Русский
Русский
English
Статистика
Реклама

Испытания

Энергия старого мира

04.09.2020 20:08:16 | Автор: admin
image

Введение


Эта статья является продолжением публикации Взгляд в прошлое. Технология 18 века.
В ней мы построили реально работающий паровой двигатель, который должен стать главной частью будущего парового мотоцикла, и даже провели пробные эксперименты по его запуску на воздухе.

image

Теперь нужно решить энергетический вопрос. И тут начинаются основные отличия от двигателей внутреннего сгорания (ДВС). В таких двигателях бензин, смешиваясь с воздухом, попадает в цилиндр двигателя и при воспламенении этой воздушно-топливной смеси выделяется энергия. Расширившиеся продукты горения давят на поршень, производя работу. Но вот у паровых машин, энергия рождается не в двигателе. Она рождается в котле. Котёл производит пар, который в свою очередь и будет давить на поршень нашего двигателя. Эту древнюю энергию нам и требуется обуздать!

Устройство


Паровой котёл котёл, предназначенный для генерации насыщенного или перегретого пара. Может использовать энергию топлива, сжигаемого в своей топке, электрическую энергию или утилизировать теплоту, выделяющуюся в других установках. (Википедия)

Существует два основных типа котлов: классический и прямоточный. Первый тип чаще всего использовался для работы паровых машин. Его можно описать как железный резервуар, в который врезана топка. Топливо горит в топке, обогревая воду в резервуаре. Вода в нём начинает кипеть и создаётся пар под давлением. Такой тип использовался на паровозах и всех первых паровых машинах:
image
У классических котлов есть как преимущества, так и недостатки. Преимущества заключаются в том, что для создания давления пара не требуется каких либо насосов, так как накопленная энергия воды может ещё долго снабжать двигатель паром даже при отсутствии огня. Такие котлы не очень требовательны к качеству воды. Паровозы заправляли самой обычной водой из речек, родников, колодцев и прочее.
Прямоточный котёл можно представить как длинную, компактно свёрнутую трубку, обтекаемую пламенем, в которую насосом закачивают воду. Такой тип котла обладает целым рядом преимуществ:
  1. Позволяет создавать пар большего давления при меньшей массе и небольшому объёму котла.
  2. Из-за того, что в трубке не так много носителя, такой котёл считается более безопасным (не запасается большое количество энергии).
  3. Быстрый выход на режим, так как не нужно прогревать большое количество воды.

Для лёгкого понимания работу такого котла можно представить в упрощённой форме:
image

Создание прямоточного котла


И, конечно, мне захотелось сделать именно прямоточный котёл.
Подобрав длинные нержавеющие трубки разного сечения, я сварил их вместе таким образом, чтобы сечение постепенно увеличивалось. Затем, весь этот 8 метровый кишечник был компактно свёрнут и уложен в раму мотоцикла. Внешние стенки, которые должны удерживать пламя и направлять его в нужную сторону, были сделаны из простой жести. Насос, закачивающий воду (носитель), изготовил из газового доводчика, который обычно придерживает капоты и багажники автомобилей. Конструктивно, доводчик это готовое изделие. Мне необходимо было только приварить вход и выход для воды и приделать клапан, который не пускал бы закаченную воду обратно. Насос подвижно крепился одной своей частью к раме, а второй к кривошипу на валу колеса. С помощью гибкого шланга высокого давления (тормозной шланг от авто) вода под давлением закачивалась в котёл, а забиралась из отдельного бачка, располагавшегося выше насоса. Горелку сделал по типу кровельных, такими рабочие греют рубероид на крышах зданий. Чтобы процент обтекания трубок был больше, горелки поставил сразу две.

Итог


Испытания парового мотоцикла, оснащённого прямоточным котлом, с самого начала пошли не так. Самой первой проблемой стало отсутствие начального давления в котле. Приходилось руками покручивать колесо, чтобы насос отправлял некое количество воды в трубопровод. Но, когда я открывал ручку газа (подавая пар на двигатель) давление пара мгновенно падало, не успевая закрутить колесо. Выход нашёлся не сразу. Был сделан небольшой воздушный ресивер после насоса. Он работал как пружина для воды. Запасал энергию сжатия от насоса и отдавал её обратно, когда насос был в мёртвой точке или в фазе всасывания питательной воды.
Двигатель заработал! Но проработал, около 10 секунд. Золотниковый клапан заклинил. При разборе двигателя, никаких проблем выявлено не было. Собрав его обратно и запустив снова, я столкнулся с той же проблемой. Она оказалась приходящей и уходящей сама собой. После изучения этой проблемы, нашлась ошибка в расчётах теплового расширения. Изначально, золотник представлял собой цельную деталь из фторопласта, а у него, как оказалось, очень большой коэффициент теплового расширения (22) и он при прогреве расширялся настолько, что его насмерть заклинивало в корпусе.
После подробных и тщательных расчётов тепловых расширений был выточен стальной золотник, оснащённый фторопластовыми кольцами, шириной 2 миллиметра.

image

Поскольку корпус алюминиевый, а золотник стальной, вся разница тепловых расширений была сведена практически к нулю.

image

Новое испытание показало, что золотник работает просто прекрасно и без замечаний. Вывешенное колесо крутилось, вода закачивалась, прямоточный котёл работал. Пришло время прокатиться. Но тут возникла новая проблема. Мне не удавалось на нём проехать больше нескольких метров. И опять я был сбит с толку. Всё же работало! На холостом ходу всё отлажено! Что ещё не так?
После долгого анализа других подобных паровых аппаратов,

imageimageimage

я понял, что у меня слишком маленький котёл (длина обогреваемой трубки), в следствие этого при увеличении производительности, вода просто не успевала испаряться и вылетала вместе с паром в двигатель. От такого эффекта пропадает КПД всей установки, так как расширение воды слишком мало или не происходит вовсе. Увеличить длину котловой трубки уже задача не такая простая. Но и на этом моё горе не закончилось.
Во время очередных испытаний, я мучил аппарат, заставляя его работать, но состояние двигателя начало резко ухудшаться и в какой-то момент он заклинил. На этот раз, просто остудить его снегом, не помогло. Снова понадобилась капитальная переборка. Результаты вскрытия показали, что расплавились все фторопластовые кольца и даже алюминиевый поршень от нагрева расширился настолько, что начал задирать цилиндр. И это оказалось фатальной проблемой. Дело в том, что при большом расходе, данный котёл не успевал производить должное количество пара, а при маленьком расходе, он создал пар такой энергии, что просто вышел из строя весь двигатель. И не удивительно. Ведь выходные трубки котла были раскалены докрасна. То есть пар, достигал температур, порядка 600-700 *С. Как мы знаем, фторопласт распадается при 400*С. Для меня, это и стало последней каплей! Мне уже хотелось получить работоспособный мотоцикл, а я погряз в каких-то бесконечных проблемах! Нужно было переделывать в котле почти всё. И в этот-то момент я понял, что, несмотря на неоспоримые преимущества прямоточного котла, это изделие весьма не простое и требует тонкого расчёта, дополнительного регулирующего оборудования, да и насос съедал не малую часть вращательной энергии. Сложилось чёткое понимание, что, если бы я делал классический котёл, то ни одной из этих проблем просто не возникло бы!
Небольшое видео про мучения с прямоточным котлом:



Классический котёл


После всех тех бесконечных проблем с прямоточным котлом, создавая классический, я просто, можно сказать, отдыхал. Как уже говорил выше, это всего-то железная бочка, в которую врезана топка. Можно было совершенно не задумываться о температуре пара, ведь при лишнем давлении срабатывает предохранительный клапан и сбрасывает излишки, уменьшая температуру воды и поддерживая давление в заданных пределах. Не нужно было создавать начальное вращение колеса, чтобы нагнать первоначальное давление. Пар для старта был готов сразу и даже запасён с излишком. Всё, что требовалось это придумать эффективную топку. Но тут пришлось хорошенько подумать, ведь места у нас не так много.

Изготовление


На металлоприёмке я нашёл какой-то ресивер или болон из-под пропана с толщиной стенки 3-4 мм, так что габариты котла уже были заданы жёстко.
Если сильно заморачиваться с массивной и эффективной топкой, то останется мало места для самой воды (носителя). Если топка будет слишком маленькой, то у нас не будет достаточной энергии для более менее удовлетворительной крейсерской скорости, ну и сам процесс нагрева котла займёт слишком много времени.
И вот, что я придумал. Топка будет подвержена сдавливанию огромным давлением, поэтому решено было сделать её простой, сквозной и круглого сечения. Под это пошла обычная труба 100 мм. Для увеличения КПД нашей топки (теплообменника), были врезаны 12 поперечных сквозных трубок.
image
Я посчитал это очень выгодным, так как они обтекались бы пламенем и выхлопными газами под прямым углом,
image
а вода внутри них циркулировала бы под естественным эффектом конвекции. Это позволит сохранить максимальный объём воды в котле, а для нас это запас хода. И, как бонус, такую топку было легко врезать в резервуар. Следовало всего лишь сделать два отверстия по обоим краям.
image
Для контроля давления установил небольшой манометр. Температуру носителя контролировать не обязательно, так как она напрямую связана с давлением и явно не выходит за критическую отметку (400*С). Давление в котле решил сделать как у реальных паровозов 16 bar. Предохранительный клапан настроил на 18 bar. Теперь осталось его опрессовать. Это своего рода проверка на прочность. Котёл наполняется доверху водой и накачивается повышенное давление. Сначала, я это делал оставшимся от предыдущей котловой системы, насосом из доводчика, но сжимать такой насос при давлении более 20 bar, оказалось не простой задачкой (очень хорошо, что мы теперь можем отказаться от такого узла, ведь он забирал уйму мощности на себя). Оказалось, что опрессовывать удобнее всего углекислотным огнетушителем. Им я без труда создал давление в котле в 25 bar (это был максимум моего манометра) и, выждав несколько минут, приступил к настройке предохранительного клапана.
image

Итог


Котёл получился на славу. Даже давление в 25 bar оказалось ему нипочём. Он даже не начал хрустеть. Предохранительный клапан (использовал от компрессоров) срабатывал чётко, хоть и ронял давление с 18 до 9. Этот для нас очень не выгодно, но он будет срабатывать только в тех случаях, когда сам за давлением не уследишь. Так что, до его срабатывания лучше не доводить. Это будет бессмысленное выбрасывание ресурсов.

Пламя


Теперь нужно решить вопрос с огнём. Конечно, было бы красиво и приятно топить подобный мотоцикл дровами. Это же ретроспектива в прошлое, стимпанк, классичность, но, как я уже говорил, у нас очень мало для этого места, ведь наша топка чуть больше локтя. Конечно, можно туда уместить шапку угля, но этого не хватит даже на то, чтобы просто прогреть котёл. Тут пришлось отступить от романтичности и изготовить газовую горелку. На самом деле это очень эффективное, мощное и удобное топливо. Газ жидкий, поэтому его легко запасать, легко подавать в горелку и он сразу идёт под давлением, что позволяет создавать скоростной горячий поток в топке, тем самым улучшая теплообменный процесс (не требуется поддув).

Изготовление


На металлоприёмке нашёл отличные, маленьких размеров, нержавеющие бачки. Судя по их форме и синей окраске, это кислородные баки от какого-то пассажирского самолёта. Я собрал несколько таких бачков в батарею и объединил магистралями подачи газа и заправки. Объём каждого бачка примерно 1.7 л, а значит, можно будет везти с собой запас топлива более 5л. жидкого газа. Согласитесь, не плохой запас энергии.

image

С горелкой не стал мудрить и просто скопировал систему с советской бензиновой паяльной лампы. Тут я должен кое-что пояснить. Паяльная лампа устроена таким образом, что бензин сначала попадает в некую полость, где должен испариться и уже в виде паров выпускается в зону горения. А пламя горелки обогревает эту самую испарительную камеру. То же самое потребуется и нам. Представьте, что будет, если жидкий газ начнёт вылетать из такой горелки Процесс испарения газа относительно долгий, а ко всему прочему, ещё и сопровождается криогенным эффектом. Пламя из такой горелки будет длинным, не эффективным, не экономичным и даже пожароопасным.

imageimage
Эксперимент (рис А)Пламя с не прогретой горелки (рис В)Правильный режим, прогретая горелка

Поэтому подавать газ, в нашу горелку, следует плавно, чтобы она успела прогреться.
Испытания котла прошли как по маслу. Заправил примерно 35 л воды, горелку вывел на полную мощность и ждал. Через 14 минут вода закипела, и давление потихоньку начало подниматься. Примерно через такое же время в котле было 16 bar.
Для управления подачей пара, я использовал простой водопроводный шаровой кран, который отлично справлялся и с температурой, и с давлением. В них используется тот же самый фторопласт, так что проблем, думаю, не будет.
Для интереса, я решил открыть кран на полную и посмотреть на нашу энергию. Струя пара долетала до соседних гаражей и создавала шум взлетающей ракеты. При этом я ощутил силу реактивной тяги, пришлось даже придерживать котёл, чтобы он не начал летать по всей улице. Я был очень доволен!

image

В котле подобного типа запасается огромное количество энергии. Спуская пар в течение 5 секунд через отверстие дюйма, давление в котле упало всего лишь наполовину. Дело в том, что при уменьшении давления, смещается и точка кипения воды. То есть вода начинает кипеть и без подогрева, всего лишь от уменьшения давления. Этот эффект будет работать до тех пор, пока температура воды не упадёт до 100 *С. Это для нас приятная новость. Значит, можно будет долго ездить и с выключенной горелкой.
Но есть и один не совсем для меня понятный эффект. При активном выпускании пара при давлении менее 5 bar, начинает вылетать вода. Я предположил, что она кипит столь интенсивно, что в своём неистовом бурлении долетает до сухопарника и подхваченная потоком пара улетает наружу. Для эксперимента я слил часть воды, оставив уровень 20%. Эффект конечно уменьшился, но всё равно остался. Неужели вода подпрыгивает в котле на 30-40см? Если честно, с этим я пока так и не разобрался. Такая вот небольшая загадка.
Ну да ладно! Функционал готов, пора собрать наш аппарат!

Стиль


Во время конструирования нашего необычного мотоцикла, многие учёные мужи советовали мне сделать замкнутую систему воды. То есть, что бы из двигателя пар не вылетал на улицу, а попадал в конденсатор (охладитель) и получившаяся вода снова закачивалась бы в котёл с помощью маленького насоса. Это очень хорошая идея, я и сам постоянно об этом думал. Но цель нашего проекта не кругосветное путешествие на дровах, а рассмотреть технологию позапрошлого века, победить инженерный вызов и насладиться работой настоящего парового двигателя. Ну, а какой же паровой двигатель без этого легендарного чух-чух. Кроме того, хочется наблюдать вылетающий пар, он будет многое рассказывать о режимах происходящих внутри двигателя. Ну и наконец, я просто нахожу очень красивым, когда от паровоза идут клубы пара, особенно если они подсвечены солнцем. Романтика паровозов, так сказать. Но, не смотря на это всё, для образа, я решил всё-таки сделать конденсатор, что бы было видно о наших замашках, и просто для стиля.

image

Большинство различных самоделок имеют стиль Безумного макса или Постапокалиптического мира. Да, так проще всего. Особо то и делать ничего не нужно. Ржавые железки, приваренные гаечные ключи, немного висящих тряпок и стиль готов. Но этой простоты, или так сказать ленивого стиля в нашем мире очень много. Мне захотелось сделать что-то маленькое, милое и красивое. Сделать конфетку, так сказать. И раз уж у нас древняя паровая технология, сам собой напрашивается Стимпанк.

imageimage

Стимпанк это вымышленный мир. Такой, каким он стал бы, если человечество не изобрело электричество, ДВС и прочие технологии и существовала бы только энергия пара.
Я, конечно, не дизайнер, но при сборке мотоцикла, некоторые вещи всё же пришли на ум.



Испытание парового мотоцикла
Гаражные испытания полностью готового парового мотоцикла, оснащённого котлом классической конструкции, прошли на удивление гладко. Пока я его строил, в комментариях к видеороликам, люди рекомендовали много правильных и умных вещей. По ходу дела, некоторые из них я применял и в итоге они отлично себя показали. Так, например, при прогреве двигателя паром, в нём конденсируется много воды, которая блокирует поршень и может привести к гидроудару. Люди предложили сделать маленькое отверстие с резьбой, с помощью которого можно было бы выпускать пар и сливать сконденсировавшуюся воду, тем самым быстро его прогревать. Потом, заглушить его винтиком и спокойно сразу ехать.
На удивление, самая первая попытка проехать на полностью готовом мотоцикле, прошла без каких либо проблем. Как говорится, сел и поехал. Покатавшись немного перед гаражом, я понял, что для меня этого не достаточно и я хочу больше. Разумеется, чтобы замерить все параметры, увидеть слабые места, ощутить и понять этот аппарат, нужна прямая, пустая, бесконечная трасса. Поэтому пришлось вывести мотоцикл за город и спокойненько со всем этим разобраться.

image

Об испытаниях:
В целом, я очень доволен результатами. Они даже превзошли мои ожидания. Видя, как ездят подобные паровые мотоциклы во всём мире, наша малютка оказалась далеко не на последнем месте.

Видео отчёт. Испытания парового мотоцикла



Заключение


Когда задумывал строить этот паровой мотоцикл, я рассуждал так: вот сделаю его, как нибудь это всё проедет и, удовлетворив все свои инженерные интересы, поставлю его дома напротив дивана в качестве эстетического элемента, навсегда. Но нет! Теперь это наоборот не даёт мне покоя. Я хочу его изучать, модернизировать, переделывать и побивать его же рекорды, хочу определить его максимум, понять всё, на что он способен! Конечно, в рамках этой концепции.
Первое с чего начну, это переделаю систему переключения пара на классическую. Мне стало интересно, какова будет разница. И ещё, при последующих испытаниях нужно будет поиграть с настройками. Добиться максимальной скорости, подобрав наиболее правильное опережение впуска пара. Ещё, хочу поэкспериментировать с разными видами топлива.
Видимо грядёт большая модернизация. Так что, если наш паровоз собирался уйти на пенсию и отсидеться где-нибудь в музее, тут я его сильно разочарую! У него впереди ещё длинное, тяжелое, но интереснейшее будущее!
Подробнее..

Как реверс-инжиниринг чужой инерциальной навигационной системы перерос в свою собственную разработку

19.03.2021 10:13:30 | Автор: admin

Сегодня, благодаря MEMS-датчикам, инженеры начинают использовать инерциальные навигационные системы везде, где есть движение. В зависимости от требуемой точности как по углу, так и по координатам, применяют МЕМS-датчики разного уровня цены и интегрированности: от "все датчики в одной микросхеме" до "один датчик - одна микросхема". А сама инерциальная навигация, как часть инженерных систем, впервые появилась в торпедах, кораблях, ракетах и самолетах.

Вступление

Итак, как заметил Виктор Олегович Пелевин, различные беспилотные летательные аппараты действительно стали распространены во всем мире. И не только для военных целей, но и в быту. А что способствовало распространению их для гражданского применения?

- Прежде всего, снижение стоимости микропроцессоров и микроконтроллеров, а также рост их вычислительной мощности;

- Появление и распространение аккумуляторов с удельной энергоемкостью 150250 Вт*ч/кг, литий-ионных и литий-полимерных;

- Широкое распространение вентильных (бесколлекторных) электродвигателей, скоростью вращения которых можно управлять в широком диапазоне от нуля до нескольких тысяч оборотов в минуту без применения механических редукторов;

- Появление большого разнообразия миниатюрных приемников спутникового радионавигационного сигнала различной сложности и ценовой категории;

- Широкое распространение инерциальных систем, построенных на микроэлектромеханических (МЭМС) сенсорах: датчиках угловой скорости (ДУС), акселерометрах, магнитометрах и датчиках давления. Про инерциальные навигационные системы мы и поговорим.

Толчком для появления первых гироскопических приборов стало развитие судостроения на основе металлических конструкций и походы этих судов на полюса Земли, а потом, уже благодаря авиации, такие приборы стали распространяться все более и более.

Механическая конструкция с кардановым подвесом была известна еще в Византии и в Китае. А использование ее для навигации было предложено французским ученым Фуко, он же придумал название гироскоп.

Главное свойство карданова подвеса состоит в том, что если в него закрепить вращающееся тело, то оно будет сохранять направление оси вращения независимо от ориентации самого подвеса. Таким образом, передвигающийся объект, на котором закреплен гироскоп, может постоянно наблюдать свое первоначальное угловое положение в пространстве.

Прототип карданова подвесаПрототип карданова подвеса

Первые серийные навигационные приборы, основанные на гироскопах, появились в самом конце 19-го века на морских судах, подлодках и торпедах. На судах это были гирокомпасы, позволяющие определять направление на север вне зависимости от текущей широты, в отличие от магнитных компасов, которые в высоких широтах (близких к полюсам Земли) не работают из-за больших возмущений магнитного поля Земли.

В авиации навигация - еще более насущный вопрос, поэтому приборы на основе гироскопов стали применять и там. Например, на русском самолете Илья Муромец (1917 год) использовался гироскопический указатель поворотов, что позволяло сохранять направление при пилотировании вслепую в облаках. Первый известный автопилот с более масштабным использованием гироскопов стоял на ракете Фау-2, где применены гировертикаль (ракета с вертикальным стартом с земли), гирогоризонт и измеритель скоростей. С увеличением времени и дальности полета ракет и самолетов совершенствовались и системы навигации с непременным использованием гироскопов.

В настоящее время в задачу навигации входит: определение координат местоположения и других параметров поступательного движения объекта (скорости и ускорения) как материальной точки, и ориентация определение углового положения и других параметров вращательного движения объекта вокруг его центра масс.

Любая ИНС имеет в своём составе датчики линейного кажущегося ускорения (акселерометры) и гироскопы (или ДУС). С помощью интегрирования их данных определяется отклонение связанной с корпусом объекта системы координат относительно системы координат, связанной с Землёй, выражаемое в углах ориентации: курсе, тангаже и крене, также определяются отклонения координат (широта, долгота и высота) относительно референц-эллипсоида Земли при условии задания исходных координат перед началом счисления. Получается, что алгоритмически ИНС состоит из курсовертикали и системы определения координат, но тем не менее эти подсистемы не независимы.

Изначально инерциальные навигационные системы были только платформенными (далее ПИНС). Что такое гиростабилизированная платформа? Для стабилизации датчиков в пространстве используется такая гироплатформа, которая физически реализует опорную систему координат на движущемся объекте. Гироплатформа имеет минимум 3 вращательные степени свободы относительно объекта, которые обеспечивают сохранение платформе неизменного углового положения в пространстве при угловых эволюциях. Гироплатформы бывают 2 типов:

- с тремя гироскопами, которые имеют 2 степени свободы каждый;

- с двумя гироскопами, которые имеют 3 степени свободы каждый.

Гироплатформа с тремя гироскопами: на платформе установлены два гироскопа с вертикальными осями прецессии и один с горизонтальной осью, здесь же установлены 3 акселерометраГироплатформа с тремя гироскопами: на платформе установлены два гироскопа с вертикальными осями прецессии и один с горизонтальной осью, здесь же установлены 3 акселерометра

В советских классических учебниках по инерциальной навигации платформенные системы разделяются на 3 типа: полуаналитического типа, аналитического типа и геометрического типа.

В ПИНС геометрического типа координаты местоположения объекта определяются углами, которые образует физически реализованная ось местной вертикали с материализованными гироплатформой, осями и плоскостями навигационной системы координат. Эти углы измеряются соответствующими датчиками. Т.е. в наличии две платформы одна материализует навигационную систему, другая горизонтированную систему координат.

В ПИНС аналитического типа гироплатформа материализует (при околоземной навигации) навигационную систему координат с обеспечением учета вращения Земли, местная вертикаль определяется аналитически. Координаты объекта получаются в вычислителе, в котором обрабатываются сигналы, снимаемые с акселерометров и устройств, определяющих поворот самого объекта относительно гироскопов и акселерометров.

Полуаналитическая система имеет платформу, которая непрерывно стабилизируется по местному горизонту, т.е. одна ось трехгранника платформы постоянно направлена вдоль местной вертикали. На платформе установлены гироскопы и акселерометры, сигналы которых и управляют платформой.

А вот в бесплатформенной ИНС акселерометры и гироскопы (или ДУС) жестко связаны с корпусом прибора. Гироплатформа отсутствует, что сразу снижает массу и объем такой ИНС. Все системы координат существуют только в вычислителе, без механической материализации.

Если раньше любая инерциальная навигационная система (ИНС) занимала не менее 10 литров и имела соответствующую массу, то сейчас набор датчиков для такой ИНС может заключаться в одной-единственной микросхеме (3 гироскопа, 3 акселерометра и может быть также встроен трехосевой магнитометр) размером с человеческий ноготь.

Пример старого свободного гироскопа с индукционным датчиком углаПример старого свободного гироскопа с индукционным датчиком угла

Такие инерциальные MEMS-модули очень привлекательны для применения в разных устройствах (не только в коптерах): цена не превышает 1000 руб. в рознице, интерфейс взаимодействия I2C или SPI, в микросхему встроен датчик температуры, можно на ходу менять максимальный измеряемый размах угловой скорости и кажущегося ускорения. Для более серьезных применений набор MEMS-датчиков с вычислителем заключены в модуль объемом 0,1..0,3 литра, где каждый гироскоп и акселерометр выполнен в отдельной микросхеме.

Однако по точности измерения угловой скорости инерциальные модули общего применения на основе MEMS-датчиков сильно проигрывают подавляющему большинству тех старых инерциальных систем. Наиболее важный показатель, влияющий на погрешность определения координат в БИНС (ошибка по координате, обусловленная им, растет быстрее, чем в третьей степени от времени) это исходное смещение ноля и зависимость этого смещения от температуры для датчика угловых скоростей (ДУС).

В таблице приведены интересующие нас параметры для характерных современных устройств.

MPU-9250, BMI0556, ICM-20689 и другие подобные микросхемы фирм Bosch, Invensense или STMicroelectronics используются в современных полетных контроллерах для любительских беспилотных коптеров и самолетов. Это, например, контроллеры PixHawk, Naza и другие, чуть более высокого или низкого класса по функциональным и ценовым характеристикам. Все они применяются на беспилотниках класса для хобби или околопрофессионального полетов для наблюдений с помощью камеры на небольшие расстояния и время. Работа полетных контроллеров с подобными ИНС без постоянного комплексирования с данными от приемника GPS\ГЛОНАСС в таких режимах как зависание на точке, возврат на точку старта или автоматический полет по координатным точкам немыслима. Кроме этого, у них есть и другие особенности, которые иногда могут затруднять их использование, а иногда и приводить к авариям: ухудшение стабильности на температурах ниже 510 C, влияние вибраций от работы винтов на отработку углов горизонта, нестабильность определения истинного курса, возникновение toilet bowling (унитазинг, самопроизвольные круговые движения коптера по возрастающему радиусу).

Однако все это недопустимо при применении в коммерческих целях, при массе БПЛА до 30 кг, и более. Кстати, 30 кг это, по измененным законам РФ, максимальная масса беспилотного воздушного судна, которое можно эксплуатировать без согласования с диспетчерскими службами использования воздушного пространства, с некоторыми дополнительными ограничениями.

В общем, если говорить о промышленных или сельскохозяйственных дронах, таких как DJI Agras T20 или DJI серии Matrice c временем полета до 40-50 минут и стоимостью в районе одного миллиона рублей, то здесь требуются более надежные и точные ИНС. Тем более, что при таких массах остро стоит вопрос безаварийности не только в смысле сохранения дрона, но и, что куда важнее, в смысле безопасности окружающих людей. Да и потом, не следует забывать про развитие и распространение всяких приборов и устройств, подавляющих радиосигналы, используемые дроном для управления и навигации. А эти приборы впоследствии могут использовать не только госслужбы.

На снимке захват подразделением силовиков дрона DJI Mavic 2 Pro в Москве на митинге 10 августа 2019 году с помощью электромагнитной пушкиНа снимке захват подразделением силовиков дрона DJI Mavic 2 Pro в Москве на митинге 10 августа 2019 году с помощью электромагнитной пушки

Когда в Миландре появилась необходимость использовать инерциальную навигационную систему в собственной разработке, то выбор такой системы проходил по принципу максимальной точности при достаточной миниатюрности. По сути, выбирался инерциальный модуль на основе MEMS c наилучшими характеристиками. Вопрос цены не стоял остро, так как предполагалось первичное применение в прототипе устройства. Выбор пал на модуль ADIS16480 от Аnalog Devices, на тот момент это был лучший вариант среди имеющихся в свободной продаже. Данный модуль является курсовертикалью, в состав которой входят: ДУСы, акселерометры, трехосевой магнитометр и датчик давления (бародатчик). Выходные данные угловые скорости, кажущиеся ускорения, углы Эйлера относительно горизонта и истинный курс (магнитный курс с учетом заданного склонения), а также соответствующий этим углам кватернион (или, взамен углов и кватерниона матрица ориентации). Для коррекции углов используется калмановская фильтрация с применением данных от акселерометров и магнитометра. Также в модуле присутствует возможность подвергать цифровой фильтрации сырые данные угловых скоростей и кажущихся ускорений.

Однако, начиная с некоторого момента, из-за введенных санкций правительства США данный модуль перестал быть доступным в продаже в России. И было принято решение разработать собственный аналог.

Реверс-инжиниринг ADIS16480

По результатам вскрытия

ADIS16480 со снятой крышкойADIS16480 со снятой крышкой

выявлен состав данного модуля и некоторые его схемотехнические особенности. Модуль выполнен в виде гибко-жесткой платы, на основе процессора Blackfin ADSP-BF512, также в нем есть 4 АЦП AD7689BCPZ, датчик давления MS560702BA03-00, магнитометр HMC1043, 6 двухосевых акселерометров AD22037Z и по несколько ДУС в каждой из 3 осей.

Наше устройство по набору датчиков похоже на устройство Analog Devices и выполнено на собственном цифровом сигнальном процессоре К1986ВН04BG. Однако функционально мы его расширили.

Бесплатформенная инерциальная навигационная система МиландрБесплатформенная инерциальная навигационная система Миландр

Прежде всего, это уже не только курсовертикаль, но целая бесплатформенная инерциальная навигационная система (БИНС). В режиме БИНС дополнительно к информации, выдаваемой в режиме курсовертикали, выдаются следующие данные:

- текущие географические координаты объекта (широта, долгота и высота над референц-эллипсоидом) в системе координат ПЗ-90.02;

- вектор скорости объекта относительно Земли в проекциях на северную, восточную и вертикальную оси.

Для того, чтобы модуль работал в режиме БИНС, необходимо при включении передать в него начальные координаты относительно Земли: широту, долготу и высоту над референц-эллипсоидом. С этого момента начинается интегрирование показаний датчиков и счисление координат, скоростей и углов ориентации. Кроме того, знание текущих координат позволяет включить в алгоритм курсовертикали учёт вращения Земли. Таким образом, в отличие от ADIS16480, наш инерциальный навигационный модуль может работать не только в режиме курсовертикали, но и как полноценная инерциальная навигационная система. Курсовертикаль обеспечивает счисление ориентации, точность которой непосредственно влияет на точность счисления координат так, часто характеристикой точности инерциальных систем для самолётов является погрешность в формате ухода координат миль в час.

Также, в отличие от ADIS16480, в нашу БИНС добавлена возможность записи телеметрической информации на microSD-карту, которая оперативно снимается и устанавливается без вскрытия корпуса. Можно сказать, что в наш модуль введена функция черного ящика.

Разработка алгоритмов и математики, а также математическое моделирование

Алгоритм ориентации основан на использовании кватернионов и матриц ориентации, с предварительным интегрированием сырых данных ДУС и акселерометров. В расчетах используются константы Параметров Земли 1990 года (ПЗ-90.02).

В алгоритмах фильтрации и комплексирования вместо N-мерного фильтра Калмана используется система алгоритмов субоптимальной фильтрации, основанных на линейных моделях ошибок датчиков ДУС, акселерометров, магнитометров и бародатчика: инклинометрический, бароинерциальный и гиромагнитный фильтры. Все фильтры собственной разработки, использующие известные математические модели, основанные на решении линейных дифференциальных уравнений.

Иклинометрические фильтры необходимы для начальной выставки углов в горизонте, определения и коррекции дрейфов и углов тангажа и крена при малой возмущенности объекта движения. Принцип их работы заключается в оценке ошибок величин углов тангажа и крена, счисленных по данным ДУСов, и оценке величин дрейфов самих ДУСов, путем обработки данных от акселерометров.

Бароинерциальный фильтр используется для коррекции текущей высоты и вертикальной скорости БИНС по данным бародатчика. Также основан на линейном дифференциальном уравнении.

Гиромагнитный фильтр в процессе работы оценивает ошибку счисления инерциального угла и величину дрейфа истинного курса, используя в качестве объективного значения этого угла величину, выработанную магнитным указателем курса.

Все эти фильтры являются устойчивыми вне зависимости от условий их применения и не требуют от пользователя специальных настроек и проведения анализа модели движения.

В оригинальном приборе используется адаптивный расширенный фильтр Калмана. Этот фильтр оценивает угловую ориентацию, используя комбинацию информации ДУС, акселерометров и магнитометров. Акселерометры обеспечивают угловые измерения по отношению к гравитации Земли. Магнитометры обеспечивают угловые измерения, основываясь на измерениях магнитного поля Земли. В мануале от Analog Devices есть отдельные рекомендации для настройки точности в статике и отдельно для динамики, эти настройки задаются записью в память ADIS16480 данных по ковариации акселерометров и магнитометра, а также уровня шума и дрейфа ДУС. В общем случае эти настройки требуют дополнительного анализа модели движения объекта, на котором устанавливается курсовертикаль, а также специального испытательного оборудования. При использовании ADIS16480 c заводскими настройками при совместных испытаниях с нашим модулем он показал неудовлетворительные результаты, однако эти настройки позволяли сохранять устойчивость работы фильтра даже при сильных вибрациях.

Прежде чем использовать математику и алгоритмы в железе, все это было проверено при помощи математического моделирования. В математическую модель, кроме математики и алгоритмов навигации, были заведены: достаточно простая модель ошибок датчиков (в том числе ненули, гауссовский шум, размах измерения, разрядность АЦП и др.), параметры объекта движения (масса, коэффициент лобового сопротивления, площадь лобовой проекции). Траекторией для моделирования являлось движение по замкнутой линии типа коробочка, т.е., по сути, по квадрату, где координаты начала движения и его окончания совпадают. Сначала моделирование проводилось на чистом (невозмущенном) движении, а потом и при воздействии вибрации:

- синусоидального сигнала в канале ДУС частотой 10 Гц и амплитудой 5 гр/с.;

- синусоидального сигнала в канале ДУС частотой 50 Гц и амплитудой 4 гр/с.;

- синусоидального сигнала в канале ДУС частотой 500 Гц и амплитудой 3 гр/с.;

- синусоидального сигнала в канале ДУС частотой 1000 Гц и амплитудой 2 гр/с.

Отдельным любопытным экспериментом было моделирование работы наших алгоритмов при подаче на их вход реальных сырых данных датчиков ADIS16480, которые были записаны в телеметрию в ходе полетов БПЛА.

В целом, моделирование показало работоспособность и устойчивость наших алгоритмов как на данных модельных траекторий, так и на данных телеметрии реальных полетов.

Разработка и отладка программно-математического обеспечения в среде CM-Lynx и ОСРВ MACS

Разработка и отладка ПМО велась в проприетарной среде Миландра CM-Lynx. Все ПМО написано на C/C++ с редкими вкраплениями ассемблера.

В алгоритмически сложной, насыщенной взаимодействиями с разнородной аппаратурой программной системе реального времени нельзя, разумеется, обойтись без использования соответствующей операционной системы. В нашем модуле применена ОСРВ MACS. В частности, работа ПО модуля существенно опирается на такие ее функциональные возможности, как:

- Вытесняющий алгоритм планирования на основе приоритетов;

- Стандартные средства синхронизации потоков:

Мьютексы,

Семафоры,

События,

- Средства для организации межпоточного информационного обмена (очереди сообщений).

Нужно признаться, что в данном случае, при применении нашего же ЦСП K1967ВН04BG выбора не было ни в среде, ни в ОСРВ. Не без некоторых трудностей, но проект был завершен, отлажен и стал живым организмом.

Отдельно стоит сказать про процессор. Вообще, применение цифровых сигнальных процессоров в системах навигации и управления подвижных объектов до сих является экзотикой, особенно в России. Не будем углубляться в причины такой ситуации, но можно только сказать, что ЦСП являются не столь распространенными по сравнению с процессорами общего пользования. В нашем же проекте применение ЦСП оправдало себя полностью.

ЦСП 1967ВН04BG работает с тактовой частотой 200 МГц (при максимально возможной 230). Ядро процессора содержит два вычислительных устройства, называемых вычислительными модулями. Каждый вычислительный модуль содержит регистровый файл и четыре независимых вычислительных блока: ALU, CLU, умножитель и сдвиговое устройство. Вычислительные блоки способны обрабатывать данные в нескольких форматах представления с фиксированной и плавающей точкой. Форматы данных с плавающей точкой: 32-битное обычное слово (float); 64-битное двойное слово (double); 40-битное расширенное слово. Операции с плавающей точкой выполняются с одинарной, двойной и расширенной точностью, и все эти возможности реализованы аппаратно. Кроме того, у процессора развитая периферия: 3 канала интерфейса SPI, 2 канала UART, 2 резервированных канала магистрального интерфейса ГОСТ52070-2003 (МКИО), интерфейс ARINC, содержащий в своем составе восемь приемников и четыре передатчика по ГОСТ 18977-79 и некоторые другие интерфейсы, а также множество каналов DMA.

Испытания

Испытания проводились в основном на квадрокоптере.

Установка 2-х инерциальных систем на квадрокоптере при проведении сравнительных испытанийУстановка 2-х инерциальных систем на квадрокоптере при проведении сравнительных испытаний

В каждом испытании два модуля (наш и ADIS16480) были жестко закреплены друг относительно друга, и их соответствующие измерительные оси были коллинеарны c допуском 34 угловых градуса. Все испытательные включения происходили также одновременно, при этом в качестве эталона использовались данные географических координат и скоростей, получаемые от приемника спутникового навигационного сигнала. Еще одной опорой для анализа являлось то, что начальные и конечные координаты и угловые положения аппарата совпадают с визуальной точностью. На основе данных о географических скоростях от приемника спутникового навигационного сигнала (при достаточно интенсивном движении) мы получали данные об истинном курсе на траектории движения без учета так называемого угла сноса. Была специально выбрана траектория движения коробочка, где направление движения каждого участка этой коробочки максимально совпадало с направлением на одну из сторон света: север, юг, восток или запад, путевая скорость составляла при этом 36 км/ч. Наш модуль производил счисления координат и углов в чисто автономном режиме (без поддержки от приемника сигнала GPS/ГЛОНАСС).

Результаты испытаний одного из лётных дней в декабре 2020-го годаРезультаты испытаний одного из лётных дней в декабре 2020-го года

Здесь первые три верхних графика углы, счисленные ADIS16480, три нижних счисленные нашим БИНС. На участках прямолинейного движения заметно, как накапливается ошибка углов тангажа и крена ADIS16480, либо наоборот, они как бы медленно приближаются к истинному. Т.е. характеристики этих углов ADIS 16480 не в полной мере соответствуют физике полета квадрокоптера. При этом те же углы БИНС адекватно соответствуют этой физике.

Частота обсчета углов и координат - 1000 Гц. Температура воздуха -8 С. Приведенные в таблице максимальные ускорения, полученные по данным нашего модуля, во всех осях достаточно велики, при этом зарегистрированные по данным ADIS16480 максимальные ускорения не превышали 45 м/с2 по оси Y, а по остальным осям составляли менее 25 м/с2. Это объясняется расположением испытуемого нашего модуля БИНС, который имел приличное отстояние от центра масс коптера, когда как расположение ADIS16480 практически совпадало с этим центром масс. То же можно сказать и об угловых скоростях максимальная угловая скорость у ADIS16480 по сути не превышает 100 гр/с.

Заключение

Проект по разработке собственной бесплатформенной инерциальной навигационной системы можно считать удачным. Мы пошли дальше простого повторения курсовертикали на замену ADIS16480. В данный момент изготавливаются несколько таких модулей в вариантах исполнения с диапазонами измерения ДУС: 450 и 250 гр/с.; и с диапазонами измерения по акселерометрам: 2, 5 и 10g. Предполагается испытать их не только на квадрокоптере, но и на других беспилотниках, и на самолете Як-12. Есть версия для автомобиля, с урезанным количеством датчиков и диапазоном их измерения. Также в плане разработка собственного полетного контроллера для БПЛА ответственного применения коптеров и конвертопланов.

Подробнее..

Перевод Электробезопасность оптических изоляторов в условиях возможных отказов

21.09.2020 12:22:00 | Автор: admin

Драйверы затвора с оптической развязкой Broadcom широко используются для управления IGBT в таких приложениях как солнечные инверторы, системы управления двигателями и т.д. Оптическая развязка является проверенной и надежной технологией для обеспечения изоляции между силовым IGBT и цепями управления. Кроме того, оптическая развязка позволяет снизить влияние синфазного шума (CMR) на управляющий сигнал и предотвратить ошибочное закрытие/открытие IGBT.

Для обеспечения работоспособности и сохранения целостности изоляционного барьера следует избегать возникновения на оптической развязке напряжения величиной, превышающей номинальное значение. Однако это довольно сложно организовать при возникновении отказа, вызванного коротким замыканием IGBT. В данной статье описано влияние возможных отказов незащищенных IGBT на изоляционный барьер драйверов затвора с оптической изоляцией компании Broadcom.


Оптическая развязка и структура изолятора

Оптическая развязка в компонентах Broadcom обеспечивает высокий уровень изоляции благодаря изоляционному барьеру, состоящему из трёх слоёв, общей толщиной, превосходящей аналогичный параметр у компонентов на основе других технологий. Три слоя изоляционного барьера представляют собой структуру кремний-полиимиидная пленка-кремний (рисунок 1).

Полиимидная пленка создана специально для того, чтобы противостоять разрушающему воздействию частичного разряда, который может вызвать ионизацию и разрушение изоляционного материала. Уникальные свойства полиимида, заключающиеся в высокой электрической прочности и широком температурном диапазоне работы, позволяют использовать его в компонентах для обеспечения изоляции в широком спектре приложений: от локомотивов и поездов до аэрокосмической техники. Полиимидная пленка, используемая в компонентах Broadcom, имеет диэлектрическую прочность 300 кВ/мм и способна выдерживать температуры от 200 C до + 400 C.

Примером компонента, использующего в своем составе полиимиидную пленку в качестве одного из слоев изоляции, может послужить драйвер затвора с оптической развязкой ACPL-337J. Данный драйвер имеет толщину изолятора (distancethroughsolidinsulation, DTI) 0,5 мм с пиковым значением пробивного напряжения до 1414 В (VIORM= 1414 VPEAK) и соответствует стандартам безопасности IEC / EN / DIN EN 60747-5-5.

Стандарт IEC / EN / DIN EN60747-5-5

является промышленным стандартом, разработанным специально для компонентов с оптической изоляцией. Стандарт регулирует температурные и механические требования компонентов, их стойкость к вибрационным воздействиям, влагозащищенность, стойкость к частичному разряду и перенапряжению, а также методики тестирования.

Перед тестированием на частичный разряд, компоненты проходят испытания на соответствие требованиям безопасности входов и выходов микросхемы в течение 72 часов. Тестирование на соответствие требованиям позволяет удостовериться, что ток в контактах, рассеиваемая мощность и температура корпуса не превышают установленные пределы и не способны повлиять на целостность изоляционного барьера.

Перегрузки на участке с оптической развязкой можно избежать при помощи шунтирования источника питания, а также включения в цепь ограничительного диода и резисторов. В то же время перегрузку, вызванную отказом высоковольтного IGBT, таким как короткое замыкание или ложное отпирание транзистора из-за наличия емкости Миллера, можно предотвратить с помощью функции обнаружения падения напряжения насыщения (IGBT DESAT) и функции активного подавлением эффекта Миллера (Active Miller Clamp), которые, в том числе, присутствуют в драйвере ACPL-337J.

В данной публикации, помимо методов защиты, будет описана степень воздействия отказа незащищенного IGBT на целостность изоляционного барьера драйвера затвора с оптической изоляцией на примере компонентов Broadcom.

Режимы отказа IGBT и методы тестирования

Существует три основных причины отказа IGBT, которые могут спровоцировать появление высокого напряжения на оптической развязке и стать причиной разрушения изоляционного барьера:

1) десатурация (выход из насыщения) IGBT

2) скачок напряжения коллектор-эмиттер (VCE)

3) ложное отпирание транзистора из-за наличия емкости Миллера в структуре IGBT. Возможные причины отказов и методы тестирования приведены в таблице 1.

Таблица 1. Режимы отказа IGBT и методы тестированияТаблица 1. Режимы отказа IGBT и методы тестирования

Как видно из таблицы 1, драйвер затвора ACPL-337J имеет защитные функции для предотвращения возможных последствий при отказе IGBT: функция обнаружения падения напряжения насыщения (DESAT), Плавное отключение транзистора (Soft shutdown) и функция активного подавления эффекта Миллера (Active Miller Clamp). При проведении тестирования на воздействие отказа IGBT на изоляционный барьер драйвера, данные функции будут отключены. Тестирование включает в себя 3 этапа:

  • Тест IGBT на короткое замыкание с отключенной функцией DESAT

  • Повторный тест на короткое замыкание с включенной функцией DESAT

  • Выброс тока с IGBT в оптическую развязку

Тест IGBT на короткое замыкание

При проведении теста на короткое замыкание для управления затвором IGBT на 1200 В/150 А использовался драйвер ACPL-337J. ACPL-337J обеспечивает гальваническую развязку между высоковольтной и логической частями схемы и был запитан от однополярного 15-вольтового источника питания.

Между коллектором и эмиттером IGBT был подключен конденсатор на 5600 мкФ для создания короткого замыкания при включении питания, а сама цепь запитана от источника 600 В. Вывод DESAT драйвера ACPL-337J был подключен на землю для отключения соответствующей функции защиты и предотвращения автоматического отключения IGBT во время короткого замыкания. Схема подключения драйвера ACPL-337J к IGBT приведена на рисунке 2, в схеме отсутствует ограничительный диод.

Рисунок 2. Схема подключения драйвера затвора к IGBT для проведения теста на короткое замыканиеРисунок 2. Схема подключения драйвера затвора к IGBT для проведения теста на короткое замыкание

При возникновении короткого замыкания, ток эмиттера (IE) составил 7 кА, транзистор не вошел в режим насыщения (VCE) и напряжение затвор-эмиттер (VGE) значительно возросло (рисунок 3), в результате чего произошел перегрев и взрыв компонента. Напряжение затвор-эмиттер также было приложено к изоляционному барьеру ACPL-337J.

Рисунок 3. Замер тока и напряжения IGBT при проведении теста на короткое замыканиеРисунок 3. Замер тока и напряжения IGBT при проведении теста на короткое замыкание

Несмотря на то, что корпус ACPL-337J не был подвержен негативным воздействиям за исключением ожогов, полученных в результате взрыва IGBT (рисунок 4), многие второстепенные компоненты платы драйвера затвора были повреждены и она утратила работоспособность (рисунок 5).

Рисунок 4. Разрушение IGBT после теста на короткое замыканиеРисунок 4. Разрушение IGBT после теста на короткое замыканиеРисунок 5. Плата драйвера затвора ACPL-337J до и после теста на короткое замыканиеРисунок 5. Плата драйвера затвора ACPL-337J до и после теста на короткое замыкание

После проведения теста на короткое замыкание, драйвер затвора ACPL-337J дополнительно прошел электрические испытания на частичный разряд (1.88 кВ(RMS)/с) и воздействие высокого напряжения (6.2 кВ(RMS)/с) для определения степени повреждения изоляционного барьера. После чего был проведен визуальный осмотр внутренней и наружной части компонента (рисунок 6).

Рисунок 6. Полиимидная пленка ACPL-337J после проведения теста на короткое замыканиеРисунок 6. Полиимидная пленка ACPL-337J после проведения теста на короткое замыкание

Визуальный осмотр полиимидной пленки не выявил повреждений, а изоляция осталась неповрежденной, что свидетельствует об успешном прохождении теста.

Повторный тест IGBT на короткое замыкание с включенным DESAT

Схема подключения драйвера ACPL-337J к IGBT для проведения данного теста имеет такой же вид, как и в предыдущем испытании, за исключением того, что вывод DESAT драйвера не был замкнут на землю, а оставался в плавающем положении (функция обнаружения падения напряжения насыщения активирована) (рисунок 7).

ACPL-337J будет отключать IGBT при возникновении короткого замыкания в течение 1 мкс. Потребуется от 10 до 20 циклов тестирования с периодом около 2 с, чтобы спровоцировать выброс напряжения коллектор-эмиттер (VCE) и вызвать повреждения IGBT. После проведения испытания, драйвер ACPL-337J также прошел тест на частичный разряд (1.88 кВ(RMS)/с) и воздействие высокого напряжения (6.2 кВ(RMS)/с).

Рисунок 7. Схема подключения драйвера затвора к IGBT для проведения повторного теста на короткое замыканиеРисунок 7. Схема подключения драйвера затвора к IGBT для проведения повторного теста на короткое замыкание

Плата драйвера затвора утратила работоспособность из-за повреждения второстепенных компонентов, однако визуальный осмотр снова не выявил повреждений полиимидной пленки, что свидетельствует о том, что изоляция осталась неповрежденной (рисунок 8).

Рисунок 8. Полиимидная пленка ACPL-337J после проведения повторного теста на короткое замыканиеРисунок 8. Полиимидная пленка ACPL-337J после проведения повторного теста на короткое замыкание

Выброс тока с IGBT в оптическую развязку

В данном тесте на выход драйвера затвора ACPL-337J был подан ток с эмиттера IGBT. Транзистор был запущен импульсом 15 В, на входе драйвера затвора поддерживался высокий логический сигнал, а к коллектору IGBT был подключен конденсатор на 5600 мкФ при напряжении шины 600 В (рисунок 9).

Рисунок 9. Схема подключения драйвера затвора к IGBT для проведения теста на воздействие постоянного тока на оптическую развязкуРисунок 9. Схема подключения драйвера затвора к IGBT для проведения теста на воздействие постоянного тока на оптическую развязку

В момент возникновения на затворе IGBT напряжения 15 В, подключенный осциллограф зафиксировал скачок тока на эмиттере величиной около 700 А (рисунок 10). Данный тест является наиболее разрушительным, так как ток напрямую втекал в вывод драйвера затвора, вызывая серьезные повреждения платы.

Рисунок 10. Скачок тока на эмиттере в момент включения транзистораРисунок 10. Скачок тока на эмиттере в момент включения транзистора

После проведения испытания, драйвер ACPL-337J прошел тест на частичный разряд (1.88 кВ(RMS)/с) и воздействие высокого напряжения (6.2 кВ(RMS)/с). Визуальный осмотр полииминой пленки также, как и в предыдущих испытаниях, не выявил повреждений (рисунок 11).

Рисунок 11. Полиимидная пленка ACPL-337J после проведения теста на воздействие постоянного тока высокого значенияРисунок 11. Полиимидная пленка ACPL-337J после проведения теста на воздействие постоянного тока высокого значения

Заключение

Полиимидная пленка и изоляционный барьер драйверов затвора с оптической развязкой от Broadcom доказали свою надежность даже при высоких нагрузках, вызванных отказом подключенного IGBT (короткое замыкание с включённым и отключенным DESAT, выброс тока высокого значения в оптическую развязку).

Несмотря на то, что платы драйвера затвора в результате испытаний вышли их строя, сами драйверы успешно прошли испытания на частичный разряд и воздействие высокого напряжения, а значит сохранили должный уровень изоляции, способный обеспечить безопасность оператора и оборудования системы. Результаты испытаний приведены в таблице 2.

Таблица 2. Результаты испытаний на влияние отказа IGBT на оптическую развязку подключенного драйвера затвора

Таблица 2. Результаты испытаний на влияние отказа IGBT на оптическую развязку подключенного драйвера затвора Таблица 2. Результаты испытаний на влияние отказа IGBT на оптическую развязку подключенного драйвера затвора

Компоненты, которые используют альтернативные технологии изоляции (индуктивная и емкостная изоляция) имеют куда меньшую величину изоляционного барьера (менее 17 мкм) и не смогут обеспечить должный уровень безопасности в случае наступления одного из описанных в данной статье режимов отказа IGBT.

Литература
ACPL-337J 4.0 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection, Active Miller Clamping, Fault and UVLO Status Feedback, Broadcom, AV02-4390EN.

Подробнее..

Сказ о том, как махолетчики за старое взялись

12.02.2021 22:16:25 | Автор: admin

Четыре года назад мы, инженеры, закаленные в боях с аэродинамикой и прочностью, показали всему миру наше детище махолет Рарок. Это было здорово - пришлось оправдываться, разъяснять, рассказывать и даже просить денег на Boomstarter дабы продолжить развитие нашего дела. Убив на это уйму времени и сил, мы все же решили не останавливаться на достигнутом, а продолжить развитие любимой темы. Эта статья о том, чего удалось добиться за прошедшие три с половиной года и чего мы хотим.

Махолеты "FlapFlyer" и "Serenity" готовы к испытаниямМахолеты "FlapFlyer" и "Serenity" готовы к испытаниям

Итак, четыре года назад мы поняли, что остались без махолета, который делали для дяди. По итогу, у нас было только видео полета аппарата и еще куча опыта. Подумав, поразмыслив, решили делать махолет заново. Так как ребята мы (Мельник Андрей и Дмитрий Шувалов) отчаянные и смелые, было принято решение собрать не один махолет, а сразу два. И ладно, если бы просто повторили прошлый успех этого нам показалось мало, мы решили делать два новых аппарата с учетом тех проблем и ошибок, которые были допущены в ходе предыдущей разработки. Выбрали два направления развития махолета одно условно назвали вдоль, другое поперек. Схема вдоль придерживалась следующей гипотезы: так как предыдущие опыты показали, что на крыльях творится что-то не ясное в плане аэродинамики, то можно попробовать сделать поликрылый махолет (4 пары крыльев, в определениях классической аэродинамики - 4 крыла) расположенных друг за другом. Такой подход решал сразу несколько проблем. Рост инерциальных нагрузок в третьей степени размаха крыла (смотри подробнее статью на Хабр) был уже не так страшен за счет того, что несущая площадь была увеличена количеством крыльев, аппарат можно было сделать относительно не дорогим из-за использования простых решений и деталей небольшого размера. Помимо прочего, было решено сделать аппарат электрическим для простоты пусков и получения данных по энергетике процессов маха. Этот проект возглавил и понес весь груз проблем Дмитрий Шувалов. Название проекта - Serenity.

Махолет "Serenity"Махолет "Serenity"

Схема поперек придерживалась гипотезы: если обеспечить демпфирование нагрузок в конечных точках траектории маха, то можно добиться достаточной прочности, надежности и эффективности конструкции, чтобы перепрыгнуть теоретический барьер взлетной массы - 40 кг. Проект возглавил Мельник Андрей. Название проекта - FlapFlyer. Этот проект был объемнее по составу деталей, сложности конструкции, размерам и взлетной массе. Финансово создать такой аппарат без привлечения других участников было невозможно. Фактически проект родился благодаря Алексею П. его инициативе и рвению ко всему новому.

Махолет "FlapFlyer"Махолет "FlapFlyer"

Оба проекта были заложены практически одновременно летом 2017 г.

Уже в октябре 2017 года махолет Serenity прошел первые испытания (пробежки, статические прогоны). Следует отметить, что конструкция аппарата оказалась удачной. Она опиралась во многом на приобретенный нами опыт в проекте Rarok, но была значительно усовершенствована и модернизирована. Дальнейшие испытания показали правильность и надежность выбранных конструкторских решений. Однако, не смотря на соблюдение, казалось бы, всех условий аппарат упорно не хотел летать, что и показали летные испытания. Мы подбирали центровку и баланс, меняли конструкцию крыльев с целью максимально их облегчить, механизм и длину балок оперения, систему управления и т.д. Каждое испытание давало нам зацепку, как решить проблему полета. И каждый раз мы упирались во что-то новое. Нужно понимать, что Дмитрий создавал и модернизировал конструкцию сам, за свой счет и это было очень непросто. Аппарат периодически капризничал, но все же конструкторские вопросы мы научились оперативно решать еще с Рароком, а вот теорию продольной схемы приходилось осмыслять и строить по крупицам результатов. В общей сложности аппарат претерпел более 10 доработок и переделок. И вот, наконец, в ноябре 2020-го прошли ключевые испытания, продемонстрировавшие состоятельность продольной схемы. Serenity уверено летал, маневрировал, набирал высоту. Безусловно, это была победа! К сожалению, во втором полете, была допущена ошибка в пилотировании и аппарат разбился. Но, как сказал, сам конструктор: "Я все равно хотел его весь переделать".

Судьба аппарата FlapFlyer оказалась совсем иной. Изначально, предложенная Андреем концепция привода, оказалась не состоятельной. Опыт Рарока был здесь не применим, так как новизна предложенной концепции - очень высока. В погоне за уменьшением удельной массы конструкции были допущены значительные ошибки, которые привели к неработоспособности первой схемы. Проблемным оказался узел преобразования вращательного движения в возвратно поступательное. Для проверки гипотезы демпфирования необходимо было отказаться от явных мертвых точек, для этого в качестве преобразователя движения была выбрана кулиса. И это оказалось самой большой конструкторской проблемой. Второй не меньшей проблемой была общая компоновка аппарата. В качестве силовой установки использовался ДВС, это и привело к проблемам с мягкой передачей вращающего момента, которую так же следовало реализовать. От изначальной концепции в проекте остались только шасси, силовой каркас привода, трансмиссия и оперение, все остальное было последовательно переделано. На текущий момент аппарат готов к очередным испытаниям, которые ему и предстоят весной. FlapFlyer пока даже не пытался летать (было совершено несколько пробежек), поэтому нас еще наверняка ждут сюрпризы с аэродинамикой и динамикой, потому как и это несколько отличается от Рарока. Главная проблема этого проекта слишком большая новизна при минимальном количестве ресурсов. Только благодаря всем сочувствующим, друзьям и спонсорам, которые оказывают значительную помощь в реализации проекта, мы просто обречены на успех!

Теперь немного о вопросе зачем все это нужно?. Зачем современному миру махолет? Ведь выглядит он ну как-то уж совсем вычурно и странно и, кажется, ни на что не способен. Ошибка и главное заблуждение состоит в том, что нужно рассматривать не выше указанные проекты, в качестве конечного продукта, а то что можно создать на их базе. Отработка и развитие машущекрылых аппаратов сможет значительно расширить возможности пилотируемой и беспилотной авиации. Безусловно сейчас более актуальны беспилотные конструкции, но развитие данного направление позволит разработать и пилотируемые! Ведь сама задача создания всех необходимых для полета сил, с помощью всего одного инструмента крыла, не просто интересна, она таит много того, что позволит проектировать более совершенные летательные аппараты.

В связи с нашими успехами мы не можем не почтить память Киселева Валентина Афанасьевича, нашего учителя. Несмотря на то, что именно разногласия в подходах и взглядах, как нужно строить махолеты сделали нас оппонентами (даже были обвинения в воровстве идей Профессора), мы с большим уважением относимся к Валентину Афанасьевичу. Иной взгляд позволил оттолкнутся и уйти значительно вперед от идей его группы, что в конечном счете принесло успех!
С весны мы продолжим работу над нашими аппаратами. Будем рады любой поддержке, кроме бесплатных советов (уж очень они утомляют).

Следите за нами на Youtube-канале.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru