Русский
Русский
English
Статистика
Реклама

Атомная энергетика

Приключения немецких урановых хвостов в России. Часть 3 Риски и опасности при обращении с ОГФУ

02.09.2020 10:06:10 | Автор: admin
Это третья статья из серии моих публикаций, посвященных проблеме ввоза обедненного гексафторида урана (ОГФУ) из Европы в Россию. Напомню, что осенью прошлого года начались акции протеста против ввоза ОГФУ в Россию, активные выступления Гринпис и других экологических активистов против ввоза в СМИ, Росатом начал ответную разъяснительную кампанию встречи с экологами, в том числе с участием главы Росатома, техтуры на предприятия, встречи в регионах. Я тоже стал разбираться в проблеме, встречался со специалистами и с активистами, в т.ч. с противниками ввоза, посетил крупнейший завод по обогащению урана в Новоуральске.

В итоге я опубликовал на хабре две статьи. Первая была посвящена технологиям обогащения урана в России и мире. Вторая истории контрактов на обогащение урана, экономике вопроса и тому зачем же к нам ввозят ОГФУ. Перед чтением этого поста рекомендую сначала ознакомиться с ними. Следующие части я обещал посвятить вопросам безопасности обращения с ОГФУ и тому что же делают с остающимся после дообогащения в России дважды обедненным ураном. Однако статьи эти немного подзадержались. В дисклеймере под катом я поясню как так получилось и что произошло за это время. Ну и там же обещанное продолжение темы. Итак, поехали.


Фото крупнейшей аварии при транспортировке ОГФУ. Источник


Дисклеймер


С января этого года по теме ввоза ОГФУ произошло много важных событий.
1. Во-первых, в реактор БН-800 на Белоярской АЭС загрузили первую серийно изготовленную партию MOX-топлива. Правда об этом подробнее в следующей части.
2. Во-вторых, меня пригласили в состав рабочей группы по ОГФУ комиссии по экологии Общественного совета Росатома. До разгара эпидемии, в феврале, я успел принять участие в одном заседании группы с участием представителей Росатома и Гринписа. Это был любопытный опыт. Кроме того, группа приняла решение издать доклад по теме ОГФУ и мне предложили присоединиться к числу авторов. Однако я был вынужден отказаться из-за пункта 3.
3. С начала года у меня была длительная зарубежная командировка в разгар пандемии, карантины, рождение второго ребенка, а затем смена работы. Это все вроде бы не имеет отношения к теме, но объясняет почему у меня не было времени почти ни на что другое, в том числе и на этот блог. Но сейчас я потихоньку наверстываю упущенное.
4. Ну и наверно главное по теме. 8 июля был презентован тот самый совместный доклад Комиссии по экологии Общественного совета Росатома и экологической организации Беллона по вопросу обращения с ОГФУ. Доклад доступен по ссылке. На мой взгляд это наиболее полное и довольно простое для восприятие издание по теме на русском языке. Рекомендую всем интересующимся с ним ознакомиться, там всего 50 страниц.
5. А ОГФУ все это время продолжают завозить, ведь контракты действуют до 2022 года. И каждая новая отправляющаяся партия это новостной повод для экологов-активистов. Вот свежая новость с их подачи.

Опасность ОГФУ


1. Свойства гексафторида урана


Гексафторид урана, (ГФУ, формула UF6, независимо от изотопного состава, т.е. хоть обедненного, хоть природного или обогащенного урана) это действительно опасное, химически токсичное и очень едкое вещество, способное вызвать ожоги и тяжелое отравление, относится к веществам I класса опасности с очень низкой предельно допустимой концентрацией до 0,015 мг/м3 в воздухе рабочей зоны (не путать со смертельной концентрацией). Смертельная доза может быть получена при нахождении 10 минут в зоне с концентрацией 216 мг/м3 (так называемый параметр AEGL-3) Опасность его связаны именно с химическими свойствами.

В плане радиационной опасности активность ОГФУ, в котором меньше легких изотопов 235-го и 234-го, минимум в разы, если не на порядок ниже, чем у природного урана 2-4 кБк/г против 20-40 кБк/г (1 кБк = тысяча распадов в секунду). Уран альфа-излучатель, поэтому речь в первую очередь идет об альфа-активности, хотя с распадом урана в нем образуются и бета-активные продукты распада. Так что уран в первую очередь опасен при внутреннем облучении если его вдохнуть или проглотить. Но если вы съедите гексафторид урана, хоть обедненного, хоть обогащенного, то в первую очередь опасность будет связана с химическим отравлением, а не облучением.

Почему в промышленности используют именно такую химическую форму урана я подробно объяснял в первой статье про технологии обогащения только гексафторид урана легко переводится в газообразную форму, необходимую для обогащения. Больше ни для чего такая химическая форма урана в атомной промышленности не нужна, а сам уран нужен. Но к этому мы еще вернемся. При нормальных условиях (атмосферном давлении и температуре до 56,7 градусов) ГФУ находится в твердом виде, в таком же виде он транспортируется и хранится.

Гексафторид урана при нормальных условиях негорюч и не вступает в химические реакции с кислородом, азотом, углекислым газом и сухим воздухом. В газообразном состоянии бурно реагирует с водой, в том числе с атмосферной влагой, с образованием твердого уранилфторида (UO2F2) и газообразного фтористого водорода (HF) тоже очень токсичных веществ, последний как и ГФУ относится к 1-му классу опасности, хотя его ПДК выше. При этом выделяется много тепла.

Однако твердый гексафторид урана с водой и ее парами реагирует гораздо медленнее, так как образующийся мелкодисперсный аэрозоль уранилфторида оседает и препятствует поступлению воды к поверхности гексафторида урана. Этот эффект приводит к существенному замедлению скорости реакции. Т.е. твердый ГФУ как бы затягивается пленкой уранилфторида.

Из описанных свойств вытекает важный практический вывод. ГФУ, который транспортируют и хранят в твердом виде, в случае разгерметизации на открытом воздухе реагирует с его влагой, но не бурно как газообразный или жидкий ГФУ, а медленно, и при этом реакция эта за счет осаждения уранилфторида постепенно затухает. При этом наибольшую опасность представляет выделяющийся газообразный фтороводород HF.

2. При аварии контейнера зона смертельного поражения 32 км?


Однако с самого начала истории и шумихи вокруг ввоза ОГФУ в октябре 2019 г., Гринпис и другие активисты говорили и охотно делились этой информацией со СМИ (раз, два), что перевозка ОГФУ представляет огромную угрозу, поскольку в случае разгерметизации контейнера возможна авария с образованием смертельной зоны поражения радиусом 30-32 км. Причем, 10 лет назад, в 2009-м, когда была аналогичная борьба с ввозом ОГФУ, назывались те же самые цифры. Это не удивительно, ведь источник, на который при этом ссылаются, все тот же что и 10 лет назад это доклад Агентства по атомной энергии Организация экономического сотрудничества и развития (OECD) 1978-го года. Этот 450-страничный документ сборник докладов европейских специалистов на семинаре 27-29 июня 1978 года по вопросам обращения с гексафторидом урана.

Чаще всего противники ввоза ОГФУ цитируют из этого документа всего одну цифру про 32 км (20 миль в оригинале) потенциальную зону поражения при аварии. Реже приводят сам пункт 5.3 из доклада (показываю каким образом и с какими выделениями ее приводит Андрей Ожаровский в своей статье об ОГФУ):

Перевод: Ясно, что внезапное высвобождение большого количества UF6, при распространении по воздуху, может привести к большому количеству жертв. В теории, при некоторых погодных условиях, смертельные концентрации могут образоваться в местах, удалённых на 20 миль [32 километра] от точки выброса. Фактическое количество жертв будет зависеть от мер защиты и плотности населения.

Однако из этого абзаца непонятно о каком именно сценарии аварии идет речь и какое же количество UF6 и в каком виде внезапно высвобождается. Но активистов это не смущает цифра в 20 миль красивая и страшная, самое оно для тиражирования. Мне же хотелось разобраться и найти детали и подробности. Поэтому я посмотрел (и все желающие могут тоже это сделать) сам оригинальный документ и обнаружил интересное. Много даже искать не пришлось. Ответ есть прямо на той же самой странице и двумя идущими за ней.


Коллаж со страницами доклада 1978 (стр 116-118) года с описанием наиболее страшных сценариев аварии с ОГФУ. Зеленым выделен цитируемый экологами пункт 5.3, а так же два идущих за ним с уточнениями, где возможны такие сценарии это заводы по обращению с ОГФУ.

На картинке выше желтым выделены 13 конкретных сценариев с описанием мест возможных аварий со значительным выбросом все на производстве и все касаются обращения с жидким или газообразным ОГФУ, за исключением одного. Красным выделены два, а по сути один и тот же единственный сценарий, который касается аварии с контейнером ОГФУ, в котором тот изначально не обязательно в жидком или газообразном виде. Т.е. теоретически, это может быть и сценарий с транспортировкой ОГФУ, но с важными оговорками это сценарий аварии при его попадании в сильный длительный пожар с дальнейшим взрывом. Т.е. это не просто разгерметизация контейнера при транспортировке, а сочетание целого ряда условий.

Дальше по тексту мы поймем, что не все описанные выше сценарии одинаковы по последствиям, а тот что касается разгерметизации контейнера при нормальных условиях (не при пожаре и не при взрыве) не тянет не то что на 32 км поражения, но и на 1 км. Впрочем, к чему эти нюансы для антиядерных активистов, рассказывающих журналистам об ужасах ГФУ в случае разгерметизации контейнеров при их перевозке. Без каких-либо уточнений и пояснений они просто годами цитируют страшную цифру про 32 км


Вот свежий пример комментария Владимира Сливяка из Экозащиты по поводу недавней отправки партии ОГФУ на сайте Эха Москвы К журналистам, просто перепечатывающим мнение одной стороны без попытки разбора ситуации отдельный вопрос...

У меня такому поведению экологов-активистов лишь три варианта объяснения. Либо за 10 лет (минимум) они не прочитали цитируемый документ, либо прочитали, но не поняли, либо поняли, но намеренно избирательно его цитируют и дают вырванную из контекста цифру, которой делятся со СМИ для нагнетания опасности и по сути запугивания людей. Ни один из вариантов я бы хорошим не назвал. Ну, возможно и я ошибаюсь, конечно, но попробуйте найти этому другое объяснение.

3. А что же будет при разгерметизации контейнера? Теория


Давайте попробуем разобраться что же будет в реальности при разгерметизации контейнера с ОГФУ. Такие задачи решали моделированием в моем родном (мне повезло с темой)Институте промышленной экологии УрО РАН. Была даже разработана специальная методика оценки. Из открытых публикаций могу сослаться на тезисы конференции ВНКСФ-13 (там и мои работы есть, кстати) Ильина А.С и Поддубного В.А на стр 660 с. Численное моделирование аварийной разгерметизации контейнера хранения твёрдого гексафторида урана.

В модели процессы взаимодействия поверхности ГФУ с влажным воздухом описываются системой из восьми дифференциальных уравнений, но не будем вдаваться в детали. Выводы моделирования такие. В зависимости от влажности и температуры, скорость выхода HF (наиболее опасного продукта реакции) варьируется в диапазоне от 0,4 до 15 г. с квадратного метра в секунду. Ну т.е. ни о каком взрывном процессе речи не идет, в отличие от реакции газообразного ГФУ.

На нескольких заседаниях рабочей группы Общественного совета Росатома по ОГФУ докладывались некоторые сценарии аварии на основе такого моделирования. Сценарий первый описывает разгерметизацию контейнера как образование трещины в его верхней части, над поверхностью твердого ОГФУ. Контейнеры заполняются не под завязку (заполняются жидким ОГФУ, а потом он застывает), у них есть свободный объем вверху, где над твердой фазой ОГФУ скапливаются его пары. Т.е. трещина в этой верхней части наихудший сценарий, который приведет к наибольшему выбросу, поскольку газовая фаза легче смешается с водяным паром, а поверхность твердого ОГФУ, открывшаяся влажному воздуху, будет максимальна.


Контейнеры 48-Y с ОГФУ на площадке хранения УЭХК в г. Новоуральске, куда и везут нынешний ОГФУ. Фото автора, снято в декабре 2019.

Последствия такой аварии разовый выброс 16 (!) граммов HF и затем выделение из разрушенного контейнера по 40 г в час. Данные ниже на слайде.


Слайд из презентации Алексея Екидина, сотрудника радиационной лаборатори Института промышленной экологии УрО РАН, к его докладу на заседании Общественного совета Росатома 17 декабря 2019.

Кстати, тут же на слайде есть данные по моделированию того, каким же должен быть выброс, чтобы на расстоянии 32 км образовалась смертельная концентрация (решение обратной задачи из того самого доклада 1978 года). Вывод вы видите выше нужен выброс 2 тонны в секунду

Другой сценарий аварии, когда контейнер не просто дал трещину, а в нем образовалась пробоина и часть ГФУ высыпалась. Результат приведен в другой презентации с того же заседания. Разовый выброс фтороводорода HF в таком случае составит 700 г и примерно столько же будет выделяться каждый час далее.


Слайд из презентации со ссылкой на расчеты ИпЭ УрО РАН по выбросу при разрушении контейнера с ОГФУ.

Кстати, а есть ли что-то про повреждение транспортного контейнера в том докладе 1978 года, на который любят ссылаться Гринпис? Конечно, на 450 страницах и об этом есть. Читаем, например, сценарий на стр 252:


Мой вольный перевод: 4.1 Повреждение не нагретых контейнеров.
Механическое повреждение не нагретых контейнеров представляется возможным во время
аварии при транспортировке или в результате аварии на складе. Без нагрева UF6 в
поврежденном контейнере находится в твердом состоянии, поэтому следует ожидать только медленное выделение очень небольших количеств UF6 и HF. При этом никаких химических или радиологических последствий за пределами объекта не ожидается. К тому же, поскольку выход UF6 сопровождается выделением белого уранилфторида U02F2, место утечки может быть легко обнаружено.


4. Разгерметизация контейнера натурный эксперимент


В далекие 1990-е в США занялись программой обращения с накопленным обедненным гексафторидом урана. Мы еще к ней вернемся в следующей части. Сейчас важно то, что в ее рамках Аргоннская национальная лаборатория по заказу Министерства энергетики США создала специальный сайт Depleted UF6 Management Information Network Web Site, где доступно изложила информацию по теме и ответы на вопросы о свойствах, опасности и практике обращения с ОГФУ. Короче, грамотно поработали с общественностью и информированием. Росатом сейчас вынужден делать ту же работу, реагируя на протесты и отвечая на вопросы активистов. Но лучше, конечно, такие вещи делать заранее и на опережение, чтобы снимать будущие вопросы. Это и называется информационная открытость.

Так вот, сайт этот жутко древний, из каких-то 90-х, с ужасной навигацией и доступом к файлам, но на нем много полезной информации. В том числе подробный FAQ и самое интересное, чего я больше нигде не находил видеоролики по теме, в том числе с лабораторными и натурными экспериментами, демонстрирующими свойства ОГФУ. В том числе аварийные сценарии. Качество, правда, ужаснейшее, адаптированное видимо под интернет тех времен. Youtube тогда еще не было, так что один из роликов для удобства просмотра я залил на свой youtube-канал:


Видеоролик US DOE с демонстрацией свойств ОГФУ и аварийных сценариев (ее раз извиняюсь за качество, таков исходник).

С 9:50 в ролике можно наблюдать шокирующий эксперимент два работника завода в химзащите и противогазах намеренно разгерметизируют контейнер с ОГФУ, откручивая от него запорный клапан. Можно увидеть как постепенно оттуда начинает выделяться газообразный фтороводород. Никакого взрывного процесса. Более того, процесс выделения постепенно замедляется из-за осаждения уранилфторида. Диктор сообщает, что находиться на расстоянии более 3 метров от такого контейнера можно даже без средств защиты. А потом утечку устраняют простой клейкой лентой. Ну и там далее еще показаны эксперименты по погружению негерметичного контейнера в воду и как там он себя ведет (спойлер он там опять самозакупоривается). Переснять бы это все сейчас в хорошем качестве для наглядности

5. А если на склад упадет самолет?


Рассмотрим еще один страшный сценарий, который справедливо упоминает Гринпис, не приводя, правда, никаких его оценок и расчетов (чтобы пугать они и не нужны фантазия обывателя сама все дорисует). Это сценарий падения самолета на склады с ОГФУ, которые реально занимают значительные площади. Оставлю в стороне тот факт, что в России, в отличие от Европы, такие склады находятся на территории закрытых городов, которые, как и АЭС, находятся вне авиакоридоров.

Сценарий падения самолета неоднократно упоминается в докладе 1978 года (можно самостоятельно поискать в докладе слово plane, их там 14 штук). Вывод там такой (стр 325): в случае падения самолета на хранилище с контейнерами с ОГФУ максимальные последствия будут на расстоянии не более 1 (!) км и не выйдут за пределы промплощадки. И это при том что расчеты у них проведены для контейнеров с ОГФУ с толщиной стенок в два раза меньше, чем у современных (8 мм против 16 мм).

Вспоминаем еще раз про 32 км из того же самого доклада и снова убеждаемся, что в той гипотетической аварии речь точно не идет о контейнерах с твердым ОГФУ, и даже о их взрыве от нагрева при пожаре от падения самолета.


На снимке с Яндекс карт как раз одна из крупнейших площадок хранения ОГФУ при комбинате УЭХК в Новоуральске, куда сейчас и везут на переработку ОГФУ из Европы. Площади действительно огромные. И это только часть территории, занятой крупнейшим в мире комбинатом по обогащению урана до 20% мировых мощностей.

В России 4 завода по обогащению урана и, соответственно, 4 площадки хранения ОГФУ (далее по ссылкам указаны как раз места хранения на яндекс- и google-картах) в Новоуральске (На Урале, 80 км от моего дома), и три в Сибири в Северске, Зеленогорске и Ангарске. Только в Северске жилье располагается на расстоянии около 700 м от складов, в остальных городах минимум в 2-3 км.

Впрочем, на родине доклада 1978 года, в Европе, все гораздо камернее. В Великобритании, на заводе Urenco в г. Кейпенхерст, на расстоянии 50-100 м за забором хранилища располагаются с полдюжины гостиниц, а жилые кварталы не дальше 1 км. В следующей части мы еще вернемся к этому заводу, поскольку на него свозят ОГФУ с других европейских заводов Urenco из Германии и Нидерландов для переработки, хотя Гринпис говорит что ни одна страна кроме России к себе чужой ОГФУ не завозит ну т.е. это опять неправда. Великобритания завозит как минимум.


Размещение обогатительного завода Urenco в Кейпенхерсте (Великобритания). Куча гостиниц буквально за забором от складов. Жилые кварталы не далее 1 км на восток.

То же и в Гронау (Германия), откуда ОГФУ и везут в Россию в 300 м от хранилища популярный семейный отель, а городское жилье в 1 км. От Нидерландского завода Urenco в г. Алмело 200 м до тюрьмы, 500 м до гостиницы и около 1 км до жилых кварталов. Так что последствия падения самолета на промплощадки обогатительных комбинатов в Европе, согласно оценкам доклада 1978 года, могут быть печальнее, чем в России. При том что и самолетов у них летает побольше, и плотность населения и застройки выше.

Кстати, это видно и по оценкам вероятности такого сценария. Вероятность падения самолета в зависимости от его размера оценивается европейцами в своем докладе как от 1 до 4 случаев за миллион лет. Российская оценка для наших складов на два порядка меньше 1 случай за 100 миллионов лет.

6. Сценарий взрыва контейнера


А теперь давайте рассмотрим тот самый страшный сценарий, который может произойти с контейнером с ОГФУ, который попал в список гипотетических аварий с большими выбросами в документе 1978 года. Не думаю, что его до этого кто-то подробно публично разбирал, поскольку он не описан подробно ни в докладе 1978 года, ни попадался мне на глаза у Гринписа или других экологов-активистов, любящих цифру в 32 км. Возможно они о нем не знают. Так что не исключаю, что сейчас частично сыграю им на руку, подкинув деталей. Впрочем, этого сценария пока нет и в докладе Беллоны об ОГФУ (но доклад будет дополняться, в т.ч. раздел по возможным авариям), и в методиках ИПЭ УрО РАН (у них я уточнял им такую задачу считать и не задавали), и не упоминается нигде у Росатома. Так что и для них это наверно будет некоторым неприятным сюрпризом. Но я как раз пытаюсь разобраться в проблеме, а не занять чью-то сторону. Поэтому выкладываю то до чего докопался, а выводы делайте сами.

Итак, это сценарий, при котором контейнер с ОГФУ взрывается после длительного нагрева в большом пожаре свыше существующих нормативов по прочности для такого контейнера. Конструктивно самый популярный в мире контейнер для ОГФУ 48-Y (в нем в Россию и завозят ОГФУ из Европы) по международным требованиям должен выдерживать 30-минутное нахождение в огне с температурой 800 градусов. Но что если нагревать его больше и дольше? Постепенно гексафторид внутри расплавится, давление его паров будет расти и при превышении расчетных параметров (27 атмосфер) возможно разрушение контейнера, а при таком внутреннем давлении это будет взрывной процесс с выбросом наружу газообразного и жидкого ОГФУ. И это, конечно, гораздо опаснее чем разгерметизация контейнера с твердым гексафторидом.

Я нашел ряд статей с моделированием выброса при таком сценарии. В открытом доступе есть, например, немецкая статья M. Sogalla и W. Brcher Radiological consequence analysis in case of fire impact.. В ней разбирается массовый сценарий: сразу 10 контейнеров, по 12,5 т ОГФУ (т.е. те самые 48-Y) в каждом, нагреваются в огне при сжигании углеводородов при температуре 800-1000 градусов. Моделирование показывает величины выброса и приземные (там, где собственно находятся люди) концентрации опасных веществ при неблагоприятных погодных условиях на разном расстоянии в зависимости от разных факторов, продолжительности пожара после взрыва, например.

Так вот, в самом худшем сценарии, чисто гипотетическом и по словам авторов маловероятном, опасные (вплоть до смертельных) концентрации от одновременного взрыва 10 контейнеров возможны на расстоянии 8 км по направлению ветра от места взрыва. Скорость выхода ОГФУ из одного контейнера при этом до 12,2 кг/с. Серьезный сценарий и серьезные последствия. Но и тут нет речи о зоне смертельного поражения в 32 км.


График концентрации выброса (на самом деле меня смущает что у них указан уран, но судя по величине AEGL-3 речь все же о некоем усредненное выбросе продуктов реакции ГФУ с влагой если кто поможет разобраться будет здорово) в зависимости от времени начала пожара и расстояние на котором будет та или иная концентрация. AEGL-3 смертельный уровень. Источник.

Авторы, конечно, обсуждают сферического коня в вакууме, моделируя огонь в условном бассейне углеводородов, и не говорят о реалистичных сценариях. Но из возможных, конечно, напрашивается минимум один страшный сценарий (это моя фантазия, можете придумать другой) столкновение поезда с ОГФУ и поезда с каким-то горючим (нефть или бензин). Важные условия такой задачи горючка должна разлиться так, чтобы в ее огонь попали несколько контейнеров с ОГФУ, чтобы она горела не менее получаса равномерно прогревая весь объем контейнеров, и за это время она не должна вся выгореть (для этого слой нефти должен быть минимум 7,5 см, а бензина 30 см, см табл 1.1 в документе о скорости горения нефрепродуктов), все это дело не должны в это время тушить и разгребать. Ну и сила и область последствий будет зависит от многих факторов устойчивости и силы ветра, густонаселенности местности, близости пожарных команд и готовности реагировать на ЧП и т.д.

Так что если Гринпис и возьмет на вооружение рассказы об этом сценарии, важно, чтобы они давали при этом все вот эти подробности про случай столкновения двух поездов. А то начнутся выдумки как про 32 км от разгерметизации одного контейнера. Ну и по уму надо оценить вероятность такого сценария. Я ее пока нигде не нашел, даже любопытно она выше чем у падения самолета на склад или ниже?

При этом надо помнить, что вообще то крушение поезда с горючим это сама по себе серьезная авария, тем более в случае столкновения с чем угодно, начиная от других опасных грузов и заканчивая пассажирским поездом. Так что мне кажется более важным не бороться с конкретными грузами, которые кому-то по тем или иным причинам не нравятся (Гринпису, например, все радиоактивное и атомное), а бороться за повышение безопасности всех транспортировок вообще. Ниже я еще разовью эту мысль.

7. Свойства и прочность контейнеров для ОГФУ


Давайте теперь перейдем от теории к практике к реальным авариям. Они, конечно, были. И наверняка еще будут. Никакой транспорт, да и никакая технология вообще, не бывает 100% безопасным. Поэтому как и с перевозкой других ядерных и радиоактивных материалов, сами контейнеры делают такими (даже на случай когда ядерное топливо возят самолетами), чтобы в случае аварии они сохраняли герметичность. Даже если при этом возникнет пожар. Но бесконечной безопасности опять же не бывает, так что формулируются некоторые минимальные требования, которым тара должна отвечать.

Наиболее популярные во всем мире контейнеры для ОГФУ 48-Y (48 это диаметр в дюймах, или 1,22 м). Длина 3,81 м, объем около 4 м3, масса контейнера около 2,5 т, масса ОГФУ внутри до 12,5 т. Толщина стальных стенок почти 1,6 см. Рабочее давление 13 атмосфер, предельное 27 атмосфер (данные отсюда, стр 51).

Далее я процитирую доклад Беллоны (стр 22): После изготовления контейнеры подвергаются испытаниям на механическую прочность, герметичность, термостойкость и устойчивость к гидростатическому давлению. Для испытаний на прочность проводят сбрасывание контейнера с высоты 9 м на бетонную плиту с металлическим штырем диаметром 36 мм. Падение с такой высоты равносильно столкновению с бетонной плитой на скорости 45 км/час. Испытания на теплостойкость проводят выдержкой контейнера в открытом огне при температуре 800С в течение получаса. Испытания на герметичность проводят сопротивляемостью гидравлическому давлению, вдвое превышающему рабочее, при температуре от -40С до +40С.


А это фото контейнера 48-Y на специальном участке комплексного обслуживания на УЭХК, где их периодически обследуют. Эту процедуру раз в несколько лет в течение всего срока службы в 80-100 лет проходят все контейнеры в хранилище. При этом их проверяют на наличие дефектов и соответствие всем требованиям как внутри так и снаружи, моют и окрашивают. ОГФУ при этом, конечно, извлекается. Фото автора.

8. Реальные случаи аварий при обращении с ОГФУ


Конечно, аварии при транспортировке бывали. Однако при этом не было аварий с выходом ОГФУ из контейнеров. Вот наиболее яркие примеры:

25 августа 1984 года. Судно Монт-Луи везло 350 т гексафторида урана в 30 контейнерах 48-Y (да, они использовались уже тогда и за 20 лет до того) и затонуло в Северном море после столкновения с паромом. По аварии имеется подробный 5-страничный бюллетень МАГАТЭ, откуда можно узнать массу любопытных деталей. Груз, кстати, направлялся по похожему на нынешний контракт это была поставка европейского ГФУ и ОГФУ (Франция, Бельгия и Германия) на обогащение в СССР по контракту от 1973 года (О становлении мирового рынка обогащения я подробно писал в прошлой публикации).


Фото столкновения судна Монт-Луи и парома Олау Британия в Северном море в 10 милях от Бельгийского берега. Монт Луи затонул через 4 часа 40 минут после столкновения. Фото взято отсюда.

За полтора месяца все контейнеры были подняты, часть из них была помята и повреждена штормами, однако лишь в одном была обнаружена небольшая течь в запорном клапане. Течь, кстати, за счет разницы давлений, была внутрь контейнера, а не наружу, и была устранена при подъеме. Вода не успела заполнить свободный объем контейнера. Проведенные пробы и исследования не обнаружили никаких значительных загрязнений. Кроме того, во время спасательной операции были сделаны прогнозы по наихудшему сценарию. Расчеты показали, что даже мгновенная реакция всего ОГФУ в контейнерах с морской водой не привела бы к образованию токсичных концентраций фтористоводородной кислоты. В результате весь груз был спасен без ущерба для здоровья спасателей и окружающей среды.

Я честно искал наглядные материалы по той аварии чтобы вам показать, но их не так много. Есть совершенно эпичное цветное фото операции по подъему груза с затонувшего судна Монт-Луи, где видны поднятые контейнеры. Но известное агентство Магнум, куда я обратился за разрешением поставить его в пост, запросило с меня 6000 р. Пока я не готов тна такие траты для постов в блоге, поэтому я просто дам ссылку, где его можно посмотреть на сайте агентства в нормальном качестве вот тут.

Зато о спасательной операции есть целый документальный фильм:


13 марта 2014 года в Порту Галифакс (Канада) при погрузке на судно уронили с 6 метровой высоты 4 контейнера 30B с обогащенным гексафторидом урана. Контейнеры сохранили герметичность, утечек не было. Аналогичный инцидент был в этом порту и в 1999-м.

С десяток случаев аварий грузовиков с контейнерами с ОГФУ в США и Европе описаны по этой ссылке (см Transport accidents в самом низу). Случаев разгерметизации не было.

И данные Росатома, и данные отчета Беллоны говорят о том, что за все время транспортировки ОГФУ на территории СССР/России (более 60 лет) аварий и инцидентов не было. Можно в этом сомневаться, но указанная выше ссылка на подборку инцидентов с транспортировкой ОГФУ действительно ограничивается лишь иностранными примерами. Возможно дело в том, что у нас в основном его перевозят железнодорожным транспортом, который несколько безопаснее автомобильного.

Для наглядности того как ОГФУ разгружают с судна в порту Санкт-Петербурга и перегружают на ж/д транспорт, какая при этом радиационная обстановка и как это все показывают общественности, поставлю тут этот видеоролик от Беллоны про перегрузку урановых хвостов в Санкт-Петербурге.:


9. Смертельные случаи при обращении с гексафторидом урана


Несмотря на отсутствие жертв при авариях на транспорте, смертельные случаи при обращении с гексафторидом урана происходили. Например, в США в 1944 году на экспериментальной установке произошел выброс около 180 кг разогретого газообразного ОГФУ. Погибли два человека, еще трое пострадали. А в 1986 году на коммерческой установке по переработке урана Sequoyah Fuels Corp, США, произошла утечка UF6 при разрыве нагретого 14-тонного контейнера. От вдыхания HF погиб один человек, еще 31 работник подвергся воздействию газового облака, но долговременных последствий для здоровья не получил.


Разорванный контейнер на Sequoyah Fuels Corporation в 1986 году. Источник.

Итого за почти 75 лет обращения с ОГФУ в мире погибли трое и пострадали еще около 40 человек. Даже если предположить, что в СССР такие случаи скрывались, то вряд ли речь идет о величинах на порядки больших. Получается, что человечество действительно научилось обращаться с этим опасным веществом ОГФУ, относительно безопасно. А абсолютно безопасных технологий не бывает. Даже тяга делать селфи убила больше людей, чем ОГФУ.

10. Прочие опасные грузы или все относительно


Надо отметить, что ОГФУ, конечно, опасная субстанция и опасный груз на наших дорогах. И внимание активистов к нему приковано, конечно, не на пустом месте. Однако как я показал выше, Гринпис склонен, осознанно или нет, существенно преувеличивать опасность.

Конечно, можно добиться прекращения ввоза ОГФУ из-за границы (около 12 тыс.т до 2022 года по нынешним контрактам), но это, во-первых, не прекратит перевозку аналогичного по химическому составу гексафторида природного и обогащенного урана внутри страны между комбинатами на Урале и в Сибири. Ведь крупнейший комбинат в Новоуральске работает полностью на привозном гексафториде его везут с сублиматного завода СХК в Северске, где природный урановый концентрат для дальнейшего обогащения переводят в форму гексафторида. Производство уранового топлива для российских и существенной доли зарубежных АЭС будет продолжаться, а значит будет и перевозка ГФУ. И не только в России.

А во-вторых, ладно ОГФУ, объем его перевозок внутри страны не превышает десятков тысяч тонн в год (несколько десятков ж/д составов). Внутри России 20% всех перевозимых грузов относятся к категории опасных, это около 800 млн т. кислоты (в том числе те же продукты реакции ОГФУ типа фтороводорода), токсичные вещества, взрывчатые и пожароопасные материалы (те же горючие материалы, необходимые для реализации самого страшного сценария при перевозке ОГФУ). Т.е. их объем в сотни тысяч раз больше, чем ОГФУ. Из этих 800 млн.т. 65% перевозят автомобильным транспортом, потенциально наиболее рискованным в плане дорожных аварий.

Устранение с наших дорог европейских ОГФУ, о чем мечтает Гринпис, не решит проблему рисков связанных с перевозками опасных грузов у нас в стране вообще никак. Решит ее лишь усиление контроля за соблюдением правил перевозок и улучшение транспортной инфраструктуры. В прекрасной России будущего, на мой взгляд, надо делать упор на это, а не на борьбу с отдельными опасными грузами путем запугивания населения, при том что эти грузы перевозятся по тем же правилам и в той же таре по всему цивилизованному миру.

11. Опасности при хранении и ржавые контейнеры


Пару слов об опасности складов хранения. Ну, падение самолета мы уже рассмотрели. Но по сети часто гуляют фото ржавых контейнеров со складов. А Гринпис жалуется на то, что это все хранится под открытым небом и ссылается на несколько отчетов Ростехнадзора до 2011 года, в которых отмечалось неудовлетворительное состояние складов хранения ОГФУ. Однако после 2011 года таких замечаний не было. Помимо того что можно приветствовать наличие контролирующего органа, обнаруживающего недостатки в работе предприятий Росатома, логично задать вопрос а может после 2011 года замечаний по этой теме нет потому что их устранили?

По поводу хранение под открытым небом это общемировая практика. Выше я уже показывал фото и давал ссылки на спутниковые карты российских и европейских складов они все примерно одинаковые. Ну потому что сложно сделать такие огромные ангары. А толстостенные стальные контейнеры, рассчитанные на падения и пожары, не особо боятся дождя и снега. Главная их защита это именно толщина стенок, краска и периодическое освидетельствование, в ходе которого проверяют состояние клапанов, степень коррозии (и внутри тоже), ну и наносят новую краску. Саму территорию складов тоже регулярно осматривают, контейнеры там специально выложены для удобства визуального осмотра. В случае утечки и трещины, как мы видели выше по ролику Министерства энергетики США, во-первых, место утечки несложно обнаружить визуально по белесым выпадениям уранилфторида, а во-вторых, устранить его тоже несложно. В ролике вообще скотч наклеили, а на практике на контейнер могут поставить металлическую заплатку, а затем заменить.

И о ржавчине. В ней для толстостенных контейнеров опять же ничего особо страшного нет, если, конечно, не доводить до запущенных случаев. Огромные склады с крупнейшего завода в Новоуральске, показанные выше, явно заполнены покрашенными серыми контейнерами. Но я специально припас фото с американских хранилищ для этого раздела, а по указанным под ними ссылками можно пройти на сами гуглокарты и посмотреть все в деталях. Даже со спутника видно, что существенная часть контейнеров на складах покрыта ржавчиной:


Склад хранения ОГФУ на бывшем газодиффузионном заводе в Портсмуте (Portsmouth), штат Огайо.


Склад хранения ОГФУ на бывшем газодиффузионном заводе в Падьюке (Paducah), штат Кентукки.

Суммарно на этих складах хранится около 800 тыс. т. ОГФУ примерно столько же, сколько на всех хранилищах в России. Справедливости ради, тут надо сделать два комментария. Во-первых, в Новоуральске контейнеры скорее всего поновее потому, что они активно работают с зарубежными заказчиками и часто меняют тару. США же свой ОГФУ никуда не вывозят, а в Россию так вообще им законодательно это запрещено это же ядерный материал, как никак, тот самый стратегический ресурс, статус которого так не нравится Гринпису. Но все это конечно не извиняет такого отношения к их железякам. А во-вторых, надо отметить, что по спутниковым снимках не так хорошо видно на российских площадках состояние контейнеров отечественного производства емкостью по 2,5 м3, которые, в отличие от 48-Y, ставятся вертикально.

12. А как же онкология?


В обсуждениях темы ввоза ОГФУ в СМИ, на других площадках и в комментариях к моим предыдущим статьям периодически возникали возгласы в духе везут нам всякую гадость, а потом у нас в Новоуральске онкология растет!. Но мало кто после этого приводит цифры или другие данные в подтверждение таких заявлений. И мало кто вспоминает о том, что на самом деле канцерогенов и факторов, повышающих риск рака и без радиации хватает. То что при хранении и перевозке ОГФУ не возникает выбросов урана мы как бы попытались уже разобраться. Давайте я просто для своих родных уральцев покажу одну картинку об уровне заболеваемости раком в нашей Свердловской области.

Год назад наш губернатора подписал 100-страничную программу по борьбе с онкологическими заболеваниями на 2019-2024 годы. Там масса статистики по заболеваемости в области, в том числе по печальным районам лидерам по заболеваемости раком. Вот они:


Лидеры по заболеваемости раком в Свердловской области, чей показатель выше среднего по области, составляющего 426,4 случая на 100 тыс. человек.

Как видно, Новоуральска в этом списке нет, как нет и г. Заречного, где находится Белоярская АЭС. А ведь в Новоуральске находится крупнейший в мире комбинат по обогащению урана. Вот только на Урале помимо атомной промышленности полно не самой чистой цветной металлургии, разных карьеров, в т.ч крупнейший в мире асбестовый, грязных котельных и ТЭЦ, включая крупнейшую в России угольную Рефтинскую ГРЭС, и других источников выбросов, низкого уровня медицины и зарплат и прочих прямых и косвенных факторов, влияющих на здоровье вообще и на онкологию в частности. Вот на что надо обратить внимание в первую очередь для борьбы с онкологией в Прекрасной России Будущего. Ну и атомные предприятия тоже надо контролировать, конечно, но связывать ввоз ОГФУ с ростом онкологии, мягко говоря, не корректно.

13. В завершение 3-й части


Опасность ОГФУ весьма преувеличена антиядерными организациями. Да, это опасное вещество, однако опыт показывает, что принимаемые технические и организационные меры по обращению с ОГФУ обеспечивают его безопасное использование. Однако для дальнейшего длительного хранения предпочитают другие его химические формы, менее опасные. Об этом, а так же о иных способах использования ОГФУ помимо дообогащения в следующей, завершающей части, которую я опубликую уже через несколько часов. Там же будет мое интервью с автором доклада об ОГФУ и директором Беллоны Александром Никитиным и краткие выводы по всей теме.

Поддержать автора


Если вам понравилась моя статья, то вы можете сказать об этом в комментариях (а то обычно там только ругают), а так же поощрить будущие публикации материально на карту Тинькофф 5536 9137 7974 2317. И подписаться на мой Youtube-канал.

Использованные источники:


1.Доклад ЭПЦ Беллона ОБЕДНЕННЙ ГЕКСАФТОРИД УРАНА (современная ситуация, вопросы
безопасного обращения и перспективы)
, 2020 год.
2.Краткая версия доклада обзор ЭПЦ Беллона по теме ОГФУ
3. THE SAFETY PROBLEMS ASSOCIATED WITH THE HANDLING AND STORAGE OF UF6, OECD, 1978.
4. Урановые хвосты снова едут из Германии в Россию, Андрей Ожаровский, 29.10.2019
5. Численное моделирование аварийной разгерметизации контейнера хранения твёрдого гексафторида урана, Ильин А.С, Поддубный В.А, Материалы ВНКСФ-13, стр 660.
6. Результаты работы рабочей группы по вопросам безопасного обращения с ОГФУ, презентация Екидина А.А.
7. Depleted UF6 Management Information Network Web Site, U.S. Department of Energy (DOE)
8. Radiological consequence analysis in case of fire impact, M. Sogalla, W. Brcher, 2005.
9. Отчет об аварии судна Монт-Луи и ядерная безопасность, Бернар Огюстен, Бюллетень МАГАТЭ, 1985.
10. Uranium Hexafluoride Transport / Wise-uranium.org
11. 70 лет безопасных перевозок радиоактивных материалов. С.В. Райков, А.Е.Бучельников, В.Н. Ершов, В.В. Нащокин, 2015.
12. Программа Борьба с онкологическими заболеваниями в Свердловской области на 20192024 годы.
Подробнее..

Блэкаут в Техасе. Как нефтегазовый штат остался без топлива, электричества и одной АЭС

24.02.2021 14:21:40 | Автор: admin

Около недели в США бушевал арктический шторм. Нетипично низкие температуры и снежные бури накрыли половину страны, но самая тяжелая ситуация сложилась в Техасе. Энергосеть южного штата не справилась с нагрузкой, в результате миллионы людей остались без воды, электричества и тепла. Почему так вышло?

Во-первых, условия действительно чрезвычайные. Подобной зимы не было почти 10 лет, а в некоторых местах поставлены вообще абсолютные рекорды отрицательных температур. Обычно в Техасе зимой плюс или слабый минус, а тут местами морозы до 20. Соответственно, инфраструктура и люди к этому не готовы. На ледяных дорогах десятки погибших, около 12 миллионов человек испытывают проблемы с нехваткой воды (трубы перемерзают), до 3 млн домохозяйств оставались без электричества и тепла, люди были вынуждены эвакуироваться из домов или греться и ночевать в машинах.

Те у кого есть газ, но нет электричества, греются так. Фото Ashley Landis/AP, источник: https://abcnews.go.com/Politics/republicans-texas-power-outages-spread-false-claims-green/story?id=75947664Те у кого есть газ, но нет электричества, греются так. Фото Ashley Landis/AP, источник: https://abcnews.go.com/Politics/republicans-texas-power-outages-spread-false-claims-green/story?id=75947664

Дело в том, что более 60% домохозяйств штата отапливаются за счет электричества и лишь 40% - за счет газа. Сами дома не рассчитаны на такие морозы. Все это привело к постепенному росту потреблению электроэнергии до рекордных 70 ГВт, при среднем уровне около 40 ГВт перед штормом (см график). При этом прогнозируемый максимум был в районе 67 ГВт. А после этого система достигла максимума возможностей и накрылась. До 80 электростанций из 680 в штате не могли работать, до 45 ГВт мощностей были недоступны. Дисбаланс спроса и предложения привел сначала к резкому росту оптовых цен на электроэнергию в сотни раз, до 9000 $ за МВт*ч, максимуму допустимому на рынке. В Техасе изолированная энергосистема с очень свободным рынком электроэнергии, поставщики в результате получают миллиарды, потребителей же ждут огромные счета за электроэнергию. Однако невидимая рука рынка не снизила объемы потребления, и их пришлось снижать принудительно физически, через веерные отключения.

Потребление и производство электроэнергии в Техасе в дни блэкаутаПотребление и производство электроэнергии в Техасе в дни блэкаута

Почему так случилось? Тут сейчас масса спекуляций. Противники возобновляемой энергетики и республиканцы, в том числе губернатор Техаса, винят замерзшие ветряки и политику демократов Green New Deal по развитию возобновляемых источников. Демократы винят республиканцев за обособление электросистемы Техаса и дерегулирование рынка. Российский интернет вместе с госканалами глумится над чуждыми нашим скрепам западными идеями развития альтернативных источников и американскими проблемами в целом. Не без вранья, само собой.

Завирусившееся фото, распространяемое противниками альтернативной энергетики. Однако это не Техас, а Европа в 2015 году. Фото испытаний системы оттаивания лопастей горячей водой, в итоге не самой популярной. Источник - https://naukatv.ru/articles/vetryak?fbclid=IwAR2t0VbOs841xC10qcwravP83b93hlFIHDPkPUnKyVR2Wa2C8M6wB7sh0ZoЗавирусившееся фото, распространяемое противниками альтернативной энергетики. Однако это не Техас, а Европа в 2015 году. Фото испытаний системы оттаивания лопастей горячей водой, в итоге не самой популярной. Источник - https://naukatv.ru/articles/vetryak?fbclid=IwAR2t0VbOs841xC10qcwravP83b93hlFIHDPkPUnKyVR2Wa2C8M6wB7sh0Zo

Но что на самом деле? Во-первых, половина ветряков действительно замерзла (обледенение лопастей), но это не ключевой фактор в проблеме. Обычно в это время года они дают лишь около 7% электроэнергии, а в среднем по году - около 23%. Из около 45 ГВт вышедших из строя установленных мощностей на ветряки приходится 16 ГВт (из 30 ГВт установленной мощности ветряков в штате), а 28 ГВт на газовые, угольные и атомные станции. Доля солнечных не так значительна, хотя и они резко снизились. Обычно выбывающие мощности ветряков компенсируют именно газом, но с ним возникли проблемы.

До половины электроэнергии Техас получает, сжигая газ. Техас главный нефтегазовый штат США. Кстати, ВВП штата больше российского при населении в 5 раз меньше. Однако к таким морозам даже нефтегазовая инфраструктура не готова из-за конденсата замерзали трубы, компрессоры для перекачивания оставалась без электричества, вставали добывающие скважины. В итоге даже добыча сократилась за 30-50%. Губернатор ввел временный запрет на экспорт сжиженного газа. Хранилища и запасы отсутствуют. Поставки газа для обогрева домов обладают приоритетом перед поставками для электростанций. Это еще обострило дефицит топлива в холодное время. Все это показывает уязвимость газовой генерации от поставок топлива даже в нефтегазовом регионе. Нет газа в трубе нет электричества.

Отдельно стоит отметить сдержанные ухмылки сторонников атомной энергетики, которые я наблюдаю и в России и в США. Да, АЭС в целом показали себя хорошо 4 энергоблока на двух АЭС в Техасе работали без проблем и выдавали около 5 ГВт электроэнергии в режиме 24/7 вне зависимости от погоды и поставок топлива. Однако в итоге один из энергоблоков тоже не выдержал (см график). 15-го числа от был отключен системами автоматики из-за ложного срабатывания датчика давления питательной воды на турбине. Он перемерз. Но через два дня блок уже снова работал на 100%.

АЭС South Texas Project, один из блоков которой был отключен из-за замерзания датчика. Синим видны турбины на машзалах.АЭС South Texas Project, один из блоков которой был отключен из-за замерзания датчика. Синим видны турбины на машзалах.

Но честно говоря, когда я посмотрел на фото этого энергоблока то немного офигел. Дело в том, что его машзал, где находится турбина, он, как бы сказать, не имеет крыши Ну т.е. она есть, но турбина в кожухе выступает над ней, и тут же рядом на открытом воздухе мостовой кран для обслуживания (см спутниковое фото выше). Такой вот дизайн. Понятно, что у них там тепло, и возможно это даже по каким-то соображениям оправдано. Да и соседний аналогичный блок отработал без проблем. Но на одном все же датчик перемерз.

Более наглядное фото второй АЭС в Техасе - Comanche Peak, с подобными же облегченными машзалами.на переднем планеБолее наглядное фото второй АЭС в Техасе - Comanche Peak, с подобными же облегченными машзалами.на переднем плане

Такую конструкцию машзала я вижу впервые (спасибо блэкауту хоть за это). Российские машзалы АЭС, что в Арктике, что на юге это отдельное теплое помещение, где можно обслуживать турбины и генераторы в любую погоду, а зимой там даже оранжереи с экзотическими растениями можно встретить.

Закрытый машзал самой южной АЭС России - Ростовской. Фото автора, 2017 г.Закрытый машзал самой южной АЭС России - Ростовской. Фото автора, 2017 г.

Как бы то ни было, аномальные морозы на большой территории США стали причиной кратковременного отключения всего одного блока АЭС из 94, в самых неблагоприятных условиях. Так что атом действительно оказался более надежным, чем другие источники. В Техасе временно вышли из строя 25% атомных мощностей, тогда как потеря мощностей ТЭС составила до 50%, а ветряков до 75%. Впрочем, доля атома в энергобалансе Техаса невелика и в дни блэкаута была сопоставима с выработкой ветряков.

Распределение выработки электроэнергии по типам электростанций Техаса за 2020 г.Распределение выработки электроэнергии по типам электростанций Техаса за 2020 г.

Кроме того, к причинам блэкаута стоит добавить системные проблемы. Энергосеть Техаса плохо связана с другими штатами. Она у них вообще отдельная на штат, как у Аляски, в то время как другие штаты входят в одну из двух, Восточную или Западную, объединенные энергосети. В добавок довольно свободное регулирование рынка энергетики в штате (американские СМИ винят в этом республиканцев) не обязывает поставщиков иметь достаточно резервных мощностей, а сами резервные генераторы мощности при этом ориентированы на работу летом, когда идет максимальное потребление, поэтому они не защищены от холодов.

Обособленная энергосеть Техаса выделяется на фоне США. Обособленная энергосеть Техаса выделяется на фоне США.

Вот такая история. Сейчас ситуация вроде налаживается, но до сих пор сотни тысяч людей не вернулись к нормальной жизни. И на самом деле пока рано говорить о том, что сыграло большую или меньшую роль в развитии ситуации. Любая катастрофа это сочетание многих факторов. И тут их много. Так что пусть специалисты анализируют и делают выводы. А мы потом посмотрим. Но понятно, что на фоне устранения недостатков энергосистем, стоит быть готовым к тому, что подобные природные аномалий могут случаться все чаще и чаще.

Бонус и благодарности

Я продолжаю экспериментировать со своим видеоканалом, поэтому записал видеоверсию этой небольшой статьи с видеовставками, которых нет в тексте. Если вы хотите увидеть больше моих публикаций на атомную тематику, можно поставить "нравится" этой записи, подписаться на мойyoutube-каналиtwitter, или даже сделать небольшой подарок на карточку Tinkoff 5536 9137 7974 2317 В

Ссылки на источники и материалы по теме:

  1. Millions of Texans Are Freezing Right Now Our Deregulated Electrical Grid Is to Blame

  2. Ветрогенератор и вертолёт

  3. Natural Gas And Wind Freeze Up When The Going Gets Tough

  4. Когда зеленые глаза полны соринками

  5. Texas largely relies on natural gas for power. It wasnt ready for the extreme cold.

  6. В Техасе замерзли газовые скважины и от холода встал блок АЭС: новые подробности рекордного блэкаута. Naked-science.ru

PS:

В ближайшее время планирую опубликовать большую статью об истории ядерного разоружения. Не переключайтесь.


Подробнее..

Энергетика от мха до плазмы

22.03.2021 00:17:09 | Автор: admin

Мы часто слышим, что за последние годы использование энергии человечеством увеличилось настолько, что ископаемые ресурсы закончатся через пару десятков лет. Но то же самое говорили и в 70-х годах прошлого века. Откуда мы тогда сегодня берем энергию для существования и что нам делать дальше? Для развития технологий необходимо понимать, как эффективно преобразовывать ее в работу, ведь энергия - ресурс даже в астрономических масштабах не бесконечный. Практически вся энергия, которая существует на Земле и которую люди могут извлечь из солнечной системы - энергия Солнца, у которого конечное время жизни, а вся энергия во Вселенной ограничена тем, что дал нам Большой Взрыв. Но что такое энергия?

Никто не может дать четкого определения, так как нет более общего класса понятий, которым мы можем описать энергию. Все, что мы можем - изучать ее свойства и характеристики. Ричард Фейнман в своих знаменитых лекциях по физике говорил: Важно понимать, что в сегодняшней физике мы не имеем представления об энергии. Мы не можем сказать, что энергия поступает в маленьких сгустках определенного количества. Мы точно знаем: вся материя в конечном счете является энергией, сумма которой во Вселенной никогда не изменится, поэтому рассуждать мы будем о способах изменения ее формы.

Откуда вообще взялась энергия во Вселенной и что она значит для нас?

История энергии началась в момент Большого Взрыва. Возможно, в один момент появилось два связанных между собой понятия: энергия и пространство-время. Возможно, энергия являлась первопричиной всего в нашем мире, с этим ещё предстоит разобраться, но сейчас уже точно ясно одно: энергия является сутью физической формы материи, всё во Вселенной является сосредоточением той или иной формы энергии. Теория расширения ранней Вселенной намекает нам на то, что изначально все вещество являлось однородной изотропной средой, в процессе расширения которого произошло остывание и конденсация всех известных науке элементарных частиц. Появилось 4 фундаментальных взаимодействия: сильное, слабое, электромагнитное и гравитационное.

Через много-много лет после Большого Взрыва, когда люди только начали применять энергию, никто не знал про 4 фундаментальных взаимодействия. Изначально люди грели себя и готовили пищу с помощью химических реакций горения. Так продолжается и по сей день, основным источником энергии для нас сегодня является электричество, вырабатываемое на всевозможных ТЭС(тепловая электростанция) и ТЭЦ(теплоэлектроцентраль).

По сути вся жизнь человека - постоянный поиск энергии. Это может быть громким заявлением, но вы только подумайте: мы ведь кушаем только чтобы получать энергию для функционирования мозга и движения. Жизнь человечества строится на способах добычи энергии. Поэтому энергетика является одним из важнейших аспектов жизни людей и всего во Вселенной.

Почему современная энергетика неэффективна?

Давайте отбросим понятие энергии на второй план и подумаем: какие способы добычи энергии сегодня известны?

Первый и самый популярный способ - что-нибудь сжечь: дерево, нефть, газ. В процессе образуется много лишнего, а все ископаемые ресурсы очень скоро закончатся. Второй - извлечь работу из гравитации: ГЭС, приливные станции, - но проблема тут в размерах и в расположении станций, к тому же не везде есть вода. Еще можно подумать о солнечной энергетике: тут вроде все хорошо, но роль играет расположение и низкая плотность энергетического потока.

Почти вся используемая энергия досталась нам благодаря Солнцу, просто в разных видах. Растения тысячелетиями накапливали энергию солнца, росли и погибали, образовывали нефть, природный газ и уголь. Сама Земля, ее вода и атмосфера существуют из-за Солнца. Необходимо более универсальное решение проблемы эффективности добычи энергии.

Достаточно посмотреть на эту диаграмму, чтобы понять, что человечество не очень то и далеко ушло от своих предков, которые просто жгли древесину, мох и уголь:

Рисунок 1. Изменение глобального потребления энергии по видам источников

Получается, что за 200 лет люди ничего толком не изменили в энергетике, лишь нарастили темпы преобразования и добычи энергии:

Рисунок 2. Потребление энергии по видам ее источников в 2019 году

Мало того, что добыча энергии таким способом не так эффективна по сравнению с энергией, которую мы научились извлекать альтернативными методами, так еще и большой вопрос в том, больше ли пользы мы получаем от такой энергии, чем вреда. Для количественной оценки этого заявления давайте посмотрим на статистику.

Энергия в человеческом эквиваленте

Что вы представляете, когда слышите слова альтернативная энергетика? Большинство людей сразу представляют себе солнечные панели и ветряные мельницы, но редко думают о ядерной и термоядерной энергии. Ядерная энергетика получает меньше внимания из-за громких аварий, которые страшны людям скорее не из-за катастрофических последствий, а из-за неправильной трактовки СМИ и всеобщего незнания базовых аспектов этой энергетики. Теоретическое обоснование эффективности добычи энергии таким способом известно уже как минимум полвека.

За 70 лет существования атомной энергетики зафиксировано только 33 серьезных происшествия. Несмотря на это, есть очень много скептически настроенных людей и даже организаций, которые выступают за отмену строительства АЭС. Давайте взглянем на цифры:

Из-за Чернобыльской аварии напрямую погиб 31 человек. Из-за последствий По самой пессимистичной статистике от European green party кол-во смертей к 2065 году приблизится к 60 тыс, но ученые склоняются к цифрам намного меньше этой.

WHO считает, что цифра вырастет только до 4 тыс. Это самая серьезная радиационная авария за всю историю энергетики, намного превосходящая по последствиям все остальные.

Авария на Фукусиме, которая является второй по масштабу радиационной аварией в мире, привела к 573 смертям, но эта цифра отличается от количества смертей в Чернобыле тем, что это не последствия радиации, а смерти напрямую не связанные с инцидентом, а связанные, например, со стрессом эвакуации, из-за которого в основном пострадало пожилое население. От радиационного загрязнения по самым пессимистичным подсчетам погибнет до 1000 человек.

Конечно, нельзя делать вывод о серьезности аварии только на основании количества погибших, ведь здесь не учтены экономические последствия и число онкозаболеваний и всевозможных вредных мутаций. Эти заболевания, даже если не приводят к смерти, также являются последствиями ядерных аварий. Сейчас проводится исследований по воздействию малых доз радиации на организм. Если раньше склонялись к безвредности малых доз радиации (типа организм может до определенного уровня облучения самовосстанавливаться без последствий), то сейчас есть больше доказательств "беспорогового" воздействия радиации, т.е. даже самая малая доза наносит вред. Но однозначного ответа здесь пока нет.

А теперь, сравним эти происшествия с авариями на других типах электростанций.

Аварии на ГЭС или на солнечной станции не выбросят в атмосферу гигантское количество радиационных частиц, на избавление от которых уйдет очень много денег и сил, но вспомним наводнение Баньцяо. Крушение дамбы вызвало затопление ближайших поселений, количество смертей от инцидента + от вызванного голода и нищеты составило 80-240 тысяч смертей.

Но даже такие большие цифры меркнут по сравнению со смертями от ископаемого топлива. Газы, выделяющиеся при его сгорании, попадают в атмосферу и в наши легкие, а это, всвою очередь, вызывает многие распространенные заболевания: рак легких, сердечные заболевания, острая инфекция нижних дыхательных путей, инсульт и подобное.

Рисунок 3. Подсчет количества смертей и парниковых газов в год на каждый тераватт в час выработанной энергии от разных видов энергетики

Так какой же способ самый лучший на сегодняшний день? Судя по графику, атомная энергетика - самый чистый источник энергии. Плюс АЭС построить можно где угодно, даже на подводной лодке, а выделенной энергии топлива из одного реактора хватит, чтобы заменить 3 миллиона солнечных панелей.

Атомная энергетика и ее проблемы

Что это такое? Основа энергетики - распад атомного ядра (в основном тяжелых ядер урана). Все изотопы урана радиоактивные, но чуть-чуть, из-за их огромного периода полураспада: у урана-235 и урана-238 0.7 млрд лет и 4.4 млрд лет соответственно. Почему используют именно уран? Все дело в его уникальной способности делиться при взаимодействии с нейтронами сколь угодно малой кинетической энергии. Такие элементы называют делящимися. К этой группе относятся ядра с нечетным числом нейтронов (присоединяемый нейтрон чётный): 233U, 235U, 239Pu. Реакция деления ядер экзотермическая. Это значит, что при ее протекании выделяется некоторое количество теплоты. В реакторе эта теплота служит источником энергии для нагрева воды.

Топливо для реактора изготавливается в виде таблеток, высотой и диаметром около сантиметра, из которых в дальнейшем собирают тепловыделяющий элемент (ТВЭЛ). В одном ТВЭЛе может помещаться несколько сотен топливных таблеток, длина его как правило 3.5-4 метра. Затем их собирают в тепловыделяющие сборки (ТВС). Это основной функциональный элемент АЭС: из них формируется активная зона реактора.

Рисунок 4. Схема и принцип работы реактора на примере реактора на быстрых нейтронах.

В одной ТВС в зависимости от типа реактора (об этом мы поговорим позже) находится от нескольких десятков до нескольких сотен (около 300 для современных реакторов типа ВВЭР) ТВЭЛов, а в активную зону обычно помещается от нескольких сотен до полутора тысяч ТВС. Получается, что весь реактор имеет несколько миллионов таблеток с топливом внутри, и это при том, что один грамм урана содержит в себе столько же энергии, сколько 3-4 тонны угля.

Для работы реактора его необходимо сначала запустить. Этот процесс немного отличается от работы реактора, когда он уже запущен. Изначально, когда ТВЭЛы погружаются в реактор, он подкритичен. Для количественной оценки того, как эффективно делятся ядра в реакторе, придумали понятие коэффициента размножения нейтронов - критичность. Физически это просто отношение количества выделенных нейтронов в момент деления ядер к количеству нейтронов, которые выделились в предыдущий момент распада ядер. Все просто: если коэффициент больше одного идет цепная ядерная реакция с увеличением мощности реактора (ректор надкритичен), если равен 1 количество делящихся ядер в каждый момент времени одинаково (реактор критичен), а если меньше 1 идет уменьшение мощности реактора (реактор подкритичен). Для начала цепной реакции необходима пороговая масса урана, то есть достаточное количество спонтанно делящегося вещества. При выполнении этого условия реактор переходит в надкритическое состояние.

В ТВЭЛах происходит цепная реакция деления топлива. Один из ее видов: уран распадается на осколки деления (уран-235 распадается на барий-139 и криптон-95, например) плюс один или несколько нейтронов (и гамма излучение), которые в дальнейшем сталкиваются с другими атомами урана-235. Изначально уран находится в состоянии с некоторой энергией покоя, и для перехода в возбужденное состояние с последующим радиоактивным распадом требуется дополнительная энергия, с помощью которой возможно преодолеть энергетический барьер и разделиться. В нашем случае этой энергией является нейтрон (тепловой нейтрон), который, сталкиваясь с ядром, передает ему свою кинетическую энергию. Ядро делится и выделяет еще несколько нейтронов (в среднем одно ядро урана-235 при распаде выделяет 2,5 нейтрона, именно это и позволяет происходить лавинообразному увеличению количества делящихся атомов в реакторе), которые сталкиваются с другими ядрами и так далее.

Рисунок 5. Цепное деление ядра

Для протекания реакции из реактора вынимаются регулирующие стержни, которые изготовлены из поглотителя нейтронов. Поглощающие стержни изготовлены из материалов, которые имеют очень большую площадь захвата нейтронов. Это сплав, который способен захватывать и поглощать нейтроны на большом расстоянии от атома. Чаще всего изготовлен из бора, так как сплав бора со сталью не взаимодействует с топливом реактора и имеет большую площадь захвата нейтронов.

Рисунок 6. Захват нейтронов ураном. Барн - единица поперечного сечения площади захвата нейтронов атомом. Чем больше площадь захвата нейтронов элементом - тем больше нейтронов он поглощает.

Самое важное в работе АЭС - поддержание скорости цепной реакции. При ее выходе из-под контроля (отключения системы охлаждения, например) может произойти то же самое, что происходит внутри атомной бомбы при взрыве в самом его начале - неконтролируемая цепная реакция. Но волноваться из-за этого не стоит, все реакторы сейчас оборудованы настолько большим количеством защитных механизмов, что катастрофа очень маловероятна.

К сожалению, ядерное топливо - ресурс исчерпаемый, его на Земле намного меньше, чем угля или нефти, а создавать его мы не научились (тяжелые элементы появляются в экстремальных условиях в результате взрывов сверхновых). Да и отходы куда-то девать надо - их сейчас либо обогащают, либо, как маленькие дети прячут игрушки под кровать (закапывают под землю). Еще существуют быстрые реакторы (сейчас есть БН-600 и БН-800 в России) и так называемые реакторы-размножители. Они позволяют вовлечь в использование уран 238 и отходы АЭС, использующих уран 235. Таким образом ресурсная база атомной энергетики увеличивается с сотен и тысяч лет, до миллионов лет. С экономикой быстрых реакторов пока есть вопросы, но технически они уже давно реализуемы.

Атомную энергетику стоит рассматривать как временный и довольно неплохой вариант. Есть ли сейчас вариант лучше этого?

Да, оказывается вариант есть, и он намного лучше всего, что человечество научилось делать до этого. Имя ему - ядерный синтез.

Атомная энергетика наоборот

В 50-х годах советские и британские ученые придумали использовать не распад ядер (как на АЭС), а синтез. Распад ядер - тяжелые элементы делятся с выделением энергии, а синтез - легкие элементы слипаются с образованием более тяжелых, выделяя энергию.

При слиянии дейтерия (изотоп водорода, отличающийся наличием нейтрона) и трития (тоже изотоп водорода, у которого 2 нейтрона) получается гелий и нейтрон. Такая реакция даёт значительный выход энергии(17.6 МэВ). Для сравнения, если взять смесь дейтерия-трития и урана одинаковой массы, при синтезе энергии выделится в 3 раза больше.

Есть правда и незначительные недостатки: тритий в природе не встречается, нежелательная наведенная радиация зачастую бывает опасной.

Можно подумать, что в термоядерной энергетике все отлично: отходов не так много, расположить можно где угодно, выдает огромную энергию на единицу массы, но ведь что-то мешает пользоваться ей.

Для того, чтобы произвести слияние ядер, нужно чтобы положительно заряженные ядра атомов преодолели кулоновский барьер - силу электростатического отталкивания между ними. То есть расстояние между ядрами должно быть такое, чтобы сильное взаимодействие начало преобладать над кулоновскими силами (порядка одной стомиллиардной доли сантиметра).

Рисунок 7. Зависимость сил притяжения/отталкивания от расстояние между ядрами. На расстоянии порядка размеров ядра силы сильного ядерного взаимодействия начинают преобладать над кулоновскими и ядра сливаются.

Для этого нужно затратить огромную энергию. Есть 2 варианта как это реализовать: либо сильно сжать, либо сильно нагреть.

Внутри Солнца работает первый вариант: температура внутри ядра 15-16 млн Кельвинов, что, вообще говоря, не так много, но из-за массы, которая в 300 тыс раз больше массы Земли, плазма под высоким давлением удерживается гравитацией.

К сожалению, на Земле такую конструкцию реализовать затруднительно. Такого большого давления мы не создадим, поэтому остается только сильно нагреть.

Термоядерный синтез возможен при одновременном выполнении двух условий:

  1. соблюдение критерия Лоусона.Критерию Лоусона показывает, будет ли реакция давать больше энергии, чем тратится.

  1. скорость соударения ядер соответствует температуре плазмы, к этому мы и стремимся. В этом случае энергии хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.

Следует пояснить, что понятие температуры здесь не то, что мы привыкли видеть. Температура - это мера средней кинетической энергии частиц. Из-за столкновений с большим импульсом возможно их слияние.

На самом деле, чтобы пошла самая простая реакция синтеза с изотопами водорода, нужна температура порядка миллиарда Кельвинов (водород - самый легкий элемент, а чем тяжелее элемент - тем большая нужна температура). Решение этой проблемы было найдено самой природой. Существует так называемый максвелловский хвост. Из-за максвелловского распределения, какие-то частицы будут двигаться быстрее, а какие-то медленнее, поэтому уже в районе 100 млн Кельвинов найдутся частицы, которые будут слипаться. Также есть еще туннельный эффект. Если кратко, то благодаря квантовым эффектам, даже если ядра имеют энергию немного меньше барьера, они смогут с большой вероятностью туннелировать сквозь него.

Рисунок 8. Распределение энергии частиц.

Вот мы и подошли к вопросу о том, почему же вокруг нет термоядерных реакторов. Просто потому что это очень горячо. Нужно все эти разлетающиеся изотопы как-то удержать, чтобы они ничего не касались, потому что такую температуру ни одно вещество не выдержит. Проблема не столько в том, чтобы разогреть до нужной температуры, сколько в том, чтобы эту температуру как-то удержать.

Варианты удержания плазмы

Начнем с самого простого способа удержания плазмы: не удерживать, а просто выстрелить. Такие системы называются импульсными. В них управляемый термоядерный синтез осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий сверхмощными лазерными лучами или пучками высокоэнергичных частиц .Такое облучение вызывает последовательность термоядерных микровзрывов.

Но этот вариант довольно плохо изучен по сравнению со вторым - магнитным удержанием.

Советские физики Тамм и Сахаров придумали магнитное удержание плазмы еще в 50-х годах. Они руководствовались тем, что плазма - ионизированное вещество, поэтому магнитным полем мы можем создать ловушку. Желательно, чтобы она была замкнутой, чтобы ионы могли бесконечно кружиться. Тут на помощь прикатился бублик(тор). Эту конструкцию обматывают электромагнитными катушками, получается тор с пружинкой поверх него - это не дает плазме ударяться о стенки. Также сверху и снизу устанавливают обкладки, которые позволяют сжимать/разжимать плазму и передвигать ее. Такое устройство принято называть токамак: ТОроидальная КАмера с МАгнитными Катушками. Для выработки электроэнергии вода циркулирует в стенах бублика, поглощает тепло и производит пар. Паровая турбина вырабатывает электричество. К сожалению, ничего эффективнее человечество еще не придумало.

В 50-м году в Курчатовском институте показали такой вариант. Так начался международный проект по созданию термоядерного реактора.

Стоит заметить, что токамак - не единственный способ удержания плазмы, есть вариант еще с закрученным тором - стелларатор. С такой конструкцией даже пытались проводить эксперименты: W7-X. Wendelstein 7-X сложнейшая экспериментальная система. Цель экспериментов с такими установками - доказать, что управляемый термоядерный синтез способен давать энергию. Пока что некоторые ученые ставят это под сомнение. Но проблема в том, что форма для таких электромагнитных катушек очень сложная, а в 60-х годах, когда это придумали, не хватало мощности для расчетов.

Рисунок 9. Слева токамак, справа стелларатор. Серые кольца - магниты, желтым показана термоядерная камера.

Что такое ITER. Какие цели у проекта

ITER(International experimental Thermonuclear Reactor) - Экспериментальный международный термоядерный реактор . ITER относится к термоядерным реакторам типа токамак.

История ITER берет начало в 80-х годах прошлого столетия. Многие страны объединились, так как решили, что ни одна страна не потянет постройку на своих плечах. Это самая дорогая экспериментальная установка в мире, в ITER до 2025 года планировали вложить почти 20 млрд евро, но учитывая постоянные переносы и новые проблемы, вполне вероятно, что сумма вырастет. Только в 2010 году разобрались со всеми бумажками и начали рыть котлован.

В токамаках возможно осуществить несколько типовреакций слияния. Тип реакции зависит от вида применяемого топлива.Токамак ITER с самого начала проектировался под DT-топливо (дейтерий - тритиевое). Дваядра дейтерия и тритиясливаются с образованием ядра гелия и высокоэнергетического нейтрона.

Рисунок 10. ITER Токамак.

Грубо говоря, задача установки - продемонстрировать возможность коммерческого использования термояда, а для этого нужно, чтобы отношение выработанной энергии к затраченной составило хотя бы 10:1. Также целью является отработка разных решений по управлению и т.д., а дальнейшим шагом должно стать строительство установки - DEMO - следующая итерация ИТЕРа.

У ИТЕРа нет задачи построить станцию по выработке электричества для использования людьми. Это экспериментальная установка, которая покажет, что в принципе это возможно в реальности, а не на бумаге, ведь у физиков уже давно все сошлось, а сейчас это очень сложная инженерная задача.

На декабрь 2025-го запланирован пуск первой плазмы в реакторе, который продемонстрирует работоспособность. Планируется, что работать на термоядерном топливе установка начнет в июне 2035 года. До этого предстоит завершить еще несколько крупных этапов, которые приведут станцию в полностью рабочее состояние. На сайте ИТЕР есть рум тур по стройке.

Давайте представим, что все идет по плану и в 2025 году мы получаем первую плазму, ITER показывает, что коммерческое использование термояда выгодно, но что происходит дальше?

Все побегут строить токамаки и мы будем купаться в электричестве? Но ведь все не так просто, даже сам ITER будет очень сложно повторить.

Как говорится, термоядерная энергетика is a new black в мире энергии, но ей предстоит еще долгий путь, прежде чем мы начнем ее повсеместно использовать.

Энергетика будущего

Человечество проделало несколько больших шагов по освоению энергии. Сначала мы научились разводить костер, потом использовать уголь и нефть. Сегодня мы умеем разделять атомы и, возможно, в скором времени научимся их синтезировать. Каждый такой шаг связан с индустриальной революцией, которая характеризуется масштабом добычи энергии, доселе никому невиданным.

Если пофантазировать, логичным шагом дальнейшего развития человечества будет освоение новых территорий и ресурсов, только уже не на нашей планете, а в космосе(если человечество не уничтожит себя раньше). Для этого потребуется невообразимое количество энергии. К счастью, ответ на вопрос где взять столько энергии? находится прямо над головой (Солнце). Как мы уже говорили выше, человечество пока только на пути к созданию собственного солнца на Земле.

Если мы хотим освоить метод добычи солнечной энергии, нам нужно будет построить очень большую конструкцию. Например, хорошим вариантом будет сфера Дайсона. Она охватывает звезду, чтобы захватить ее энергию.

Рисунок 10. Конструкции сфер Дайсона автор - https://kurzgesagt.org/

Существует много способов ее постройки, один из них - рой сфер, которые будут крутиться вокруг Солнца, собирать энергию и передавать ее в другое место. Такой способ дал бы людям неограниченный доступ к энергии. Но построить ее не так просто, есть 3 основные проблемы: материал, конструкция и энергозатраты. Кратко пройдем по каждой проблеме.

Для постройки сферы Дайсона потребуется столько материала, что придется разобрать целую планету или даже больше. Лучший кандидат на эту роль - Меркурий, так как он ближе всего расположен к Солнцу, а еще и богат металлом.

Чем проще и надежнее будет конструкция - тем лучше. Солнечные батареи не совсем то, что нужно(маленькое время жизни, дорого, и требуют починки). Проще и надежнее всего - гигантские зеркала, которые будут отражать солнечный свет на центральную станцию.

Однако даже если максимально эффективно использовать все земные ресурсы, нам не хватит энергии, чтобы организовать такую масштабную стройку. Это может быть возможно только в далеком будущем, когда люди смогут успешно осваивать хотя бы планеты солнечной системы. По мнению известного популяризатора науки Карла Сагана, наш уровень по шкале Кардашева равен примерно 0,72. Мы потребляем всего 0,17% от общего энергетического потенциала планеты. Шкала Кардашева - один из способов оценки уровня развития цивилизации по количеству используемой энергии. По ней у цивилизации есть 7 ступеней развития, а человечеству далеко даже до первого типа (цивилизация, которая использует всю энергию своей планеты). Однако это не значит, что нам нужно уничтожать планету для своих нужд. Есть множество способов извлечь энергию из всего, что есть во Вселенной.

Во всех аспектах ископаемое топливо является самым грязным, опасным и неэффективным, в то время как ядерные и современные возобновляемые источники энергии значительно безопаснее и чище, они могут помочь людям сделать шаг вперед и совершить следующую индустриальную революцию.

В заключение отметим: мы рассмотрели только самую верхушку айсберга термоядерной и ядерной энергетики, которые по многим параметрам являются самыми перспективными, однако, на данный момент не так важно перейти на них, как научиться эффективно использовать возобновляемые источники энергии и полностью отказаться от ископаемого топлива. Ведь Земля для нас - единственный дом, который не может бесконечно удовлетворять потребности людей. Даже сейчас постройка термоядерной станции несет за собой огромные потери ископаемых ресурсов, так как практически вся энергия на ее постройку будет добыта с помощью них. Нужно лишь научиться использовать ту энергию, которую Земля сможет восстановить по мере ее использования.

Полезные материалы:

  1. Теряет ли Вселенная энергию

  2. История энергетики от Вацлава Смила

  3. Как работает термоядерная энергетика (видео)

  4. Можно ли уничтожить или создать энергию

  5. Что такое энергия (видео)

  6. На пути к термоядерной энергетике (лекция)

  7. Диаграммы и графики взяты с сайта

  8. Интерактивная карта ITER

Подробнее..

Насколько экологична атомная энергетика? На самом деле так же, как солнечная и ветровая

19.04.2021 20:16:49 | Автор: admin

В конце марта вышел отчет научного центра Еврокомиссии (Joint Research Centre) об экологических аспектах атомной энергетики. Еврокомиссия попросила его разобраться, стоит ли поддерживать атом так же как возобновляемую энергетику в рамках европейского Зеленого курса. Общий вывод отчета конечно да, ведь атомная энергетика не опаснее для людей (да, с учетом Чернобыля и Фукусимы, см. ниже) и окружающей среды, чем другие возобновляемые источники энергии, развитие которых уже поддерживается в Европе в рамках инициативы Таксономия. А атом вот не поддерживается. Ну и этот отчет показал, что научных оснований для такой вот дискриминации нет. Но обо всем по порядку, в 23 пунктах.А для желающих в конце есть видеоверсия этой статьи на моем youtube-канале.

1. Не секрет, что мир и Европа стараются справиться с последствиями глобального потепления или как-то притормозить его развитие. А оно вызвано деятельностью человека, в первую очередь выбросами CO2. Это сейчас научно совершенно точно обосновано, и я не буду сейчас на этом останавливаться. Для сомневающихся рекомендую посмотреть прекрасную лекцию гляциолога Алексея Екайкина. Так что десятки стран приняли на себя обязательства по снижению выбросов.

2. Европа на этом пути одна из лидеров. В рамках Зеленого курса (European Green Deal), они хотят стать первым в мире углеродно-нейтральным регионом к 2050 году. Не случайно именно оттуда идут основные новости о переходе на возобновляемые источники энергии (ВИЭ), постепенном запрете двигателей внутреннего сгорания, углеродные налоги и прочие экологические инициативы. Впрочем, в абсолютных показателях и по выбросам, и по вводу ВИЭ, лидируют пока Китай и США.

3. Для реализации Зеленого курса в Европе существует множество разных стимулирующих и поддерживающих механизмов. Один из важнейших это регламент EU Taxonomy. Это такой свод рекомендаций для финансовых и инвестиционных фондов о том, в какие технологии можно вкладываться, а в какие нежелательно, с точки зрения их помощи целям Зеленого курса, экологичности и устойчивого развития. Так что Таксономия не ограничивается только вопросами климата, она направлена на достижение 6 важных целей:

  • смягчение последствий изменения климата

  • адаптация к изменению климата

  • охрана водных и морских ресурсов,

  • повторное использование ресурсов (циркулярная экономика),

  • сокращение выбросов и загрязнений,

  • защита биоразнообразия

Для включения в Таксономию технология или практика должна помогать в достижении минимум одной из целей, а другим не наносить серьезного ущерба (критерий DNSH, т.е. Does not significantly harm). Не могу точно сказать насколько это жесткое правило и верно ли я вообще в этом разобрался, но понятно, что включение в Таксономию той или иной технологии сильно упрощает ей жизнь в Европе, а невключение может поставить вопрос о ее конкурентоспособности и перспективах без национальной поддержки.

4. Таксономию долго готовили и в общих чертах приняли весной-летом прошлого года. Помимо прочего, туда включили ветровую и солнечную генерацию, а вот атомную пока не включили. Нет, сомнений в том, что АЭС помогает в борьбе с изменением климата нет. За жизненный цикл АЭС выбрасывают очень мало CO2. Критерий для включения в Таксономию технологии электрогенерации выбросы менее 100 г/кВт*ч. По данным отчета JRC, у АЭС выбросы CO2 в среднем 28 г/кВт*ч, что сопоставимо с выбросами гидро- и ветровых станций, и даже ниже, чем у солнечных панелей, у которых средний выброс около 85 г/кВт*ч (см стр. 40 из отчета [4]). Цифры разнятся в разных источниках (например, в отчете ICPP 2014 указываются средние показатели выбросов для АЭС в 12 г/кВт*ч, а для промышленной фотовольтаики в 48 г/кВт*ч) но порядок и соотношение примерно такие. При этом выбросы газовых и угольных станций составляют порядка 500 и 900 г/кВт*ч, соответственно. А средние удельные выбросы в электроэнергетике в Европе сейчас около 275 г/кВт*ч (ссылка, стр 6).

Удельные выбросы CO2 за жизненный цикл разных видов генерации. График из отчета JRC.Удельные выбросы CO2 за жизненный цикл разных видов генерации. График из отчета JRC.

Почему у солнечных панелей углеродный след выше? Не копал глубоко, но на днях на глаза попалось как раз на эту тему любопытное расследование Bloomberg о производстве кремния в Китае. Китай контролирует 80% мировых поставок кремния для солнечных панелей, а 4 крупнейшие его фабрики расположены в полузакрытой провинции Синьцзян (Xinjiang) и дают 50% мирового производства. Репортеры Bloomberg выяснили, что эти фабрики используют дешевую но грязную угольную электроэнергию (40% затрат на производство кремния - электричество), и суда по всему еще и подневольный труд. Так что вопрос об экологическом следе этой технологии, так сильно завязанной на одну не самую прозрачную страну, не так прост.

5. Отдельно надо отметить, что АЭС на текущий момент обеспечивают около 30% всей низкоуглеродной энергии в мире, а в Европе все 40%. Доля атомной энергетики в Европе (28 стран ЕС) 26%, что больше, чем в любой неевропейской стране. При этом доля солца+ветра в ЕС - 17%, а гидроэнергетики всего 12% (данные на 2019 г из Eurostat Energy data, см стр. 28). И по основному сценарию развития энергетики в Европе (EUCO30, стр. 37 отчета), для достижения европейских климатических целей доля атома к 2050 году должна составлять около 22%. Но поддерживать его хотят не все.

Вклады различных источников в выработку низкоуглеродной электроэнергии в развитых странах. График из отчета JRC.Вклады различных источников в выработку низкоуглеродной электроэнергии в развитых странах. График из отчета JRC.

6. Поводом для отказа во включении АЭС в Таксономию стали усилия стран, в которых сильны антиатомные настроения Германии, Австрии и Италии. Они выразили сомнения в том, что проблема радиоактивных отходов и отработавшего ядерного топлива нарушает критерий DNSH. Поэтому то Еврокомиссия и поручила экспертам своего научного центра (Joint Research Centre) разобраться в вопросе и подготовить доклад на эту тему. Его то они и представили в конце марта (ссылка).

Отдельно хочется отметить, что это довольно круто, что внутри руководящего органа ЕС вообще есть такой научный центр, который помогает анализировать различные решения и предложения с научной точки зрения.

7. Эксперты представили 400-страничный отчет с обзором доступных научных исследований по всем аспектам атомной энергетики от добычи урана, его обогащения и изготовления топлива, эксплуатации и вывод АЭС из эксплуатации, до вопроса обращения с отходами и ядерным топливом при разных сценариях топливного цикла, а также влияние на здоровье людей как в штатных условиях, так и в случае серьезных аварий. Отчет в итоге состоит из двух частей: сравнения экологических аспектов различных видов генерации, и отдельно из подробного анализа обращения с радиоактивными отходами.

8. Общие выводы такие. По удельным выбросам загрязняющих веществ за жизненный цикл, а кроме CO2 это и оксиды азота и серы, твердые частицы PM2.5 (ответственны за миллионы смертей в год по данным ВОЗ) и всякая канцерогенная органика типа бензола и формальдегидов, атомная энергетика сопоставима, а по ряду параметров и лучше ветровой и солнечной.

дельные выбросы оксидов азота и серы для различных энергоисточников.дельные выбросы оксидов азота и серы для различных энергоисточников.Удельные выбросы твердых частиц PM2.5 и неметановой органики (NMVOC - бензол, этанол, формальдегид и т.д.)Удельные выбросы твердых частиц PM2.5 и неметановой органики (NMVOC - бензол, этанол, формальдегид и т.д.)

В плане образования химически-опасных отходов и загрязнения водоемов (закисление, сброс соединений азота и фосфора) АЭС гораздо чище ветровой и солнечной энергетики.

Удельное образование химически-опасных отходов, требующих захоронения, для разных видов генерации энергииУдельное образование химически-опасных отходов, требующих захоронения, для разных видов генерации энергии

9. АЭС в меньшей степени влияют на экосистемы и биоразнообразие, чем солнечные и ветровые электростанции, т.к. требуют гораздо меньшего изменения земной поверхности. И речь не только о месте, занимаемом станциями сопоставимой мощности, но о всей цепочке добычи ресурсов и утилизации отходов.

Сравнение требуемой площади изъятия земли для различных источников энергии (с учетом жизненного цикла технологий)Сравнение требуемой площади изъятия земли для различных источников энергии (с учетом жизненного цикла технологий)

Кстати, удельная потребность в добыче ресурсов для АЭС тоже гораздо меньше, чем для ветровой и солнечной энергетики. Все это следствия самой большой концентрации атомной энергии из всех существующих видов энергии. По крайней мере в сотни тысяч раз выше, чем химической.

Сравнение удельных затрат ресурсов на производство единицы электроэнергии по разным типам генерации.Сравнение удельных затрат ресурсов на производство единицы электроэнергии по разным типам генерации.

10. Но как и у любой технологии, кроме плюсов у атома есть и минусы. В плане теплового загрязнения и потребления водных ресурсов атомная энергетика уступает фотовольтаике (солнечным панелям) и ветроэнергетике, и сопоставима с воздействием концентрационной тепловой солнечной энергетики (это когда тепло солнца собирается зеркалами), угольной и гидроэнергетики. Поэтому требуется подбор площадок, технологии (пруд-охладитель, прямоточное охлаждение, градирни и пр.) и внимание к этому аспекту, чтобы минимизировать его негативные эффекты. В этом плане наименьшее негативное воздействие получается при расположении АЭС морском берегу, где их обычно и стараются размещать.

11. Что же касается радиоактивных отходов, то обзору практики и теории обращения с ними и их захоронения посвящена большая часть доклада и вердикт тут однозначный да, это важная проблема, но существующие решения, как по поверхностному хранению низкоактивных отходов (частично об этом я писал отдельную статью), так и по подземному захоронению высокоактивных отходов в природных формациях (и об этом я писал отдельную статью, применительно к тому что делается в России), позволяют обращаться с ними безопасно и без вреда людям и окружающей среде.

Отмечено, что существует широкий научно-технический консенсус относительно возможности безопасного захоронения отходов. И отдельно подчеркнуто, что в Таксономии уже одобрены технологии подземного захоронения СO2, базирующиеся на тех же научных данных и похожих нормах регулирования, что и захоронение радиоактивных отходов.

12. Что касается радиационного воздействия на человека, то оно пренебрежимо мало. Дополнительное облучение, вызванное всем жизненным циклом АЭС, составляет не более 1/10000 от обычной дозы, получаемой людьми от природных источников. Это эквивалент употребления двух бананов в год. Один банан это доза в 0,1 мкЗв за счет содержащегося в нем природного изотопа калий-40.

13. Но это все были в основном отдельные показатели воздействия по разным факторам или элементам окружающей среды. В чем-то АЭС лучше, в чем-то сопоставимы, а в чем-то хуже других видов генерации. При этом ни один из показателей для АЭС не является запретительным по критерию DNSH (Does not significantly harm). Но чтобы оценить суммарное негативное воздействие на здоровье человека разные виды генерации сравнивают по величине удельной преждевременной смертности или потерянных лет жизни на единицу выработанного электричества. И по этим показателям АЭС уступают только гидроэнергетике, сопоставимы с ветровой и превосходят солнечную генерацию. Ну и самом собой, самые опасные в этом плане все виды сжигаемого топлива, особенно уголь, поскольку его выбросы реально убивают миллионы людей каждый год. Не говоря уже о их влиянии на климат.

Общее воздействие на здоровье и смертность людей от разных видов генерации с учетом их выбросов и сбросов по всему жизненному циклу. Гидроэнергетика тут лучше всех, атом и ветер сопоставимы и чуть лучше солнца.Общее воздействие на здоровье и смертность людей от разных видов генерации с учетом их выбросов и сбросов по всему жизненному циклу. Гидроэнергетика тут лучше всех, атом и ветер сопоставимы и чуть лучше солнца.

14. Что касается аварий и серьезных инцидентов. Тут есть два показателя. Первый это максимальное число жертв при крупной аварии. Для АЭС оно сопоставимо с гидроэнергетикой или крупными авариями в нефтяной индустрии и оценивается в 30000 человек в случае крупной аварии. Причем, если для гидроэнергетики это исторические цифры реальных аварий (см. дамба Баньцяо, Китай, 1975 г.), то для АЭС это величина расчетная, поскольку суммарное число жертв крупнейших аварий на АЭС - Чернобыля и Фукусимы, по оценкам ВОЗ, порядка 5000 человек [6,7].

Максимальное число жертв от крупных аварий (черные точки) и удельная смертность от аварий (не обязательно самых крупных, но с жертвами) на единицу произведенной электроэнергии.Максимальное число жертв от крупных аварий (черные точки) и удельная смертность от аварий (не обязательно самых крупных, но с жертвами) на единицу произведенной электроэнергии.

Авторы отчета подчеркивают, что для общественного восприятия куда страшнее редкие (в случае АЭС очень редкие) но серьезные аварии, чем частые, но менее фатальные события. Однако статистика показывает, что же на самом деле больше убивает. В этом смысле важнее второй показатель.

15. Второй показатель это удельная смертность от аварий на единицу произведенного электричества (fatality rate см. картинку выше). По этому показателю АЭС второго поколения, составляющих основу текущего парка АЭС, лучше любого сжигаемого топлива и гидроэнергетики, сопоставимы с ветрогенерацией, и уступают лишь солнечной генерации. АЭС третьего поколения, которые строятся последние 10 лет и спроектированы с учетом опыта крупных аварий как раз с особым вниманием к локализации их последствий, превосходят по этому показателю все виды генерации.

Т.е. это означает, что даже с учетом жертв Чернобыля и Фукусимы, удельная смертность от атомной энергетики сопоставима с включенными в Таксономию ветровой и солнечной генерацией и гораздо меньше, чем у станций на ископаемом топливе. В конце своей прошлой статьи о Фукусиме я уже приводил аналогичные оценки.

Более того, даже безаварийное сжигание ископаемых топлив приводит к тому, что ежегодно только в Европе 400 тыс. человек умирают из-за загрязнения воздуха. АЭС же за счет сокращения выбросов за всю историю спасли около 1,8 млн человек [8] т.е. куда больше, чем ветряки и солнце.

16. Отдельно поясню, что отчет касается именно экологических аспектов и не касается экономики. Задача отчета дать экспертам Еврокомиссии рекомендации и критерии для включения или невключения отдельных аспектов атомной энергетики в механизмы поддержки Таксономии. Будут ли потом этой поддержкой пользоваться частные или государственные инвесторы это дело инвесторов. Тем не менее, в части сравнения с другими видами генерации есть в отчете и экономический показатель LCOE, т.е. усредненной по пожизненному циклу показатель себестоимости электроэнергии.

Так вот, себестоимость атомного электричества существующих АЭС в Европе к 2030-му году будет самая низкая в сравнении с любыми другими видами генерации, а если говорить о новых энергоблоках, то она будет немного дороже солнечных и ветровых, но вполне конкурентоспособна и сопоставима с газовыми станциями.

Показатели LCOE для разных видов генерации в Европе к 2030 году. Данные из отчета JRCПоказатели LCOE для разных видов генерации в Европе к 2030 году. Данные из отчета JRC

17. Общие выводы отчета атомная энергетика отлично помогает смягчать последствия изменения климата, при этом не выявлено никаких научно-обоснованных доказательств, что она наносит больший ущерб здоровью людей или окружающей среде, чем другие виды генерации электроэнергии, уже включенные в Таксономию.

18. Что дальше? Теперь этот отчет будут еще 2 месяца изучать в двух других экспертных группах Еврокомиссии (по радиационной защите и по здоровью). В мае в Таксономию должны быть внесены поправки, расширяющие список включенных в нее технологий, к которым были вопросы ранее. Кроме атома идут споры и по природному газу, как переходному топливу от угля, и по некоторым технологиям в сельском хозяйстве, биоэнергии и т.д. Вопрос о включении или невключении в Таксономию атомной энергии остается открытым. Хотя что тут может быть непонятно после такого отчета...

19. Реакция. Европейский Гринпис уже ожидаемо заявил [9], что эксперты, написавшие отчет, связаны с атомной отраслью и необъективны, а Еврокомиссии надо прислушаться к мнению общественности. Атомная отрасль, конечно, отнеслась к отчету очень позитивно, и представители разных атомных ассоциаций и организаций предлагают не затягивать с включением атомной энергетики в Таксономию. Высказываются даже мнения, что после такого отчета хорошо бы и Германии пересмотреть свое отношение к атому.

20. Gримерно в то же время, в конце марта, лидеры 7 европейских стран Франции, Чехии, Венгрии, Польши, Румынии, Словакии и Словении, отправили в Еврокомиссию коллективное письмо [10] с призывом включить атомную энергетику в Таксономию и перестать ее дискредитировать и притеснять. Аргументы политиков более приземленные, типа она не только помогает в борьбе с климатическими изменениями и сокращении выбросов, но и важна для экономики, что логично, т.к. все эти страны либо имеют развитую атомную энергетику, либо планируют ее развивать.

21. Кроме того, в конце марта в Еврокомиссию направили открытое письмо и 46 некоммерческих организаций из 18 стран (в т.ч. из Германии, Австрии и Италии, правительства которых отказываются или отказались от атома) с тем же призывом - принять усилия по поддержке всех низкоуглеродных источников, помогающих бороться с изменениями климата, включая атомную энергетику, которая уже много лет вносит в эту борьбу самый большой вклад. Собственно, это тоже голос общественности, к которому призывает прислушаться Гринпис. Ссылка на письмо - [12].

22. А на днях еще и в Германии аудит их счетной палаты показал [11], что их энергопереход и отказ от атома не так однозначно хорош (дорог и небезопасен), как могло показаться раньше.

23. Короче, весьма увлекательно следить за Европой, в которой вопрос атомной энергетики стоит так вот остро и неоднозначно и вокруг которого ломается так много копий. Хочется, конечно, надеяться, что в итоге решения будут приниматься на основании научных исследований и прозрачного анализа, а не из популистских и политических соображений. Какими бы в итоге эти решения не были. Споры спорами, но климат, окружающая среда и умирающие от загрязнений люди ждать не будут.

Для тех кому интересен иной формат, я сделал видеоверсию этой статьи. Подписывайтесь на мой канал об атомной энергетике и ядерных технологиях. Вы можете поддержать его лайками или подпиской.

Список источников:

1. Лекция об изменении климата Алексея Екайкина

2. European Green Deal

3. EU Taxonomy Regulation

4. Собственно тот самый отчет JRS

5. Eurostat Energy data

6. ВОЗ о количестве жертв Чернобыля

7. Моя статья о последствий аварии на АЭС Фукусима, в т.ч. количество жертв.

8. Оценка числа спасенных жизней благодаря АЭС - Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power Pushker A. Kharecha* and James E. Hansen

9. Заявление Гринпис по поводу отчета и его критика.

10. Письмо лидеров 7 стран в главе ЕС в поддержку атомной энергетики.

11. Критика Энергоперехода Германии по результатам правительственного аудита.

12. Письмо главе Еврокомиссии от 46 НКО со всего мира в поддержку атома и включения его в Таксономию.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru