Русский
Русский
English
Статистика
Реклама

Водород

Серверы в дата-центре Microsoft проработали двое суток на водороде

12.08.2020 12:22:47 | Автор: admin


Microsoft объявила о первом в мире крупномасштабном эксперименте по использованию водородных топливных ячеек для энергопитания серверов в дата-центре.

Установку 250 кВт произвела компания Power Innovations. В будущем подобная 3-мегаваттная установка заменит традиционные дизель-генераторы, которые сейчас используются как резервный источник питания в ЦОД.

Водород рассматривается как экологически чистое топливо, потому что в результате его сгорания образуется только вода.

Microsoft поставила задачу полностью заменить все дизель-генераторы в своих дата-центрах к 2030 году.

Как и в других ЦОД, в дата-центры Azure дизель-генераторы используются в качестве резервных источников питания, когда пропадает электричество по основному каналу. Это оборудование простаивает 99% времени, но всё равно ЦОД поддерживает его в рабочем состоянии, чтобы оно бесперебойно работало в случае редких сбоев. На практике у той же Microsoft они проходят только ежемесячную проверку работоспособности и ежегодное нагрузочное тестирование, когда нагрузка с них реально поставляется на серверы. Сбои основного питания происходят не каждый год.

Однако специалисты Microsoft подсчитали, что последние модели топливных ячеек на водороде уже экономически выгоднее, чем дизель-генераторы.

Кроме того, сейчас для резервного питания (UPS) используются батареи, которые дают мощность в небольшой интервал (от 30 секунд до 10 минут) между отключением сети и поднятием дизель-генераторов. Последние способны работать непрерывно, пока не кончится бензин.

Топливная ячейка на водороде заменяет и UPS, и дизель-генератор. Она состоит из цистерн хранения водорода и установки электролиза, которая расщепляет молекулы воды на водород и кислород. Вот как выглядит в реальности модель Power Innovations на 250кВт:



Установка просто подключается к существующей электрической сети и не требует подвоза топлива извне, как дизель-генератор. Её можно интегрировать с солнечными панелями или ветряными станциями, что позволит сгенерировать достаточно водорода для наполнения цистерн. Таким образом, водород используется как химический аккумулятор электроэнергии для солнечных и ветровых станций.

В 2018 году исследователи из Национальной лаборатории по возобновляемой энергии в Колорадо (США) провели первый успешный эксперимент по запитыванию стойки серверов от топливных ячеек на PEM (proton exchange membrane), то есть на протонообменных мембранах.

PEM это сравнительно новая технология получения водорода. Сейчас такие установки постепенно вытесняют традиционный щелочной электролиз. Сердцем системы является электролизная ячейка. В ней имеется два электрода, катод и анод. Между ними расположен твёрдый электролит, это и есть протонообменная мембрана из высокотехнологичного полимера.



Технологически протоны стабильно протекают внутри мембраны, тогда как электроны движутся по внешнему каналу. На анод поступает деионизированная вода, где расщепляется на протоны, электроны и газообразный кислород. Протоны проходят через мембрану, а как электроны движутся через внешнюю электрическую цепь. На катоде протоны и электроны воссоединяются, образуя газообразный водород (H2).

Это исключительно высокопроизводительный, надёжный, экономически эффективный способ получения водорода непосредственно на месте его потребления. Затем при соединении водорода и кислорода образуются пары воды и генерируется электричество.

В сентябре 2019 года компания Power Innovations начала экспериментировать с 250-киловаттной топливной ячейкой, которая снабжает энергией 10 полных серверных стоек. В декабре система прошла 24-часовой тест надёжности, а в июне 2020 года 48-часовой.

Во время последнего эксперимента в автоматическом режиме работали четыре таких топливных ячейки. Зафиксированные показатели рекорда:

  • 48 часов непрерывной работы
  • Сгенерировано 10560 кВтч электричества
  • Использовано 814 кг водорода
  • Произведено 7000 л воды



Теперь компания планирует по той же технологии сконструировать топливную ячейку на 3 мегаватта. Вот уже она по мощности будет полностью соответствовать дизель-генераторам, установленным в дата-центрах Azure.

Продвижением водорода в качестве топлива занимается международная организация Hydrogen Council, которая объединяет производителей оборудования, транспортные компании и крупных клиентов Microsoft уже назначила своего представителя в этом совете. В принципе, все технологии для производства водорода и выработки электроэнергии уже доступны. Задача организации масштабировать их. Здесь ещё много работы.

Специалисты видят большое будущее за топливным ячейками типа PEM. За два последних года их стоимость снизилась примерно в четыре раза. Они отлично дополняют фотоэлектрические и ветряные станции, накапливая энергию в периоды максимальной генерации и отдавая её в сеть в моменты пиковой нагрузки.

Опять же, их можно использовать для брокериджа на энергетической бирже, когда система закупает энергию в периоды минимальных или даже отрицательных цен и отдаёт её в моменты максимальной стоимости. Такие брокерные системы могут работать автоматически, как торговые боты.



На правах рекламы


Резервные источники питания наших дата-центров работают хоть и не на водороде, но надёжность на высоте! Наши эпичные серверы это мощные VDS в Москве, которые используют современные процессоры от AMD.
О том, как мы строили кластер для данной услуги в этой статье на Хабре.

Подробнее..

Искра жизни теория зарождения первой органики

30.09.2020 10:08:50 | Автор: admin


Жизнь человека по меркам Вселенной всего лишь мгновение, а по меркам мухи-однодневки целая вечность. Для нас же оценка продолжительности нашего собственного жизненного пути осложнена событиями, которые происходят в процессе, людьми, которых мы встречаем и с которыми расстаемся, эмоциями, которые испытываем. Ведь чем сложнее мозг существа, тем сложнее его самосознание. Однако любой путь определяется не только его насыщенностью, но и фактом того, что он рано или поздно заканчивается. Люди многие века пытаются ответить на вопрос, что лежит за гранью жизни, и четкого безапелляционного ответа нет ни у кого. Тем не менее до остается не менее таинственным и загадочным, чем после. Ученые из Американского музея естественной истории (Нью-Йорк, США) провели исследование, в котором описывается возможный вариант зарождения органических молекул миллиарды лет тому назад. Что могло послужить началом жизни на планете, где это произошло, и как эти знания могут помочь в понимание нашего мира здесь и сейчас? Ответы на эти вопросы сокрыты в докладе ученых. Поехали.

Основа исследования


Как уже было сказано ранее, достоверно неизвестно, что ждет человека или любой другой живой организм после того, как его тело теряет жизнеспособность. Этим вопросом задаются физики, биологи, теологи и философы. У все у них есть ответы, каждый из которых имеет право на существование, однако это лишь теории, которые эмпирически подтвердить по понятным причинам пока никому не удавалось.

Что касается того, что было до начала всего, то этот вопрос такой же сложный и неоднозначный. Теория большого взрыва подарила нам идею зарождения Вселенной, но остаются вопросы касательного того, что было до него. Эволюционная теория Дарвина помогла понять как между собой взаимосвязаны виды на нашей планете, как они эволюционировали, как одно преобразовалось в другое. Но и тут возникают вопросы: что или кто был первым, почему жизнь зародилась, при каких обстоятельствах, случайно ли было это событие или это чей-то великий замысел. Вопросы на века, не иначе.

Тем не менее, знания, которыми обладает современный человек, могут послужить инструментом в построении цепочки событий, которые привели к зарождению жизни. Нам известно, что основополагающими элементами в зарождении и поддержании жизни являются водород, азот и кислород. В современной жизни большинство органических молекул образуются в результате восстановления углекислого газа (CO2) посредством нескольких путей фиксации углерода (например, фотосинтез в растениях). Но большинство этих путей либо требует энергии от клетки, либо они появились относительно поздно. Возникает вопрос что было до этого?

По мнению ученых одним из путей образования органики могло быть восстановление CO2 с помощью H2. Геологические исследования показывают, что СО2 находился в относительно высоких концентрациях в океане во время катархея*, тогда как H2 был продуктом множественных процессов в земной коре и выделялся наружу за счет гидротермальных источников.
Катархей* геологический эон (период времени), продлившийся первые 600 миллионов лет существования Земли.
Следовательно, на стыке двух сред (океана и Земной коры) между двумя растворенными газами возникала реакция, которая приводила к образованию углеводородов, сыгравших в последствии важную роль в переходе от геохимии к биохимии.


Изображение 1

В стандартных условиях (1 ат, 25 C, pH 7) реакция между CO2 и H2 с образованием формиата (HCOO) термодинамически неблагоприятна с G0 = + 3.5 кДж/моль. Однако в древних щелочных источниках () H2 присутствовал в богатых ОН водах гидротермального источника, что способствовало его окислению в воду. При этом CO2 был бы растворен в относительно кислом океане, что облегчило протонирование в его восстановлении до HCOO.

С помощью минералов Fe(Ni)S, осажденных на интерфейсе между океаном и корой, градиента pH более трех единиц должно было быть достаточно для увеличения жизнеспособности реакции на ~ 180 мВ, что делает ее благоприятной для образования органики.

После образования формиат обладал бы достаточным абиотическим химическим потенциалом. К примеру, известно, что формильные группы образуют промежуточные соединения восстановительного цикла трикарбоновых кислот* и восстановительного Ацетил-КоА пути*, предполагая возможный путь развития биологического метаболизма.
Восстановительный цикл трикарбоновых кислот* череда химических реакций синтеза органики из диоксида углерода и воды.
Восстановительный Ацетил-КоА путь (путь Вуда-Льюнгдаля или WL-путь)* цепочка биохимических реакций, необходимых для фиксации СО2 и для получения энергии.
Другая теория предполагает, что при нагревании в присутствии аммиака, который также является предполагаемым компонентом щелочных вод, из формиата образуется формамид [HC(O)NH2] высокореакционная молекула, являющаяся краеугольным камнем одной из теорий возникновения жизни (Formamide and the origin of life). Дальнейшая реакция этой смеси дает цианистый водород (HCN), который также является основой еще одной теории образования органики (Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism). В свою очередь, дегидратация формиата приводит к образованию монооксида углерода (CO) (Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions). Как видно, теорий происхождения органических соединений немало, и каждая из них имеет вполне логичные объяснения.

Несмотря на то, что на ранней Земле существовало несколько источников восстановленного углерода и множество вероятных сред, в которых могли бы находиться богатые химические вещества, описанный выше щелочной гидротермальный сценарий куда более интересен для ученых ввиду его сходства с WL-путем фиксации углерода.

Дополнительным аргументом в пользу потенциальной значимости щелочного гидротермального сценария образования органики является факт того, что WL-процесс это единственный из шести известных биологических путей фиксации углерода, который высвобождает энергию в целом, а не потребляет ее, а его вариации присутствуют у существующих представителей обеих архей (метаногены*) и бактерии (ацетогены*).
Метаногены* археи, образующие метан как побочный продукт метаболизма в бескислородных условиях.
Ацетогены* бактерии, которые выделяют ацетат (CH3COO) в качестве конечного продукта анаэробного дыхания или гомоацетатного брожения.
Первым шагом на этом пути является восстановление CO2 с помощью H2 с образованием формиата (HCOO или его дегидратированный электронный эквивалент, т.е. CO).

Эта реакция носит эндергонический* характер, поэтому некоторые представители как архей, так и бактерий используют либо бифуркацию электронов*, либо хемиосмос* через клеточную мембрану, чтобы привести в действие это процесс.
Эндергонические реакции* химические реакции, требующие энергии извне для их протекания.
Бифуркация электронов* механизм разделения электронов в окислительно-восстановительной реакции.
Хемиосмос* преобразование энергии цепи переноса электронов в энергию АТФ (аденозинтрифосфат).
Однако в отсутствие механизмов клеточного объединения, таких как бифуркация электронов или хемиосмос, эта первая эндергоническая стадия является ключевым энергетическим узким местом в WL-пути и остается главным открытым вопросом в исследованиях происхождения биологической фиксации углерода.

В данном исследовании ученые демонстрируют абиотическое косвенное восстановление CO2 до HCOO с помощью H2, вызванное микрофлюидным градиентом pH в осадках Fe(Ni)S, посредством механизма, который напоминает поток разделенных электронов пути WL.

Результаты исследования


В первую очередь был подготовлен лабораторный эквивалент щелочной гидротермальной среды с имитацией интерфейса между корой Земли и водами океана. Щелочная составляющая включала в себя Na2S (100 мМ), K2HPO4 (10 мМ) и Na2Si3O7 (10 мМ) в деаэрированной воде. Аналог океана включал в себя FeCl2 (50 мМ) и NiCl2 (5 мМ). Обе жидкости были подведены к Y-образному боросиликатному микрофлюидному реактору (1B).

Окружающее давление H2 и CO2 оказалось недостаточным для сокращения выбросов CO2, поэтому вместо попытки растворения любого газа путем барботирования* перед реакцией было решено использовать микрожидкостные насосы, работающие от давления газа.
Барботирование (барботаж)* процесс пропускания газа через слой жидкости.
Щелочная жидкость вытеснялась H2 при давлении 1.5 бар, а аналог океана выталкивали CO2 при том же давлении.

Каждый цикл реактора был разделен на две последовательные стадии: первая для осаждения осадков Fe(Ni)S на стыке (на интерфейсе) двух жидкостей; вторая (постосаждение) для попытки создания реакции между CO2 и H2 (или других реагентов).

В результате взаимодействия щелочной жидкости и океанического аналога в течение 15-60 секунд на стадии выпадения осадков образовался осадок шириной от 30 до 60 мкм на интерфейсе между двух жидкостей, видимый под цифровым оптическим микроскопом (в центре на ). Удаление металлов со стороны аналога океана после выпадения осадков предотвратило увеличение осадка до критического значения перекрытия канала реактора.

После образования осадка и для предотвращения засорения микрофлюидных каналов дальнейшим осаждением на второй стадии океаническая жидкость была переключена на чистую деаэрированную воду, вытесненную CO2 (справа на 1B). При этом аналог щелочной жидкости оставался прежним с Na2S, K2HPO4 и Na2Si3O7, выталкиваемыми H2.

Далее был определен уровень pH поступающих жидкостей в точке входа: аналог океана pH 3.9, щелочные воды pH 12.3. При скорости потока 5 мкл/мин для каждого входа время пребывания жидкостей в центральном канале составляло ~ 3.3 с, поэтому системе было позволено работать не менее 2 минут перед сбором выходных данных. Далее был собран общий выход реактора (смесь жидкостей), который был проанализирован с помощью ЯМР-спектроскопии. Анализ показал, что среднее значение концентрации HCOO составило 1.5 мкМ.


Таблица 1: результаты экспериментов.


Изображение 2

Синглетные пики в спектрах 1H ЯМР (8.42 ppm (частей на миллион); 2A) и 13C ЯМР (165.8 ppm) соответствуют образцам чистой (> 98%) муравьиной кислоты. Выполнение стадий осаждения и реакции с изотопно обогащенным (99% 13C) 13CO2 (эксперимент 2) дало более сильный синглет в спектре 13C (165.8 ppm; 2B) и ожидаемое расщепление синглета формила на дублет (сигнал, расщепленный на два пика) в спектре 1H (J = 195 Гц) за счет взаимодействия 1H 13C в формильной группе ().

Как оказалось, H2 необходим для сокращения выбросов CO2. С жидкостью на стороне выпускного отверстия, управляемой N2 вместо H2 (т.е. в отсутствии H2 как во время, так и после осаждения), продуктов восстановления не было обнаружено (эксперимент 3; 2E и 2F).

Для более детального понимания происходящего процесса были выполнены дополнительные эксперименты по маркировке дейтерием (2H или D) (эксперименты 4 и 5), используя изотопные варианты на протяжении всех экспериментов.

Независимо от того, использовался ли немаркированный H2 (эксперимент 1) или D2 (эксперимент 4) для управления насосом на стороне щелочной жидкости, наблюдались исключительно неизотопно отмеченный HCOO в жидкостном выходе. Это наблюдение позволяет предположить, что сокращение выбросов CO2 может происходить исключительно на стороне океана.

И наоборот, с D2O, используемым вместо обычного H2O на стороне океана, и с немаркированным H2, приводящим в действие насос на стороне щелочной жидкости (эксперимент 5), был обнаружен исключительно дейтерированный формиат (DCOO), о чем свидетельствует триплет в 13C ЯМР (J = 33 Гц) и отсутствие каких-либо других заметных пиков (2D). Это дополнительно подтверждает, что сокращение CO2 соответствует изотопному составу на стороне океана, а не на стороне земной коры.

На следующем этапе исследования была проверена роль градиента pH моделируемой подводной щелочной гидротермальной системы. Успешные сокращения CO2, представленные в таблице 1, происходили при pH аналога океана 3.9 и pH аналога сброса 12.3.

При смешивании этот начальный pH, равный 8.4 единиц, неизбежно снизился бы, но градиенты pH, составляющие несколько единиц, успешно сохраняются с течением времени в микрожидкостных масштабах, особенно в присутствии осадка на интерфейсе.

Необходимо было понять, требуется ли такой градиент pH в системе восстановления для облегчения окисления H2 на щелочной стороне и восстановления CO2 на кислотной стороне (1A). После осаждения в тех же условиях, что и для эксперимента 1, оценивались эффекты различных уровней pH и состава каждой из двух жидкостей (таблица 2). Замена имитатора щелочного источника чистым H2O, управляемым H2, не дала результата (таблица 2, эксперимент 6).


Таблица 2: результаты экспериментов с различным значением рН.

Аналогичным образом, подкисление жидкости аналога щелочного источника с помощью HCl до pH 3.9 и pH 7.0 не привело к образованию формиата (эксперименты 7 и 8).

Добавление 100 мМ Na2CO3 в океаническую жидкость при одновременном использовании CO2 в качестве движущего газа (эксперимент 9) повысило pH океана до 9.8, и в этих условиях продукт не был обнаружен. Удаление силиката со стороны источника после осаждения все еще давало формиат (эксперимент 10), как и удаление силиката и фосфата при наличии только Na2S (эксперимент 11).

Имея только K2HPO4 после осаждения на стороне щелочного источника, были обнаружены лишь остаточные количества формиата (ниже предела количественного определения в 0.37 мкМ), возможно, из-за недостаточно щелочного pH 9.1 (эксперимент 12). А вот более щелочной K3PO4 повысил pH до 12.1 и привел к образованию значительно большего количества формиата (эксперимент 13).

Ученые заявляют, что не могут полностью исключить вероятность того, что связанный с осадком сульфид действует как восстановитель в дополнение к H2. Однако вышеописанные результаты одновременно подтверждают роль градиента pH и показывают, что непрерывная подача водного сульфида в системе не требуется.

Удаление Ni из осадочной жидкости океана (эксперимент 14) привело к образованию лишь небольшого количества формиата. И наоборот, замена Fe, чтобы оставить Ni в качестве единственного металла в осадочной жидкости океана (NiCl2, 55 мМ; эксперимент 15), дало 1.4 мкМ формиата, что указывает на решающую роль Ni в составе осадков.

Удаление FeCl2 и NiCl2 из океанической жидкости, как и ожидалось, не привело к образованию определяемого формиата и осадка (эксперимент 16).

Самым подходящим объяснением происходящего ученые считают именно электрохимический процесс (), однако существует несколько альтернативных механизмов сокращения выбросов CO2, связанных с окислением H2, которые при этом менее вероятны.

Один из таких механизмов можно назвать самым простым, но и наименее биохимически гомологичным восстановление углерода за счет прямого гидрирования (-). В таком варианте водород из H2 будет передаваться непосредственно в CO2 либо в виде атомарного водорода (классическое гидрирование) или в виде гидрида (ионное гидрирование).


Изображение 3

Другими словами, выходной продукт в таком механизме должен соответствовать изотопной сигнатуре выделяемого газа H2/D2. Вместо этого произведенный в таком случае формиат соответствует только изотопному составу воды на стороне океана, независимо от состава газа или воды на стороне гидротермального источника.

В механизмах прямого гидрирования адсорбированные частицы водорода могут обмениваться с окружающей жидкостью, так что исходная изотопная сигнатура теряется. Однако любой такой процесс подразумевает миграцию значительного количества жидкости через осадок. Существенное перемешивание жидкостей должно было вызвать смешанный сигнал H/D формила, которого в ходе практических опытов не наблюдалось, полностью исключая гидрирование.

Другой возможный вариант заключается в том, что атомы водорода в образующемся формиате могут не происходить непосредственно из H2. Вместо этого механизм может осуществляться посредством окислительно-восстановительного цикла краевого или углового атома Fe или Ni (M2+ M0), при котором металл сначала восстанавливается H2 (оставляя два протона для разбавления), а затем металл переносит приобретенные электроны на СО2 с сопутствующим отрывом протонов из локальной водной среды (3C-3E).

Однако такой вариант развития событий сложно сопоставим с реальными показателями рН, которые были во время опытов. Уровень рН в 3.9 достигался исключительно за счет растворения CO2 в воде. Таким образом, любые протоны со стороны океана должны происходить в результате диссоциации угольной кислоты посредством:

H2O + CO2 H2CO3 H+ + HCO3

Когда же реакция проводилась с использованием D2O (эксперимент 5) в качестве растворителя на стороне океана, в выходном потоке обнаруживался исключительно DCOO. Из этого следует, что сокращение CO2 не происходило на стороне источника, где присутствовали обычная вода (H2O) и H2.

Сценариев такого локализованного окислительно-восстановительного цикла (3D и 3E) может быть несколько, но поскольку все они требуют совместного размещения ни один из них не может предложить изотопную сигнатуру исключительно на стороне океана, которая наблюдалась во время экспериментов.

В совокупности с сильной зависимостью реакции от уровня рН эти результаты говорят о том, что восстановление СО2 происходит посредством электрохимического механизма, в котором электроны от окисления H2 на стороне щелочного источника перемещаются через осадки Fe(Ni)S в сторону CO2 на стороне океана (1A).

Вышеописанные процессы не могли бы протекать, если бы не было какого-то механизма, позволяющего активировать и поддерживать взаимодействие между океанической водой и щелочным гидротермальным источником. Кроме того возникает вопрос и касательно живучести сформировавшихся органических соединений, так как они могли бы попросту раствориться в океанической воде до того, как примут какую-либо биохимическую роль.

Ответом на первый вопрос может быть эффект Вентури*, вызванный повышенной пористостью структуры гидротермальных жерл. Оказавшись внутри жерла, углекислые воды океана могут вступить в реакцию с электронами, переносящимися через каталитические минералы канала гидротермального источника, а новые осадки также могут возникать и дальше по времени, когда две жидкости вступают в контакт.
Эффект Вентури* падение давления, когда поток жидкости или газа протекает через суженную часть трубы.
Моделирование данной теории показало, что в случае экспериментального реактора шириной 300 мкм действительно происходит микрожидкостное слияние двух реагентов, что и было показано в ходе практических опытов.

Ученые также отмечают, что такой эффект не ограничивается подводными щелочными жерлами и, вероятно, будет происходить в пористых гидротермальных системах в любом месте и на любой глубине, что дает возможность множеству геохимических сценариев возникновения жизни.

Стоит отметить, что микрожидкостная система восстановления СО2 с помощью H2 не является единственной. Существует также и методика, где используется одноканальная периодическая система.

За счет других минералов (Fe3Ni), более высокого давления (10 бар для H2) и более высокие температуры (100 C), чем в проводимых опытах, система периодического действия позволяет получить куда больше формиата, а также несколько продуктов дальнейшего восстановления (ацетат, метанол и пируват). При этом скорость производства формиата (5.21 х 10-9 моль/с) на четыре порядка выше скорости, достигнутой микрожидкостной системой.

Важность периодической системы заключается в том, что ее результаты подтверждают работоспособность микрожидкостной системы. Таким образом подтверждается и теория касательно существования органических веществ в условиях бескислородных щелочных гидротермальных источников.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Все, что имеет начало, имеет и конец. Эти слова, сказанные Пифией из х/ф Матрица, в той или иной интерпретации говорились реальными философами и учеными задолго до выхода этой кинокартины. Помимо этого, из курса школьной химии вспоминается один из основоположных принципов науки ничто никуда не девается и ниоткуда не берется бесследно. С тем, что будет в конце, а точнее после него, разбираться человечеству придется еще очень долго. Но вот какое-то понимание того, что было в начале, уже есть.

В данном исследовании ученые описали возможный вариант формирования первых органических соединений. По их мнению этот процесс протекал на стыке океанических вод и гидротермальных источников. В ходе экспериментов удалось преобразовать СО2 в органические молекулы посредством H2 и управляемого рН.

Такой результат не только объясняет исток жизни на нашей планете, но и может быть использован в разработке инструментов для снижения выбросов CO2, что является весьма удручающей проблемой современного мира. Помимо прочего, понимание того, как органика появилась на Земле, позволяет строить более рентабельные теории о возможном наличии оной на других планетах, подобных нашей.

Если же переключиться на более философскую волну, то можно с уверенностью сказать, что данный труд демонстрирует важность понимания прошлого для успешного формирования будущего. История полнится исследованиями, которые современники называли праздным любопытством и пустой тратой времени. Подавляющее большинство из них оказались гораздо важнее, чем кто-либо мог предположить. Вывод прост: в науке искать ответы нужно на все вопросы, какими бы глупыми на первый взгляд они ни казались.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Скорость звука каков ее предел?

14.10.2020 10:20:11 | Автор: admin


Одна из основных задач какой-либо точной науки заключается в измерении и объяснении тех или иных процессов, а также их участников. За многие годы исследований, расчетов и споров научное сообщество пришло к пониманию того, что существуют определенные ограничения в некоторых явлениях. К примеру, скорость света в вакууме равна 299 792 458 м/с. Согласно специальной теории относительности, ничто не может двигаться быстрее. Другими словами, мы имеем верхний скоростной лимит для света. Однако такой лимит для скорости звука пока не был установлен. Ученые из Лондонского университета королевы Марии (Англия, Великобритания) провели расчеты, результатом которых стало открытие верхнего предела скорости звука. Что стало основой расчетов, каковы их результаты, и в каких областях можно применить новообретенные знания? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Звук это волны механических колебаний в какой-либо среде. Скорость распространения этих волн напрямую зависит от самой среды. К примеру, в твердых объектах звук распространяется быстрее, чем в воздухе. Однако и тут могут быть флуктуации в измерениях, поскольку важна не только среда как таковая, но и ее состояние (температура, давление и т.д.).

Логично, что скорость звука сложно назвать константой, так как в разных условиях она будет своя: в воздухе это 331 м/с, в воде 1500 м/с (тут будут вариации в зависимости от температуры, давления и солености воды), а в стекле 4800 м/с.

Но как же рассчитать верхний лимит скорости звука?

Как напоминают нам ученые, некоторые важные свойства конденсированных фаз* определяются фундаментальными физическими константами.
Конденсированные фазы* состояние вещества, когда число его компонентов (атомов, молекул и т.д.) крайне велико, а взаимодействия между компонентами очень сильны. К числу таких фаз можно отнести и твердые вещества, и жидкости.
Радиус Бора позволяет охарактеризовать межатомное расстояние в ангстрем (1 = 0.1 нм) масштабах с точки зрения массы электрона (me), заряда (e) и постоянной Планка (h). Эти же фундаментальные константы входят в энергию Ридберга*, задавая масштаб характерной энергии связи в конденсированных фазах и химических соединениях.
Постоянная Ридберга* предельное значение наивысшего волнового числа любого фотона, который может быть испущен атомом водорода. Также эта постоянная определяет волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.
Тем не менее крайне важную в физике играют безразмерные и не зависящие от единиц измерения константы. К ним относятся постоянная тонкой структуры* и отношение массы протона к массе электрона*.
Постоянная тонкой структуры* () фундаментальной физической постоянной, которая характеризует силу электромагнитного взаимодействия. Эта постоянная определяет размер крайне малого изменения величины энергетических уровней атома и образования тонкой структуры, которые являются набором узких и близких частот в его спектральных линиях.
Отношение массы протона к массе электрона* (mp/me константа, равная 1836,15267261.
Объединение этих констант позволяет определить новую безразмерную константу, описывающую верхнюю границу скорости звука (vu) в конденсированных фазах (формула 1):

где c скорость света в вакууме, постоянная тонкой структуры, mp/me отношение масс протона и электрона, vu верхний предел скорости звука.

Подтверждение верности данной формулы было получено благодаря многочисленным экспериментам и моделированию атомарного водорода.

Результаты исследования


Авторы сего труда отмечают, что существует два подхода к определению v (скорости звука). Один поход начинается с оценки упругости системы, а второй с оценки ее вибрационных свойств. Оба подхода дают сопоставимые результаты (приготовьтесь, формул будет немало).

Что касается упругости системы, то продольная скорости звука равна: v = (M/p)1/2, тогда как M = K + 4/3G, где K объемный модуль упругости; G модуль сдвига; p плотность.

Было установлено, что упругие постоянные определяются плотностью электромагнитной энергии в конденсированных фазах. В частности, была установлена четкая связь между модулем объемной упругости (K) и энергией связи (E): K = f E/a3, где а межатомное расстояние, f коэффициент пропорциональности.

Это соотношение может быть выведено с точностью до константы, задаваемой второй производной функции, представляющей зависимость энергии от объема. Для наиболее прочно атомарно связанных твердых тел f варьируется в диапазоне от 1 до 4. Также стоит учесть и коэффициент пропорциональности между M и E/a3, который варьируется от 1 до 6.

Объединение v = (M/p)1/2 и М = f E/a3 в результате дает v = f1/2(E/m)1/2, где m масса атома или молекулы (в данном случае использовалась m = pa3). Коэффициент f1/2 составляет примерно от 1 до 2 и может быть исключен в случае приблизительной оценки v. В таком случае мы получим (формула 2):

Энергия связи в конденсированных фазах определяется ридберговской энергией порядка нескольких электрон-вольт (формула 3):

где е заряд электрона, m масса электрона. ER используется для оценки величины энергии связи (E).

Используя E = ER из формулы 3 в формуле 2 мы получим (формула 4):

где = (1/40)(e2/hc) постоянная тонкой структуры.

Такой же результат, как и в формуле 4, можно получить и посредством второго подхода, где основной акцент поставлен на рассмотрении вибрационных свойств системы.

Продольную скорость звука (v) можно оценить как фазовую скорость по кривой продольной дисперсии [ = (k)] в приближении Дебая: v = D/kD, где D это частота Дебая; kD волновой вектор. Применение kD = /a (a межатомное/межмолекулярное расстояние) приводит к (формула 5):

Как мы уже рассматривали ранее, характеристики межатомного разделения описываются радиусом Бора (aB) в ангстрем масштабах (формула 6):

Далее было использовано отношение между фононной энергией (hD) и E. Фононная энергия может быть выражена как h(E/ma2)1/2. Если взять отношение hD/E, использовать а = aB из формулы 6 и E = ER из формулы 3, то в результате получится (формула 7):

Применение формулы 7 в формуле 5 дает следующее (формула 8):

Сравнение данных расчетов с первым подходом указывает на то, что второй подход использует больше приближений, потому ученые решили на дальнейших этапах исследования использовать первый подход (формула 4), который является более точным.

Далее выбранный подход был проверен на более практическом уровне.

me характеризует электроны, которые отвечают за взаимодействия между атомами. Электронный вклад далее отражается в коэффициенте c (c e2/h), который представляет собой скорость электронов в модели Бора. Ученые отмечают, что с и v не зависят от c. Использование формулировки v в виде с в формуле 4 обусловлено двумя факторами.

Во-первых, так намного удобнее и информативнее представлять границу в отношении vu/c, что обычно применяется в отношении скорости Ферми и скорости света (vF/c).

Во-вторых, именно (наряду с mp/me) имеет фундаментальное для стабильности протонов и обеспечения синтеза тяжелых элементов и, следовательно, существования твердых тел и жидкостей, в которых звук может распространяться.

m формула 4 характеризует атомы, участвующие в распространении звука. Его масштаб задается массой протона mp: m = Amp, где A атомная масса. Учитывая, что А = 1, а m = mp, применение формулы 4 позволяет определить значение верхней границы скорости звука (формула 9):

Таким образом было показано, что vu зависит только от фундаментальных физических констант, включая безразмерную постоянную тонкой структуры и отношение масс протона и электрона.

Вышеуказанная формула является расширенным вариантом формулы 4 для атомарного водорода. Объединение формул 4 и 9, при учете m = Amp, позволяет получить (формула 10):

Что ж, теперь можно немного отдохнуть от формул и приступить к обсуждению расчетов и экспериментов.

Ученые отмечают, что хоть скорость звука определяется модулями упругости и плотностью, они существенно отличаются в зависимости от типа связи: сильные ковалентная, ионная или металлическая связи, обычно дающей большую энергию связи, промежуточные водородные связи, а также слабые дипольные и ван-дер-ваальсовые взаимодействиям. Модули упругости и плотность также меняются в зависимости от конкретной конструкции, которую принимает система. Кроме того, тип связи и структура сами по себе взаимозависимы: ковалентная связь приводят к образованию открытых структур, а ионная плотноупакованных. Следовательно, скорость звука для конкретной системы не может быть предсказана аналитически и без явного знания структуры и взаимодействий внутри нее, подобно другим системно-зависимым свойствам, таким как вязкость или теплопроводность.

Тем не менее зависимость v от m или A может быть изучена в семействе элементарных твердых тел. Элементарные твердые вещества не имеют смешанных особенностей, существующих в соединениях из-за смешанной связи между разными атомными разновидностями (включая смешанную ковалентно-ионную связь между одними и теми же парами атомов, а также разные типы связи между разными парами).


Изображение 1

Теория была проверена на практике с применением 36 различных элементарных твердых тел, в том числе полупроводников и металлов с большими энергиями связи. Результаты теоретических расчетов были объединены с результатами опытов на графике выше. Прямая линия на графике (формулу 10) оканчивается ее верхней теоретической границей (формула 9) для A = 1. Линейный коэффициент корреляции Пирсона*, рассчитанный для экспериментального набора (log A, log v), составил -0.71. Его абсолютное значение немного выше границы, условно разделяющей умеренную и сильную корреляции.
Коэффициент корреляции Пирсона* используется для изучения связи двух переменных, измеренных в метрических шкалах на одной и той же выборке.
Расчетные и экспериментальные значения vu, показанные на графике прямой и пунктирной линиями, указывают на пересечение в точке 37.350 м/с, что подтверждает верность расчетных походов и, особенно, верность аппроксимации коэффициент в формуле 4, что дает хорошее согласование с экспериментальными данными.


Изображение 2

Далее было решено проверить согласование расчетных данных с экспериментальными с применением более широкого спектра образцов (133 образца). Экспериментальные значения v были меньше, чем верхняя теоретическая граница vu в формуле 9. vu примерно вдвое больше v в алмазе, это является самой высокой скоростью звука, измеренной в условиях окружающей среды.

Формула 10 может использоваться для приблизительного прогнозирования средней или характеристической скорости звука (v). A1/2, которая, согласно формуле 10, относится к скорости звука, варьируется по периодической таблице в диапазоне от 1 до 15 со средним значением 8. Согласно расчетам соответствующее значение v равно 4513 м/с. Это на 16% согласуется с 5392 м/с средним значением по всем элементарным твердым телам, и на 14% с 5267 м/с средним значением по всем твердым телам на графике выше.

В эксперименты также были включены данные по скорости звука в жидкости при комнатной температуре, которые варьируются от 1000 до 2000 м/с. Однако в высокотемпературных жидких металлах, таких как Al, Fe, Mg и Ni, v достигает более высоких значений в диапазоне от 4000 до 5000 м/с. Из этого следует, что скорость звука в жидкостях полностью удовлетворяет расчетную верхнюю границу скорости.

Ученые отмечают, что хоть приближения, использованные в некоторых формулах, и могут повлиять на вычисление v и его оценку, vu все же формируется исходя из фундаментальных констант. Другими словами, в конечном итоге приближения не имеют столь значимого влияния.

Также было установлено, что рассчитанное значение верхней границы скорости звука применимо к твердым телам не только с сильной межатомной связью, но и со слабой. Формула 3, 6 и 7 предполагают, что валентные электроны непосредственно участвуют в связывании. Следовательно, они играют важную роль в системах с металлической, ковалентной и ионной связью. Несмотря на то, что связывание в твердых телах со слабой связью также имеет электромагнитное происхождение, слабые дипольные и ван-дер-ваальсовые взаимодействия приводят к меньшему E и, как результат, меньшему v. Потому из этого следует, что верхняя граница vu применима и к слабосвязанным системам.

Ученые отмечают, что верхняя граница vu соответствует твердому водороду с прочной металлической связью. Данная фаза вещества существует только при мегабарном давлении и динамически нестабильна при атмосферном давлении, где происходит образование молекул. Посему было решено провести расчеты v в атомарном водороде, чтобы подтвердить верность расчетов как таковых.

Расчеты скорость звука в атомарном водороде проводились с применением структуры I41/amd, которая является наилучшей структурой-образцом для твердого атомарного металлического водорода. Известно, что эта структура становится термодинамически стабильной в диапазоне давлений от 400 до 500 ГПа, ниже которого твердый водород является молекулярным твердым телом. Однако было обнаружено, что I41/amd динамически устойчива при давлениях выше примерно 250 ГПа, поэтому расчеты проводились в диапазоне давления от 250 до 1000 ГПа.


Изображение 3

На графике выше представлена скорость звука как функция давления и плотности. Рассчитанное значение скорости звука было ниже значения vu в широком диапазоне давлений. Увеличение v выше расчетной верхней границы возникает лишь при давлении 600 ГПа и выше. Следовательно, при нормальных условиях скорость звука не будет превышать расчетную верхнюю границу.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые определили, что важнейшую роль в оценке максимально возможной скорости звука играют две фундаментальные константы постоянная тонкой структуры и отношение массы протона к массе электрона.

Проведенные расчеты были проверены на практике с применением разнообразных материалов. Эксперименты позволили установить, что скорость звука должна уменьшаться с атомарной массой. Из этого следует, что максимальная скорость звука достигается в твердом атомарном водороде, который может существовать в таком виде лишь при очень высоком давлении. Тем не менее было установлено, что верхняя граница скорости звука в рамках данного исследования составляет 36100 м/с. С практической точки зрения, подобные исследования крайне важны для понимания тех или иных материалов, а также их свойств.

Естественно, ученые не намерены останавливаться на достигнутом. Их расчеты и соответствующие экспериментальные данные требуют перепроверки, уточнения и дополнительного подтверждения. В будущем данное исследование будет продолжено, а верхняя граница скорости звука может неожиданно сместиться в большую или меньшую сторону ввиду новых данных. Как бы то ни было, фундаментальный подход остается прежним, а сам факт лучшего понимания процессов, протекающих вокруг нас, позволяет с уверенностью смотреть на развитие данного исследования.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Томские ученые нашли способ удешевить производство водородного топлива

15.10.2020 16:12:34 | Автор: admin

Водород считается практически идеальным топливом, поскольку при сгорании он не выделяет вредных парниковых газов типа CO2 только водяной пар. Эра чистого топлива, однако, еще не наступила производить водород слишком дорого. Одна из причин в том, что в процессе используются катализаторы из благородных металлов.

Ученые Томского политехнического университета (ТПУ) нашли более доступную альтернативу металлам платиновой группы и разработали технологию получения перспективного материала кубического карбида вольфрама. Как открытие российских исследователей приблизит повсеместное использование водородного топлива под катом.

Почему водород?


Востребованность водорода растет, а объемы его использования удваиваются каждые 15 лет. Широкое применение этот химический элемент нашел в нефтепромышленности.

Помимо этого, водород имеет ключевое значение в так называемой декарбонизации экономики, подразумевающей уход от использования углеводородов. В качестве топлива он является одной из самых безвредных альтернатив. По оценкам BloombergNEF (BNEF), так называемый зеленый водород, полученный с помощью электролиза, может сократить глобальные выбросы парниковых газов до 34% к 2050 году.

На сегодняшний день объем рынка водородного топлива оценивается в $700 млрд. Во всех стратегических документах Евросоюза, принятых за последнее время, водород назван основным драйвером роста для преодоления экономического кризиса, вызванного COVID-19.

Трудности производства


Водород практически не встречается на Земле в чистом виде, элемент извлекают из других соединений в результате химических реакций. Как правило, это производство, которое экономически невыгодно либо его сложно поставить на промышленные рельсы. Ученые изучают различные способы удешевления и облегчения производства водорода. Ведь это напрямую влияет на то, как быстро мир сможет перейти на более экологичное топливо.

Производство водорода из воды. Источник

Эксперты BNEF прогнозируют, что еще до 2030 года зеленый водород будет стоить чуть выше $2/кг и начнет конкурировать с углем и природным газом в промышленности, например, при производстве стали. А к 2050 году химический элемент сможет конкурировать по цене с самым дешевым углем, при этом не производя ни грамма CO2.

Перспективы хорошие. Так, год назад немецкая нефтедобывающая компания Shell начала строить одну из крупнейших в мире установок по производству водорода методом электролиза. Планируется, что работать она начнет к концу года и сможет производить до 1300 тонн водорода ежегодно.

Более дешевый катализатор


Обычно при электролизе водорода используются катализаторы из металлов платиновой группы платины, иридия, рутения и их производных. Все они причисляются к благородным металлам и являются очень дорогими.

Более дешевый аналог кубический карбид вольфрама. Условия его производства непросты: для синтеза нужна температура под 3000С и очень быстрое охлаждение. Но ученым Томского политехнического университета удалось разработать установку, позволяющую производить этот материал с высоким процентом чистоты (до 95 %).

Карбид вольфрама. Источник

Установка коаксиальный магнитоплазменный ускоритель. Высокой температуры и сверхбыстрого охлаждения он достигает с помощью плазменных струй. Их скорость составляет более 3 км/c, а сама реакция занимает менее 1 мс. В ускоритель помещают доступные и относительно дешевые порошки вольфрама и технического углерода. В рабочей камере устройства исходные порошки в ходе плазмохимической реакции трансформируются в кубический карбид вольфрама. Результаты экспериментов ученые описали в научном журнале Journal of Alloys and Compounds.

Полученные в ходе реакции наночастицы кубического карбида вольфрама успешно применяются в реакции получения водорода из воды. Это позволит минимизировать использование редких и дорогостоящих благородных металлов платиновой группы, рассказывает доцент отделения электроэнергетики и электротехники ТПУ Иван Шаненков.

Иван Шаненков. Источник: ТПУ

Что дальше


Перспективность материала ученые ТПУ подтвердили вместе с китайскими исследователями из Цзилиньского университета и Университета Циндао. В будущем ученые планируют повысить каталитическую активность материала и полностью отказаться от использования дорогостоящих благородных металлов при электрокатализе водорода из воды.

Подробнее..

Уголь грядущих веков когда водород заменит ископаемые энергоносители?

28.12.2020 14:06:07 | Автор: admin


Хотя коронавирус помог человечеству снизить вредные выбросы в атмосферу в I полугодии 2020 на рекордные 9%, экологам праздновать победу рано, потому что, как говорят сантехники, тут всю систему менять надо систему углеродной экономики, построенной на тотальном потреблении ископаемых энергоносителей. И если с новыми источниками мы определились (солнце и ветер), то с носителем их нестабильной энергии ещё нет. На эту роль претендует водород. В этот раз мы расскажем о его перспективах, а также о предсказании Жюля Верна, о ночном кошмаре Илона Маска, о самом большом в мире заводе зелёного водорода в Фукусиме и наших шансах на пенсии ездить до дачи на водородных электричках (шансы велики).

Построенное Toshiba предприятие Fukushima Hydrogen Energy Research Field в префектуре Фукусима самый крупный в мире опытный завод по производству водорода через электролиз. Работы велись в рамках проекта Hydrogen social construction technical development project/Hydrogen energy system technical development/Technical development concerning business model construction and the large-scale actual proof of a re-energy use hydrogen system японской Организации по разработке новой энергетической и промышленной технологии (NEDO).


Источник: Toshiba Energy Systems & Solutions Corporation

Жюль Верн в Таинственном острове в 1875-м году писал:
Вода? переспросил Пенкроф. Вода будет гореть в топках пароходов, локомотивов, вода будет нагревать воду?
Да, но вода, разложенная на составные части, пояснил Сайрес Смит. Без сомнения, это будет делаться при помощи электричества, которое в руках человека станет могучей силой, ибо все великие открытия таков непостижимый закон следуют друг за другом и как бы дополняют друг друга. Да, я уверен, что наступит день, и вода заменит топливо; водород и кислород, из которых она состоит, будут применяться и раздельно; они окажутся неисчерпаемым и таким мощным источником тепла и света, что углю до них далеко! Наступит день, друзья мои, и в трюмы пароходов, в тендеры паровозов станут грузить не уголь, а баллоны с двумя этими сжатыми газами, и они будут сгорать с огромнейшей тепловой отдачей. Следовательно, бояться нечего. Пока землю населяют люди, она их не лишит своих благ, ни света, ни тепла, она отдаст в их распоряжение растения, минералы и животных. Словом, я уверен, когда каменноугольные залежи иссякнут, человек превратит в топливо воду, люди будут обогреваться водой. Вода это уголь грядущих веков.
Хотелось бы мне поглядеть на всё это, заметил моряк.
Рано ты появился на свет, Пенкроф, вставил Наб, до тех пор не проронивший ни слова.


Инженер Сайрес Смит (на рисунке в центре) описывает не только водородную экономику. На страницах романа Жюля Верна Таинственный остров (1875 г.) он рассказывает, как добывать огонь без спички, определять долготу и широту, строить гончарную печь, делать нитроглицерин и гидроксил, свечи, сооружать гидравлический лифт и т.п. Источник: Rama / Wikimedia Commons

Скептично настроенный моряк из робинзонады Жюля Верна Таинственный остров действительно родился слишком рано, чтобы убедиться в точности прогноза Сайреса Смита. Цель превратить водород в уголь будущих веков в большинстве программ разных стран должна быть достигнута к 2030-2050 гг. Значит ли это, что человечество уже прошло, скажем, две трети пути к водородной экономике? Попробуем спрогнозировать, но сначала разберёмся с хронологией.

Началось всё в 1776 году с открытия водорода британцем Генри Кавендишем, который реакцией цинка и соляной кислоты получил этот бесцветный газ. В 1800 году его соотечественники Уильям Николсон и Энтони Карлайл впервые провели электролиз известную всем нам со школы реакцию разложения воды на водород и кислород с применением электричества.

Спустя 30 лет химик из Швейцарии Кристиан Шёнбейн и британец Уильям Грове провели обратный процесс получили электричество из водорода и кислорода, построив первые в истории топливные элементы на водороде с кислотным электролитом.

В XX веке стало больше прикладных исследований. В 1920-е гг. в немецкий инженер Рудольф Эррен реконструировал двигатели внутреннего сгорания грузовиков, автобусов и подлодок так, чтобы они могли работать на водороде и его смесях. А британец Джон Холдейн впервые предложил использовать энергию ветра для производства водорода электролизом.

Катастрофа дирижабля Гинденбург в 1937 году, а затем Вторая Мировая война прервали на время исследования в этой области, хотя водород активно использовался, к примеру, в блокадном Ленинграде.


Когда в Ленинграде закончился бензин, механик Борис Шелищ сумел перевести автомобильные двигатели на отработанный аэростатами водород. Источник: RIA Novosti archive / Wikimedia Commons

В 1970 году химик из США Джон Бокрис ввёл понятие водородной экономики, предложив питать электросети американских городов энергией солнца, а в качестве её носителя использовать водород.

Все эти годы доступный и практичный газ активно осваивали в промышленности. Правда, о его экологическом потенциале не задумывались, поэтому большинство оставшихся в наследство от индустриальной эпохи способов получения водорода хотя и недорогие, но грязные. О них далее.

5 оттенков водорода: для чего и как его добывают?


С тех пор как Джон Бокрис предложил превратить водород в энергоноситель, мировой спрос на этот газ увеличился в три раза и достиг 70 млн тонн в год. По разным оценкам, к 2040-м годам показатель возрастет до 100-200 млн тонн в год. По подсчетам Международного энергетического агентства (МЭА), для нефтепереработки вырабатывают 33% этого газа, для получения аммиака и минеральных удобрений 27%, для синтеза метанола 11%, а для удовлетворения нужд сталелитейной промышленности 3%.


Водород бесцветный, не имеющий запаха и вкуса, нетоксичный газ, но в смеси с воздухом или кислородом горюч и опасен. Источник: Toshiba Clip

А откуда берётся водород? Львиная доля добывается из природного газа (76%) и угля (23%). Из-за этого экологически безвредный H2 получается грязным для окружающей среды его производители выбрасывают в атмосферу столько же углекислого газа, сколько Великобритания и Индонезия вместе взятые. Чтобы раскрыть экологический потенциал водорода, его нужно производить иначе.

В последние годы сложилась цветовая классификация водорода по виду источника для его производства:
серый водород из природного газа;
синий водород из полезных ископаемых, но с применением технологии захвата углекислого газа (Carbon Capture and Storage, CCS), о которой мы рассказывали здесь.
чёрный водород из угля;
коричневый водород из бурого угля;
зелёный водород из возобновляемых источников энергии (ВИЭ).

Теперь посмотрим, как именно производятся разноцветные водороды и сколько это стоит.

Легче воздуха, но дороже доллара: сколько стоят разные виды водорода?


Начнём с ископаемых источников. Из природного газа водород производят реформингом преобразованием CH4 путем эндотермической реакции с использованием водяного пара. Минус этой технологии выбросы CO2, которые, впрочем, можно уменьшить до 90%, если применять технологии CCS.

Для справки: один кубометр водорода равен 0,08988 килограмма или 1,2699 литра и имеет примерно такую же энергетическую ценность, как треть литра бензина. Это означает, что сжигание 1 килограмма водорода высвобождает такое же количество энергии, как и сжигание 2,75 килограмма бензина.

Серый водород пока самый дешёвый. По данным МЭА, стоимость производства одного килограмма водорода 0,903,20 долл. США в зависимости от региона и технологии. Самая низкая цена на Ближнем Востоке (0,90 долл./кг), в США (1,00 долл./кг) и России (1,10 долл./кг) выручают низкие цены на природный газ. В Европе и Китае получается дороже: 1,73 долл./кг 1,78 долл./кг соответственно.

Синий водород, вырабатываемый из природного газа с применением захвата CO2, дороже. На Ближнем Востоке он обойдётся 1,45 долл./кг, в США 1,52 долл./кг, в России 1,64 долл./кг, в Европе 2,32 долл./кг, в Китае 2,38 долл./кг.


Чтобы снизить углеродный след от производства водорода, можно использовать технологии захвата углекислого газа. Принцип CSS на схеме. Источник: Toshiba Energy Systems & Solutions Corporation

Чёрный водород производят методом газификации переработки твердого или жидкого топлива путем его окисления. Так делают в основном в Китае, где много дешёвого угля. При производстве чёрного водорода выбросы CO2 увеличиваются в два раза по сравнению с серым. Но китайцев привлекает в нём цена один килограмм чёрного водорода стоит 1,10 долл., а с применением захвата CO2 1,50 долл.

Коричневый водород также можно вырабатывать газификацией, но бурый уголь пока редкость, поэтому говорить об усредненных ценах рано. Австралийцы хотят его использовать и, по их расчётам, стоимость одного килограмма коричневого водорода (с учётом CCS) составит 2,142,74 долл.

Конечную цену всех этих видов водорода в основном определяет стоимость сырья, и это главная проблема. Газ и уголь исчерпаемые ресурсы, их цена волатильна, а углеродный след очень заметный. Поэтому с каждым годом всё привлекательнее и для экологов, и для экономистов идея добывать энергоноситель из воды, покрывающей 70% поверхности Земли.

Зелёный водород: где его производить и сколько он стоит?


Электролизом пока производится менее 0,1% водорода, но именно этот метод предполагает использование возобновляемых источников энергии.

А энергии нужно много: по подсчетам МЭА, чтобы произвести электролизом текущий годовой объём водорода (70 млн тонн), нужно электричества больше, чем вырабатывает за год Евросоюз (3,60 тыс. ТВтч). Поскольку технология получается энергоемкой, стоимость зеленого водорода в основном зависит от цен на электричество.

К счастью, они снижаются: по данным Международного агентства по возобновляемой энергии (International Renewable Energy Agency, IRENA), в 2019 году средняя стоимость солнечного электричества снизилась на 13% до 0,07 долл./кВтч. Энергия морского и сухопутного ветров подешевела на 9% соответственно до 0,05 долл./кВтч и 0,12 долл./кВтч. Электричество, выработанное из ископаемых источников, в среднем оценивается в 0,066 долл./кВтч.

Когда на Земле истощатся запасы воды, на электролиз пойдут запасы виски, пива, энергетиков и газировки. Источник: YouTube-канал Inventor

Со второй составляющей потенциального электролитического чуда (водой) попроще: на один килограмм водорода нужно девять литров воды. Соответственно, чтобы получить годовой объём водорода, понадобятся 617 млн куб. м воды 1,3% мирового потребления H20 энергетикой. Вода нужна пресная, а морскую воду придётся деминерализовать. Впрочем, к цене одного килограмма водорода это добавляет всего 0,01-0,02 долл.

Сколько в итоге стоит зелёный водород? По данным Совета по водородной энергетике (Hydrogen Council), сейчас его цена в среднем равна 6,00 долл. за кг. МЭА даёт такую вилку: 3,007,50 долл./кг. Есть факторы, которые сильно влияют на стоимость зелёного водорода. Прежде всего, это регион.


Самые перспективные уголки планеты для водорода на возобновляемых источниках энергии это Патагония, Северная Африка, Ближний Восток, Монголия, Австралия, Китай, США и Новая Зеландия. Здесь стоимость зеленого водорода составит 1,60-2,40 долл./кг. Источник: International Energy Agency

Второй фактор масштаб производства. Чем он больше, тем ниже конечная стоимость зелёного водорода. И поэтому, хотя Япония небольшая страна, земли для самого большого в мире завода по производству водорода на солнечной энергии компании Toshiba власти префектуры Фукусима не пожалели

Реально мирный атом: зачем в Фукусиме построили самый большой водородный завод в мире?


По подсчётам Совета по водородной энергетике (Hydrogen Council), чтобы один килограмм зелёного водорода стоил 1,00-2,00 долл., к 2030 году, нужно увеличить его производство до 12 млн тонн в год. Чем больше масштаб производства, тем ниже его удельные затраты.

Чтобы понять, как большое производство водорода можно интегрировать в существующую энергосистему, компания Toshiba построила самый крупный в мире опытный завод по производству водорода через электролиз, который питает энергия солнечной электростанции (СЭС). Он называется Fukushima Hydrogen Energy Research Field, FH2R. Завод находится в посёлке Намиэ (преф. Фукусима) и занимает площадь 220 тыс. кв. м. Он состоит из солнечной электростанции мощностью 20 МВт и электролизера с входной мощностью 10 МВт.


Помимо СЭС, завод питает обычная электросеть. ВИЭ могут давать энергию с избытком, и лишний водород можно запасать для поддержания электролиза в периоды минимальной активности солнца или ветра. Но не в столь солнечной стране как Япония Toshiba решила использовать электросеть, чтобы найти экономический баланс между альтернативным традиционным источниками тока. Источник: International Energy Agency

Опытный завод FH2R будет производить до 900 тонн водорода в год для питания машин и автобусов на топливных элементах, а также для собственных нужд. Выработка достигнет 1,20 тыс. куб. м в час, то есть в сутки продукции завода хватит на заправку 560 водородомобилей и энергию для 150 домов.

Кстати, о транспорте. Путь к водородной экономике, скорее всего, лежит через баки личных авто, автобусов и грузовиков, где водород заменит бензин. Как и когда это произойдёт?

Ночной кошмар Илона Маска: победят ли водородомобили Теслу?


Машины на топливных элементах программа минимум водородной революции. Такой транспорт в центре внимания программ большинства принявших их стран.

Водород содержит больше энергии на единицу массы, чем природный газ или бензин, что делает его привлекательным в качестве транспортного топлива. Из плюсов ещё быстрая заправка (в отличие от электрокаров), больший запас хода (около 400 км при средних 250 км у электромобилей), низкий вес сырья, отсутствие выбросов CO2, более экологичная и простая утилизация топливных ячеек по сравнению с батареями электрокаров.

Сейчас по миру ездят более 25 тыс. машин на водороде в два раза больше чем в 2018. В основном это Toyota Mirai (о которой мы однажды <ahref=habr.com/ru/company/toshibarus/blog/430372>писали здесь, на Хабре), Hyundai Nexo и Honda Clarity Fuel Cell, хотя в Китае доминируют автобусы и грузовики. Но водородомобилей гораздо меньше, чем их прямых конкурентов электрокаров на батареях, число которых приблизилось к 7,2 млн. Почему?

Во-первых, водородные машины дороже. К примеру, Toyota Mirai стоит 58,5 тыс. долларов США, а Tesla Model 3 35 тыс. долл. Дорогими выходят два основных компонента водородомобиля топливные элементы и бак. Однако и эта проблема в перспективе будет решена увеличением масштабов производства. Если сейчас стоимость топливной ячейки для водородной машины составляет 230-180 долл/кВтч, то при увеличении их выпуска с 1 тыс. до 500 тыс. единиц в год она снизится до 45 долл/кВтч. Цена водородного бака при таком же увеличении масштаба снизится с 23 долл/кВтч до 14-18 долл./кВтч.


В Toyota Mirai два водородных бака общим весом почти 88 кг. Водород в них хранится под давлением в 70 МПа. Источник: Mariordo / Wikimedia Commons

Во-вторых, есть проблема с заправками: их мало 25 тыс. водородомобилей заправляются на 470 станциях, большая часть которых находятся в Японии (113), Германии (81) и США (64). Впрочем, со временем проблему решит развитие сети заправок.

Теперь о расходах на топливо. К примеру, в Германии 1 кг водорода на общественных заправках стоит 9,50 евро. Автомобиль на топливных элементах потребляет примерно один килограмм водорода на 100 км. Таким образом, затраты на топливо сопоставимы со средним бензиновым автомобилем, который потребляет 7 литров на 100 км.

В сумме капитальные и текущие затраты на водородомобиль оцениваются экспертами МЭА примерно в 0,65 долл./км, тогда как у электромобилей он составляет порядка 0,58 долл./км., но в перспективе они сравняются. По прогнозу Совета по водородной энергетике, личные авто станут конкурентоспособными к 2030 году при снижении цены водорода до 2,00 долл./кг. А что с другими областями применения водорода?

Резюме: когда начнётся эпоха водорода (и начнётся ли вообще)?


Эксперты Совета по водородной энергетике посчитали, при какой цене за килограмм водород станет конкурентной альтернативой другим энергоносителями с малым углеродным следом.


Водород уже незаменим в качестве сырья в промышленности, а в будущем его перспективы связаны с транспортом и поставками тепло- и электроэнергии для гражданских и промышленных потребителей. Источник: Path to Hydrogen Competitiveness. A Cost Perspective // 20 January 2020, Hydrogen Council

Когда цена килограмма водорода опустится до 4,00-5,00 долл., конкурентоспособными станут грузовики и автобусы, курсирующие по длинным маршрутам. Причём это может произойти уже через 5 лет. С личными авто и фургонами ситуация иная: даже если цена водорода снизится, их стоимость может остаться высокой относительно электрокаров. Тогда покупать водородомобили будут только автомобилисты с приоритетами быстрой заправки и те, кто использует авто очень интенсивно, например, таксисты. Чтобы превратить маленькие авто в конкурентов Tesla, нужно снизить цену водорода до 1,00-1,50 долл./кг.

А вот электрички на топливных элементах уже вполне могут тягаться с обычными на маршрутах до 50 км с высокой частотой рейсов. Чтобы они сохранили привлекательность, доля расходов на топливо должна упасть с текущих 40-50% до 20-30%, что может произойти при цене 4,5 долл./кг водорода к 2030 году.

Совсем скоро (примерно к 2023 году) могут завоевать мир погрузчики, которые уже сейчас активно используются в Китае при цене 1 кг водорода в 7,00-9,00 долл.

По трубопроводам водород можно подавать в жилые здания. В этом случае он сможет заменить для электричества и отопления домов природный газ с применением технологии захвата углекислого газа. При снижении цены до 3,00-5,40 долл./кг водород становится более выгодным, чем другие системы отопления, скажем, на биометане. Но с природным газом без CCS водород справится только если будет стоить меньше 1,00 долл./кг. В качестве источника электроэнергии топливные ячейки на водороде станут конкурентными при цене 1,90 долл./кг.

Итак


Как видим, полностью водородной экономика к середине этого века всё же не станет. По прогнозу Международного совета по водороду, при цене 1,8 долл./кг водород сможет покрывать до 15% мирового спроса на энергию к 2030 году, а к 2050 году 18%. По-видимому, мы, как и жюльверновский моряк Пенкроф, родились слишком рано, чтобы увидеть, как водород станет углем эпохи. Скорее всего, этот газ будет играть важную роль в многофакторной энергетике и действительно заменит ископаемые в некоторых регионах и сферах применения, но ему ещё долго придётся конкурировать с другими источниками и носителями энергии.
Подробнее..

Япония запустит производство водорода на Луне к 2035 году

29.09.2020 16:20:30 | Автор: admin

Агентство аэрокосмических исследований Японии планирует к 2035 году построить на Луне завод, производящий водородное топливо.

В качестве ориентировочного местоположения выбран южный полюс Луны. В этом месте находятся внушительные запасы льда, из которого получат воду. Расщепленная на водород и кислород вода будет использоваться для производства электроэнергии.

Фото: Unsplash
Основной мотив японских ученых в размещении завода на Луне сокращение затрат на доставку топлива с Земли. Кроме того, этот шаг позволит передвигаться по Луне на тысячи километров и глобально приблизит человечество к освоению космоса.

Японский водород не только для космоса


Мир стремится переходить на чистую энергию, а потому компании чаще обращаются к водороду с нулевым следом. В отличие от нефти и угля его можно использовать без вредных выбросов CO2. Весной этого года в Японии завершили строительство и открыли одно из крупнейших в мире предприятий, производящих водород. Fukushima Hydrogen Energy Research Field работает в поселке Намиэ, расположенном севернее от АЭС Фукусима-1. В государственно-частном партнерстве участвуют Toshiba, Tohoku Electric Power и дистрибьютор природного газа Iwatani.

Фото: japan.go.jp
Завод используется как экспериментальная площадка для испытания новой технологии. В основе технологии традиционный электролиз, воду разлагают на кислород и водород, используя электричество от локальной солнечной электростанции мощностью 20 МВт. Предполагается, что завод будет производить в час 1200 куб.м водорода.

Фото: www.toshiba-energy.com
Водород будут транспортировать на автоцистернах. Его намерены использовать в качестве основного топлива для перемещения персонала и участников Олимпийских игр 2021 года в Токио. Также ресурс задействуют для получения электроэнергии в Олимпийской деревне.

В Японии в 2017 году принята Базовая водородная стратегия (Basic Hydrogen Strategy), согласно которой происходит переход к обществу, работающему на водороде. Такое общество использует водород как альтернативу ископаемому топливу. Водород становится для него основным элементом для производства источников энергии и функционирования транспортных средств.

Япония + NASA


В 2019 году NASA объявило о новой программе освоения Луны Artemis. Программа состоит из трех этапов.

Фото: NASA
Первый этап Artemis I беспилотный полет корабля Orion, установленного на ракету Space Launch System. Корабль пролетит вокруг Луны и обратно на Землю. Намечен на 2021 год.

Фото: NASA
Второй этап Artemis II полет вокруг Луны с экипажем. Планируется в 2022 году.

Третий этап Artemis III высадка экипажа на Луне в 2024 году и затем отправка астронавтов на Марс в 2035 году.

Япония объявила о намерении присоединиться к программе NASA в октябре 2019 года. В июле 2020 года Япония и NASA подписали декларацию о сотрудничестве в программе освоения Луны. Помимо этого, они будут участвовать в создании окололунной станции Gateway.

Также стало известно, что на днях договор о сотрудничестве с NASA по программе Artemis подписала Италия. Она стала первой европейской страной, решившей вместе с NASA осваивать Луну. Помимо научно-технического вклада, участник будет работать над созданием систем прилунения.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru