Русский
Русский
English
Статистика
Реклама

Сигналы

Как nix-сигналы позволяют читать память других процессов

28.11.2020 16:23:21 | Автор: admin
Есть такая очень старая и вросшая в *nix с корнями штука под названием сигналы. Идея этих примитивов очень проста: реализовать программный аналог прерываний. Различные процессы могут посылать сигналы друг другу и самим себе, зная process id (pid) получателя. Процесс-получатель волен либо назначить функцию-обработчик сигнала, которая будет автоматически вызываться при его получении, либо игнорировать его с помощью специальной маски, либо же довериться поведению по умолчанию. So far so good.

Поведение по умолчанию при получении сигнала А что означают эти успокаивающие слова? Уверен, не то, что вы ожидали. Вики говорит, что обработчики 28 стандартных сигналов (существуют и другие!) по умолчанию таковы: 2 игнорируются, 4 вызывают остановку процесса, 1 его продолжение, 11 его завершение, 10 его завершение с созданием дампа памяти. Вот это уже интересно! Итак, дело обстоит следующим образом: даже если ваша программа никак не упоминает сигналы в исходном коде, на самом деле она их использует, причём весьма драматичным образом.

С этого момента нам придётся копнуть поглубже. Кто и кому может посылать сигналы? Вики говорит: Процесс (или пользователь из оболочки) с эффективным UID, не равным 0 (UID суперпользователя), может посылать сигналы только процессам с тем же UID. Итак, если вы запускаете 100 программ, то любая из них может запросто убить все эти 100 программ с помощью системного API, даже если все программы (кроме убийцы) никак не упоминали сигналы в своём исходном коде. Если же вы работали под учёткой root-а, то вообще не важно, кто запустил те или иные процессы, всё равно их можно запросто завершить. Узнать pid конкретного процесса и выполнить его заказное убийство, разумеется, можно, но ещё проще убить всех кого можно путём простого перебора pid-ов.

Погоди-погоди, не гони лошадей. Ты упоминал, что сигналы можно обрабатывать и игнорировать! слышу я голос своего читателя. Что скажет Вики? Для альтернативной обработки всех сигналов, за исключением SIGKILL и SIGSTOP, процесс может назначить свой обработчик или игнорировать их возникновение модификацией своей сигнальной маски. Смотрим на действия по умолчанию при получении этих сигналов и видим: Завершение процесса, Остановка процесса. Получается, что эти два действия мы можем сделать всегда, когда посылка сигналов SIGKILL и SIGSTOP жертве в принципе возможна. Единственное исключение процесс с pid 1 (init), который имеет право игнорировать или обрабатывать любые сигналы, включая KILL и STOP. Возможно, мы даже из-под root-а не сможем убить один из главнейших системных процессов, но по-хорошему это требует дополнительного исследования.

Что ж, картина стала чуть позитивнее, но она по-прежнему мрачна. Если вы запускаете процесс, то он гарантированно может завершать и останавливать кучу других процессов. При выполнении очень простого условия разработчики процесса-получателя забыли проигнорировать или как-то обработать один из многих других сигналов приложение-маньяк сможет вызывать завершение процесса с созданием дампа памяти или продолжение процесса после остановки. Если же разработчики приложения-получателя повесили свои обработчики на какие-то сигналы, можно попытаться помешать функционированию этого приложения путём посылки ему сигналов. Последнее является темой для отдельного разговора, потому что в силу асинхронности выполнения обработчиков возможны гонки и неопределённое поведение

Абстрактные рассуждения это очень круто, но давай-ка ближе к конкретике, скажет мне требовательный читатель. Окей, нет проблем! Любому пользователю *nix хорошо знакома такая программа, как bash. Эта программа развивается уже почти 30 лет и обладает целой горой возможностей. Завалим-ка её для наглядности и получим из её памяти какую-нибудь вкуснятину!

Я достаю из широких штанин свою домашнюю Ubuntu 16.04.2 и запускаю на ней две копии bash 4.3.46. В одной из них я выполню гипотетическую команду с секретными данными: export password=SECRET. Давайте на время забудем про файл с историей команд, в которую тоже записался бы пароль. Наберём в этом же окне команду ps, чтобы узнать pid этого процесса скажем, 3580.

Не закрывая первое окно, перейдём во второе. Команда ps в нём даст другой pid этого экземпляра bash скажем, 5378. Чисто для наглядности именно из этого второго bash-а отправим сигнал первому командой kill -SIGFPE 3580. Да, уважаемый читатель, это полный абсурд: процесс 2 говорит никак не связанному с ним процессу 1, что в этом самом процессе 1 произошла ошибочная арифметическая операция. На экране появляется такое вот окошко:



Произошло желанное аварийное завершение с созданием дампа памяти, то есть bash похоже не обрабатывает и не игнорирует этот сигнал. Загуглив, где мне искать дамп, я нашёл развёрнутый ответ (раз, два). В моей Убунте дело обстоит так: если приложение из стандартного пакета падает из-за сигнала, отличного от SIGABRT, то дамп передаются программе Apport. Это как раз наш случай! Данная программа компонует файл с диагностической информацией и выдаёт окошко, показанное выше. Официальный сайт гордо заявляет: Apport collects potentially sensitive data, such as core dumps, stack traces, and log files. They can contain passwords, credit card numbers, serial numbers, and other private material. Так-так, интересно, а где там у нас лежит этот файл? Ага, /var/crash/_bin_bash.1000.crash. Вытащим его содержимое в папку somedir: apport-unpack /var/crash/_bin_bash.1000.crash somedir. Помимо разных неинтересных мелочей там будет вожделенный дамп памяти под названием CoreDump.

Вот он, момент истины! Давайте поищем в этом файле строку password и посмотрим, что интересного мы получим в ответ. Команда strings CoreDump | grep password напомнит забывчивому хакеру, что password есть SECRET. Чудесно!

То же самое я проделал и со своим любимым текстовым редактором gedit, начав набирать текст в буфере, а затем считав его уже из дампа. Никаких проблем! В этот момент Вики предостерегающе шепнула на ухо: Иногда (например, для программ, выполняемых от имени суперпользователя) дамп памяти не создаётся из соображений безопасности. Тааак, проверим При получении сигнала от рутового bash-а второй рутовый bash упал с созданием дампа памяти, но из-за прав доступа (-rw-r----- с владельцем root) прочитать его уже не так просто, как прежние, владельцем которых был мой пользовательский аккаунт. Что ж, коли гипотетической программе-киллеру удалось послать сигнал с UID суперпользователя, то и такой дамп она сможет потрогать.

Дотошный читатель может заметить: Тебе было очень легко найти нужные данные в море мусора. Чистая правда, но я уверен: если вы знаете, какую рыбу вы хотите поймать и где она плавает, то найти её в сетях дампа должно быть реально почти всегда. Скажем, никто не мешает скачать пакет с отладочной информацией для упавшей программы и узнать содержимое интересующих вас переменных в GDB путём post-mortem отладки.

Всё это может выглядеть вполне безобидно, но на самом деле таковым не является. Все описанные мною действия могли быть запросто проделаны программой или скриптом, работающей в пользовательском режиме, не говоря уже о более привилегированном уровне доступа. В сухом остатке получаем, что зловредная исполнимая штука может легко рубить программы направо и налево, а часто ещё и свободно читать всю их память. Вот тебе и сигналы да отчёты об ошибках! Уверен, что на других *nix-платформах и с другими программами-получателями ситуация аналогична, но проверять я это, конечно, не буду.

Может возникнуть возражение: зловредина может просто воспользоваться средствами отладки для утягивания интересных данных из приложения. Это действительно так. К чему же в таком случае этот пост? Моя мысль такова: первое, что приходит на ум при попытке пресечь кражу данных из приложений это как раз ограничения на отладочные инструменты. Наверняка антивирусные инструменты отлавливают использование ptrace() в первую очередь это очень подозрительное событие. Сигналы же совсем другое дело. Один процесс посылает другому стандартный сигнал ну и что? На первый взгляд, это совершенно нормальное событие. Но, как мы уже видели, это может привести к аварийному завершению приложения, созданию дампа ядра в какой-то папке, из которой его можно будет попробовать утянуть.

Когда я попытался открыть страничку авторизации vk.com и свалить Firefox тем же роковым сигналом, он упал, но вызвал свой обработчик дампов. Дампы в хитром формате minidump сохраняются по адресу ~/.mozilla/firefox/Crash Reports/{pending или submitted} и требуют дополнительного исследования. Вот что вы узнаете, если в окошке настроек кликните на Learn more напротив галочки (текст ниже раньше висел по адресу www.mozilla.org/ru/privacy/firefox/#crash-reporter):



При желании вы можете отправить сообщение об ошибке в корпорацию Mozilla после падения браузера Firefox. Такое сообщение содержит технические данные, которые мы используем для улучшения работы Firefox, в том числе информацию о причине падения, об активном URL-адресе на момент падения, а также о состоянии памяти компьютера на момент падения. Сообщения об ошибках, которые мы получаем, могут содержать персональную информацию. Некоторые части сообщений об ошибках мы публикуем в открытом доступе по адресу crash-stats.mozilla.com. Перед публикацией сообщений об ошибках мы принимаем меры для автоматического удаления персональной информации. Мы не удаляем ничего из написанного вами в полях для комментариев. В URL-ках редко бывает что-то по-настоящему вкусное, а вот есть ли в дампах пароли или cookie, вопрос хороший!

На этой таинственной и интригующей ноте я закончу. Ко мне пришёл сигнал, который я забыл явно обработать.

P. S. Я написал простую программу с таким обработчиком сигнала SIGUSR1: напечатать на экран строку 1, войти в бесконечный цикл. Я надеялся, что если много раз посылать этой программе сигнал SIGUSR1, то обработчик будет вызываться многократно, что вызовет переполнение стека. К моему сожалению, обработчик вызывался лишь один раз. Окей, напишем аналогичный обработчик сигнала SIGUSR2 и будем посылать два разных сигнала в надежде, что это свалит жертву Увы, но и это не помогло: каждый из обработчиков был вызван лишь однажды. Переполняли-переполняли, да не выпереполняли!

P. S. 2. В мире Windows есть некое подобие сигналов сообщения, которые можно отправлять окнам. Весьма вероятно, что их тоже можно использовать for fun and profit!

Оригинал опубликован в моём блоге 5.05.17.
Подробнее..

Всего лишь царапина рыжие волосы и болевой порог

09.04.2021 10:09:31 | Автор: admin


Физическую боль сложно назвать чем-то приятным, однако это ощущение имеет крайне важное значение в работоспособности нашего организма. Боль является своеобразной сигнализацией, оповещающей о наличии некоего раздражителя, от которого необходимо избавиться. Причиной боли могут быть как физические повреждения тканей или органов (переломы, ушибы, порезы, удар мизинцем об комод и т.д.), так и патологические процессы в организме (инфекции, онкология, врожденные дефекты и т.д.). В любом случае боль помогает как можно раньше и точнее локализовать проблему, требующую внимания. При этом разные люди могут ощущать боль от одинакового источника по-разному, что обусловлено разным болевым порогом. Для одних людей снятия пластыря настоящая агония. А другие спокойно могут уснуть во время лечения зубного канала без анестезии. Боль крайне индивидуальна, но даже тут есть скрытая логика. Ученые из MGH (Массачусетская больница общего профиля, США) установили причину, почему люди с рыжими волосами обладают более высоким болевым порогом. Как цвет волос влияет на восприятие боли, как это связано с кожей, и как можно на практике применить полученные сведения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


С точки зрения медицины можно выделить два основных типа боли: ноцицептивную и нейропатическую. Первый тип относится к периферическим нервным окончаниям, которые активируются болевыми стимулами в результате повреждения тканей. Второй тип является результатом повреждения или дисфункции центральной нервной системы или периферических нервов. В рассматриваемом нами сегодня труде речь идет о первом типе боли, т.е. о ноцицептивной.

Ранее было установлено, что люди (и мыши) с рыжими волосами обладают отличным от других болевым порогом, повышенной потребностью в неопиоидных анальгетиках и усиленной реакцией на опиоидные анальгетики. Факт отличий был установлен, но причина его существования так и не была определена.

Чтобы понять причину отличия болевого порога у рыжих стоит сначала обратить внимание на причину визуального отличия, т.е. на причину рыжего цвета волосяного покрова. Рыжий цвет обусловлен вариантными аллелями с потерей функции рецептора меланокортина 1 (MC1R) Gs-связанного рецептора, экспрессируемого на меланоцитах (клетках кожи, продуцирующих пигмент). Эти отличительные черты могут каким-то образом влиять и на болевой порог. Чтобы это выяснить, ученые использовали в ходе опытов мышей Mc1re/e, которые демонстрируют многие черты рыжих людей: рыжие волосы, синтез красного/светлого пигмента феомеланина, неспособность загорать после воздействия УФ-излучения и увеличение риска рака кожи из-за УФ воздействия.

Результаты исследования


Чтобы первоначально оценить пороги ноцицепции у мышей Mc1re/e и проверить роль пигмента в ноцицепции, ученые скрестили мышей Mc1re/e с видом-альбиносом, содержащим инактивирующую мутацию гена тирозиназы (Tyrc/c). У этих мышей количество меланоцитов не изменено, но они не пигментированы. Полученный скрещенный вид (Mc1re/e + Tyrc/c) не отличался от Tyrc/c вида, поскольку также имел белый окрас.


Изображение 1

Сравнение мышей с разными генетическими изменениями показало, что особи Mc1re/e обладают значительно более высоким болевым порогом (давление и температура), чем мыши Mc1rE/E с генетическим фоном альбиносов (1A и 1B). При этом повышенный болевой порог наблюдался у мышей Mc1re/e и в сравнении с Mc1rE/E без генетичсекого фона альбиносов (1C и 1D). Из этого следует, что MC1R играет важную роль в регуляции ноцицепции, но не зависит от пигментации.

Далее ученые решили проверить, вызваны ли повышенные пороги ноцицепции у рыжеволосых мышей потерей функции MC1R в меланоцитах или в других типах клеток. Для этого было проведено сравнение трех генетически согласованных (C57BL/6J) моделей мышей, которые различаются по количеству меланоцитов.

Мыши с повышенным количеством эпидермальных меланоцитов показали значительно более низкие пороги ноцицепции (1E и 1F), в то время как мыши, лишенные меланоцитов, показали более высокие пороги ноцицепции по сравнению с мышами из контрольной группы (без каких-либо генетичсеких манипуляций; 1G и 1H). Эти данные свидетельствуют о том, что количество эпидермальных меланоцитов (независимо от функции MC1R) действительно может модулировать пороги ноцицепции.

Далее ученые скрестили рыжих мышей с мышами без меланоцитов. Анализ полученных гибридов позволял оценить функцию MC1R в немеланоцитарных клетках. На графиках 1G и 1H видно, что генетическое отсутствие меланоцитов сводит на нет способность MC1R влиять на пороги ноцицепции. Следовательно, влияние на болевой порог осуществляется MC1R именно в меланоцитах, а не в других клетках.

Одним из гипотетических модуляторов повышенного порога ноцицепции у рыжеволосых мышей является -эндорфин продукт посттрансляционного расщепления проопиомеланокортина (ПОМК), который экспрессируется в меланоцитах. ПОМК индуцируется аденозин 3', 5'-циклическим монофосфатом (ациклический АМР или цАМР) в других типах клеток. Следовательно, низкие уровни цАМР в мутантных меланоцитах MC1R может повлиять на экспрессию ПОМК.

У рыжих мышей уровень -эндорфина в плазме был значительно ниже, чем у черных мышей (1I). Однако это еще не означает, что изменения -эндорфина влияют на болевой порог, поскольку направление изменения противоположно фенотипическому изменению, поскольку передача сигналов опиоидов способствует, а не уменьшает анальгезию (уменьшение болевой чувствительности). Более того, уровни -эндорфина в плазме также были обратно пропорциональны порогам ноцицепции у мышей K14-SCF (более высокие числа меланоцитов и более низкие пороги ноцицепции) и мышей Mitfmi-wh/mi-wh (отсутствие меланоцитов и более высокие пороги ноцицепции).

Из этих данных следует, что количество и функции меланоцитов обратно коррелируют с порогами ноцицепции, несмотря на то, что они напрямую связаны с уровнями -эндорфина.

Для оценки роли меланоцитов в модуляции экспрессии ПОМК относительно MC1R были произведены два дополнительных изменения в меланоцитах мышей: подавление мРНК Mc1r (1J) и стимуляция MC1R с помощью -MSH, т.е. -меланоцит-стимулирующего гормона (1K). В первом случае наблюдалось снижение продукции мРНК ПОМК, а во втором, наоборот, увеличение.

Экспрессия ПОМК не показала статистически значимого снижения в надпочечниках и гипофизе мышей Mc1re/e. Это позволяет предположить, что изменения уровня ПОМК в плазме связаны с уменьшением продукции меланоцитов ПОМК, вызванным потерей функции MC1R.

Далее необходимо было установить, является ли повышенный болевой порог результатом адаптации к низкому уровню -эндорфина. Для этого использовалось два типа мышей: у одного была гомозиготная мутация ПОМК, которая экспрессирует все пептиды меланокортина, но не имеет концевой последовательности -эндорфина (нокаут -эндорфин), а у второго типа был дефицит гена рецептора -эндорфина, т.е. -опиоидного рецептора (Oprm1/).


Изображение 2

Анализ не показал каких-либо значимых эффектов нокаута -эндорфина на болевые пороги у черных и рыжих мышей (2A и 2B). Делеция (потеря участка хромосомы) Oprm1 не влияла на пороги ноцицепции у черных мышей, но устраняла повышенные болевые пороги у рыжих (2C и 2D).

Подобный эффект имели и налоксон (антагонист* широкого опиоидного рецептора), и ципродим (антагонист, специфичный для -опиоидного рецептора). Они оба снижали болевые пороги у рыжих мышей до уровня порогов черных мышей (2E и 2F).
Антагонист* лиганд, который блокирует, снижает или предотвращает физиологические эффекты, вызываемые связыванием агониста с рецептором.

Агонист* лиганд, который при взаимодействии с рецептором изменяет его состояние, приводя к биологическому отклику.
Эти данные предполагают, что повышенные пороги ноцицепции у рыжих мышей зависят от -эндорфин-независимой передачи сигналов опиоидных рецепторов.

Из вышеописанных результатов следует вывод, что более высокая передача сигналов -опиоидных рецепторов в присутствии низких уровней -эндорфина в плазме может быть объяснена усилением регуляции другого эндогенного опиоида, адаптацией -опиоидного рецептора или сокращением пути, который препятствует передаче опиоидных сигналов.


Изображение 3

Прямые измерения циркулирующих опиоидных лигандов динорфина, энкефалина и эндоморфина не выявили существенных различий между рыжими и черными мышами (3A-3C). Учитывая ранее опубликованные данные о различиях между рыжими и черными мышами в их реакции на пентазоцин (агонист -опиоидных рецепторов), было решено продолжить изучение агониста -рецепторов динорфина.

Для этого штамм мышей с нокаутом динорфина был скрещен с рыжими и черными мышами. Однако измеримых эффектов на пороги ноцицепции у рыжих или черных мышей при этом не наблюдалось (3D и 3E). Это означает, что повышение уровня эндогенного (внутреннего) опиоида вряд ли может быть причиной повышения порога ноцицепции.

После проведения фармакологических манипуляций с меланокортином, которые привели к снижению некоторых эффектов морфина, ученые решили исследовать уровни -MSH (агониста меланокортина) в плазме. MSH кодируется в ПОМК, как и -эндорфин.

Учитывая общее происхождение -MSH и -эндорфина, было неудивительно, что уровни первого варьировались у мышей с разной пигментацией. У мышей с большим количеством меланоцитов (черные мыши) уровень -MSH был достаточно высок (4A). А у мышей меньшим количеством меланоцитов (рыжие мыши) уровень был значительно ниже.


Изображение 4

Таким образом, уровень -MSH в плазме мышей менялся в соответствии с болевым порогом, который он моделирует (гипотетически), чего нельзя сказать про -эндорфин.

Чтобы функционально оценить, может ли пропорционально низкий уровень -MSH способствовать повышенным порогам ноцицепции для рыжих мышей, было выполнено фармакологическое исследование. Меланотан II (пептидный имитатор -MSH) снижал пороги ноцицепции дозозависимым образом у самцов рыжих, но не у черных мышей (4B).

Эти результаты подтверждают, что потеря функции передачи сигналов MC1R приводит к увеличению пороговых значений ноцицепции из-за дефицита меланокортина.

Дополнительно был исследован еще один рецептор меланокортина MC4R, поскольку его ингибирование имеет прямое отношение к фармакологическому обезболиванию и нейропатической боли.

Сначала был проверен пептид SHU 9119, противодействующий MC4R и MC3R. SHU 9119 вызывал уменьшение болевой чувствительности (т.е. увеличение болевого порога) при введении самцам черных мышей (4C). Из этого можно сделать вывод, что обезболивающие эффекты SHU 9119 не зависят от Mc1r и, вероятно, связаны с эффектами лиганда на MC4R или MC3R.

Мыши, которые были лишены MC4R, демонстрировали повышенные пороги ноцицепции (4D и 4E). Отсутствие MC4R у черных мышей также привело к повышению чувствительности к опиоидному антагонизму (4F), что наблюдается у рыжих мышей. Значит, порог ноцицепции может определяться балансом между OPRM1 и сигналами MC4R. Фармакологическое замедление OPRM1 привело к восстановлению порогов ноцицепции как у черных, так и у рыжих мышей (4G). При этом применение агониста меланокортина снижало повышенные пороги ноцицепции у рыжих мышей (4B), но никак не влияло на мышей без MC4R (4H). Это наталкивает на мысль, что именно MC4R является ключевым рецептором меланокортина, на который MSH действует как лиганд для снижения порога ноцицепции.

На следующем этапе ученые решили выяснить, периферическая или центральная нервная система больше задействованы в процессе модуляции ноцицепции. Ноцицептивная разница, наблюдаемая между черными и рыжими мышами, уменьшилась после периферического (внутрибрюшинного) введения налтрексона () антагониста опиоидных рецепторов, который способен преодолевать гематоэнцефалический барьер (ГЭБ).
Гематоэнцефалический барьер* (ГЭБ) физиологический гистогематический барьер между кровеносной системой и центральной нервной системой.

Изображение 5

Однако периферическое введение метилированного налтрексона, непроницаемого для ГЭБ опиоидного антагониста, не уменьшило ноцицептивных различий между черными и рыжими мышами (), что свидетельствует о минимальном периферическом влиянии.

Это предполагает, что относительное усиление передачи сигналов опиоидов у рыжих мышей происходит центрально, а не периферически.

Ранее сообщалось, что передача сигналов цАМР играет важную роль в модуляции опиоидного снижения боли. Посему было решено измерить влияние антагонизма на содержание цАМР в первичных нейронах гипоталамуса крыс (RPHN от rat primary hypothalamic neurons). Было обнаружено, что агонист меланокортина увеличивал содержание цАМР, но опиоидный агонист морфин значительно уменьшал вызванное меланокортином повышение цАМР (5C). Следовательно, передача сигналов меланокортином и опиоидами может противодействовать друг другу.

Анализ также показал возможное наличие нейронов в периакведуктальной серой зоне (PAG от periaqueductal gray area), экспрессирующих оба типа рецепторов. Сравнение уровней мРНК опиоидных рецепторов в PAG у разных мышей не показо особых отличий.

Исследование роли PAG в модулировании ноцицепции показало, что местный антагонизм опиоидных рецепторов или агонизм рецепторов меланокортина значительно снижают болевые пороги (5D).

Совокупность всех вышеописанных данных позволяет подытожить: повышенные болевые пороги у рыжих мышей возникают из-за снижения уровней -MSH, вызванного снижением продукции проопиомеланокортина (ПОМК) в меланоцитах, что приводит к снижению передачи сигналов MC4R.

Снижение передачи сигналов MC4R, в свою очередь, снижает его антагонизм по отношению к передаче сигналов опиоидов в ЦНС, которая, несмотря на снижение продукции -эндорфина, не обнаруживает заметных различий в других эндогенных опиоидных лигандах. В совокупности это вызывает дефицит меланокортина, что изменяет баланс в пользу анальгезии (обезболивания), индуцированной -опиоидными рецепторами (5E).

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Да, легким этот труд не назовешь, но когда дело доходит до изучения работы нервной системы, другого и не стоит ожидать. В данном исследовании ученые пытались разобраться, почему рыжие мыши менее чувствительны к боли, чем черные или белые. Другими словами, почему у них повышенный болевой порог (порог ноцицепции).

В ходе многочисленных опытов удалось выяснить, что у рыжих мышей функции рецептора меланокортина снижены. Это приводит к тому, что клетки кожи, производящие пигмент, выделяют меньше проопиомеланокортина (ПОМК). В свою очередь, молекулы ПОМК расщепляются на гормоны, участвующие в восприятии или блокировке болевых ощущений. Наличие этих гормонов поддерживает равновесие между опиоидными рецепторами и рецепторами меланокортина, которые подавляют и усиливают боль соответственно.

У рыжих мышей уровень обоих гормонов очень низок. Логично, что их действие должно быть минимально. Однако, помимо этих конкретных гормонов существует ряд дополнительных элементов, которые влияют на восприятие/подавление боли. К ним относятся те, что связаны с меланоцитами, которые активируют опиоидные рецепторы, участвующие в блокировании боли. В результате более низкие уровни гормонов приводят к повышению болевого порога за счет усиления опиоидных сигналов.

Естественно, главным применением новообретенных знаний является медицина и фармакология. Понимая индивидуальную природу боли и ее ощущения у разных пациентов, можно более точно применять обезболивающие. Что касается лекарств, то знания о том, какие именно механизмы участвуют в восприятии/блокировки боли, можно разработать препараты, ингибирующие (подавляющие) рецепторы меланокортина, тем самым повышая болевой порог.

Боль играет крайне важную роль в диагностике травм и заболеваний, однако это не означает, что ее нужно терпеть длительное время. Конечно, полностью лишать человека способности ощущать боль было бы крайне неразумно, но иметь в своем распоряжении инструменты, позволяющие ее контролировать, могли бы значительно облегчить жизнь не только медработникам, но и миллионам пациентов во всем мире.

Пятничный офф-топ:

Из-за редкой генетичсекой мутации Джо Кэмерон никогда не испытывала боли, страха, печали или злости. Однако это такой же дар, как и проклятье.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Перевод Эта роботизированная рука, управляемая мыслью, может поворачиваться, брать предметы и даже ощущать их

21.05.2021 16:09:34 | Автор: admin

Натан Коупленд научился управлять роборукой при помощи мысли, но движения были медленными. Теперь разработчики реализовали тактильную обратную связь.




Натану Коупленду было всего 18 лет, когда он попал в автомобильную аварию и оказался парализован. Несчастье произошло в 2004 году. С тех пор Натан практически не может двигаться и потерял чувствительность большей части тела. Правда, парализован он не на все 100% сохранилась чувствительность запястий и нескольких пальцев. Также он может немного двигать плечами. В больнице он стал одним из участников экспериментального исследования.

Команде Питтсбургского университета был нужен доброволец для отработки системы мысленного управления роботизированным манипулятором. Задача была простой: научиться управлять роборукой, просто думая о разных движениях. Все это одна из работ по созданию нейроинтерфейса, позволяющего управлять механизмами или ПО при помощи мысли. Подобные работы проводят и компании вроде Kernel или Neuralink Илона Маска.

Коупленду повезло стать участником эксперимента, поскольку обычно критерии для отбора добровольцев крайне жесткие. У человека должна быть травма определенного типа, плюс доброволец должен жить относительно близко к лаборатории.


Натан соответствовал всем требованиям, поэтому выбрали именно его. Вскоре новичку провели операцию, в ходе которой к его моторной (двигательной) коре и соматосенсорной коре подключили электроды нейроинтерфейса. При помощи последнего ученые считывали электрические сигналы мозга, в основном те, что возникали при мысли о намерении совершить движение пальцами или запястьем. Эти импульсы трансформировались при помощи компьютерной системы и передавались в интерфейс управления манипулятором. После трех сеансов работы Коупленд научился работать с системой. В частности, он смог перемещать шарики и захватывать кубики со стола, просто думая об этом.

Но это было лишь начало. В исследовании, опубликованном на днях в Science, сообщается, в общем-то, сенсационная вещь: теперь доброволец ощущает прикосновения к предметам. Какого рода эти ощущения, не сообщается, да и передать словами подобные вещи сложно. Но то, что прикосновения роботизированного манипулятора к предметам ощущаются, как прикосновения к тем же предметам собственных пальцев, это факт.

По словам разработчиков, скорость реакции и движений роборуки ускорилась раньше движения были замедленными. Добровольцу приходилось смотреть на то, что делает манипулятор и продумывать действия, корректировать их. Сейчас же к процессу добавилось еще и осязание, которое позволяет действовать рефлекторно. В некоторых случаях скорость движений манипулятора после добавления тактильного отклика увеличилась в 2 раза. Эту разработку без преувеличения можно назвать прорывом в вопросе возвращения дееспособности парализованным людям.

По словам команды исследователей, осязание важный фактор в вопросе восстановления подвижности. Когда человек ощущает прикосновения, он способен действовать быстрее. Визуальное наблюдение за процессом менее эффективно, чем тактильные ощущения и зрительный контакт. Более того, если есть осязание, зрительный контакт и вовсе может отсутствовать. Когда обычный человек взаимодействует с каким-либо объектом, действия в основном зависят от ощущений.

Мозг человека получает информацию, обрабатывает ее и отправляет сигналы дальше по телу. Обычное действие, вроде обхвата чашки пальцами, не такое уж и простое. Во время движения пальцев мозг корректирует действия руки. Когда пальцы прикасаются к чашке, мозг получает обратную связь в виде осязательных ощущений и направляет руку так, чтобы захват был максимально эффективным.

Поскольку мозг добровольца не был поврежден, в теории он мог поддерживать осязательный контакт с пальцами. К сожалению, большая часть электрических сигналов в нервной системе участника эксперимента не доходила от мозга до конечностей. Соответственно, исследователям пришлось разработать систему, которая позволяет симулировать тактильные ощущения. Основной задачей было сделать так, чтобы ощущения были реальными и совпадали с действиями манипулятора. Так, когда роботизированный мизинец касается предмета, Коупленд должен был это почувствовать собственным мизинцем.


Для обеспечения обратной связи Коупленду имплантировали еще несколько электродов. Два набора электродов отвечают за анализ сигналов мозга при мысли о совершении действия рукой и еще два симулируют сенсорные ощущения. На самом деле, обеспечить ощущение прикосновения можно при помощи слабого электрического сигнала в электроде. Нужно было синхронизировать генерацию таких сигналов с движениями манипулятора.

Чтобы создать такую систему, исследователи воспользовались тем, что у Коупленда сохранилась чувствительность в большом, указательном и среднем пальцах правой руки. Исследователи прикасались к ним ватной палочкой и анализировали при помощи ЭКГ сигналы, а также зоны мозга, где эти сигналы возникают. В итоге удалось понять, какой участок мозга за какой палец отвечает. После этого ученые сгенерировали похожие сигналы и подали их на электроды. По отзывам добровольца, он чувствует, как что-то касается основания пальцев в верхней части правой ладони. Это может быть давление, тепло или просто необычное покалывание, но не боль.

До внедрения тактильной системы Коупленд неплохо справлялся с задачей захвата и перемещения предметов. Тренироваться пришлось пару лет, но результаты были отличными: в то время как обычному человеку на выполнение такой операции нужно около 5 секунд, Коупленду требовалось от 5 до 20 секунд. Дальнейшие тренировки результата не давали: доброволец как бы вышел на плато, без ухудшения или улучшения результатов.

Все изменилось после добавления тактильной системы. Как и говорилось выше, результат сходу удалось улучшить в 2 раза и более. Конечно, вновь пришлось тренироваться, с учетом того, что тактильные ощущения у Коупленда не точно такие же, как у здорового человека. Сам он говорит, что стал действовать гораздо увереннее даже в ходе первого теста, ведь не нужно было полностью полагаться на зрение.


Если обратной связи нет, приходится полагаться только на зрение. В этом случае человек сначала должен убедиться, что предмет действительно захвачен. Если да, то нужен постоянный визуальный контроль во время его перемещения.

По словам экспертов, создание реалистичных сенсорных сигналов большая победа. Это означает, что ученые приблизились к задаче имитации естественных движений здорового человека. Важно, чтобы выполнение действия происходило без особых задержек. Тактильная обратная связь как раз то, что помогает уравнять время, которое требуется на выполнение действия обычному человеку и человеку с повреждениями нервной системы.

У тактильной системы время обработки сигнала, лаг, составляет около 30 мс. У зрительной же системы от 100 до 300 мс. Представьте, что вы пытаетесь ухватить скользкую чашку. Если задействовать лишь зрение, вы узнаете, что уронили ее, лишь после того, как увидите падающую чашку.

Несмотря на все успехи разработчиков, система все еще находится на стадии лабораторного образца. Коупленд может работать с манипулятором лишь в лаборатории. Он не может носить его или брать с собой домой. Правда, у Коупленда есть упрощенная система, разработанная для того, чтобы он мог управлять личным ПК. Система достаточно продвинута, чтобы с ее помощью можно было играть в игры Sega Genesis на эмуляторе. Коупленд даже смог нарисовать котика и превратить его в NFT.


Еще одна проблема с системой в том, что она требует проводного соединения. Но эту задачу, кажется, решить проще, чем другие, наработки беспроводных нейроинтерфейсов есть у многих компаний.

Последнее: тактильные ощущения у Коупленда при прикосновении к предметам роботизированной рукой не всегда соответствуют естественным. Поэтому и контролировать захват/перемещение предметов ему все же сложнее, чем обычному человеку.

Но, в любом случае, прогресс огромный. Можно уже с уверенностью говорить о том, что мозг человека по-прежнему привязан к его плоти, но уже не скован ею.

Подробнее..

Нет реальности без боли электронный эквивалент рецепторов кожи человека

11.09.2020 10:13:26 | Автор: admin


Кожа это не только самый большой орган нашего тела, но и самая большая сенсорная система, ежесекундно собирающая информацию о внешних раздражителях и уровнях их воздействия на наш организм. С механической точки зрения, воссоздание кожи человека не является столь сложной задачей, но это будет лишь искусственный защитный слой, лишенный нейронной активности. Ученые из Мельбурнского королевского технологического университета (Мельбурн, Австралия) разработали систему искусственных датчиков, имитирующих различные сенсоры кожи человека. Что потребовалось для создания столь сложной имитации, каков принцип работы устройства, какие раздражители оно способно воспринимать, и где может быть применена данная разработка? Ответы на эти и другие вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Сенсорная система кожи человека может быть разделена на несколько подсистем, каждая из которых отвечает за определенные раздражители. Самыми распространенными и важными считаются рецепторы давления (тельца Пачини), температуры (терморецепторы) и боли (ноцицепторы).

Каждый из этих рецепторов собирает информацию и передает сигналы в мозг человека для обработки и принятия соответствующего решения. Подобный принцип работы и у других сенсорных систем (зрение, слух, вкус, обоняние).

Логично, что подобная биологическая система крайне сложна для воспроизведения, даже при учете современных тактильных сенсоров и КМОП (комплементарная структура металл-оксид-полупроводник).

Существуют разработки, в которых реализован искусственный ноцицептор на основе диффузионного мемристора*, который может демонстрировать нормальное состояние, состоящее из напряженной и релаксационной стадии ноцицептора, а также аномальное состояние с аллодинией* и гипералгезией* ноцицептора, использующего внешние стимулы в качестве напряжения.
Мемристор* пассивный элемент в микроэлектронике, способный изменять свое сопротивление в зависимости от прошедшего через него заряда.
Аллодиния* аномальная боль, вызванная раздражителем, который обычно не вызывает болевых ощущений (например боль при легком прикосновении).

Гипералгезия* аномально высокая чувствительность организма к болевым стимулам.
По словам ученых, данные разработки крайне важны, поскольку механизм переключения мемристора зависит от проводящих нитей, которые имеют примерно субнанометровый диаметр. Используя термоэлектрический модуль и пьезоэлектрический модуль давления, можно успешно достичь напряженного и релаксационного состояния среди четырех основных функций ноцицептора.

На данный момент подобная методика используется для создания искусственного глаза, но реализация ее в формате искусственной кожи пока не была достигнута.

В данном труде ученые демонстрируют рабочий прототип искусственных электронных рецепторов, которые имитируют тельце Пачини, терморецептор и ноцицептор. Достичь этого удалось за счет комбинации нескольких функциональных составляющих:

  • мемристор для принятия решений на основе титаната стронция SrTiO3 (STO) с дефицитом кислорода;
  • датчик давления на основе золота на растяжимом эластомере (полидиметилсилоксан, т.е. PDMS);
  • температурный триггер на основе оксида ванадия (VO2) с фазовым переходом.

Основным отличием данной концепции от предыдущих является отсутствие необходимости в отдельных и сложных термоэлектрических модулях и пьезоэлектрических датчиках давления для практической реализации соматосенсоров. Следовательно, в разработке используются исключительно недорогие и легкодоступные тонкие оксидные пленки, а также носимые датчики давления на биосовместимом PDMS.

Результаты исследования


Прежде чем создавать что-либо, необходимо обдумать что и как будет работать в финальном варианте. С целью создания искусственных рецепторов кожи была разработана гипотетическая основа для реализации функциональных телец Пачини, терморецепторов и ноцицепторов (схема ниже).


Изображение 1

Человеческие соматосенсоры через спинные рога (выступы серого вещества) соединены со спинным мозгом, который передает информацию в мозг (). Существуют специальные пути для определения давления (синий цвет на 1a) и температуры (красный цвет на 1a).

Тельца Пачини это слои мембран, заполненных жидкостью. Отпечатки пальцев являются ярким примером тельца Пачини. Когда на тело оказывается местное давление, часть тельца деформируется, вызывая сдвиг химических ионов (например, натрия или калия) и, как следствие, возникает рецепторный потенциал на нервном окончании кожи. Этот рецепторный потенциал при достижении достаточной энергии (порог) генерирует электрический импульс внутри тельца, который проходит через центральную нервную систему, чтобы активировать двигательный ответ через нервные волокна (синий цвет на 1a).

Когда температура кожи поднимается выше 30 C, терморецептор определяет тепло и запускает потенциалы действия. Частота возбуждения увеличивается с увеличением температуры стимула, пока не достигнет значения насыщения. Кроме того, тепловые ноцицепторы, которые улавливают болевые сигналы, начинают срабатывать при температуре около 45 C. Эти клетки специализируются на обнаружении вредоносного тепла и ожогов.

Когда вредоносный стимул получен тепловым нейроном, расположенным на свободном нервном окончании, электрический ответ отправляется ноцицептору, чтобы сравнить, пересекает ли амплитуда стимула пороговое значение для генерации потенциала действия и отправки в центральную нервную систему через спинной мозг (красный цвет на ).

Чтобы создать аналогичные искусственные рецепторы, были использованы датчики давления на основе золота и PDMS, которые переключаются между состоянием низкого сопротивления (LRS) и состоянием высокого сопротивления (HRS) без и с приложенным давлением для имитации тельца Пачини (1b и 1c).

Чтобы воспроизвести поведение терморецепторов и ноцицепторов, использовался фазовый переход VO2, который может переходить от HRS при комнатной температуре к LRS при температуре выше температуры перехода (68 C).

Кроме того, в качестве элемента принятия решений для оценки пороговых уровней была использована резистивная коммутационная память на основе STO (титанат стронция).

Для искусственного тельца Пачини, когда нет определяемого давления, ток через мемристор принятия решения (I1) недостаточен из-за напряжения смещения, чтобы инициировать двигательную реакцию (1b). При приложении давления датчик переходит в режим HRS, блокирующий I2, что позволяет максимальному току проходить через мемристор. Из-за более высокого I1 мемристор на основе STO переключается на LRS. Следовательно, через тельце протекает более высокий ток, вызывающий двигательную реакцию ().

В случае терморецептора и ноцицептора VO2 может демонстрировать изменение сопротивления на три-четыре порядка при температуре перехода. Если же температура ниже температуры перехода, то VO2 является изолятором.

Таким образом, через рецептор протекает незначительное количество тока, а напряжение, которое появляется на мемристоре, недостаточно для его включения (1d). По достижении температуры перехода VO2 переключается на LRS, в результате чего на мемристоре появляется более высокий потенциал, что вызывает его переключение на LRS. Когда и VO2, и STO находятся в LRS, через рецептор протекает повышенный ток (1e).

Искусственное тельце Пачини


После создания концепции будущего устройства ученые приступили к поэтапной реализации. На первом этапе было создание искусственного тельца Пачини, для чего использовался мемристор на основе кислорододефицитного STO со стековой структурой: Pt (100 нм) / Ti (10 нм) / STO (55 нм) / Pt (25 нм) / Ti (7 нм) и подложка SiO2.

Нижний слой Ti используется как адгезионный слой нижнего слоя Pt, а верхний слой Ti используется как резервуар для кислорода, а также как адгезионный слой верхнего слоя Pt. Нижний слой Pt принимает участие в процессе переключения, а вот верхний служит в качестве инертного материала, предотвращающего TiO2 из-за воздействия кислорода окружающей среды.

Архитектура датчика давления вдохновлена биологическим тельцем Пачини, которое имеет спиральную форму с шириной дорожки и зазором 100 мкм. Диаметр всей спирали целиком составляет 7.8 мм. Для создания сенсора на PDMS толщиной 300 мкм был нанесен Au (200 нм) / Cr (20 нм).


Изображение 2

На изображении показан искусственный эквивалент тельца с интеграцией мемристора и датчика давления.

Сеть датчиков давления работает таким образом, что позволяет рецептору активировать мемристор, который работает как компонент принятия решений.

В биологических системах при достижении достаточного рецепторного потенциала компонент принятия решения может создать электрический импульс для активации мотора центральной нервной системы. Чтобы создать реплику этой функции с определенным пороговым значением, от датчика давления требуется восприятие определенного спектра значений давления. Для простоты демонстрации работоспособности системы ученые решили упростить этот момент до всего двух значений: есть сильное давление и давления нет вообще.

Фиксированное сопротивление в 100 кОм было выбрано для ограничения тока, проходящего через сеть датчика давления, которая имеет сопротивление всего 0.6 кОм. Это гарантирует, что система показывает очень низкий ток при отсутствии давления. На изображении 2b показан отклик и повторяемость автономного датчика давления.

При приложении давления датчик давления переходит в очень HRS с сопротивлением около 1 ГОм из-за деформации и трещин, которые очень часто встречаются для датчиков на основе PDMS. Из-за деформаций и трещин характеристики датчика давления могут ухудшиться после многократных циклов, однако это не мешает демонстрации самой концепции искусственного датчика. Когда давление сбрасывается, зазоры из-за трещин снова закрываются, создавая LRS, в результате чего датчик возвращается в исходное состояние.

Подобная картина наблюдается и в биологических датчиках, которые также деформируются, что приводит к сдвигу химических ионов при приложении давления.

Следует отметить, что компонент принятия решения, состоящий из мемристорного элемента на основе STO, должен быть первоначально подвергнут гальванопластике путем приложения напряжения смещения при очень низком токе 1 мкА к верхнему и нижнему электродам. Этот этап создает локализованный канал для образования проводящих нитей через STO. После этого требуется развертка напряжения для переключения устройства между состояниями HRS и LRS.

Важно и то, что без приложенного давления ток, протекающий через мемристор, недостаточен для его переключения. Однако при приложении давления датчик, содержащий ответвление, переходит в состояние HRS, что приводит к максимальному потенциалу рецептора на мемристоре (). При достижении порога рецепторного потенциала мемристор, принимающий решение, переключается из состояния HRS в состояние LRS (). В этом состоянии примененная последовательность 0 +0.85 В 0 1.12 В 0 переключает устройство в состояние LRS для положительного цикла и в состояние HRS для отрицательного полупериода (2d и ).

Чтобы перевести устройство в LRS, учитывается только положительный полупериод. В соответствии с изображением 2d, когда давление не подается, цепь датчика давления имеет общее сопротивление 100.6 кОм, тогда как параллельный компонент принятия решения (мемристор) имеет сопротивление 70 кОм. Таким образом, эквивалентное сопротивление всего тельца Пачини составляет 41.2 кОм.

Это эквивалентное сопротивление пропускает ток всего 0.02 мА через всю цепь, что можно рассматривать как расслабленное состояние. Приложение давления преобразует цепь датчика давления в состояние с чрезвычайно высоким сопротивлением 1 ГОм, в то время как сопротивление мемристора составляет всего около 2.5 кОм, изменяя эквивалентное сопротивление всего тельца Пачини примерно на 2.5 кОм. Это низкоомное состояние допускает ток 0.35 мА по всей цепи.

Таким образом, стимул давления генерирует ответный сигнал, который почти на 18 раз выше, чем в расслабленном состоянии, что может позволить центральной нервной системе инициировать свой двигательный ответ. После того как двигательная реакция завершена, для инициализации тельца Пачини можно применить обратную полярность к мемристору, используя неиспользованные электроды.

Искусственный терморецептор


Для создания терморецептора в основе мемристора была использована такая же стек-структура, как и для тельца Пачини, т.е. металл-изолятор-металл (МИМ).


Изображение 3

Часть верхнего электрона использовалась совместно с поверхностью VO2 (3а и 3b) для последовательного подключения теплового датчика. Для смещения всего устройства этот электродный слой, состоящий из Pt (100 нм) / Ti (10 нм), был нанесен на поверхность VO2. Между исходным электродом и верхним электродом мемристора поддерживалось существенное расстояние в 100 мкм.

На изображении показана схема подключения терморецептора, в которой смещение приложено через металл к тепловому датчику, а земля (GND на схеме) подключена к нижнему электроду мемристора, принимающего решение.

График 3d показывает кривую зависимости сопротивления от температуры для перехода диэлектрикметалл на тонкой пленки VO2. Очевидно, что при достижении температуры перехода наблюдается падение удельного сопротивления на четыре порядка. Очевидный тепловой гистерезис также наблюдается в циклах нагрева и охлаждения. Также было установлено отсутствие какого-либо заметного влияния температуры на резистивное переключение ().

Мемристор может показывать изменение сопротивления от 100 кОм до 2 кОм в процессе переключения. Однако для более понятного анализа было решено рассматривать сопротивление состояния HRS как 93 кОм, а сопротивление состояния LRS как 9 кОм при 80 мВ напряжения считывания (VREAD), так как при этом напряжении наблюдается максимальное отношение переключения ROFF / RON. Последовательность переключения напряжения готового автономного устройства составила: 0 +0.65 В 0 0.80 В 0. Когда та же последовательность применяется ко всему терморецептору, сопротивление уменьшается, и, следовательно, ток рецептора увеличивается с повышением температуры (3f).

Чтобы обеспечить необходимое коммутируемое напряжение, температура приемника поддерживалась на уровне 70 C. Это необходимо для гарантии того, что VO2 находится в состоянии LRS. Затем приложение напряжения смещения от 0 до 2 В полностью устанавливает и сбрасывает устройство ().


Изображение 4

Для мемристора, принимающего решение, исходное сопротивление 93 кОм намного ниже, чем HRS теплового датчика, которое составляет 11 МОм. Таким образом, частичное напряжение, которое появляется на мемристоре, принимающем решение, не может достичь порогового значения VSET для преобразования его из HRS в LRS. Следовательно, и термодатчик, и мемристор находятся в состоянии HRS, что позволяет минимальному току протекать через терморецептор [4b(i)].

Когда применяется критическая температура 70 C, сопротивление термодатчика уменьшается на четыре порядка, а частичное напряжение мемристора постепенно увеличивается до напряжения SET с увеличением отклика рецептора [4b(ii)]. Как только VSET включает мемристор, он переходит в LRS от HRS с сопротивлением 9 кОм [4b(iii)].

На этом этапе формируется максимальный рецепторный ответ. LRS памяти будет сохраняться в течение длительного времени, даже если тепловой стимул полностью отключен. Чтобы перепрограммировать мемристор, отрицательное напряжение VRESET может перевести его с LRS в HRS [4b(iv)]. Для этого можно подавать отрицательное напряжение от неиспользуемых электродов ().

Искусственный ноцицептор


Можно с уверенностью сказать, что ноцицепторы значительно отличаются от своих собратьев. Ноцицепторы имеются по всему человеческому телу и расположены на конце аксона сенсорного нейрона.

Чтобы избежать воздействия вредоносных раздражителей, ноцицептор реагирует двумя способами: нормальными и анормальными.

В нормальных условиях, когда нерв, оканчивающийся на коже, получает вредоносный стимул, ответный сигнал отправляется ноцицептору, чтобы сравнить, превышает ли сигнал определенное пороговое значение, и решить, требуется ли генерировать потенциал действия для центральной нервной системы. В этом нормальном состоянии ноцицептор медленно отключается на время, известное как процесс релаксации. Используя этот порог и процесс релаксации, ноцицептор изолирует тело от любого нежелательного критического и непрерывного воздействия раздражителей.

Анормальный ответ возникает, когда организм сталкивается со стимулами, близкими к порогу повреждения ноцицептора, и в этом состоянии ноцицептор работает как обычный рецептор, чтобы избежать дальнейшего повреждения. Если же травма все же была получена, то уязвимость пораженной ткани возрастает. Ноцицептивная система адаптируется к этой повышенной уязвимости, локально понижая ноцицептивный порог и облегчая ноцицептивный ответ, тем самым обеспечивая адекватную защиту тканей.

Ноцицептор демонстрирует два различных поведения в анормальных условиях: аллодиния и гипералгезия.

Аллодиния дает ответный сигнал при нижнем пороговом значении, тогда как гипералгезия создает более сильный ответный сигнал при превышении порогового значения, указывая на то, что при аномальном состоянии порога для ноцицептора нет.

Для наблюдений за поведением искусственного терморецептора в нормальных условиях, который работает как ноцицептор во время вредоносных стимулов, устройство было переключено на LRS, а показания считывались при VREAD80 мВ.

Поскольку срабатывание биологического ноцицептора в значительной степени зависит от интенсивности стимула, на искусственный ноцицептор воздействовали серией температурных стимулов с различной интенсивностью в диапазоне от 66 до 82 C (5a).


Изображение 5

График 5b демонстрирует ответный сигнал относительно интенсивности приложенного теплового стимула. Следует отметить, что ноцицептор не включается, пока температурный импульс не достигнет 68 C, что является температурой перехода используемого VO2. Таким образом, когда VO2 попадает в LRS из-за температурно-индуцированного перехода, более высокий ток начинает течь по всей цепи. Подобное повеление напоминает биологические системы, в которых ноцицептор генерирует запускающий мозг потенциал действия, когда сила стимула достигает значений выше критического.

Дальнейшее увеличение интенсивности стимула выше порогового значения приводит к большему току, что также согласуется с реакцией биологического аналога: чем выше интенсивность стимула, тем выше интенсивность ответной реакции. На графике 5c показаны стимулы нагрева и охлаждения и соответствующий ответный сигнал при 68 C.

График 5d показывает ослабление ответного сигнала с течением времени после того, как вредоносный стимул был отключен, т.е. процесс релаксации, который определяется VO2, так как нет влияния температуры на мемристор на основе STO.

Из-за тенденции к увеличению сопротивления VO2 по мере снижения температуры с течением времени искусственный ноцицептор ограничивает ток через цепь, и, следовательно, наблюдается уменьшение интенсивности ответных сигналов.

Более сильный ответный сигнал из-за более высоких стимулов требует относительно большего времени для полной релаксации. Например, ответному сигналу при 68 C требуется 100 с, чтобы достичь базового тока в 0.5 мкА, тогда как ответный сигнал при 80 C не может полностью релаксировать за 100 с.

Для наблюдения за поведением устройства в анормальных условиях, к искусственному ноцицептору был применен стимул, интенсивность которого была гораздо выше, чем в нормальных условиях.

Ноцицептор нагревали до 90 C со скоростью 20 градусов в минуту и охлаждали до 60 C, что ниже порогового значения (68 C) в нормальных условиях.

Далее следовал повторный нагрев с 60 до 90 C, необходимый для определения наличия/отсутствия генерации пониженного порога и усиленного ответа, которые являются основными свойствами аллодинии и гипералгезии.

Последовательность 60 90 60 90 применялась к VO2 части рецептора и ко всему рецептору, содержащему VO2 и стек металл-изолятор-металл ().


Изображение 6

На графиках отчетливо видно, что ответный сигнал намного более линейный в VO2 () по сравнению с сигналом всего ноцицептора (6b). Это вполне ожидаемо, так как при высокой интенсивности стимула VO2 находится в почти металлическом состоянии с относительно низким сопротивлением 5 кОм после перехода. Более того, приложенное напряжение смещения VREAD (80 мВ) электрически настраивает VO2, чтобы сделать его еще более металлическим, что приводит к линейному отклику.

В то же время, когда подобное смещение VREAD появляется на всем ноцицепторе, максимальное падение напряжения происходит на мемристоре, который находится в состоянии LRS (9 кОм). На этом этапе напряжения на VO2 недостаточно, чтобы показать линейный отклик. Следовательно, данное поведение является нелинейным.

На схеме показано поведение при аллодинии и гипералгезии. В биологической системе интенсивность ответа выше в аномальном состоянии для подпороговой (аллодиния) и сверхпороговой (гипералгезия) интенсивности стимула.

На 6d показан отклик по отношению к двум циклам нагрева последовательности с последовательностью 60 90 60 90 C. Тут видно, что отклик для второго цикла нагрева усиливается, а порог снижается.

В поведении искусственного рецептора четко видны аллодиния ниже пороговой интенсивности и гипералгезия выше пороговой интенсивности (70 C). Из этого следует, что снижая порог и усиливая интенсивность ответа, ноцицептор активирует и усиливает защитные реакции, такие как отстранение или избегание острых болезненных стимулов.


Демонстрация принципа работы электронного эквивалента тельца Пачини.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мозг человека является одной из самых сложных биологических систем. Но нельзя отрицать и того факта, что кожа человека не менее сложна, особенно учитывая немалый список выполняемых ею функций.

Воссоздать некоторые из функций кожи в искусственном эквиваленте не сложно, но вот касательно рецепторов, собирающих информацию об окружающей среде, так сказать не получится.

Тем не менее, ученым все же удалось достичь некоторых результатов в создании искусственных рецепторов, улавливающих давление, температуру и боль.

Как заявляют авторы сего труда, их устройство способно различать легкое прикосновение и, например, укол иглы. На первый взгляд, это весьма банальные вещи, однако ранее такой точности не было в электронных рецепторах.

В будущем ученые, естественно, намерены продолжить свой труд, дабы расширить спектр воспринимаемых внешних стимулов, что позволит сделать их устройство еще более точным. Подобные разработки однозначно найдут свое применение не только в протезировании, но и даже в робототехнике.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru