Русский
Русский
English
Статистика
Реклама

Диэлектрики

Треугольники малые и большие изменение электронного взаимодействия в кристалле за счет температуры

05.08.2020 10:11:24 | Автор: admin


Вы когда-нибудь пытались объяснить трехлетнему ребенку, что такое атомы? Нет? И правильно, ибо впоследствии ребенок будет бегать по всему дому, детской площадке и магазину, тыкать пальцем на любой предмет и спрашивать И тут тозе атомы?. Если же серьезно, любопытство, присущее детям, это то, что часто становится движущей силой многих открытий взрослых дядь и теть в белых халатах. Возвращаясь к атомам, все мы знаем, что они являются основными строительными кирпичиками всего, что нас окружает, и нас в том числе. Цементом, связывающим атомы между собой, являются заряженные частицы (ядра или электроны). Разные вещества формируются за счет разных вариантов взаимодействия (связи) электронов. Ученые из Нагойского университета (Япония) обнаружили, что охлажденный до -58 C оксид вольфрама цезия (CsW2O6) демонстрирует необычную связь электронов, которую ранее обнаруживали исключительно в триводородных ионах, найти которые можно в межзвездном пространстве. Как подобная связь электронов влияет на свойства материала, в чем ее уникальность и что это значит для будущих исследований в области материаловедения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Авторы сего труда отмечают, что понимание фазовых переходов кристаллических твердых тел является одной из основных задач в материаловедении. Сюда относится и электронные фазовые переходы в соединениях переходных металлов с пирохлорными* структурами, состоящими из трехмерных сетей тетраэдров.
Пирохлор* минерал из класса оксидов и гидрооксидов, являющийся сложным оксидом натрия, кальция и ниобия с дополнительными анионами. Формула пирохлора выглядит так: (NaCa)2Nb2O6 (OH,F).
В качестве примера ученые приводят магнетит Fe3O4, который демонстрирует переход металл-диэлектрик*, сопровождаемый зарядовым упорядочением Fe при 119 К, называемым переходом Вервея*.
Переход металл-диэлектрик* обозначает, что вещество при определенных условиях демонстрирует свойства металла (например, проводимость), а при других условиях свойства изолятора.
Переход Вервея* фазовый электронно-упорядочеваемый переход, который происходит в смешанновалентной системе и приводит к упорядочению формальных валентных состояний в низкотемпературной фазе.
Полного понимания этого перехода пока нет, хоть и было проведено множество исследований и опытов. Тем не менее, научное сообщество уделяет все больше внимания изучению переходов металл-диэлектрик, сопровождаемых магнитным упорядочением все в одном в 5d-оксидах (например, Cd2Os2O7 и Nd2Ir2O7). Основной причиной популярности таких переходов является возникновение ферроического упорядочения протяженных магнитных октаполюсов и образование фермионов Вейля* в твердом теле.
Фермион Вейля* безмассовый тип фермиона со спином 1/2.

Фермион* частица с полуцелым значением спина. К фермионам относятся кварки (протоны и нейтроны), лептоны (электроны, мюоны, тау-лептоны, нейтрино), дырки (квазичастицы в полупроводнике), а также квантовомеханические системы, состоящие из нечетного числа фермионов.
В данном исследовании ученые описывают самоорганизацию 5d электронов при электронном фазовом переходе -пирохлора оксида CsW2O6, обнаруженную в высококачественных монокристаллах. Ранее сообщалось, что CsW2O6 обладает кубической решеткой с пространственной группой Fd3m при комнатной температуре. В таком случае атомы W образуют структуру пирохлора и имеют валентность 5.5+ с электронной конфигурацией 5d0.5. Измерение удельного электрического сопротивления поликристаллических образцов показало, что переход металл-диэлектрик происходит при температуре 210 К (-63.15 C).

Также ранее сообщалось, что кристаллическая структура диэлектрической фазы имеет орторомбическую пространственную группу Pnma. Однако теоретические исследования показали, что это не соответствует действительности. Расчеты электронной структуры Fd3m фазы показали, что существует сильное влияние поверхностей Ферми, которое вызывает понижение симметрии до пространственной группы P4132.
* Pnma, Fd3m и другие относятся к кристаллографическим группам симметрии, которые описывают все возможные симметрии бесконечного количества периодически расположенных в трехмерном пространстве точек. Более детальную информацию касательно кристаллографических групп можно найти тут.
Недавние фотоэмиссионные эксперименты с тонкими пленками образцов показали, что валентность W в диэлектрической фазе диспропорционирует в 5+ и 6+.

Результаты исследования


Для начала стоит рассмотреть фазовый переход, который происходил при температуре 215 К.


Изображение 1

В кварцевой трубке были подготовлены монокристаллы CsW2O6 () и W-дефицитного CsW1.835O6. На графике 1b видно, что удельное сопротивление (p) монокристалла CsW2O6 сильно возрастает при понижении температуры ниже отметки Tt = 215 К, что наблюдалось и в случае поликристаллических образцов и тонких пленок.

Это увеличение сопротивления сопровождается небольшим, но вполне очевидным гистерезисом температуры. Это указывает на то, что фазовый переход первого рода происходит именно при Tt (т.е. при 215 К). В данном исследовании фазы выше и ниже Tt называются фаза I и фаза II соответственно.

Магнитная восприимчивость () сильно уменьшается ниже Tt (1b), что также идентично поликристаллическому образцу. Однако линейная ширина спектров 133Cs-ЯМР в фазе II не показывает какого-либо значительного уширения по сравнению с фазой I (1f). Из этого следует, что уменьшение в фазе II не вызвано антиферромагнитным упорядочением.

На изображении показаны рентгенограммы монокристалла CsW2O6, полученные при 250 К (фаза I) и 100 К (фаза II). Каждое из дифракционных пятен при 250 K было проиндексировано на основе кубической ячейки a = 10.321023(7) с пространственной группой Fd3m, в соответствии с предыдущими исследованиями. На дифракционной картине при 100 К появляется больше дифракционных пятен. Все они были проиндексированы на основе кубической пространственной группы P213 с постоянной решетки a = 10.319398(6) , что практически идентично a фазы I. Подобное изменение дифракционных пятен происходит при Tt, как видно из температурной зависимости интенсивности (1d).

Также стоит отметить, что в фазе II дифракционные пятна не разделяются на несколько пятен и не меняют свою форму даже в области высокого угла (). Класс Лауэ* и кристаллическая система, определяемые наблюдаемыми отражениями, ясно указывают на то, что структурное изменение, которое сохраняет кубическую симметрию, происходит при Tt, а фаза II имеет класс Лауэ m3.
Классы Лауэ* кристаллографический класс симметрии, у которого есть центр симметрии. Из всех 32 классов лишь 11 считаются классами Лауэ. Класс m3 это дитригонально-пирамидальная система.
Как видно из поляризационной зависимости Рамановских спектров поверхности (111), измеренных при 100 К (фаза II) и комнатной температуре (фаза I на 1e) спектры фазы II не зависят от угла поляризации, как в фазе I. Это свидетельствует о наличии трехкратной вращательной симметрии, перпендикулярной (111), что согласуется с предполагаемой кубической симметрией.

Данные результаты означают, что структурная модель Pnma, предложенная на основе данных порошковой дифракции*, является неверной.
Порошковая рентгеновская дифракция* метод исследования вещества путем дифракции рентгеновских лучей на образце в виде порошка.
Дополнительным подтверждением ошибочности Pnma является факт того, что данная модель имеет псевдотетрагональное искажение около 0.03%, но в данном исследовании этого не наблюдалось.

В поликристаллическом образце CsW2O6 W-дефицитный CsW1.835O6 всегда существует в качестве примесной фазы. Ученые считают, что в процессе определения природы фазы II важную роль сыграл факт того, что монокристаллы CsW2O6 и W-дефицитного CsW1.835O6 были получены отдельно, а измерения дифракционных и физических свойств выполнялись именно на монокристаллах.


Таблица 1: кристаллографические данные CsW2O6 фазы I (250 К).


Таблица 2: кристаллографические данные CsW2O6 фазы II (100 К).


Таблица 3: кристаллографические данные CsW1.835O6 (30 К).


Температурная зависимость сопротивления (вверху) и магнитной восприимчивости (внизу) монокристаллов CsW1.835O6.

На следующем этапе исследования ученые более детально рассмотрели кристаллическую структуру фазы II.

В фазе I с пространственной группой Fd3m каждый из атомов Cs, W и O занимает один участок, где атомы Cs и W образуют структуры алмаза и пирохлора соответственно ().


Изображение 2

В фазе II с пространственной группой P213 атомы Cs занимают два разных центра и образуют структуру сфалерит (названную в честь одноименного минерала, также именуемого цинковая обманка*) (2b).
Обманками* называют минералы, которые не являются металлическими рудами, но обладают полуметаллическим блеском и другими признаками (цвет, плотность), присущими как рудам металлов, так и минералам.
Это было дополнительно подтверждено двумя пиками в спектрах 133Cs-ЯМР, соответствующими двум областям Cs, которые проявляются в виде небольшого расщепления пиков в случаях 200, 160 и 125 K (1f).

С другой стороны, атомы W занимают два участка с соотношением 1:3 в фазе II (2b и 2c), что несовместимо с зарядовым упорядочением W5+ W6+ атомов W5+ и W6+ в соотношении 1:1.

В соответствии с расчетом валентной суммы связи для расстояний W O, определенным из рентгеноструктурного анализа монокристалла, валентности атомов W(1) и W(2) была равна 6.07(3) и 5.79(3) при 100 К (фаза II) соответственно.

Учитывая, что параметры валентной суммы надежной связи W6+ доступны, а параметры W5+ нет, логично, что атомы W(1) являются W6+ без 5d электронов. В этом случае валентность атомов W(2) становится равной 5.33+ с электронными конфигурациями 5d2/3.

Из вышеописанных расчетов следует, что зарядовое упорядочение с нецелой валентностью имеет место при Tt. Фактически, монокристаллы W-дефицитного CsW1.835O6, где все атомы W имеют валентность 6+ без 5d электронов, не показывают переход при Tt.

В фазе II атомы W(2) образуют трехмерную сеть из маленьких и больших правильных треугольников, которые поочередно связаны друг с другом общими углами (2b). Хотя разница в размерах между большим и малым треугольниками составляет около 2%, расположение занятых 5d-орбиталей между ними совершенно различно, что приводит к образованию тримера W3 в небольшом треугольнике. Если бы не было чередования треугольников W3, подрешетка W имела бы гиперкагомную (трехмерная структура из связанных треугольников) структуру (). Наличие чередования указывает на то, что структура дышащего гиперкагома (т.е. с зазорами, в отличие от равномерного гиперкагома) формируется во время фазы II.

Зарядовое упорядочение в фазе II CsW2O6 любопытно тем, что условие Андерсона поддерживается необычным образом. Андерсон говорил, что у магнетита есть бесконечное число моделей упорядочения зарядов, когда все тетраэдры в структуре пирохлора имеют одинаковый полный заряд (это и есть условие Андерсона), и это макроскопическое вырождение сильно подавляет температуру перехода Вервея.

Тем не менее, есть сведения о том, что не только магнетит, но и другие смешанно-валентные пирохлорные системы, такие как CuIr2S4 и AlV2O4, демонстрируют упорядочение зарядов, которое нарушает условие Андерсона. В таком случае энергия, полученная за счет -связи между d-орбиталями соседних атомов, должна быть достаточно большой, чтобы компенсировать потерю кулоновской энергии из-за нарушения условия Андерсона.

Но в случае с CsW2O6 ситуация иная. Его зарядовое упорядочение удовлетворяет условие Андерсона, где каждый тетраэдр состоит из трех атомов W5.33+ и одного атома W6+. Однако этот формат упорядочений отличается от предложенного Андерсоном и Вервеем, где валентности были целочисленные с соотношением 1:1.

Упорядочение гиперкагомного типа часто появляются в пирохлорных системах с соотношением двух видов атомов 1:3. Таким образом, CsW2O6 является на данный момент единственным примером упорядочения гиперкагомного типа с нетривиальной природой формирования.

Возникает вполне ожидаемый вопрос почему именно такой формат упорядочения возникает в CsW2O6? По словам ученых, ответ можно получить, внимательнее рассмотрев неустойчивость поверхности Ферми электронной зонной структуры фазы I, т.е. понять движение и взаимодействие электронов в этой фазе.


Изображение 3

Слева на изображении выше показана зонная структура фазы I, а справа перекрывающие друг друга зонные структуры, полученные после параллельного сдвига электронных зон, соответствующих изменению примитивной ячейки с гранецентрированной сингонии на простую сингонию.


Кубическая сингония (слева направо): простая, объемно-центрированная и гранецентрированная.

Как видно на правой части изображения 3, пересечение зон происходит вблизи всех точек, где электронные зоны касаются энергии Ферми (EF). Следовательно, поверхности Ферми хорошо вложены за счет параллельных сдвигов электронных зон, соответствующих потере операций центрирования.

Подобный сценарий развития событий ученые именуют трехмерной вложенностью. Это означает, что большая электронная энергия генерируется за счет структурных изменений, связанных с вышеупомянутым изменением симметрии. Следовательно, эта трехмерная вложенность может быть важным компонентом возникновения перехода при 215 К.

Если рассматривать данный эффект как единственную движущую силу в возникновении перехода, то должно произойти структурное изменение с Fd3m на P4132 или P4332, что уже высказывалось в ранее проведенном теоретическом исследовании. В таком случае атомы W(2) должны образовывать однородную гиперкагомную структуру. Также предполагается, что запрещенная зона не открывается при энергии Ферми в случаях P4132 и P4332, что не согласуется с наблюдаемой в данном исследовании диэлектрической природой фазы II.

В действительности же пространственной группой фазы II является P213, которая является подгруппой P4132 и P4332, а атомы W(2) образуют дышащую гиперкагомную структуру, где размер маленького треугольника на 2% меньше, чем у большого.

Кроме того, ориентация занятых 5d орбиталей важна для понижения симметрии с P4132 / P4332 (равномерный гиперкагом) до P213 (дышащий гиперкагом). Для октаэдра W(2)O6 фазы II () две апикальные связи W(2)-O (отмечены серым) на 38% короче, чем остальные четыре экваториальные связи (отмечены синим). Это говорит о том, что октаэдр одноосно сжат.

Подобное искажение, по словам ученых, сильно напоминает классический пример эффекта Яна Теллера* в электронных системах t2g. В таком случае 5d-орбитали, лежащие в экваториальной плоскости, должны быть заняты электронами (2f).
Эффект Яна Теллера* возникает, когда взаимодействие между электронами и колебаниями ядер приводит к образованию локальных деформаций и изменению симметрии кристалла (статический эффект), или когда образуются вибронные состояния (динамический эффект).
Между занятыми 5d-орбиталями в малом треугольнике происходит значительное перекрытие через 2p-орбиталь O. А вот в большом треугольнике наблюдается небольшое перекрытие. Это указывает на то, что два электрона в трех атомах W(2) заключены в тримере W3 в маленьком треугольнике.

Для образования этого тримера электронная корреляция 5d электронов в CsW2O6 может быть еще одним существенным фактором. В тримере CsW2O6 два 5d электрона образуют спин-синглетную пару, что приводит к немагнитному и диэлектрическому основному состоянию. Таким образом мы наблюдаем альтернативный тип самоорганизации d-электронов, реализованный в сильно коррелированном 5d-оксиде.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Результатом сего исследования стало обнаружение того, что тримеры правильного треугольника W3 образуются при переходе 215 K в -пирохлоре оксида CsW2O6. Определить это удалось с помощью измерений структурных и электронных свойств монокристаллических образцов.

По сути, ученые обнаружили молекулы тривольфрама в монокристаллах CsW2O6, охлажденных до -58 C. При комнатной температуре CsW2O6 является хорошим проводником, но при охлаждении становится диэлектриком.

Когда кристалл находится в состоянии проводника, молекулы вольфрама образуют трехмерные сети тетраэдрических пирамид, связанных по их углам, известных как структура пирохлора. А симметрически распределенные между молекулами электроны образуют их связь. Если же образец охладить, то электроны меняют свое положение, от чего появляется два типа атомов вольфрама, которые отличаются своей валентностью. Такие изменения приводят к искажению связи вольфрама с атомами кислорода, что приводит к более сжатой форме соединения.

В процессе всех этих пертурбаций атомы вольфрама с более низкой валентностью образуют маленькие и большие треугольники по бокам тетраэдров вольфрама, причем очень маленькие молекулы тривольфрама образуют маленькие треугольники. Три атома вольфрама, являющиеся вершинами этих треугольников, держатся друг друга за счет всего лишь двух электронов.

Ученые заявляют, что на данный момент CsW2O6 является единственным известным примером, где подобный формат связи (два электрона на три атома) проявляется как фазовый переход. В последующих работах авторы сего исследования намерены глубже изучить соединения с пирохлорными структурами, что позволит открыть новые материалы с крайне необычными свойствами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Металлизация алмаза превращение изолятора в полупроводник

09.10.2020 10:12:07 | Автор: admin


Преобразование одного вещества в другое, изменение свойств материала под собственные нужды, трансформация материи. Все эти действия сочли бы за колдовство и ересь буквально пару сотен лет назад. Сейчас же это вполне обыденные процессы, которые можно наблюдать в современных лабораториях. Однако есть нечто, что сделать по факту нереально или, как минимум, крайне сложно. В рассматриваемом нами сегодня исследовании ученые из МТИ (Массачусетский технологический институт, США) решили радикально изменить электрические свойства алмаза, превратив его из диэлектрика в проводник. Как это было достигнуто, каковы характеристики алмаза-проводника, и где может пригодиться подобная разработка? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


В далеком 1949 году Кэрол Чэннинг впервые исполнила песню Бриллианты лучшие друзья девушек, которая большинству из нас известна в исполнении Мерлин Монро. Правдиво ли данное высказывание касательно драгоценного камня каждый может судить по себе индивидуально.

Бриллианты это красивые драгоценные камни, которые прекрасно смотрятся в украшениях или на музейных полках. Но вот их предшественники куда интереснее с научной точки зрения. Речь, конечно, об алмазах.

Алмаз это кубическая аллотропная форма углерода. Срок годности этого минерала в нормальных условиях фактически неограничен, так как он является метастабильным материалом. Также всем известен факт того, что алмаз является одним из самых твердых веществ на планете. Физико-химические свойства алмаза сделали его важнейшей составляющей для многих приборов и центром внимания многих исследований. Среди них и труды по электропроводимости, в которых алмазы наделяли свойствами проводника посредством внедрения примесей (например, бора).

Но в таком случае, преобразование алмаза в проводник происходит посредством допирования. Другими словами, сам алмаз по-прежнему остается изолятором.

Однако, как заявляют авторы сего исследования, открытие сверхбольшой упругой деформации в наноразмерном алмазе и более точное описание его электронной и фононной структур посредством машинного обучения позволили расширить спектр манипуляций, которые можно проводить с алмазами.

Получив новые данные и новые инструменты для исследований, ученые задались вопросом: может ли алмаз со сверхширокой запрещенной зоной (5.6 эВ) быть полностью металлизирован исключительно за счет механической деформации без фононной нестабильности, так чтобы его электронная запрещенная зона полностью исчезла? Как оказалось, это вполне реально.

Прежде всего ученые обращают наше внимание на другое исследование (Ultralarge elastic deformation of nanoscale diamond), в котором говорится, что монокристаллические и поликристаллические алмазные наноиглы (диаметр 300 нм) могут быть обратимо деформированы до локальных упругих деформаций растяжения выше 9% и 3.5% при комнатной температуре. Это умозаключение было подтверждено в последующих исследованиях, где объектом изучения были алмазные наноразмерные столбы, полученные с помощью резки образцов природного алмаза сфокусированным ионным лучом.

В рассматриваемом нами сегодня труде наибольшие локальные деформации растяжения 13.4% (ориентация решетки <100>) и 9.6% (ориентация решетки <110>) были достигнуты в наноиглах монокристаллического алмаза с ориентацией при изгибе. При этом соответствующие максимальные локальные деформации сжатия 14
% и -10.1% наблюдаются на стороне сжатия.

Получить такие результаты стало возможным за счет расчетов, экспериментов, моделирования и, что самое важное, машинного обучения, алгоритм которого должен определить оптимальные свойства алмаза для различных геометрий и условий нагрузки путем сканирования всех возможных комбинаций состояний деформации в общем шестимерном (6D) пространстве деформации.

Перед проведением фактического исследования ученые определили ряд основных вопросов, на которые они хотели бы получить ответы:

  • можно ли исключительно посредством наложения напряжения металлизировать алмаз при комнатной температуре и давлении? При этом необходимо достичь перехода от его естественного недеформированного состояния со сверхширокой запрещенной зоной (5.6 эВ) до полной металлизации с шириной запрещенной зоны 0 эВ без фононной нестабильности или структурных преобразований (например, графитизация).
  • какие состояния деформации и наименьшая плотность энергии деформации необходимы для достижения безопасной металлизации запрещенной зоны?
  • насколько такая безопасная металлизация может быть реализована в условиях деформаций, достижимость которых была доказана экспериментально?
  • как кристаллографические и геометрические переменные влияют на металлизацию алмаза?
  • какие условия запускают преобразование непрямого перехода запрещенной зоны в прямой или конкурирующий переход фазы графитизации в алмазе при деформации?

Результаты исследования


Забегая наперед, можно сказать, что в алмазе можно достичь электронной запрещенной зоны 0 эВ исключительно за счет наложения обратимых упругих деформаций, не вызывая фононную нестабильность или фазовый переход. Это открытие подразумевает, что обратимая металлизация/деметаллизация возможна за счет правильной комбинации условий механической нагрузки и геометрии в наноразмерном алмазе.

Было установлено, что безопасная металлизация может быть достигнута при значениях плотности энергии упругой деформации порядка 95275 мэВ/3. При этом даже незначительный изгиб <110> наноиглы может эффективно уменьшить ширину запрещенной зоны с 5.6 эВ до 0 эВ без фононной нестабильности при локальной упругой деформации сжатия около 10.8%. Однако увеличение напряжения изгиба может вызвать фононную нестабильность, которая приводит к необратимому фазовому переходу sp3 sp2 (алмаз графит) или разрушению образца.


Изображение 1

Выше представлены некоторые 6D-состояния деформации, которые приводят к исчезновению запрещенной зоны алмаза без фононной неустойчивости или графитизации. В кристаллографической системе координат [100] [010] [001] расчеты показывают, что одна такая полная и безопасная металлизация происходит, когда локальное состояние деформации 6D составляет (0.0536, -0.0206, -0.056, 0.0785, 0.0493, 0.0567).

На 1A представлен k-график GW* электронной зонной структуры для алмаза, деформированного до 6D состояния, указанного выше, в результате чего получается металл.
GW*: электронные зонные структуры алмаза при деформации растяжения могут быть предсказаны с высокой точностью на основе теории функционала плотности (DFT) с последующими расчетами GW (G функция Грина; W экранированное кулоновское взаимодействие).
Контуры плотности энергии деформации построены в двумерном (2D) пространстве на 1B, где черной звездой отмечен h = 98.7 мэВ/3.


Изображение 2

Изображение выше дополнительно иллюстрирует области безопасной металлизации алмаза без фононной нестабильности, а также демонстрирует обратимые преобразования прямозонный/непрямозонный при больших упругих деформациях.
Прямозонный полупроводник, в котором переход из зоны проводимости в валентную зону не сопровождается потерей импульса.

Непрямозонный полупроводник, в котором переход из зоны проводимости в валентную зону сопровождается потерей импульса.
На показаны возможные состояния деформаций 11, 22, 33, охватывающие от -20% (т.е. деформация сжатия 0.2) до +10% (т.е. деформация растяжения 0.1), в которых индуцируется безопасная металлизация (отмечено коричневым цветом). В свою очередь, является двумерной репрезентацией областей металлизации.

Посредством компьютерного моделирования было установлено два типа безопасной металлизации: прямой металл и непрямой металл (где переход зона-граница непрямой, т.е. из двух разных k-точек).

Двумерная область прямого металла, заштрихованная коричневым цветом, охватывает деформированное состояние, обозначенное звездой из . Эта зона встроена в пространство деформации прямой запрещенной зоны (синяя область на 2B). Область непрямого металла, также заштрихованная коричневым, окружена белой зоной, представляющей пространство деформации для непрямой запрещенной зоны.

На структура GW зоны перенесена в k-пространство, чтобы проиллюстрировать непрямое состояние металла в точке c (2B) внутри зоны безопасной металлизации. 2D и являются диаграммами зонной структуры, показывающими примеры ненулевых случаев прямой и косвенной запрещенной зоны.

Область, заштрихованная серым цветом вне пунктирных линий, это область больших упругих деформаций и нестабильной металлизации, где происходит фононная неустойчивость, приводящая к зарождению дефектов и/или фазовому переходу. А на 2F видно заметное уменьшение частоты фононов и возникновение мягкой моды, связанной с точкой деформации f на 2B, где имеет место фононная нестабильность и связанный с ней фазовый переход от алмаза к графиту.

Эксперименты показывают, что алмазные наноиглы перед разрушением демонстрируют сверхбольшой упругий изгиб. Такая деформация, приводящая к локальным деформациям сжатия, превышающим -10%, и деформациям растяжения, превышающим 9%, является обратимой после снятия нагрузки.

Далее было проведено моделирование для определения модуляции запрещенной зоны в изогнутых алмазных наноиглах при максимальных уровнях локальной деформации.


Изображение 3

На схеме показан способ, при котором наконечник алмазного индентора надавливает на алмазную наноиглу, вызывая большую деформацию. Был применен метод конечных элементов (МКЭ), позволивший смоделировать латеральный изгибающий момент алмазной иглы во время контакта с острием индентора при учете нелинейной упругости, ориентации кубической решетки относительно оси иглы, направления изгиба и возможного трения между наконечником индентора и иглой.

Изображение это результаты МКЭ моделирования для локальных деформаций сжатия (максимум -10.8%) и растяжения (максимум 9.6%) <110> алмазной наноиглы. Тут же представлены прогнозы распределения ширины запрещенной зоны.

Начало безопасной металлизации появляется на сильно напряженной стороне наноиглы при локальной деформации -10.8% (3C). Также было установлено, что склонность к более металлическому поведению с увеличением деформации не зависит от трения между индентором и наноиглой. <110> наноигла может выдерживать не более 12.1% локальной деформации растяжения до возникновения фононной нестабильности на стороне растяжения при ширине запрещенной зоны 0.62 эВ (3D).


Эволюция плотности энергии упругой деформации, ширины запрещенной зоны и соответствующей зонной структуры в месте максимального сжатия на наноигле, показывающая процесс металлизации алмазной наноиглы при изгибе (соответствует изображению 3).

Сторона наноиглы, где протекает сжатие, куда более устойчива к деформациям. Максимально достижимая деформация сжатия может составлять порядка -20% при ориентации с низким показателем преломления. Следовательно, можно предположить, что есть место для дополнительной упругой деформации после достижения безопасной металлизации в областях с преобладающим сжатием.

Еще одним важным аспектом, определяющим степень деформации и результирующую модуляцию запрещенной зоны, является кристаллографическая ориентация оси наноиглы.

Среди трех изученных типов <110>- и <111>-ориентированные наноиглы требуют относительно меньших деформаций растяжения для уменьшения ширины запрещенной зоны за счет деформации, тогда как ориентация <100> является наиболее сложной ориентацией для уменьшения ширины запрещенной зоны ниже 2 эВ или достижения металлизации. Это можно объяснить различием в гибкости доступа ко всем шести компонентам тензора деформации, выраженным в системе координат [100] [010] [001].

Несмотря на возможность чрезвычайно большой деформации в <100> -ориентированной наноигле, эта ориентация в первую очередь способствует нормальным деформациям, и результирующее максимальное уменьшение ширины запрещенной зоны ограничивается достижением фононной нестабильности, вызывающей разрушение или фазовое преобразование.

А вот для <110> и <111>-ориентированных наноигл намного легче инициировать различные компоненты деформации и, следовательно, легче провести преобразование зонной структуры и достичь модуляции запрещенной зоны.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Ученые заявляют, что помимо рассмотренных в данном труде вариантов алмазных структур, можно создать более сложные геометрические формы с отверстиями и впадинами за счет оптимизации топологии и микро- и наномеханической обработки геометрических элементов, не подвергая металлизированную зону воздействию приповерхностных областей, что еще больше увеличивает возможности металлизации алмаза.

Когда деформированный алмаз превращается в полупроводник с прямой запрещенной зоной, даже только локально в месте максимальной деформации, он будет демонстрировать фундаментальное улучшение оптических переходов вокруг края адсорбции по сравнению с недеформированным алмазом в его естественном состоянии. Поскольку поглощение экспоненциально увеличивается с толщиной материала, устройство преобразования световой энергии на основе полупроводника с прямой запрещенной зоной потребует гораздо меньшей толщины, чтобы поглощать такое же количество света. Следовательно, данный подход может быть использован в разработке новых типов фотодетекторов и излучателей от ультрафиолета до дальнего инфракрасного диапазона, работающих на одном кусочке алмаза.

Также важно отметить, что достижение полной металлизации алмаза в условиях упругих деформаций выше 80 мэВ/3 или при локальной упругой деформации на сжатие или растяжение > 9% является крайне сложным делом. Однако успешная реализация этой разработки может иметь значимый эффект на развитие электроники, оптоэлектроники и систем квантового зондирования.

Однако характеристики системы будут напрямую зависеть от ее практического применения. Другими словами, систему можно будет оптимизировать в зависимости от задач, которые она должна выполнять. На данный момент ученые смогли практическим путем доказать работоспособность своего творения. Пока это лишь концепция, однако она может быстро перейти от теории к практике, учитывая скорость развития технологий выращивания однородных алмазных материалов.

Несмотря на все сложности практической реализации полученных знаний, они по-прежнему остаются крайне важными элементами понимания того, как те или иные материалы с давно определенными свойствами способны менять их в зависимости от внешних факторов.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Исследователями Samsung открыт новый материал для производства полупроводников

18.08.2020 18:15:11 | Автор: admin
Ученые из Высшего технологического института Samsung (Samsung Advanced Institute of Technology, SAIT) в сотрудничестве с Национальным институтом науки и технологии Ульсана (UNIST) и Кембриджским университетом рассказали об открытии нового материала под названием аморфный нитрид бора (a-BN). Исследование, опубликованное в авторитетном научном журнале Nature, способно ускорить появление полупроводников следующего поколения.

Внутри кратко о сути открытия с комментариями от руководителя SAIT Россия, к.ф-м.н Станислава Полонского.


2D материалы ключ к преодолению проблем масштабируемости


SAIT занимается исследованием и разработкой двумерных (2D) материалов кристаллических веществ, состоящих из одного слоя атомов. В частности, специалисты института работали над изучением и разработкой графена и добились революционных результатов в этой области создали новый графеновый транзистор, а также новый метод производства монокристаллических пластин большой площади из чешуйчатого графена. Помимо этого, ученые SAIT заняты ускорением коммерциализации материала.

Чтобы улучшить совместимость графена с полупроводниковыми процессами на основе кремния, выращивание пленок графена на полупроводниковых подложках должно осуществляться при температуре ниже 400 C, рассказал Хён Чжин Шин, руководитель проекта по разработке графена и главный исследователь SAIT. Мы также постоянно работаем над расширением сферы применения графена, не ограничиваясь полупроводниками.

Трансформированный 2D материал аморфный нитрид бора


Недавно открытый материал под названием аморфный нитрид бора (a-BN) состоит из атомов бора и азота с аморфной структурой молекулы. Несмотря на то, что аморфный нитрид бора получают из белого графена, который включает атомы бора и азота, расположенные в гексагональной структуре, благодаря своей молекулярной структуре новый материал обладает уникальными отличиями от белого графена.

Аморфный нитрид бора имеет лучшую в своем классе сверхнизкую диэлектрическую проницаемость 1,78 с сильными электрическими и механическими свойствами и может использоваться в качестве межсоединительного изоляционного материала для сокращения электрических помех. Также было продемонстрировано, что материал в чешуйчатой форме можно выращивать при низкой температуре, всего 400C. В связи с этим ожидается, что аморфный нитрид бора будет широко применяться в полупроводниках, таких как решения DRAM и NAND, и, особенно, в памяти следующего поколения для крупномасштабных серверов.

Станислав Полонский, начальник управления перспективных исследований и разработок Исследовательского центра Samsung:

Скорость современных полупроводниковых интегральных схем определяется не только скоростью переключения транзисторов, но и скоростью распространения электрических сигналов от одного транзистора до другого. С точки зрения посылающего сигнал транзистора, передающий сигнал другому транзистору провод представляет собой конденсатор, который нужно зарядить. Чем меньше емкость такого конденсатора, тем быстрее он заряжается, тем быстрее передается сигнал. Емкость конденсатора уменьшается вместе с диэлектрической проницаемостью изолятора, окружающего металлический провод. Полученные корейскими учеными рекордно низкие значения этого параметра приведут к рекордным высокой скорости передачи сигналов на микросхеме, увеличивая ее производительность. Все просто!

Кратко о достижениях SAIT последних лет:
2012: графеновый барристор, триодное устройство с барьером Шоттки, управляемым затвором (SAIT, опубликовано в Science)
2014: чешуйчатый рост пластины монокристаллического монослоя графена на многоразовом водородно-терминированном германии (SAIT и Университет Сонгюнгван, опубликовано в Science)
2017: Реализация непрерывного монослоя углерода Захариасен (SAIT и Университет Сонгюнгван, опубликовано в журнале Science Advances)
2020: сверхнизкая диэлектрическая проницаемость аморфного нитрида бора (SAIT, UNIST и Кембриджский университет, опубликовано в журнале Nature)


Источник новости.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru