Русский
Русский
English
Статистика
Реклама

Термодинамика

Умная одежда устройство модуляции температуры на основе графена

24.06.2020 10:13:26 | Автор: admin


У природы нет плохой погоды, как поется в знаменитой песне из кинофильма Служебный роман. Однако далеко не все готовы согласиться с этим утверждением. Кому-то нравится холод, кто-то предпочитает жару, кому-то все равно. Я же отношусь к тем людям, которые будут жаловаться и на жару, и на холод, нам подавай комфортные +20 C. К сожалению, не всегда и не у всех любителей нейтрального климата есть возможность жить в регионах, где он есть. Сейчас лето в самом разгаре, удушающая жара лишь изредка прерывается кратковременными грозами, которые не особо помогают. Если природа не готова идти нам навстречу, значит стоит делать что-то самим. Сегодня мы познакомимся с исследованием, в котором ученые из Манчестерского университета (Великобритания) разработали умную адаптивную ткань, способную снижать температуру тела человека ее носящего в жаркие дни. Что легло в основу умной ткани, как протекал процесс разработки, и какие дополнительные свойства и варианты применения имеются у этого изобретения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Прежде, чем рассказать нам о своем творении, ученые отмечают, что прогресс в области пользовательской электроники за последние годы идет семимильными шагами. Буквально каждый день появляется что-то новенькое и необычное. Тем не менее, существует ряд ограничений, которые мешают тем или иным разработкам перейти от стадии лабораторных тестов к стадии массового производства. В аспекте производства умных тканей основной проблемой является сложность интеграции электронных / оптических материалов внутрь волокон ткани. Самый простой вариант в носимой электронике это создание отдельных гаджетов (браслеты, часы и т.д.), которые не требуют внедрения в другую систему (в данном случае, ткань), но спектр возможностей этих устройств будет ограничен.

По словам ученых, чтобы достичь вразумительных результатов в сопряжении электроники и ткани, необходимо либо изменить технологию производства ткани, либо использовать нестандартные материалы для электронной части носимого устройства.

Одним из таких материалов является двумерный графен. Однако в предыдущих попытках его использовать ученые полагались больше на его электропроводность. В данном же труде было сделано ударение на оптическую составляющую, т.е. была предложена идея использовать графен в качестве оптической платформы.

Тепловое излучение от многослойного графена может модулироваться электрически через интеркалирование* ионов.
Интеркаляция* обратимое внедрение молекулы или группы молекул между другими молекулами или группами молекул.
В данном исследовании ученые представляют нашему вниманию технологию оптического текстиля, основанную на интеграции в текстиль динамических инфракрасных устройств на базе электрически перестраиваемого графена, образованного методом химического осаждения из паровой фазы (ХОПФ).

Результаты исследования


Устройства состоят из объединенных слоев инфракрасно прозрачного полимерного слоя, многослойного графена, выращенного с использованием метода ХОПФ, слоя тканевого разделителя и проводящей ткани (схема устройства на ).


Изображение 1

Изготовление начинается с выращивания многослойных графеновых пленок на никелевой фольге. Тонкая полиэфирная (PE) пленка, которая функционирует как прозрачный для инфракрасного излучения защитный слой, ламинируется на многослойный графен перед травлением Ni-фольги. Графен на полиэфирном листе прикрепляется к ткани с помощью термоплавкого клея.

Одним из важных моментов данной разработки является удобство использования и практичность, потому необходимо было удостовериться в хорошей адгезии между графеном и подложкой (тканью). Это было сделано посредством нескольких циклов стирки и посредством испытаний на механическое сжатие.

Далее на задний электрод (проводящая ткань) был нанесен ионный жидкий электролит (BMIMPF6), который впоследствии диффундировал в текстильную подложку. Текстиль действует как разделитель и ионопроводящий слой, обеспечивая ионное движение, когда разность напряжений приложена к графену и заднему электроду.

На 1b показаны примеры изготовленных устройств на натуральных (хлопок) и синтетических текстильных материалах (полиэфир).

Электрохимическая стабильность заднего электрода играет решающую роль в долговременной стабильности устройства. В качестве основы для заднего электрода тестировались разные материалы: проводящий текстиль на основе серебра, сетка из нержавеющей стали, золотое напыление, графен и восстановленный оксид графена.

Массив задних электродов и проводку на текстиле изготовили с помощью фотолитографии с последующей металлизацией и процессом отрыва*.
Отрыв* в технологии микроструктурирования представляет собой способ создания структур целевого материала на поверхности подложки с использованием жертвенного материала (например, фоторезиста).
Полученные пиксельные электроды позволяют определять динамические инфракрасные структуры на непрерывном графеновом слое с помощью выборочной интеркаляции.

Принцип работы устройств основан на обратимой интеркаляции ионов в графеновые слои и модулировании его электрических и оптических свойств. При 0 В многослойный графен имеет высокое инфракрасное поглощение, что приводит к высокой излучательной способности, раскрывая фактическую температуру устройства ().


Изображение 2

При подаче достаточной разности напряжений (> 2.5 В) ионная жидкость интеркалирует в слои графена, увеличивая оптическую проводимость и подавляя излучательную способность, тем самым скрывая фактическую температуру устройства. Термографы устройства записывались с помощью длинноволновой инфракрасной камеры, которая визуализирует изображения по закону Стефана-Больцмана:
P = T4
где P количество падающего теплового излучения на матрице болометров*; излучательная способность поверхности; постоянная Стефана-Больцмана; T температура поверхности в Кельвинах.
Болометр* тепловой приемник излучения (преобразует энергию поглощенного электромагнитного излучения в тепловую).
Текстильные устройства находясь непосредственно в тепловом контакте с источниками тепла, такими как тело человека, для предотвращения ложного экранирования температуры источника. Кроме того, графен функционирует как слой с высокой теплопроводностью, который удваивает температуропроводность в плоскости текстиля, улучшая теплопроводность от источника к поверхности.

Временной отклик устройств был получен путем записи видео тепловизором, чтобы получить изменение видимой температуры поверхности (2b).


Динамическое изменение инфракрасного излучения на хлопковом устройстве.

Полная интеркаляция (подавление излучательной способности) занимает ~5 с, когда ток устройства не ограничен. Стоит отметить, что эти измерения проводились в лабораторных условиях (21 C), ограничивающих минимальную кажущуюся температуру.

Устройства могут многократно циклически переключаться между состояниями с высокой и низкой излучательной способностью (2c), однако превышение электрохимического окна электролита ухудшает рабочие характеристики устройства.

Модуляция излучательной способности определялась количественно с помощью измерений отражения в инфракрасном и ближнем инфракрасном диапазонах с использованием инфракрасного Фурье-спектрометр (FTIR), оборудованного интегрирующей сферой. При 0 В коэффициент отражения внутреннего устройства почти плоский (2d) и составляет около 30%, за исключением поглощения в верхней полиэфирной пленке на длинах волн ~3.4, ~6.8, ~13.9 мкм и поглощения в атмосфере (например, CO2, H2O).


Демонстрация работы адаптивного инфракрасного текстильного устройства.

В диапазоне спектральной чувствительности тепловой камеры (8-13 мкм) такие поглощения минимизируются благодаря тщательному выбору верхней защитной пленки. Коэффициент излучения (или коэффициент поглощения) рассчитывается как 1 R, где R коэффициент отражения, поскольку свет не проходит через устройство. По мере того, как ионы интеркалируют графеновые слои, энергия Ферми и оптическая проводимость графена увеличиваются, тем самым увеличивая коэффициент отражения инфракрасного излучения.

Средняя излучательная способность устройства в диапазоне длин волн 8-13 мкм достаточно высока ( 0.7) для 0 В и поддерживается в таком значении до порогового напряжения ( 2.5 В) с последующим резким падением до 0.35 при > 4 В (), что отлично согласуется с термограммами на 2а.

Модуляция излучательной способности охватывает как длинноволновый инфракрасный (8-13 мкм), так и средневолновый инфракрасный (MWIR, 3-5 мкм) диапазон. В MWIR, тем не менее, полиэфирная пленка демонстрирует значительное поглощение из-за режима растяжения C-H связей, который не зависит от приложенного напряжения, ограничивая диапазон модуляции излучательной способности до 0.7-0.5 (2e). Из этого следует, что любые устройства, работающие в этом диапазоне длин волн, нуждаются в нестандартном защитном слое.

Другим эффектом полиэфирного слоя является повышенная излучательная способность поверхности благодаря термической экстракции полиэфиром, у которого показатель преломления больше, чем у воздуха.

Также наблюдалась модуляция излучательной способности (0.2-0.4) и в коротковолновом инфракрасном диапазоне (SWIR, 0.9-1.7 мкм). А вот модуляция в видимом спектре была незначительной из-за недостаточного легирования графена.

Улучшить модуляцию в SWIR и видимом диапазоне возможно за счет использования ионной жидкости с большим электрохимическим окном, которая будет совместима с текстилем.

Учитывая, что ткань должна быть растяжимой и гибкой, используемые графеновые элементы должны действовать соответственно. Однако многослойный графен не растягивается и не гнется ввиду механического воздействия. Потому в разработке была использована нестандартная изогнутая конструкция графена, что обеспечило уровень деформации до 60%.


Изображение 3

Решить все проблемы с гибкостью и механическим напряжением можно за счет использования массивов электродов, в не единого элемента. На показан пример такого варианта конфигурации с массивом из 25 индивидуально адресуемых электродов и датчиком термобатареи. В качестве активного слоя использовался большой цельный лист многослойного графена на хлопчатобумажной ткани (3b). Каждый электрод контролирует излучательную способность площадью 2х2 см. Внешняя электронная схема была запрограммирована реагировать на тепловую сигнатуру от датчика. Графики 3c и 3d показывают сигналы датчика и кажущуюся температуру активного пикселя (область контроля 2х2).

Мультипиксельное текстильное устройство отображает буквы C или H (обозначающие cold и hot), настраивая излучательную способность соответствующих пикселей, реагирующих на наличие/отсутствие горячего объекта над датчиком. На 3e показаны тепловые изображения работы устройства при взаимодействии с рукой человека.

Далее ученые провели фактическое практическое испытание устройства, внедренного в обычную футболку. Из-за естественной температуры тела, в условиях окружающей среды, человеческое тело излучает около 100 Вт инфракрасного света в основном в LWIR диапазоне. Этот спектральный диапазон также совпадает с окном атмосферного пропускания, которое позволяет распространять излучаемый LWIR свет на большие расстояния.

Устройство для футболки было изготовлено путем ламинирования пленки графен/полиэфир размером 6х6 см непосредственно на поверхности футболки из 100% хлопка и сеткой из нержавеющей стали на обратной стороне ().


Изображение 4

Для передачи закодированного сигнала был использован микроконтроллер, который был запрограммирован передавать буквы N, G и I азбукой Морзе. Тире и точки создавались путем подавления кажущейся температуры на длительное (9 с) и короткое (3 с) время.

На 4b и показаны инфракрасные снимки футболки в состояниях с высокой и низкой излучательной способностью, а шкала справа показывает зарегистрированную с расстояния в 3 м кажущуюся температуру.

Использование микроконтроллера позволяет строить более сложные схемы на текстиле, что, в свою очередь, обеспечивает более безопасные протоколы связи, например, инициирование связи при получении внешних запускающих стимулов. А человеческое тело в данной конфигурации может служить источником энергии.

В данном опыте скорость связи с использованием одной заплатки ограничена процессом интеркаляции/деинтеркаляции, который масштабируется в зависимости от площади устройства.


Передача букв N, G и I азбукой Морзе.

Ученые заявляют, что использование небольших электрических сигналов для модуляции инфракрасной излучательной способности является значительным преимуществом по сравнению с альтернативами, поскольку оно обеспечивает адаптивный отклик, что необходимо для применения в динамическом тепловом камуфляже и управлении тепловым режимом.


Увеличение отражающей способности полиэфирного устройства в ближнем инфракрасном диапазоне.

Разработанное устройство требует низкого напряжения (~ 3 В) и совсем немного энергии (5.5 х 10-4 мАч/см2 на одно событие интеркаляции, что соответствует плотности заряда ~ 1014 см-2 для каждого слоя графена). Следовательно, обычная дисковая батарейка на 1000 мАч может активировать устройство размером с футболку (1 м2) около 180 раз. Кроме того, энергия потребляется исключительно во время цикла зарядки (интеркаляции). А средняя мощность в режиме ожидания практически равна нулю, что позволяет значительно продлить использования одного устройства без замены внешнего источника питания. Это, конечно, если не рассматривать идею с использованием человека в качестве источника энергии.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мода переменчива, как и погода. А вот наука, хоть иногда и кажется хаотичной, но все же следует одним и тем же естественным законам.

В данном труде ученые использовали оптические свойства графена в своей разработке графенового адаптивного оптического текстиля. Это устройство позволяет не только модулировать его температуру, но и дает возможность лучше понять термические и механические свойства графена. Успешная демонстрация модуляции оптических свойств на различных типах текстиля может дать толчок более широкому использованию волокнистых архитектур. Спектр применения подобных технологий не ограничивается элементами гардероба, она может быть крайне полезна и в технологиях связи, и даже в адаптивных скафандрах.

Сами же ученые намерены шагнуть еще дальше. В дальнейшем они планируют использовать свою разработку в спутниках на околоземной орбите. Спутники, как никто другой, испытывают экстремальные перепады температуры: в тени Земли они замерзают, а обращаясь к Солнцу очень нагреваются. Использование данной технологии в теории позволяет получить контроль над тепловым излучением, следовательно, и над температурой самого спутника. От обычной футболки к спутникам на орбите остается лишь надеяться, что амбиции ученых будут подкреплены успешными результатами их дальнейших исследований.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Квантовый нанотермометр измерение температуры нематоды длиной 1 мм

18.09.2020 10:20:14 | Автор: admin


Одним из основных показателей состояния биологической системы является температура. Если у человека развивается какая-то инфекция, то температура его тела повышается (как правило, но не всегда), что является признаком ответной реакции иммунной системы на угрозу. Другими словами, по температуре можно определить примерное состояние организма. Проблема в том, что человек большой (буквально), а вот, например, нематоды в длину всего лишь около 1 мм. Измерить температуру столь малого организма было крайне сложно, однако ученые из университета Осаки (Япония) разработали методику, позволяющую решить эту проблему. Какие средства были использованы для реализации нанотермометра, что показали практические опыты, и где можно использовать данную разработку? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Температура тела живого организма варьируется в зависимости от степени воздействия внутренних и внешних факторов. Мы привыкли, что температура окружающей среды напрямую влияет на температуру холоднокровных, посему ее значения меняются с завидной регулярностью. Однако даже у теплокровных при нормальных физиологических условиях наблюдаются температурные колебания, которые можно связать с гомеостатической терморегуляцией и энергетическим обменом.

Другими словами, тут отлично подходит шутка: я не бездельничаю, я очень занятой человек на клеточном уровне. Если точно измерить температуру и ее динамику в субмикронном масштабе, то можно получить много информации касательно клеточной и молекулярной активности. Проблема в том, что с уменьшением объекта измерения увеличивается сложность его проведения (сложно засунуть в нематоду обычный термометр из аптеки).

Авторы исследования отмечают, что обычные электрические термометры не имеют субмикронного разрешения, а термография в ближнем инфракрасном диапазоне обычно помогает определять температуру поверхности биологических образцов, но не внутреннюю температуру.

Конечно, сейчас уже есть светоизлучающие нанотермометры (например, термочувствительные молекулярные зонды), которые способны преодолеть это ограничение. Но у такой методики также есть недостатки. Основной это долговременная устойчивость, а точнее ее отсутствие. Подобные устройства не могут точно измерять изменения температуры, которые протекают длительное время (скажем пару часов). Не говоря уже о токсичном воздействии на образец со стороны такого термометра.

В данном труде ученые описывают концепцию наноалмазного (ND от nanodiamond) квантового термометра, который обладает высокой точностью, устойчивостью и низкой токсичностью. Принцип его работы таков: датчик считывает температуру как сдвиг частоты оптически детектируемого магнитного резонанса (ODMR от optically detected magnetic resonance) дефектных центров азотных вакансий (NV от nitrogen-vacancy), который в основном возникает из-за теплового расширения решетки. Сенсорное ядро NV глубоко встроено в решетку алмаза и невосприимчиво к различным биологическим факторам окружающей среды. Внедрение этого квантового датчика в более сложные организмы позволяет считывать их тепловую активность на конкретном участке в режиме реального времени. Но процесс реализации такой техники сопряжен с рядом сложностей.


Нематода (круглый червь) вида Caenorhabditis elegans.

Многоклеточные модельные организмы, такие как черви Caenorhabditis elegans, нуждаются в специальной камере, способной вместить тело миллиметрового размера, а сами образцы необходимо быстро анализировать, чтобы сохранить их физиологическое состояние. Квантовые ND термометры движутся намного быстрее, чем в культивируемых клетках, даже если тело обезвожено, что требует использования алгоритма быстрого отслеживания частиц. Кроме того, позиционное перемещение ND и сложная структура тела вызывают существенные колебания обнаруженной интенсивности флуоресценции, что, вероятно, вызовет артефакты измерения температуры. Решение этих проблем на данном этапе исследования сопряжено с подгонкой устройство под индивидуальные особенности анализируемого образца. Вопрос универсальности и легкости в настройке будущего нанотермометра планируется рассматривать в дальнейших работах, а пока внимание было уделено самой концепции и основным принципам работы.


Небольшой ролик, рассказывающий о нематодах.

Результаты исследования


Основой нанотермометра является конфокальный флуоресцентный микроскоп, оборудованный установкой для микроволнового облучения (1А).


Изображение 1

ODMR азотных вакансий можно измерить как уменьшение интенсивности лазерно-индуцированной флуоресценции при применении спин-резонансного микроволнового возбуждения, поскольку спиновое возбуждение активирует нефлуоресцентный путь релаксации из возбужденного состояния в основное состояние ().

Камера, куда помещаются образцы, представляет собой одноразовую чашу со стеклянным дном, интегрированную в антенну, которая обеспечивает оптический доступ большой площади (диаметр 12 мм) и простоту использования (1C), подходящую для деликатных образцов, таких как стволовые клетки. Время от захвата червя Caenorhabditis elegans до начала фактического измерения составляет всего 15 минут. Это помогает сохранить жизнеспособность червя и способствует получению большего объема данных о его состоянии.

Кроме того, данная система эффективно объединяет быстрое отслеживание частиц и высокоточную оценку температуры в реальном времени по ODMR смещению NV центров.

При отслеживании частиц система измеряет интенсивность флуоресценции ND вдоль осей xyz микроскопа и фокусируется на соответствующем максимуме флуоресценции каждые 4 секунды (возможен более короткий интервал отслеживания), в течение которых температура оценивается со временем выборки от 0.5 до 1.0 секунды. ().


Изображение 2

Методов квантовой термометрии существует несколько, однако в данном труде был использован метод четырехточечных измерений ODMR. Этот метод предполагает, что количество фотонов, зарегистрированных на всех четырех выбранных частотах, линейно масштабируется в соответствии с изменениями обнаруженной интенсивности флуоресценции.

Однако, было обнаружено, что каждый последующий фотон показывает разницу в светочувствительности около 0.5%, что фактически создает существенные артефакты в оценке частотного сдвига (т.е. 300 кГц, что соответствует нескольким градусам Цельсия), особенно при низко-фотонном режиме.

Эти артефакты, скорее всего, возникают из-за зависимой от оптической мощности асимметрии спектра ODMR. Для точного измерения температуры сложных оптических динамических систем (т.е. биологических систем) от подобных артефактов необходимо избавляться. Поэтому в метод четырехточечных измерений был добавлен фильтр коррекции ошибок.

Для оценки работы системы, сопряженной с коррекцией ошибок, в реальном времени были проведены измерения температуры ND во время ступенчатых тепловых событий. Резкие изменения температуры использовать нельзя было, так как внезапные изменения температуры вызывают большую расфокусировку фокальных пятен и связанные с ними флуктуации интенсивности флуоресценции.

На 2B показаны временные профили общего количества фотонов (Itot) и температурная оценка ND (TNV), когда температура образца (TS) изменяется от 44.3 30.4 44.3 с шагом в 2.8. Система точно выдает TNV, соответствующий TS, при этом положение фокуса существенно перемещалось, особенно вдоль оси z на расстояние более 30 мкм (2C).

При шаге в 3 проявляется позиционный сдвиг по оси z на 6 мкм в течение 3-4 минут, но скорость слежения достаточно высока, чтобы следовать динамике 105 нм/с в течение 96 минут ().

Кроме того, TNV четко демонстрирует антикорреляцию с Itot. Статистическое исследование этого типа температурной зависимости определяет средние значения для SD: Itot-1dItot/dT = -3.9 0.7 %/С и dD/dT = 65.4 5.5 кГц/С (2D). При этом точность измерения температуры составляет 0.29 и < 0.6 C, соответственно, что дает чувствительность 1.8 C/Гц.

После достижения надежной и точной термометрии в реальном времени в рамках этапа разработки, был проведен тестовый локальный мониторинг температуры на живых червях.


Изображение 3

На снимке показаны ND внутри анестезированных червей, помещенных рядом с микроволновыми антеннами. Эти ND хорошо диспергируются в воде за счет поверхностной функционализации полиглицерина (PG от polyglycerol) и вводятся путем микроинъекции в гонады (половые железы подопытного червя).

На графике показан ODMR спектр одиночного ND (отмечен стрелкой на ). демонстрирует временные профили Itot и TNV за период в 1 час при изменении температуры TS.

Сначала проводилось измерение Tobj при 33.2 С, через 6 минут было выполнено уменьшение до 25.3 С. В результате Tobj достиг уровня 28.6 С на 35.2 минуте. TNV показал точное изменение температуры между двумя стационарными состояниями: 33.2 и 28.6 С.

Отображение реальной динамики температуры внутри червей между этими двумя стационарными состояниями отображается за счет того, что TNV всегда отстает от TS и демонстрирует немного заниженный отклик из-за конечной теплоемкости объектива микроскопа и окружающей среды. Itot также показывает постепенные изменения интенсивности флуоресценции, вызванные температурой.

Отслеживание частиц также выполнялось на удовлетворительном уровне (). В течение 0-15 минут в подсчитанных фотонах появляются частые всплески, возникающие из-за позиционных флуктуаций ND приблизительно на 400 нм в течение нескольких секунд.

Результаты теста отчетливо свидетельствуют о высокой точности измерения температуры внутри наноразмерной биологической системы в реальном времени. Далее было решено провести дополнительные тесты, перед которыми подопытные черви прошли фармакологическую обработку с помощью C10H5F3N4O (FCCP от карбонил цианид-4- (трифторметокси) фенилгидразон), вызывающую неподвижный термогенез (грубо говоря, повышение температуры ввиду увеличения метаболизма и без дополнительной мышечной активности).


Изображение 4

На снимке показаны ND у червей, стимулированных FCCP. А на графике показан временной профиль TNV ND, отмеченного стрелкой на снимках.

На седьмой минуте после начала измерения был использован раствор FCCP. На 32-ой минуте TNV начинает постепенно увеличиваться, а на 48-ой наблюдается еще большее дополнительное увеличение, когда уровень изменения температуры повышается от 4 до 7 С. Состояние повышенной температуры длилось около 80 минут.

Во время стимуляции ND медленно перемещаются на несколько микрометров в течение часа, что подтверждает результаты отдельных экспериментов, в которых ND непрерывно наблюдались под микроскопом.

Контрольная группа червей ( и 4D), которым не вводили FCCP, показала равномерный отклик TNV во время всего теста без каких-либо явных изменений температуры.

Для дополнительного подтверждения того, что FCCP реально вызывает повышение температуры тела червей, была проведена количественная оценка червей с помеченными ND как в контрольной, так и в подопытной группе (). График явно говорит о повышении температуры у червей из подопытной группы по сравнению с контрольной.

Другой контрольный эксперимент, в котором буферный раствор не добавлялся, а TNV отслеживался статически, показывает, что добавление допанта вызывает колебания TNV на определенном уровне либо из-за изменения температуры, либо из-за артефактов сдвига ODMR. Однако наблюдение подобного сдвига невозможно при добавлении FCCP, что дополнительно подтверждает повышение температуры за счет FCCP у подопытной группы червей (4F).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном исследовании ученым удалось разработать методику, позволяющую точно измерить температуру внутри наноразмерной биологической системы в реальном времени. Утрировано говоря, им удалось измерить температуру тела червя Caenorhabditis elegans, длина которого составляет примерно 1 мм.

Важно понимать, что измерить что-либо в большом образце гораздо проще, чем в малом. Тем не менее использование наноалмазов, вводимых в тело червей, позволило узнать температуру тела червя в обычных условиях. Эти наноалмазы, попадая внутрь тела, начинают быстро перемещаться. Специально разработанный алгоритм и конфокальный флуоресцентный микроскоп позволили отследить и проанализировать их движение. Полученные данные позволили точно определить температуру тела червя и ее динамику, даже после введения специального вещества, вызвавшего повышение температуры.

Данный труд не только показывает, что квантовые технологии могут и должны применяться в биологии, но и расширяет спектр возможностей в аспекте диагностики различных процессов на макроуровне. Очень часто состояние биологической системы напрямую или косвенно зависит от процессов, протекающих внутри клеток, измерить которые в реальном времени ранее было крайне сложно. Получив больше информации касательно составных элементов системы, можно лучше понять саму систему, что, естественно, позволит эффективнее влиять на ее работу.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Энергия откуда не ждали графен и броуновское движение

07.10.2020 10:05:19 | Автор: admin


Некто когда-то сказал, что прогресс науки это результат бесконечного спора между учеными, которые регулярно пытаются опровергнуть или перепроверить теории друг друга. Безусловно, в этом есть смысл, ибо теория одного человека, какой бы идеальной она ни была на первый взгляд, остается умозаключением лишь одного человека. Следовательно, в споре рождается истина. Сегодня мы рассмотрим исследование, в котором ученые из университета Арканзаса предложили собирать энергию из Броуновского движения атомов графена. Загвоздка в том, что небезызвестный физик Ричард Фейнман уже давно говорил, что подобное невозможно. Как ученым удалось оспорить это высказывание, что для этого потребовалось, и насколько эффективен разработанный графеновый генератор энергии? Ответы на эти вопросы мы узнаем из доклада ученых. Поехали.

Основа исследования


Отдельно стоящие двумерные (2D) кристаллические мембраны демонстрируют уникальное внеплоскостное движение. В расслабленном состоянии листы отдельно стоящего графена имеют волнистую морфологию, в которой соседние области чередуются между вогнутой и выпуклой кривизной. Происхождение этой ряби нанометрового размера остается неизвестным.

Теоретические исследования утверждают, что источником этого является электрон-фононная связь, поскольку она подавляет жесткость длинноволнового изгиба и усиливает внеплоскостные флуктуации. Для состояния теплового равновесия была выведена система уравнений высоты графеновой мембраны, включая вспомогательные поля напряжений и кривизны. В рамках этой пертурбативной формулировки квантовой статистической механики круглые графеновые мембраны спонтанно изгибаются ниже критической температуры и выше критического радиуса. В этом же русле были проведены и численные исследования статической ряби в мембране, связанной с фермионами Дирака*. Они показали наличие фазового перехода от плоской к волнистой морфологии.
Фермион Дирака* фермион (частица с полуцелым спином), который не является античастицей.
Однако, как заявляют ученые, ранее не проводилось никаких исследований динамических флуктуаций с использованием гамильтониана*, включающего электроны Дирака, упругость и электрон-фононное взаимодействие.
Гамильтониан* оператор* полной энергии системы, куда входит и кинетическая, и потенциальная энергии.

Оператор* линейное отображение, действующее на волновую функцию, которая является комплекснозначной функцией, наиболее полно описывающей состояния системы.
Ранние феноменологические исследования моделировали электрон-фононное взаимодействие путем связывания точечных частиц в узлах гексагональной решетки со спинами Изинга*, которые претерпевают глауберовскую динамику*.
Модель Изинга*: каждая из вершин кристаллической решетки обозначается числом (спином), равным либо +1, либо -1. У спина имеется 2N (N число атомов решетки) возможных вариантов расположения, каждому из которых приписывается энергия, получаемая из попарного взаимодействия спинов соседних атомов.
Глауберовская динамика* метод моделирования модели Изинга на компьютере. Является разновидностью алгоритма Монте-Карло с марковскими цепями.
Спины обмениваются энергией с тепловым резервуаром*, их динамика демонстрирует рябь, а их взаимодействие с мембраной приводит всю систему в состояние равновесия.
Тепловой резервуар* термодинамическая система с достаточно большой теплоемкостью, позволяющей сохранять свою температуру на стабильном уровне даже при контакте с другими системами и/или окружающей средой.
Относительно недавнее исследование (Anomalous Dynamical Behavior of Freestanding Graphene Membranes) позволило измерить движение атомов вне плоскости в отдельно стоящем графене с помощью сканирующей туннельной микроскопии (СТМ). Результаты этих измерений показали, что отдельные атомы в мембране испытывают броуновское движение* со спорадическими (редкими / одиночными) большими скачками.
Броуновское движение* беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа.
Редкие скачки высоты атомов графена соответствуют когерентным инверсиям кривизны ряби, на которой сидят атомы. Это согласуется как с молекулярной динамикой, так и с глауберовской динамикой спиновых мембран.

Для рассматриваемого нами сегодня исследования графен был выращен на Ni и перенесен на сверхтонкую медную сетку с решеткой из квадратных отверстий (ширина 7.5 мкм) и стержневых опор (ширина 5 мкм). РЭМ (растровая электронная микроскопия) исследование подтвердило, что 90% сетки было успешно покрыто графеном.

В работе использовался сканирующий туннельный микроскоп в условиях сверхвысокого вакуума (базовое давление 10-10 мбар) при комнатной температуре. Графеновая пленка была прикреплена к пластине для образцов на специальных стойках, позволяя наконечнику СТМ проходить через отверстия сетки. Также использовалась система шумоподавления и виброизоляции. Питание системы осуществлялось посредством аккумуляторной батареи с изолированным заземлением для достижения исключительно низкого механического и электрического шума.


Изображение 1

Точка контакта СТМ-иглы (зонда) и образца была включена в электрическую цепь (). Образец был изолирован от земли и подключен к двум диодам. Точка контакта в цепи выполняет роль переменного конденсатора. Туннельный ток, ток диода 1 (D1C) и ток диода 2 (D2C) контролировались одновременно. Такая диодная схема используется для сбора энергии, но в данном случае она использовалась, чтобы изолировать индуцированный графеном ток от тока батареи. При расстоянии между зондом и образцом менее 2 нм туннельные электроны преобладают в токе, а в случае больших расстояний преобладает ток смещения.

На 1b показан волнистый графен и изменения формы, вызванные напряжением. Когда напряжение смещения увеличивается, графен растягивается, и СТМ-игла перемещается вместе с графеном. На показано типичное измерение высоты мембраны во времени в точечном режиме с постоянным током. Важно отметить, что в ходе данного эксперимента игла микроскопа передвигалась исключительно вертикально.

График 1d показывает туннельный ток в зависимости от времени как для неподвижного графена (т.е. графена на меди), так и для отдельно стоящего графена. Для отдельно стоящего образца средний ток такой же, как у неподвижного образца, но колебания в 100 раз больше (10 пА против 0.1 пА). Важно и то, что результаты, показанные на 1d, не зависит от приложенного напряжения смещения (до 3 В) и настройки усиления обратной связи.

По мере увеличения уставки* тока (SPC от setpoint current) стандартное отклонение также увеличивается (1e), что может быть связано с нагревом образца.
Уставка* желаемое или целевое значение важной переменной или процесса в системе.
При экстраполяции к нулевому туннельному току флуктуации по-прежнему вносят вклад в ток смещения в размере 20 пА.

Чтобы измерить ток смещения при нулевом туннельном токе, иглу СТМ постепенно отклоняли от образца, пока расстояние не стало слишком большим для туннелирования электронов через вакуумный барьер. В этом положении SPC находится на уровне 50 нА, тем самым используя цепь обратной связи, чтобы игла СТМ оставалась неподвижной.

После этого было приложено напряжение смещения постоянного тока и отслеживание D2C во времени ().


Изображение 2

При одном вольте ток не индуцируется, но при 15 В и 45 В систематически наблюдались резкие и зависящие от времени пики D2C.

На 2b показаны вольт-амперные характеристики (ВАХ) диода при низком значении тока. Далее были проведены расчеты мощности, рассеиваемой в диоде 2 (2c), которая достигает 40 пВт.

На 2d собраны данные по средней мощности для большого количества отдельно стоящих и неподвижных образцов. Отсутствие тока для неподвижного образца подтверждает, что загрязнение и эмиссия электронного поля не являются источниками D2C.

Эти данные предполагают, что электрическая работа* совершается на D2 движением графена, даже если он поддерживается при одной температуре (т.е. при комнатной температуре).
Электрическая работа* работа, совершаемая над заряженной частицей электрическим полем.
Ученые уверены, что работа может выполняться, находясь в термодинамическом равновесии, и более глубокое понимание этого прольет свет на потенциальные методы получения неравновесной энергии. Для этого была создана модель ().


Изображение 3

Атом углерода, ближайший к игле СТМ, находится над волнистостью, которая колеблется между выпуклой и вогнутой кривизной. Данная ситуация моделируется как броуновская частица в двухъямном потенциале, контактирующая с тепловым резервуаром при температуре T.

Игла СТМ и образец действуют как конденсатор переменной емкости C(x) = C0 / (1 + x/d), где d + x(t) мгновенное расстояние между иглой СТМ и образцом, x(t) (x d) вертикальное положение атома углерода, измеренное по отношению к плоской конфигурации графеновой мембраны.

Если мгновенный заряд и падение напряжения конденсатора игла-образец равны q(t) и u(t), то электростатическая сила, действующая на частицу будет равна qu / [2(d + x)] = q2 / (2C0d).

Формула заряда q(t) следует из правил Кирхгофа (соотношение между токами и напряжениями на участках электрической цепи). Следовательно, связанные системы частиц и цепи удовлетворяют уравнениям Ланжевена-Ито (описывает броуновское движение):



где U(x) = x4 2x2 это двухъямный потенциал;
C0V2/2d это постоянное напряжение из-за растяжения графена;
R = R + RE это полное сопротивление;
1/RE = 2I0/uD sinh uD/Te это эквивалентное сопротивление диодов;
uD падение напряжения на диодах, Te = T/e;
/q(T/R) это коррекция дрейфа, вызванного шумом;
v и q это независимый и одинаково распределенный белый шум с дельта-корреляциями i(t)j(t) = ij(t t) i,j = v, p.

Уравнение цепи имеет шум Найквиста (тепловой шум*) при температуре T, которая установлена на том же уровне, что и пульсация графена.
Тепловой шум* равновесный шум, вызванный тепловым движением носителей заряда в проводнике, в результате чего на концах проводника возникает флуктуирующая разность потенциалов.
Член /q(T/R) гарантирует детальное равновесие* и факт того, что вся система достигает теплового равновесия при температуре T.
Принцип детального равновесия* заключается в равенстве вероятностей прямого (n m) и обратного (m n) переходов между дискретными состояниями системы m и n.
Чтобы убедиться в правдивости данного утверждения, необходимо было сформулировать уравнение для плотности вероятности электронов со скоростями переходов, подчиняющимися детальному равновесию. Вероятность перехода была представлена как T(iD1 + iD2)/(e2uD) = T/(e2R), что согласуется с правилом Кирхгофа для токов.

Гамильтониан системы () был равен:



А равновесная плотность вероятности равна e-H/T/Z, где Z константа нормализации.

С точки зрения графеновой ряби, представленной частицей в формуле 1 цепь представляет собой внешнюю систему, которая воздействует на рябь. В таком случае тепло, создаваемое силами трения и шума, будет равно:


где q = q(t) внешний параметр, а dQ > 0, если частица поглощает тепло.

Используя равновесную плотность вероятности для вычисления среднего и интегрирования по частям, средняя мощность, поглощаемая частицей, оказывается равной нулю. Падение напряжения такое же, как падение на эквивалентном резисторе R. Усредненная по времени мощность, рассеиваемая на резисторе, равна усредненной по времени мощности, поставляемой тепловым резервуаром.

Таким образом, с точки зрения резистора, движение графеновой ряби создает постоянный источник средней тепловой мощности (3b).

Данные выводы были подтверждены посредством численного моделирования уравнения 1, в котором использовались T = 0.5; = 1; d = 10; I0 = 0.0002 и Te = 0.1. Чтобы учесть изменение формы графена, было включено падение C0 с 5 до 1 при увеличении V от 1 до 10. Положение частицы x и заряд на конденсаторе q колеблются со временем ( и 3d).

Отдельно были определены два члена средней мощности для полупериода q > 0, в котором ток через диод 2 проходит против часовой стрелки. Даже в полупериоде два члена равны. На показана средняя мощность (генерируемая и рассеиваемая) и прогноз Найквиста.


Демонстрация принципа работы разработанной цепи.

Было обнаружено, что мощность увеличивается с увеличением напряжения смещения, что наблюдалось и в ходе экспериментов. Данные по сопротивлению и мощности из экспериментов (изображение 2) позволили оценить электрическую емкость точки контакта иглы микроскопа и графена, которая равна 1 фФ (фемтофарад).

Ученые отмечают, что точная формула тепловой мощности отличается от варианта Найквиста: мощность включает в себя вклады от броуновского движения ряби графена, а не только от электронов. В результате двухъямный потенциал вводит новую шкалу времени скорость пересечения барьера. Это приводит к возникновению колебаний очень низкой частоты. Для иллюстрации этого на 3f показана средняя спектральная плотность мощности, рассеиваемая в резисторе, построенная с использованием двух разных времен релаксации скорости 1 и 10. Общая рассеиваемая мощность такая же, а уменьшение скорости пересечения барьера перераспределяет мощность на более низкие частоты.

Для более детального рассмотрения результатов исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые провели исследование термического воздействия в отдельно стоящих графеновых мембранах с помощью точечной сканирующей туннельной микроскопии. Пульсация графена, наблюдаемая рядом с иглой микроскопа, была смоделирована как броуновская частица в двухъямном потенциале. Когда графен движется, заряд должен проходить по цепи и выполнять электрические работы.

Данная модель показывает, что непрерывная тепловая энергия может генерироваться броуновской частицей при одной температуре, находясь в термодинамическом равновесии, при условии, что такое же количество энергии постоянно рассеивается в резисторе. В таком случае подключение к цепи позволяет выполнять электрические работы на нагрузочном резисторе без нарушения второго закона термодинамики.

В условиях созданной системы графен и электрическая цепь поддерживают работу друг друга. Несмотря на то, что тепловая среда выполняет работу с нагрузочным резистором, температура графена и цепи остается одинаковой, а тепло между ними не протекает. Таким образом нет противоречий по отношению к второму закону термодинамики.

Важно и то, что относительно медленное движение графена индуцирует ток в цепи на низких частотах. Эта находка может стать очень полезной в будущем, поскольку электроника работает более эффективно именно на низких частотах.

В будущем ученые намерены продолжить свое исследование. Они хотят выяснить, можно ли хранить постоянный ток в конденсаторе для последующего использования. Для реализации этой задумки необходимо провести миниатюризацию схемы и нанесение ее на кремниевую пластину или микросхему. По словам ученых, если успешно построить кластер из миллиона таких схем размером 1х1 мм, то он смог бы заменить маломощные батарейки.

Возможно, подобные планы звучат не особо грандиозно, но любые исследования, любые свершения, изменившие мир, начинались с малого. Для достижения конечного результата нужно лишь упорство, время и терпение.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru