента концентрированного CO2 в атмосфере. Приближается ли наша система к этому параметру хоть сколько-нибудь заметно? А надо ли это ей? Может ли она к нему приблизиться? Если мы используем электрохимическое разделение, как мы справляемся с омическим нагревом и вязкостью?

Является ли электрическая эффективность одним из основных ограничений нашей системы? Нужно ли ей быть эффективной, и каковы альтернативные издержки повышения эффективности на 1%? Если электричество будет дешеветь на 1% в год, эквивалентно ли это будет виртуальному увеличению её эффективности на 1%?

Действительно ли наша машина концентрирует атмосферный CO2?


Наш агрегат мигает лампочками, а из трубы у неё выходит CO2 с концентрацией в 100%. Значит, всё норм? Не совсем. Сохраняет ли она углерод? Не сжигаем ли мы случайно части нашей машины? Точно?

Думаю, что в данном случае идеальным стандартом будет нулевой радиоуглеродный возраст CO2, полученного концентрацией из атмосферы при этом CO2 полученный, допустим, в результате случайного электролиза добытого из земли карбоната будет очень старым и не радиоактивным. Для проверки углерода-14 требуется масс-спектрометр. В США полно лабораторий, которые за несколько сотен долларов проведут такой тест, хотя обычно образец сначала нужно будет превратить в графит.

Однако датирование углерода не лишено недостатков органические источники углерода, типа растительных масел, дерева или угля, молодые с точки зрения радиоуглеродного датирования. Так что если наша машина использует, допустим, кондитерский жир для смазки, нам нужно тщательно проверить математику, а также задуматься о том, что мы вообще делаем.

Можем ли мы подтвердить наши результаты?


Понимаем ли мы нашу систему тестирования? Описали ли мы каждый аспект работы машины количественно? Не запутает ли видео с презентацией её работы инвесторов? Очевидны ли ключевые вехи? Сможет ли человек, посмотревший видео, сам построить такую машину и провести такое же испытание? Хорошо ли описаны информация по тесту и результаты для того, чтобы их мог проверить независимый эксперт? Хорошо ли мы понимаем, как должен выглядеть и восприниматься хорошо задокументированный эксперимент, или нам надо пойти прочесть работу-другую по биологии?

В области УУ можно встретить множество слабо разбирающихся в этом людей, и нам нужно задать высокий уровень стандартам документирования. Мы не планируем публиковать секреты наших разработок, но вряд ли можно ожидать, что инвесторы будут расставаться со своими деньгами в обмен на обещания и надежды.

Можно ли масштабировать наш проект?


Есть ли фундаментальные физические ограничения на реализацию проекта? Если мы собираемся собирать по 10 Гт CO2 в год, высаживая деревья, сколько воды потребуется, чтобы их поливать? Сможет ли фотосинтез конкурировать с добычей ископаемых? Какие фундаментальные ограничения на масштабирование нашего проекта? Есть ли доступ к капиталам? Окупаемость инвестиций? Нужны ли редкие реагенты? Нет ли у компании подозрительных сооснователей? Есть ли доступ к энергосетям достаточной мощности? Каков легальный статус углеродных налогов?

Готова ли наша СУУ к выходу из лаборатории?


Система питания двигателя, использовавшаяся компанией Tesla на заре деятельности, была чрезвычайно ненадёжной. Там использовались десятки аналоговых операционных усилителей, крутивших асинхронный мотор переменного тока. История полна проектов, которые не могли окупиться, поскольку были недостаточно взрослыми для выхода в производство.

Есть ли у нас какая-то лабораторная модель, которую можно показать людям? Работает ли она? Ясно ли, какие её части сделаны наскоро, а какие имеют реальное значение? Безопасно ли находиться с ней в одной комнате?

Готова ли технология к производству? Можем ли мы дать прототип среднему инженеру, недавно закончившему институт, и сказать сделай нам 10 000 штук таких, и быть достаточно уверенными в том, что получатся рабочие, надёжные и достаточно эффективные приборы? Разобрались ли мы со всеми ошибками перед тем, как искать крупных инвестиций, или машина находится на уровне научного эксперимента?

Финансы


Сколько стоит наш CO2?


Можем ли выдавать CO2 по $1000 за тонну, по $100 или по $10? Сколько стоит наш CO2? Сколько мы хотим, чтобы он стоил? А сколько нужно, чтобы он стоил? Как мы выглядим в сравнении с конкурентами? Насколько можно доверять нашим планам по улучшению машины?

Насколько дорогая наша СУУ?


Какова структура капитальных расходов? Сколько тонн CO2 машина должна уловить, чтобы окупить себя за вычетом операционных расходов, стоимости финансирования, амортизации? Сколько времени на это уйдёт?

Если наша машина улавливает килограмм CO2 в день при стоимости $100 за тонну, она заработает $36,5 в год. Если стоимость постройки нашей машины составит $500, то чтобы окупить только эту стоимость, потребуется 15 лет. Траты в $500 за запчасти и труд находятся где-то в промежутке от большого торта до простейшей посудомойки, если говорить о масштабе и сложности проекта. Любой мало-мальски умелый техник должен собирать пяток таких машин в день, то есть, мы должны выдавать примерно 1500 машин в год. И всё равно прибыль составит всего $50 000, чего не хватит даже на обучение в институте [в США / прим. пер.].

Если капитальные расходы амортизируются за 10-30 лет работы, как оценить капитальные затраты? Рассчитываем ли мы на правительственные займы с низкой процентной ставкой? Будем ли мы андеррайтерами для наших клиентов, покупающих у нас устройства? Как диверсифицировать риски в данной области, учитывая их сильную корреляцию (как в технологических, так и в регуляторных областях)?

Или мы сможем отбить затраты за несколько месяцев или лет, и рассчитывать на кратковременный кредит или даже собственные средства?

Как быстро машина изнашивается? Не обесценивается ли она быстрее, чем окупается?

Какова стоимость работы СУУ?


Какие у нас операционные расходы? Нужны ли рабочие для обслуживания? Какие у машины расходники реагенты, клапана, фурнитура, насосы, электроды, ПО?

Как операционные расходы укладываются в график амортизации капитальных расходов? Не тратит ли машина на работу больше, чем на амортизацию? Оправдается ли усложнение конструкции с целью уменьшения текущих расходов? Или же машина настолько надёжная, что её можно включить и забыть и НАСА сможет использовать её для работы с атмосферой на Луне?

Развёртываем мы машину у себя во дворе или где-нибудь в пустыне? Как мы будем добираться до клиентов и осуществлять поддержку оборудования в удалённых или труднодоступных местах?

Вернёмся к энергии


Важна ли стоимость энергии для финансового плана? Десять лет назад стоимость электричества делала зелёный водород (полученный при помощи электролиза из воды) слишком дорогим по сравнению с голубым (полученным из природного газа паровой конверсией). Сегодня солнечная электроэнергия в пиковые часы обходится в 10 раз дешевле. Как изменятся наша бизнес-модель и оптимизация системы, если электричество станет дороже, или, наоборот, дешевле во время срока службы нашей машины?

Энергоёмкий ли наш процесс? Сравним ли он с охлаждением или электроочисткой магния? Не привлечём ли мы внимания властей как нелегальная плантация запрещённой травы или дата-центр?

Насколько хрупкая у нас цепочка поставок?


Зависит ли наша машина от редких материалов? Чего мы не сможем купить в стройматериалах или на сайте Alibaba? Или на сайте Шёлковый путь? Легко ли нам поменять поставщиков, или наш проект зависит от состояния бизнеса и доброй воли единственной фирмы где-то во Внешней Монголии? Поглощаем ли мы CO2 при помощи амидов, цеолитов или металл-органических каркасных структур? Насколько дороги эти особые материалы? Работают ли в лаборатории, способной их производить, наши родственники или супруг(а)? Могут ли они масштабировать производство так же быстро, как мы бизнес, и с какой маргинальной стоимостью? Сколько стоят металл-органические каркасные структуры?

Есть ли у нас в списке покупок хоть что-нибудь более токсичное, чем считается приемлемым, или требующее особо осторожного обращения? Плутоний? Запрещённые вещества? Диоксидифторид? Раствор пиранья? Нужны ли нам сертифицированные специалисты? Потянем ли мы их медстраховку? Не заинтересуем ли мы управление по борьбе с наркотиками или министерство внутренней безопасности?

Зависит ли наш процесс от доступности и доброй воли одного или нескольких узкоспециализированных докторов наук? Есть ли у нас план удержания талантов? Насколько экзотичен наш процесс?

Нужны ли нам волшебные материалы?


Работает ли наша система только с веществами, чистыми на 99,999999%? Что будет в случае загрязнения никаких проблем, понизится эффективность или всё внезапно может рвануть? Испортят ли наши катализаторы обычные загрязнители воздуха водяной пар, кислород, запах пад-тай?

Расходуются ли катализаторы в системе? Не являются ли они тайными расходными материалами? Есть у нас план по поставкам, обслуживанию и замене того, что мы не планировали портить? Сколько кобальта нам нужно на тонну CO2?

Нужно ли нам волшебство масштабирования?


Все знают, что относительная дешевизна автомобилей возможна за счёт огромных и дорогих производств, благодаря которым можно ежегодно производить сотни тысяч абсолютно одинаковых экземпляров.

Есть ли у нашей СУУ та же проблема, из-за которой мы не можем снизить капитальные расходы до приемлемых, пока не построим полностью автоматическую фабрику в миллион квадратных метров? Почему её нельзя собирать на манер LEGO? Строили ли мы сами огромную автоматическую фабрику? Идут ли эти знания на пользу делу? Может, нам лучше предлагать людям полностью автоматические фабрики в миллион квадратных метров как услугу?

Есть ли вообще критический масштаб, ниже которого у нашей системы нет смысла? Можем ли мы оправдать экономику масштаба, или мы просто фантазируем, из-за того, что построить нашу систему будет дороже, чем заработать за 20 лет, получая по $1000 за тонну?

Есть ли у нас поток доходов?


Или нам нужно полагаться на скоординированные действия нескольких десятков правительств, утверждающих надёжные налоговые льготы или выплаты, образующие рынок бесконечной глубины с нулевой эластичностью для продажи CO2?

Куда пойдёт наш концентрированный CO2? Превратится в топливо? Пластик? Копоть? Графит? Цемент? Пойдёт под землю? В газировку? Какова ежегодная ёмкость этих рынков? Какой её процент мы уловим?

Если мы продаём наш CO2 только PepsiCo, он очень быстро вернётся а втмосферу. Есть ли у нас план по более надёжному хранению CO2?

Кто будет покупать у нас CO2, в какой форме, сколько и по какой цене? Как будет выглядеть наш бизнес, если этот рынок будет насыщен? Допустим, если мы продаём 1000 тонн в год по $100 за тонну, доход нашего бизнеса составляет $100 тысяч в год. Достаточно ли этого для работы команды?

Где в бизнесе создаётся ценность?


Если мы делаем СУУ, которую через 20 лет надо амортизировать, мы продаём очень дорогие виджеты любителям долгов, и хорошо бы в больших количествах. Что в машине самое дорогое? Где мы добавляем ценность?

Допустим, мы делаем СУУ на качающихся цеолитовых ячейках, типа таких, что используются на МКС. Большую часть их стоимости составляют новые цеолиты. Для уменьшения стоимости и улучшения контроля качества мы решили интегрировать в процесс производство цеолитов, улучшив стоимость на 20%. Поскольку цеолиты составляли порядка 90% капитальных расходов машины, теперь более 95% ценности компании состоит в производстве цеолитов. И что, мы теперь замаскированная цеолитовая фабрика?

И если в долгосрочной перспективе улавливание CO2 промышленных масштабов будет сильно зависеть от массового производства экзотических материалов, как компьютерная индустрия зависела от фотолитографии на безумно чистых кремниевых кристаллов, имеет ли смысл вертикализация промышленности? С чего мы начинаем в этой цепочке ценностей, и где заканчиваем? Поставка химических веществ как услуга?
Подробнее..

Искра жизни теория зарождения первой органики

30.09.2020 10:08:50 | Автор: admin


Жизнь человека по меркам Вселенной всего лишь мгновение, а по меркам мухи-однодневки целая вечность. Для нас же оценка продолжительности нашего собственного жизненного пути осложнена событиями, которые происходят в процессе, людьми, которых мы встречаем и с которыми расстаемся, эмоциями, которые испытываем. Ведь чем сложнее мозг существа, тем сложнее его самосознание. Однако любой путь определяется не только его насыщенностью, но и фактом того, что он рано или поздно заканчивается. Люди многие века пытаются ответить на вопрос, что лежит за гранью жизни, и четкого безапелляционного ответа нет ни у кого. Тем не менее до остается не менее таинственным и загадочным, чем после. Ученые из Американского музея естественной истории (Нью-Йорк, США) провели исследование, в котором описывается возможный вариант зарождения органических молекул миллиарды лет тому назад. Что могло послужить началом жизни на планете, где это произошло, и как эти знания могут помочь в понимание нашего мира здесь и сейчас? Ответы на эти вопросы сокрыты в докладе ученых. Поехали.

Основа исследования


Как уже было сказано ранее, достоверно неизвестно, что ждет человека или любой другой живой организм после того, как его тело теряет жизнеспособность. Этим вопросом задаются физики, биологи, теологи и философы. У все у них есть ответы, каждый из которых имеет право на существование, однако это лишь теории, которые эмпирически подтвердить по понятным причинам пока никому не удавалось.

Что касается того, что было до начала всего, то этот вопрос такой же сложный и неоднозначный. Теория большого взрыва подарила нам идею зарождения Вселенной, но остаются вопросы касательного того, что было до него. Эволюционная теория Дарвина помогла понять как между собой взаимосвязаны виды на нашей планете, как они эволюционировали, как одно преобразовалось в другое. Но и тут возникают вопросы: что или кто был первым, почему жизнь зародилась, при каких обстоятельствах, случайно ли было это событие или это чей-то великий замысел. Вопросы на века, не иначе.

Тем не менее, знания, которыми обладает современный человек, могут послужить инструментом в построении цепочки событий, которые привели к зарождению жизни. Нам известно, что основополагающими элементами в зарождении и поддержании жизни являются водород, азот и кислород. В современной жизни большинство органических молекул образуются в результате восстановления углекислого газа (CO2) посредством нескольких путей фиксации углерода (например, фотосинтез в растениях). Но большинство этих путей либо требует энергии от клетки, либо они появились относительно поздно. Возникает вопрос что было до этого?

По мнению ученых одним из путей образования органики могло быть восстановление CO2 с помощью H2. Геологические исследования показывают, что СО2 находился в относительно высоких концентрациях в океане во время катархея*, тогда как H2 был продуктом множественных процессов в земной коре и выделялся наружу за счет гидротермальных источников.
Катархей* геологический эон (период времени), продлившийся первые 600 миллионов лет существования Земли.
Следовательно, на стыке двух сред (океана и Земной коры) между двумя растворенными газами возникала реакция, которая приводила к образованию углеводородов, сыгравших в последствии важную роль в переходе от геохимии к биохимии.


Изображение 1

В стандартных условиях (1 ат, 25 C, pH 7) реакция между CO2 и H2 с образованием формиата (HCOO) термодинамически неблагоприятна с G0 = + 3.5 кДж/моль. Однако в древних щелочных источниках () H2 присутствовал в богатых ОН водах гидротермального источника, что способствовало его окислению в воду. При этом CO2 был бы растворен в относительно кислом океане, что облегчило протонирование в его восстановлении до HCOO.

С помощью минералов Fe(Ni)S, осажденных на интерфейсе между океаном и корой, градиента pH более трех единиц должно было быть достаточно для увеличения жизнеспособности реакции на ~ 180 мВ, что делает ее благоприятной для образования органики.

После образования формиат обладал бы достаточным абиотическим химическим потенциалом. К примеру, известно, что формильные группы образуют промежуточные соединения восстановительного цикла трикарбоновых кислот* и восстановительного Ацетил-КоА пути*, предполагая возможный путь развития биологического метаболизма.
Восстановительный цикл трикарбоновых кислот* череда химических реакций синтеза органики из диоксида углерода и воды.
Восстановительный Ацетил-КоА путь (путь Вуда-Льюнгдаля или WL-путь)* цепочка биохимических реакций, необходимых для фиксации СО2 и для получения энергии.
Другая теория предполагает, что при нагревании в присутствии аммиака, который также является предполагаемым компонентом щелочных вод, из формиата образуется формамид [HC(O)NH2] высокореакционная молекула, являющаяся краеугольным камнем одной из теорий возникновения жизни (Formamide and the origin of life). Дальнейшая реакция этой смеси дает цианистый водород (HCN), который также является основой еще одной теории образования органики (Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism). В свою очередь, дегидратация формиата приводит к образованию монооксида углерода (CO) (Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions). Как видно, теорий происхождения органических соединений немало, и каждая из них имеет вполне логичные объяснения.

Несмотря на то, что на ранней Земле существовало несколько источников восстановленного углерода и множество вероятных сред, в которых могли бы находиться богатые химические вещества, описанный выше щелочной гидротермальный сценарий куда более интересен для ученых ввиду его сходства с WL-путем фиксации углерода.

Дополнительным аргументом в пользу потенциальной значимости щелочного гидротермального сценария образования органики является факт того, что WL-процесс это единственный из шести известных биологических путей фиксации углерода, который высвобождает энергию в целом, а не потребляет ее, а его вариации присутствуют у существующих представителей обеих архей (метаногены*) и бактерии (ацетогены*).
Метаногены* археи, образующие метан как побочный продукт метаболизма в бескислородных условиях.
Ацетогены* бактерии, которые выделяют ацетат (CH3COO) в качестве конечного продукта анаэробного дыхания или гомоацетатного брожения.
Первым шагом на этом пути является восстановление CO2 с помощью H2 с образованием формиата (HCOO или его дегидратированный электронный эквивалент, т.е. CO).

Эта реакция носит эндергонический* характер, поэтому некоторые представители как архей, так и бактерий используют либо бифуркацию электронов*, либо хемиосмос* через клеточную мембрану, чтобы привести в действие это процесс.
Эндергонические реакции* химические реакции, требующие энергии извне для их протекания.
Бифуркация электронов* механизм разделения электронов в окислительно-восстановительной реакции.
Хемиосмос* преобразование энергии цепи переноса электронов в энергию АТФ (аденозинтрифосфат).
Однако в отсутствие механизмов клеточного объединения, таких как бифуркация электронов или хемиосмос, эта первая эндергоническая стадия является ключевым энергетическим узким местом в WL-пути и остается главным открытым вопросом в исследованиях происхождения биологической фиксации углерода.

В данном исследовании ученые демонстрируют абиотическое косвенное восстановление CO2 до HCOO с помощью H2, вызванное микрофлюидным градиентом pH в осадках Fe(Ni)S, посредством механизма, который напоминает поток разделенных электронов пути WL.

Результаты исследования


В первую очередь был подготовлен лабораторный эквивалент щелочной гидротермальной среды с имитацией интерфейса между корой Земли и водами океана. Щелочная составляющая включала в себя Na2S (100 мМ), K2HPO4 (10 мМ) и Na2Si3O7 (10 мМ) в деаэрированной воде. Аналог океана включал в себя FeCl2 (50 мМ) и NiCl2 (5 мМ). Обе жидкости были подведены к Y-образному боросиликатному микрофлюидному реактору (1B).

Окружающее давление H2 и CO2 оказалось недостаточным для сокращения выбросов CO2, поэтому вместо попытки растворения любого газа путем барботирования* перед реакцией было решено использовать микрожидкостные насосы, работающие от давления газа.
Барботирование (барботаж)* процесс пропускания газа через слой жидкости.
Щелочная жидкость вытеснялась H2 при давлении 1.5 бар, а аналог океана выталкивали CO2 при том же давлении.

Каждый цикл реактора был разделен на две последовательные стадии: первая для осаждения осадков Fe(Ni)S на стыке (на интерфейсе) двух жидкостей; вторая (постосаждение) для попытки создания реакции между CO2 и H2 (или других реагентов).

В результате взаимодействия щелочной жидкости и океанического аналога в течение 15-60 секунд на стадии выпадения осадков образовался осадок шириной от 30 до 60 мкм на интерфейсе между двух жидкостей, видимый под цифровым оптическим микроскопом (в центре на ). Удаление металлов со стороны аналога океана после выпадения осадков предотвратило увеличение осадка до критического значения перекрытия канала реактора.

После образования осадка и для предотвращения засорения микрофлюидных каналов дальнейшим осаждением на второй стадии океаническая жидкость была переключена на чистую деаэрированную воду, вытесненную CO2 (справа на 1B). При этом аналог щелочной жидкости оставался прежним с Na2S, K2HPO4 и Na2Si3O7, выталкиваемыми H2.

Далее был определен уровень pH поступающих жидкостей в точке входа: аналог океана pH 3.9, щелочные воды pH 12.3. При скорости потока 5 мкл/мин для каждого входа время пребывания жидкостей в центральном канале составляло ~ 3.3 с, поэтому системе было позволено работать не менее 2 минут перед сбором выходных данных. Далее был собран общий выход реактора (смесь жидкостей), который был проанализирован с помощью ЯМР-спектроскопии. Анализ показал, что среднее значение концентрации HCOO составило 1.5 мкМ.


Таблица 1: результаты экспериментов.


Изображение 2

Синглетные пики в спектрах 1H ЯМР (8.42 ppm (частей на миллион); 2A) и 13C ЯМР (165.8 ppm) соответствуют образцам чистой (> 98%) муравьиной кислоты. Выполнение стадий осаждения и реакции с изотопно обогащенным (99% 13C) 13CO2 (эксперимент 2) дало более сильный синглет в спектре 13C (165.8 ppm; 2B) и ожидаемое расщепление синглета формила на дублет (сигнал, расщепленный на два пика) в спектре 1H (J = 195 Гц) за счет взаимодействия 1H 13C в формильной группе ().

Как оказалось, H2 необходим для сокращения выбросов CO2. С жидкостью на стороне выпускного отверстия, управляемой N2 вместо H2 (т.е. в отсутствии H2 как во время, так и после осаждения), продуктов восстановления не было обнаружено (эксперимент 3; 2E и 2F).

Для более детального понимания происходящего процесса были выполнены дополнительные эксперименты по маркировке дейтерием (2H или D) (эксперименты 4 и 5), используя изотопные варианты на протяжении всех экспериментов.

Независимо от того, использовался ли немаркированный H2 (эксперимент 1) или D2 (эксперимент 4) для управления насосом на стороне щелочной жидкости, наблюдались исключительно неизотопно отмеченный HCOO в жидкостном выходе. Это наблюдение позволяет предположить, что сокращение выбросов CO2 может происходить исключительно на стороне океана.

И наоборот, с D2O, используемым вместо обычного H2O на стороне океана, и с немаркированным H2, приводящим в действие насос на стороне щелочной жидкости (эксперимент 5), был обнаружен исключительно дейтерированный формиат (DCOO), о чем свидетельствует триплет в 13C ЯМР (J = 33 Гц) и отсутствие каких-либо других заметных пиков (2D). Это дополнительно подтверждает, что сокращение CO2 соответствует изотопному составу на стороне океана, а не на стороне земной коры.

На следующем этапе исследования была проверена роль градиента pH моделируемой подводной щелочной гидротермальной системы. Успешные сокращения CO2, представленные в таблице 1, происходили при pH аналога океана 3.9 и pH аналога сброса 12.3.

При смешивании этот начальный pH, равный 8.4 единиц, неизбежно снизился бы, но градиенты pH, составляющие несколько единиц, успешно сохраняются с течением времени в микрожидкостных масштабах, особенно в присутствии осадка на интерфейсе.

Необходимо было понять, требуется ли такой градиент pH в системе восстановления для облегчения окисления H2 на щелочной стороне и восстановления CO2 на кислотной стороне (1A). После осаждения в тех же условиях, что и для эксперимента 1, оценивались эффекты различных уровней pH и состава каждой из двух жидкостей (таблица 2). Замена имитатора щелочного источника чистым H2O, управляемым H2, не дала результата (таблица 2, эксперимент 6).


Таблица 2: результаты экспериментов с различным значением рН.

Аналогичным образом, подкисление жидкости аналога щелочного источника с помощью HCl до pH 3.9 и pH 7.0 не привело к образованию формиата (эксперименты 7 и 8).

Добавление 100 мМ Na2CO3 в океаническую жидкость при одновременном использовании CO2 в качестве движущего газа (эксперимент 9) повысило pH океана до 9.8, и в этих условиях продукт не был обнаружен. Удаление силиката со стороны источника после осаждения все еще давало формиат (эксперимент 10), как и удаление силиката и фосфата при наличии только Na2S (эксперимент 11).

Имея только K2HPO4 после осаждения на стороне щелочного источника, были обнаружены лишь остаточные количества формиата (ниже предела количественного определения в 0.37 мкМ), возможно, из-за недостаточно щелочного pH 9.1 (эксперимент 12). А вот более щелочной K3PO4 повысил pH до 12.1 и привел к образованию значительно большего количества формиата (эксперимент 13).

Ученые заявляют, что не могут полностью исключить вероятность того, что связанный с осадком сульфид действует как восстановитель в дополнение к H2. Однако вышеописанные результаты одновременно подтверждают роль градиента pH и показывают, что непрерывная подача водного сульфида в системе не требуется.

Удаление Ni из осадочной жидкости океана (эксперимент 14) привело к образованию лишь небольшого количества формиата. И наоборот, замена Fe, чтобы оставить Ni в качестве единственного металла в осадочной жидкости океана (NiCl2, 55 мМ; эксперимент 15), дало 1.4 мкМ формиата, что указывает на решающую роль Ni в составе осадков.

Удаление FeCl2 и NiCl2 из океанической жидкости, как и ожидалось, не привело к образованию определяемого формиата и осадка (эксперимент 16).

Самым подходящим объяснением происходящего ученые считают именно электрохимический процесс (), однако существует несколько альтернативных механизмов сокращения выбросов CO2, связанных с окислением H2, которые при этом менее вероятны.

Один из таких механизмов можно назвать самым простым, но и наименее биохимически гомологичным восстановление углерода за счет прямого гидрирования (-). В таком варианте водород из H2 будет передаваться непосредственно в CO2 либо в виде атомарного водорода (классическое гидрирование) или в виде гидрида (ионное гидрирование).


Изображение 3

Другими словами, выходной продукт в таком механизме должен соответствовать изотопной сигнатуре выделяемого газа H2/D2. Вместо этого произведенный в таком случае формиат соответствует только изотопному составу воды на стороне океана, независимо от состава газа или воды на стороне гидротермального источника.

В механизмах прямого гидрирования адсорбированные частицы водорода могут обмениваться с окружающей жидкостью, так что исходная изотопная сигнатура теряется. Однако любой такой процесс подразумевает миграцию значительного количества жидкости через осадок. Существенное перемешивание жидкостей должно было вызвать смешанный сигнал H/D формила, которого в ходе практических опытов не наблюдалось, полностью исключая гидрирование.

Другой возможный вариант заключается в том, что атомы водорода в образующемся формиате могут не происходить непосредственно из H2. Вместо этого механизм может осуществляться посредством окислительно-восстановительного цикла краевого или углового атома Fe или Ni (M2+ M0), при котором металл сначала восстанавливается H2 (оставляя два протона для разбавления), а затем металл переносит приобретенные электроны на СО2 с сопутствующим отрывом протонов из локальной водной среды (3C-3E).

Однако такой вариант развития событий сложно сопоставим с реальными показателями рН, которые были во время опытов. Уровень рН в 3.9 достигался исключительно за счет растворения CO2 в воде. Таким образом, любые протоны со стороны океана должны происходить в результате диссоциации угольной кислоты посредством:

H2O + CO2 H2CO3 H+ + HCO3

Когда же реакция проводилась с использованием D2O (эксперимент 5) в качестве растворителя на стороне океана, в выходном потоке обнаруживался исключительно DCOO. Из этого следует, что сокращение CO2 не происходило на стороне источника, где присутствовали обычная вода (H2O) и H2.

Сценариев такого локализованного окислительно-восстановительного цикла (3D и 3E) может быть несколько, но поскольку все они требуют совместного размещения ни один из них не может предложить изотопную сигнатуру исключительно на стороне океана, которая наблюдалась во время экспериментов.

В совокупности с сильной зависимостью реакции от уровня рН эти результаты говорят о том, что восстановление СО2 происходит посредством электрохимического механизма, в котором электроны от окисления H2 на стороне щелочного источника перемещаются через осадки Fe(Ni)S в сторону CO2 на стороне океана (1A).

Вышеописанные процессы не могли бы протекать, если бы не было какого-то механизма, позволяющего активировать и поддерживать взаимодействие между океанической водой и щелочным гидротермальным источником. Кроме того возникает вопрос и касательно живучести сформировавшихся органических соединений, так как они могли бы попросту раствориться в океанической воде до того, как примут какую-либо биохимическую роль.

Ответом на первый вопрос может быть эффект Вентури*, вызванный повышенной пористостью структуры гидротермальных жерл. Оказавшись внутри жерла, углекислые воды океана могут вступить в реакцию с электронами, переносящимися через каталитические минералы канала гидротермального источника, а новые осадки также могут возникать и дальше по времени, когда две жидкости вступают в контакт.
Эффект Вентури* падение давления, когда поток жидкости или газа протекает через суженную часть трубы.
Моделирование данной теории показало, что в случае экспериментального реактора шириной 300 мкм действительно происходит микрожидкостное слияние двух реагентов, что и было показано в ходе практических опытов.

Ученые также отмечают, что такой эффект не ограничивается подводными щелочными жерлами и, вероятно, будет происходить в пористых гидротермальных системах в любом месте и на любой глубине, что дает возможность множеству геохимических сценариев возникновения жизни.

Стоит отметить, что микрожидкостная система восстановления СО2 с помощью H2 не является единственной. Существует также и методика, где используется одноканальная периодическая система.

За счет других минералов (Fe3Ni), более высокого давления (10 бар для H2) и более высокие температуры (100 C), чем в проводимых опытах, система периодического действия позволяет получить куда больше формиата, а также несколько продуктов дальнейшего восстановления (ацетат, метанол и пируват). При этом скорость производства формиата (5.21 х 10-9 моль/с) на четыре порядка выше скорости, достигнутой микрожидкостной системой.

Важность периодической системы заключается в том, что ее результаты подтверждают работоспособность микрожидкостной системы. Таким образом подтверждается и теория касательно существования органических веществ в условиях бескислородных щелочных гидротермальных источников.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Все, что имеет начало, имеет и конец. Эти слова, сказанные Пифией из х/ф Матрица, в той или иной интерпретации говорились реальными философами и учеными задолго до выхода этой кинокартины. Помимо этого, из курса школьной химии вспоминается один из основоположных принципов науки ничто никуда не девается и ниоткуда не берется бесследно. С тем, что будет в конце, а точнее после него, разбираться человечеству придется еще очень долго. Но вот какое-то понимание того, что было в начале, уже есть.

В данном исследовании ученые описали возможный вариант формирования первых органических соединений. По их мнению этот процесс протекал на стыке океанических вод и гидротермальных источников. В ходе экспериментов удалось преобразовать СО2 в органические молекулы посредством H2 и управляемого рН.

Такой результат не только объясняет исток жизни на нашей планете, но и может быть использован в разработке инструментов для снижения выбросов CO2, что является весьма удручающей проблемой современного мира. Помимо прочего, понимание того, как органика появилась на Земле, позволяет строить более рентабельные теории о возможном наличии оной на других планетах, подобных нашей.

Если же переключиться на более философскую волну, то можно с уверенностью сказать, что данный труд демонстрирует важность понимания прошлого для успешного формирования будущего. История полнится исследованиями, которые современники называли праздным любопытством и пустой тратой времени. Подавляющее большинство из них оказались гораздо важнее, чем кто-либо мог предположить. Вывод прост: в науке искать ответы нужно на все вопросы, какими бы глупыми на первый взгляд они ни казались.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru