Русский
Русский
English
Статистика
Реклама

Нанотехнологии

Перевод Суперкомпьютеры и клеточные мембраны (заключительная часть)

07.05.2021 10:12:10 | Автор: admin

В молодости Клаус Шультен воображал, что станет танцором, и будет жить не полагаясь ни на что, кроме собственного разума и тела. "Но танцор из меня вышел никудышный, вспоминает он. Итак, следующим вариантом жизненного пути для меня была теоретическая физика. Только я, карандаш, бумага, ну и ластик, разумеется."

Строго говоря, эта мечта тоже сорвалась. Но сегодня Шультен полагается на самое мощное и дорогое вычислительное оборудование в мире для применения вычислительной физики к моделированию биологических систем. Его последняя работа включала молекулярное моделирование целой органеллы, которая преобразует энергию света в химическую энергию внутри фотосинтезирующей бактерии.


Предыдущие части: первая, вторая, третья.

Оглавление

  1. Транслоконы: дамбы Теночтитлана

  2. YidC: продолжение для белково-проводящего канала

  3. BAR-домены и мембранная скульптура

  4. Понимание нервной системы

  5. Грандиозный финал: серия взаимосвязанных процессов

Транслоконы: дамбы Теночтитлана

Прекрасный древний ацтекский город Теночтитлан был построен посреди озера и процветал в XV веке. При изучении археологических свидетельств, которые собрали воедино то, как он выглядел и функционировал, можно заметить поразительное сходство с живой клеткой. Внутри Теночтитлана было священное пространство, изобилующее храмами и пирамидами, окруженное стеной, подобно тому, как эукариотическая клетка имеет разделенные секции, отделенные мембранами. Внутри островного города-государства существовали всевозможные специализированные кварталы, похожие на органоиды.

Теночтитлан, с фрески Диего Риверы в Национальном Дворце Мексики. В середине изображения находится дамба, ведущая из города-государстваТеночтитлан, с фрески Диего Риверы в Национальном Дворце Мексики. В середине изображения находится дамба, ведущая из города-государства

У жителей также были формы валюты (например, какао-бобы), которые гомологичны АТФ. Подобно тому, как аквапорины контролируют поток воды в клетке, ацтекский город имел каменный акведук для питьевой воды. Но как основные блага попадают в клетку и выходят из нее? В Теночтитлане было три дамбы. В клетке самым фундаментальным благом, вероятно, являются ее белки. А проходы в клетке, которые позволяют проходить этим критическим молекулам, белкам, называются транслоконами. Транслокон сам по себе является белком, который живет в мембране, и выполняет функцию проводящего канала. Когда Клаус Шультен начал изучать транслоконы в 2005 году, он не мог представить, что его ждет. Это как не знать о всех сокровищах затерянного города, пока они не откопаны, и Шультену придется раскопать некоторые древние исследования, чтобы изучить новую систему, которую он вскоре стал считать сокровищем.

Когда Джеймс Джей Си Гумбарт в 2003 году поступил в аспирантуру в Урбана-Шампейн, он ничего не знал о биофизике и предполагал, что в конечном итоге изучит физику конденсированных сред, что было сильной стороной университета. "Но потом, на первом семестре, я пошел на биофизику и был очень заинтригован ею", вспоминает Гумбарт. Это было лишь вопросом времени, когда студент начнет работать с Шультеном, поскольку вычислительная направленность также импонировала ему.

Летом 2004 года, когда Гумбарт присоединился к группе, Шультен показал ему статью о канале белковой проводимости, которая, по мнению Шультена, была интересной и, возможно, могла бы стать плодотворным проектом. Вероятно, к восторгу Шультена, Гумбарт действительно обратил на это внимание, проявил большую инициативу и продолжал производить впечатляющий объем работы.

Джей Си Гумбарт, Клаус Шультен и рибосома, прикрепленная к проводящему белок каналу.Джей Си Гумбарт, Клаус Шультен и рибосома, прикрепленная к проводящему белок каналу.

Всего за три года Гумбарт и Шультен подготовили три статьи о различных аспектах транслоконов, которые они раскрыли с помощью моделирования. Например, в первой работе Гумбарта они изучали проводящий белок канал, кристаллическая структура которого была получена совсем недавно и о котором мало что было известно. Было ясно, что этот канал выполняет двойную функцию: он либо полностью пропускает белок на другую сторону мембраны, либо помещает его в последнее пристанище внутри мембраны. Пара ученых из Иллинойса решила сосредоточиться на первой функции транслокона. И они действительно раскрыли динамическую картину происходящего. Гумбарт вытащил короткий сегмент аминокислот и увидел, как пробка в канале сдвинулась, чтобы пропустить этот сегмент. Хотя Гумбарт признает, что это был довольно упрощенный подход, он подчеркивает роль компьютера для наблюдения динамических процессов мембранных белков и их функции. Он также подчеркивает, что многому научился (с точки зрения вычислений и науки) в своих ранних исследованиях проводящих белок каналов, и получил знания, которые хорошо послужат ему для следующей одиссеи, которая вот-вот начнется.

Примерно в то время, когда Шультен изучал транслоконы, его научные интересы внезапно расширились и включили в себя увлекательную и массивную молекулярную машину рибосому, биологическую фабрику, которая собирает белки клетки. В 2004 году один экспериментатор обратился к Шультену на конференции и попросил его помочь решить дилемму, связанную со структурами рибосом, полученными двумя различными типами микроскопов. Один тип микроскопа включает в себя рентгеновскую кристаллографию, которая выдает структуру высокого разрешения; другой тип электронная микроскопия, которая генерирует структуры низкого разрешения. Этот экспериментатор (Иоахим Франк) получал структуры рибосом с помощью криоэлектронной микроскопии и нуждался в помощи, включающей данные высокого разрешения (от рентгеновской кристаллографии, сгенерированной другими) в его карты. По аналогии рассмотрим две фотографии: на одной птица сидит на проводе, а на другой птица в полете. Изображение птицы в полете захватывает птицу в процессе полета (ее функция), но имеет низкое разрешение. Однако представьте себе, что первый снимок может запечатлеть мельчайшие детали, вплоть до каждого пера. Если бы каким-то образом можно было использовать все мелкие детали неподвижной птицы и применить их к птице в полете, можно было бы объяснить функцию птицы полет. Поэтому задача Шультена состояла в том, чтобы взять данные рентгеновской кристаллографии и поместить их в карты криоэлектронной микроскопии; эти карты электронной микроскопии были действительно способны захватить рибосому в процессе выполнения ее функции, в отличие от рентгеновской микроскопии.

Шультен оценил свои силы и согласился на проект. Его группа работала над большими системами в течение десятилетий, у него были собственные программные продукты в качестве инструментов, и у него была группа студентов, одаренных в вычислительном искусстве. Результатом стал метод, названный MDFF или молекулярная динамика с адаптивной подгонкой, и он дебютировал в 2008 году. Более подробную информацию о генезисе MDFF можно найти в этой истории. Достаточно сказать, что она открыла Шультену захватывающий мир рибосомы.

Но как рибосома связана с проводящим белок каналом? Как уже отмечалось, рибосомы производят белки, которые в процессе построения выходят из своего туннеля, а затем должны свернуться и отправиться в свой дрейфующий путь. Один из вариантов заключается в том, что зарождающийся белок может жить в цитозоле клетки. Или его судьбой может быть путешествие через мембрану наружу. Третий вариант зарождающийся белок может быть предназначен для жизни внутри мембраны. Для этих двух последних вариантов белок-проводящий канал направляет зарождающийся белок к цели. В 2007 году Шультену и Гумбарту стало известно о группе, которая опубликовала карту рибосомы в комплексе с ее белково-проводящим каналом полученную с помощью криоэлектронной микроскопии. (Этот канал известен как SecY). Это интригующая система сразу две макромолекулы, каждая из которых влияла на другую. Более подробно о функции рибосомы можно было бы узнать, если бы ее изучали в тандеме с проводящим белок каналом, который на нее влиял. И Шультен и Гумбарт поняли, что они могут генерировать структуры высокого разрешения каждой части дуэта, чтобы в конечном итоге скорректировать карту электронной микроскопии. Это казалось идеальной работой для MDFF. Гумбарт даже отправился в Бостон, чтобы получить карту электронной микроскопии от экспериментаторов, создавших комплекс.

Это было одно из первых применений нового метода MDFF для группы Шультена. Гумбарт рассказывает, что группа все еще отлаживала метод, когда он работал над этим комплексом рибосомы плюс канал в январе 2008 года, но это было очень захватывающее время, особенно приятно было видеть, как структуры почти волшебным образом вписываются в электронную плотность. MDFF скомпоновал комплекс из 2,7 миллиона атомов, который включал рибосому, белок-проводящий канал, мембрану и воду самый большой на тот момент в группе Шультена. Исследователи действительно могли видеть, как рибосома вызывала небольшую дестабилизацию в пробке канала. Это был очень успешный проект, и он был лишь прелюдией к тому, что должно было произойти.

В процессе работы над MDFF Шультен скооперировался с экспериментатором в Мюнхене, биохимиком по имени Роланд Бекман, который сумел выловить активирующие системы с помощью своего электронного микроскопа. Бекман уже работал над электронной микроскопией рибосомы, соединенной с проводящим белок каналом, когда он и Шультен объединили усилия. На самом деле, проект Шультена и Бекмана принес обеим командам научную публикацию, в которой MDFF был использован Гумбартом для карты канала связанного с рибосомой.

Клаус Шультен навсегда запомнит свой первый визит к Бекману в Мюнхене. Это было в июле 2008 года, и во время встречи Бекман вывел Шультена на улицу, чтобы показать ему плакат на стене с изображением электронной микроскопии. И Шультен чуть не упал в обморок от восторга, увидев кое-что знакомое. Он сразу же узнал на карте нанодиск, объект, смоделированный в университете Иллинойса. Шультен помогал открывателю нанодиска визуализировать его, так что это было то, над чем Шультен работал в начале своей карьеры. В принципе, открыватель нанодиска, Стив Слигар, хотел изготовить наноразмерный кусок мембраны, чтобы удерживать мембранные белки, поскольку, как уже отмечалось, работа с мембранными белками вне мембраны представляла экспериментаторам много проблем. Итак, Слигар дал миру рецепт создания пучка липидов, удерживаемых вместе двумя белками-каркасами маленький кусочек мембраны, на который можно посадить белок!

Рибосома и нанодиск - сложная, но увлекательная системаРибосома и нанодиск - сложная, но увлекательная система

Новшество Роланда Бекмана состояло в том, что он взял рибосому, в которой зарождающийся белок еще не полностью вышел из туннеля рибосомы, и ввел в систему нанодиск затем зарождающийся белок змеился в канале в нанодиске. В сущности, Бекман поймал моментальный снимок рибосомы с зарождающимся белком, входящим в канал в окружении мембраны. И Клаус Шультен сразу узнал нанодиск. Это о чем-то говорит, потому что, когда Шультен помогал Слигару визуализировать нанодиск еще в 2005 году, он получил лишь косвенную информацию о его форме. В сознании Шультена нанодиск выглядел очень похожим на то, что он видел на стене у Бекмана в тот летний день 2008 года, так что это было подтверждением того образа, который Шультен представил научному сообществу.

Бекман хотел, чтобы опыт Шультена в MDFF позволил создать структуру системы рибосома-нанодиск с высоким разрешением. Гумбарту казалось естественным работать над этим проектом, поскольку он включал в себя проводящий белок канал. Однако, по мнению Шультена, это был сложный проект. А ведь аспирант только начал учиться разбираться в картах электронной микроскопии. "Мне пришлось смотреть на этот канал часами, прежде чем я смог действительно начать мысленно видеть белок, выходящий из него", рассказывает Гумбарт. Но, к счастью, с ним работали еще два студента-пионера MDFF, чтобы помочь ему разобраться в картах.

Гумбарт и Шультен в конце концов смогли разобраться в сверхсложной, но новаторской системе, которую Роланд Бекман запечатлел с помощью электронного микроскопа. Для Гумбарта это было кульминацией всей его диссертационной работы. Одна из целей, которую они с Шультеном поставили перед собой, состояла в том, чтобы увидеть, как образуются мембранные белки. Для Шультена этот проект с рибосомой и нанодиском был вершиной его карьеры. Он считает, что этот проект подчеркивает, как вычислительная техника (через MDFF) может стать ключевым партнером для экспериментов. Но самое главное, он никогда не ожидал, что снова вернется к нанодиску, и он никогда не думал, что это будет что-то настолько инновационное.

YidC: продолжение для белково-проводящего канала

Скорее всего, проект провалится. Несмотря на это предупреждение Клауса Шультена, постдок Абхишек Сингхарой решил уделить ему все свое внимание. Летом 2013 года Шультен посетил Мюнхен и вернулся с несколькими новыми проектами, один из которых был совместным с группой Роланда Бекмана. Несмотря на мрачное напутствие, Шультен, вероятно, заинтересовался этой темой, потому что она была продолжением его многолетней работы над белковыми проводящими каналами. Для полного удовлетворения рибосомы, зарождающегося белка и транслокона было недостаточно, поскольку было известно, что дополнительный мембранный белок, называемый YidC, иногда помогает каноническому белковому проводящему каналу. Это было мучительно для Шультена, который всегда думал о системах с несколькими белками. Но он полностью отдавал себе отчет в шансах на успех, когда ставил перед Сингхарой задачу: экспериментаторам нужна помощь вычислителей, завершающих работу над структурой YidC.

Видите ли, для YidC не существовало никакой кристаллической структуры. И не было похоже, что она появится в ближайшие годы или десятилетия. Но Роланд Бекман считал, что структура может быть построена даже без дифракции рентгеновских лучей. Экспериментаторы в лаборатории Бекмана, после того как не смогли получить исходную структуру для YidC, обратились к вычислительной группе в своем родном университете (Мюнхенский университет Людвига Максимилиана), известной своими программными инструментами, предназначенными для предсказания структуры белка по последовательности. И на Сингхароя легла следующая задача работать рука об руку с группой Бекмана над усовершенствованием структуры. Сингхарой использовал бы все инструменты из арсенала группы Клауса Шультена, а экспериментаторы Бекмана, и в первую очередь аспирант Стефан Уиклз, сосредоточились бы на электронной микроскопии и биохимии. Это был прекрасный пример работы компьютера в тандеме с экспериментом. И это было путешествие, полное драм.

Вычислительная группа в Мюнхене (возглавляемая Йоханнесом Седингом) вывела исходную структуру на основе своих программных средств, использующих биоинформатику. Они не только смогли предсказать листы и спирали YidC, но также использовали эволюционный ковариационный анализ, чтобы предсказать, насколько близко одна спираль может быть к другой.

YidC, которая облегчает введение белка в мембрану.YidC, которая облегчает введение белка в мембрану.

Имея под рукой "входную" структуру, Сингхарой поместил белок YidC в мембрану и начал проводить моделирование молекулярной динамики. "Но это не было обычным моделированием молекулярной динамики", рассказывает Сингхарой. "Это была динамика ограниченная полученными ранее ковариационными измерениями". После того, как структура была запущена с ограничениями, затем без них, чтобы уравновесить и отобразить расслабленную структуру, пришло время отправить результаты сотруднику-экспериментатору, который проверяет, какие взаимодействия делают эту расслабленную структуру стабильной. Чтобы провести всю эту биохимию, Уиклз менял компоненты и тем самым устранял взаимодействия, которые предполагались как стабилизирующие. И потом весь процесс сызнова молекулярная динамика с ограничениями и без них, затем биохимические эксперименты. Сингхарой рассказывает, что таким образом они прошли через множество итераций. Все с целью найти наиболее устойчивую структуру.

После этих утомительных повторений Уиклз нашел способ удостовериться, что очередная структура Сингхароя была истинным энергетическим минимумом, а не каким-то локальным, в котором задержался YidC, потому что время моделирования было недостаточно длительным. Уиклз провел химический эксперимент по сшиванию. В принципе, если два остатка (парочка определенных аминокислот) расположены близко, то после добавления к ним группы серы, они могут образовывать дисульфидную связь, и это может быть сравнительно просто обнаружено, таким образом доказывая, что два рассматриваемых остатка находятся рядом. Чтобы проверить структуру Сингхароя, Уиклз ввел в YidC зарождающийся белок и перекрестно связал некоторые их остатки. И о чудо, они были связаны! Это был самый сильный тест, который показал, что многие итерации окупились, и структура была значимой.

И в разгар этой тяжелой работы, Уиклз узнал немыслимое: их нагоняла другая группа! Вот-вот должна была быть опубликована кристаллическая структура бактериального YidC. Уиклз был на научной конференции, где у него был плакат о его работе над YidC, когда он увидел кристаллическую структуру на другом плакате. Если и было что-то хорошее, так это то, что Уиклз заметил, что его смоделированная структура очень похожа на кристаллическую структуру, которую он видел на конференции.

Это вызвало волну лихорадочных приготовлений к подготовке публикации. Три команды, в принципе, уже были готовы представить доклад, когда Уиклз увидел кристаллическую структуру на конференции. Наконец, после долгих испытаний и невзгод, статья была принята в июле 2014 года и вышла только через три месяца после того, как кристаллическая структура была опубликована командой из Японии. Структура, основанная на модели, которую опубликовала триада команд, была не единственным значительным результатом работы. Благодаря обширной молекулярной динамике, которой руководил Сингхарой, он начал раскрывать некоторые детали того, как на самом деле работает YidC, поскольку он мог видеть его динамически в своих симуляциях. Во-первых, моделирование показало, что дно YidC образует уплотнение. Это имеет смысл, поскольку известно, что YidC является инсертазой, то есть она берет зарождающуюся цепь из рибосомы и направляет эту цепь в сторону ее последнего пристанища в мембране. В процессе, ни один канал не открывается внизу. Вместо этого новообразованный белок проходит через ворота в боку YidC. Моделирование показало, что одна из спиралей, образующих ворота, действует очень похоже на затворку или гибкий закрылок, позволяющий зарождающемуся белку змеиться в мембрану.

В общем, этот проект с самого начала выглядел очень рискованным, но упорство исследователей возобладало. Они даже пережили оказию состоявшую в том, что другая группа тоже получила структуру, и сумели опубликовать свою статью, несмотря на тяжелую ситуацию. Сингхарой указывает, что в будущем предстоит некоторое дальнейшее уточнение моделируемой структуры на основе кристаллической структуры, хотя эти две структуры принадлежат разным бактериям. И, наконец, команды хотят объединить YidC с рибосомой, что, несомненно, принесет больше волнения и интересных исследований и, вероятно, обеспечит более тесное сотрудничество между учеными-вычислителями и учеными-экспериментаторами.

BAR-домены и мембранная скульптура

Новая аспирантка Ин Инь хорошо помнит тот день в 2006 году, когда Клаус Шультен позвал ее в свой кабинет и достал из кармана смятый клочок бумаги. Он протянул ей листок и сказал: "Мы должны поработать над этим", на бумаге она увидела только три буквы: B...А...R. Не так уж много, для уверенного старта. Но в течение следующих нескольких лет эти три литеры приведут к проекту, в котором будут задействованы все инструменты из арсенала Schulten group. И созвездие факторов сошлось вместе, чтобы произвести прекрасное применение молекулярной динамики. Этот проект, на самом деле, является непревзойденным примером того, как вычислительная биология может дать представление о динамических процессах, связанных с мембранными белками. Ниже мы увидим, как такая клеточная активность как ваяние мембран, была полностью раскрыта от начала до конца.

Что же такое мембранная скульптура? Эукариотическая клетка это сложное строение с множеством отсеков, отгороженных мембранами. Эти мембраны бывают самых разных форм плоские, изогнутые, волнистые или правильной формы. Есть также везикулы в клетке, например, в аппарате Гольджи (amazon.com клеточного мира) белки упаковываются внутри мембран (один тип везикул) и отправляются в свой конечный дом, либо в цитоплазму, либо, возможно, высвобождаются наружу клетки. Дело в том, что внутри клетки существует множество мембранных систем, и каждая из них имеет уникальную форму. Но что именно отвечает за появление столь многих различных форм? Часто для "лепки" мембраны в ее окончательный вид используются белки.

Когда Клаус Шультен дал Ин Инь этот листок бумаги с тремя магическими буквами, он на самом деле подразумевал семейство белков, называемых BAR-доменами. Известно, что эти белки изгибают мембраны (во время эндоцитоза и экзоцитоза). На самом деле существует три члена семейства (N-BAR, F-BAR, I-BAR), и в центре внимания Инь вскоре оказались белки N-BAR, для которых уже была известна структура. По мере того как она начинала исследовать белок, она становилась все более и более заинтересованной и все более и более убежденной, что это тема, достойная изучения. И Инь начала обсуждать N-BAR-домены со своим женихом Антоном Архиповым, тоже аспирантом в группе Шультена. Супруги поняли, что могут сотрудничать и тем самым промоделировать то, что раньше казалось невозможным. Даже Шультен не ожидал, что такое моделирование осуществимо. О чем эта парочка догадалась?

Инь и Архипов познакомились в первые же дни учебы в аспирантуре Иллинойского университета в августе 2004 года. Они пересеклись на квалификационном экзамене и поняли, что оба новички на физическом факультете, Инь из Китая и Архипов из России. Архипов, увлеченный нейробиологией, присоединился к группе, поскольку он узнал о прошлых работах Шультена в области нейробиологии, а затем увлекся идеей вычислительной биофизики, над которой Шультен в настоящее время работал. Инь начала работать в лаборатории физики высоких энергий, но поняла, что хочет заниматься чем-то связанным с жизнью, и Архипов предложил ей присоединиться к группе Шультена.

Сравнение полноатомного представления по сравнению с крупнозернистым на одном белке BAR-доменаСравнение полноатомного представления по сравнению с крупнозернистым на одном белке BAR-домена

У Архипова было много разнообразных проектов в группе Шультена, и над одним из них он работал вместе с аспирантом Питером Фреддолино, а именно над реализацией крупнозернистой молекулярной динамики в NAMD. В этом методе группы атомов объединялись в эдакие "бусинки". Например, одна бусина может представлять 10 атомов. Хотя это может означать некоторую потерю мельчайших атомных деталей, это, по существу, равносильно возможности управлять молекулярной динамикой в чрезвычайно больших системах и в течение чрезвычайно длительного времени. Архипов занимался двумя видами крупнозернистой молекулярной динамики, одна из которых была основана на остатках, а другая на форме. Первый имеет разрешение одного остатка (около 10 атомов на шарик), а второй использует группу шариков для представления целого белка (около 150 атомов на шарик).

Архипов фактически использовал крупнозернистую молекулярную динамику на вирусных капсидах в качестве приложения метода. Также в это время аспирантка Эми Ши использовала крупнозернистую молекулярную динамику для упомянутой выше системы нанодисков. "Поскольку Инь работала над BAR-доменами, я, конечно, обсуждал это с ней просто из любопытства", рассказывает Архипов. "И мы вместе решили, что это может быть хорошим применением крупнозернистой динамики." Супруги рассказывают, что Шультен очень поддержал их предложение о сотрудничестве. К слову, Шультен сотрудничает со своей женой, химиком, уже около сорока лет и понимает как выгоды, так и потенциальные профессиональные опасности сотрудничества мужа и жены в науке. Инь и Архипов поженились в 2008 году.

Кривизна мембраны создается несколькими BAR-доменамиКривизна мембраны создается несколькими BAR-доменами

В первой работе Инь и Архипов поместили один доменный белок, который имеет форму более или менее похожую на банан, на участок мембраны и наблюдали, как молекулярная динамика показала, что мембрана рядом с белком изгибается, чтобы соответствовать кривой серповидного белка. На следующем шаге, они поместили шесть BAR-белков в линию на участке мембраны. Единственная причина, по которой они могли просто попытаться совершить такой подвиг, была новая крупнозернистая функция NAMD. Без упрощенного представления этот финт потребовал бы обсчитать несколько миллионов атомов, что не позволило бы моделировать достаточно долго, чтобы увидеть, согнули ли шесть белков мембрану. Когда шесть стержневых белков образовали волнистую форму, они попытались сложить шесть белков в виде решетки. Вуаля! Они наткнулись на конфигурацию, которая произвела красивую кривизну. Это была решетка из BAR-белков.

Шультен рассказывает, что, когда они попытались опубликовать свои результаты с решеткой BAR-доменов, у них возникли проблемы. Эксперты отмечали, что для клеток не характерны высокие концентрации BAR-белков, поэтому моделирование казалось нереалистичным. "Но потом кому-то удалось сделать электронные микрофотографии мембран вместе с BAR-доменами", отмечает Шультен. "А потом они увидели, что те образуют именно ту решетку, о которой мы говорили!" Так что теперь казалось вероятным, что многие BAR-домены работали вместе, чтобы лепить мембраны. Вскоре после этого работа была принята.

В качестве грандиозного финала Шультен, Инь и Архипов решили действительно проверить новый метод крупнозернистую молекулярную динамику, и посмотреть, смогут ли они сформировать трубку из плоского участка мембраны. "Психологически, и просто как демонстрация силы метода, ничто не может быть лучше, чем фактически показать формирование трубки целиком", отмечает Архипов. Поэтому Инь поместила сеть из N-BAR-белков на кусок мембраны в 200 нанометров в квадрате, передала свою работу суперкомпьютеру и стала ждать. И ждала она почти 200 дней. Однако Инь рассказывает, что она проверяла прогресс несколько раз в день и часто видела одно и то же изо дня в день трубка не закручивалась. Шультен велел ей набраться терпения. И вот однажды образовалась идеально закрытая трубка! Все трое ученых были в восторге. Крупнозернистая молекулярная динамика могла дать масштабный обзор процесса лепки мембраны. Как подытоживает Архипов: "Я был очень рад видеть это, потому что изобрести метод легко, но сделать его полезным сложнее."

Шультен продолжает свою работу с BAR-доменами и по сей день. В настоящее время его аспирант Ханг Юй работает над F-BAR. Вдохновленные полученным в 2008 году криоэлектронным микроскопическим изображением решетки F-BAR-доменов на трубке, Юй и Шультен приступили к ответу на ряд вопросов, к примеру: как работает F-BAR-домен в клетке, лепит ли он мембрану подобно N-BAR-белкам? Почему клетка использует такую специфическую концентрацию F-BAR-доменов?

Юй решил посмотреть, как F-BAR-домен изгибает кусок мембраны. Когда он запустил свою симуляцию, ничего не произошло, мембрана просто осталась плоской. Он провел несколько симуляций и так ничего и не увидел. Но он использовал те же времена, что и его предшественники, Инь и Архипов. Юй, наконец, решил позволить моделированию работать очень долго, и, о чудо, он наконец увидел, как F-BAR-домен изгибает мембрану. Юй обнаружил, что F-BAR-домены менее жестки, чем N-BAR-домены, но в то же время производят меньшую кривизну.

Затем Юй попытался найти, какая оптимальная плотность белков F-BAR-домена дает наибольшую кривизну. На кусочек мембраны размером 1000 квадратных нанометров он положил 5, 8, 10, либо 16 димеров. Он увидел, что расположение 10 димеров создает наилучшую кривизну на плоской мембране. Теперь Юй был вооружен особой решеткой, которая производит наибольшую кривизну. Он был готов посмотреть, будут ли F-BAR-домены производить трубочку из плоского куска мембраны. Юй сообщает, что он и Шультен были в восторге, когда увидели, что трубка полностью сформирована.

Решетка из BAR-доменов сминает мембрану в трубкуРешетка из BAR-доменов сминает мембрану в трубку

Во всех работах по BAR-доменам Шультен утверждает, что то, что на самом деле создает кривизну мембраны, называется механизмом строительных лесов. В этом механизме есть положительно заряженные остатки на нижней стороне банановидного BAR-домена, которые притягивают отрицательные липидные головки. Это притяжение смещает липиды к BAR области и таким образом искривляет мембрану. Но многие все еще не определилось с механизмом лепки, поскольку некоторые исследователи предпочитают другой метод, называемый механизмом вставки. В этом механизме остатки BAR-домена фактически вставляются в мембрану и зажимают ее, заставляя изгибаться. Шультен признает, что иногда в клетке некоторые белки могут использовать механизм вставки для изгиба мембран. "Потому что если заглянуть в клетку, поясняет Шультен, то можно увидеть очень много разных форм. Я имею в виду так много, что вы никогда бы не подумали, что все они появляются в с применением только одного трюка."

Понимание нервной системы

Когда примерно в 2005 году Клаус Шультен услышал, что была получена структура калиевого канала, он был заинтригован, поскольку это косвенно было связано с его многолетними исследованиями мозга. В то время как калиевые каналы были модной темой, Шультен был мотивирован своим давним увлечением исследованиями мозга. А калиевые каналы играют ключевую роль в функционировании нервной системы.

Нервная система у животных это основной способ реагирования на внешний мир. Нервные клетки реагируют на раздражители и затем передают эту информацию от нейрона к нейрону, вниз по длинным аксонам. Электричество, или поток зарядов, является ключом к этой передаче, но в отличие от электроники, электричество мозга переносится не движением электронов по проводам, а градиентом ионов калия и натрия.

Но как срабатывает нервная клетка? По сути, внутри нее постоянно поддерживается небольшое отрицательное напряжение (она действует как своего рода батарея). В клетках человека внутри содержится избыток ионов калия, а жидкость, омывающая мембрану снаружи, содержит избыток ионов натрия. Когда раздражитель (звук, прикосновение, свет и т. д.) достигает клеток в органе чувств, он преобразуется в электрический сигнал, который достигает, за один шаг или после нескольких шагов, нейронов, направляющихся к мозгу. В этих нейронах натриевые каналы в мембране клетки открываются, и ионы натрия втекают внутрь. В конце концов, когда напряжение достигает определенного значения, это приводит к тому, что открывается множество других натриевых каналов, и в конечном итоге внутри клетки достигается пороговое (положительное) напряжение. Примерно через миллисекунду, возникает потенциал действия положительное напряжение. Натриевые каналы теперь закрываются. Затем открываются калиевые каналы, и ионы калия покидают клетку, возвращая клетку к более отрицательному напряжению. Следовательно, клетка перешагивает свой порог активации и восстанавливается до своего небольшого отрицательного потенциала покоя, накачивая калий и натрий соответственно. Таким образом, этот перенос ионов происходит через мембрану и передается вниз по мембране аксона нервной клетки для передачи сигнала. И все это электрохимическое поведение основано на натриевых и калиевых каналах. Имея под рукой оцифровку калиевого канала, Клаус Шультен понял, что может исследовать ключевой элемент нейрона с точки зрения физики.

Примерно в то же время, у него также появился новый ученик, Фатима Халили-Арагхи, которая взялась изучать эту тему. Первоначально заинтересовавшись физикой высоких энергий, при поступлении в аспирантуру она вскоре поняла, что физика в группе Шультена была такой же увлекательной, как и в теории струн. Она немедленно начала исследовать калиевые каналы. Ученые знали, что это канал, и он открывается и закрывается (эффект стробирования) в зависимости от изменения напряжения. "Когда я начала изучать литературу, я поняла, что мы не знаем, как они чувствуют напряжение. Мы не знали, что происходит внутри", вспоминает Халили-Арагхи. Ее задача состояла в том, чтобы узнать больше и прояснить механизм.

Калиевый канал встроенный в мембрану активируется при возникновении напряженияКалиевый канал встроенный в мембрану активируется при возникновении напряжения

Она и Шультен впервые попытались понять проникновение ионов калия через поры. В белке есть пять аминокислот, которые образуют самый узкий сегмент канала и которые не пропускают ничего, кроме калия, поэтому он известен как селективный фильтр. Многое было постулировано о том, как ионы проходят через селективный фильтр, и одна идея заключалась в том, что калий не течет непрерывно. Когда Халили-Арагхи начала имитировать калий идущий потоком, канал не проводил. Это было странно, потому что кристаллическая структура полученная экспериментаторами, предположительно, находилась в открытом состоянии. Было перепробовано множество попыток, прежде чем пришло понимание, что происходит "инактивация" фильтра это было нечто, что происходило спонтанно и препятствовало проводимости. В конце концов Халили-Арагхи поняла, что некоторые карбонатные группы в фильтре ответственны за непроводимость, и после многих попыток она ограничила их, после чего канал начал пропускать ионы. И, наконец, она и Шультен подтвердили, что проникновение ионов калия происходит по цепочному механизму похожему на перебор четок; в канале есть два иона калия, а затем входит третий, он остается там, но выталкивает нижний калий вниз через остальную часть канала. Хотя это подтверждение было опубликовано в Biophysical Letters, Халили-Арагхи говорит, что трудности моделирования проводимости были даже не самой сложной частью проекта.

Как-то она была на собрании Биофизического общества и завела разговор с ученым из лаборатории Бенуа Ру в Чикаго. Ру биофизик, который также изучал калиевые каналы. Халили-Арагхи узнал, что соавтор Ру, Владимир Яров, построил модель замкнутой структуры калиевого канала, закрытого напряжением. Это вскоре стало ценным для Халили-Арагхи, и вскоре они с Шультеном начали сотрудничать с лабораторией Ру. В то время как мембранные белки традиционно трудно кристаллизовать, еще труднее кристаллизовать ионный канал в состоянии, которое существует только при приложении определенного напряжения, чтобы держать его закрытым ибо это состояние должно происходить внутри мембраны. Но модель замкнутого состояния от Ярова не была похожа на первозданную кристаллографическую структуру. Халили-Арагхи пришлось потратить много времени на усовершенствование структуры, пока она не достигла стабильного закрытого состояния.

На этом работа не закончилась. "У нас было закрытое и открытое состояния, и мы должны были как-то проверить их, что закрытое состояние это действительно закрытое состояние", резюмирует она. Затем последовали серьезные вычисления расчет стробирующих зарядов. Когда канал переходит из открытого состояния в закрытое, некоторые заряженные остатки перемещаются, и эти движения могут быть количественно оценены в экспериментах. Хотя Халили-Арагхи могла точно воспроизвести эти экспериментальные измерения, сказать, что моделирование требовало огромного компьютерного времени, было бы преуменьшением. "В тот момент я думаю, что количество компьютерного времени, которое мы использовали для этого проекта, было, вероятно, сопоставимо суммарному затраченному времени на все другие проекты", говорит Халили-Арагхи. Но усилия того стоили, потому что они получили очень близкое совпадение с экспериментальными стробирующими зарядами. Халили-Арагхи провела еще много вычислений, чтобы проверить и улучшить закрытое состояние. В конце концов они обнаружили структуру, которая имела область сужения с отрицательно заряженными остатками. "Таким образом, все становилось на свои места, снова указывая на то, что наше закрытое состояние, вероятно, чем-то похоже на реальное закрытое состояние, обнаруженное в клеточной мембране нейрона", утверждает она. "Это, вероятно, самое близкое, что мы можем получить, я имею в виду, пока мы не увидим это с помощью кристаллографии или любого другого метода."

Итак, что же в конце концов обнаружило длительное моделирование нейронного калиевого канала? Фактически был получен ответ на важнейший вопрос, касающийся фундаментального свойства нейронной передачи сигналов. Она происходит через зависимость от напряжения проводимости ионов натрия и калия через мембрану нервной клетки в атональной области нервных клеток. В случае как натриевых, так и калиевых каналов проводимость реализуется центральной порой, которая с высокой специфичностью различает ионы натрия или калия. Эта пора окружена четырьмя так называемыми вентилями напряжения, которые контролируют проводимость центральной поры с целью измерения напряжения на нейронной мембране. По мере того как ионы проводятся, напряжение действительно изменяется, и соответственно изменяется проводимость. В результате ионная проводимость нелинейна по отношению к напряжению, и нелинейность формирует нервные сигналы.

Тетрамерная структура калиевого каналаТетрамерная структура калиевого канала

Этот математически интересный способ управления нервными сигналами был открыт в 1950-х годах Ходжкином и Хаксли задолго до того, как стали известны какие-либо молекулярные подробности об ионных каналах в нейронной мембране. Ходжкин и Хаксли были удостоены в 1963 году Нобелевской премии по физиологии и медицине. Самое удивительное, что математическая форма уравнений Ходжкина-Хаксли напоминает недавно обнаруженную структуру ионных каналов, ясно указывая, что ионные каналы должны иметь четыре вентиля напряжения. До тех пор, пока Шультен не увлекся калиевыми каналами, оставалось загадкой, каким образом вентили напряжения улавливают слабые изменения напряжения, происходящие на нейронной мембране. Моделирование Халили-Арагхи и Шультена показало в случае калиевого канала, что изменение напряжения локализуется на удивительно коротком расстоянии в затворе, так что, хотя это изменение невелико, возникающая сила (которая зависит от времени изменения напряжения заряда иона и расстояния) достаточно высока, чтобы произвести сильный эффект. Физика включает в себя перераспределение высоко поляризуемых молекул воды и изменение обычной альфа-спирали белка в так называемую спираль 3-10. Эволюция открыла здесь электронное наноустройство, подобное транзистору, которое делает возможными нейронные сигналы и, следовательно, нейронные вычисления. В настоящее время группа Шультена расширяет исследования Халили-Арагхи на натриевый канал, который является более сложным по своему устройству. Шультен уверен, что вскоре он завершит мост между структурой и динамикой нейронных ионных каналов, с одной стороны, и математической феноменологией Ходжкина и Хаксли, с другой.

Грандиозный финал: серия взаимосвязанных процессов

Мы сотканы из ткани наших снов Шекспир, Буря

Две мечты Клауса Шультена определили его цели на протяжении последних сорока пяти лет научной жизни. В детстве он был очарован АТФ, и он никогда не забывал это раннее очарование универсальной валютой живой клетки. В том же духе он хотел изучить ключевой мембранный белок, реакционный центр, чтобы объяснить фотосинтез, и его возмутительный план построить свой собственный суперкомпьютер в 1980-х годах направил его на путь становления вычислительным биологом. Итак, спустя четыре десятилетия удовлетворен ли Шультен своим личным пониманием АТФ или фотосинтеза? Он подобрался очень близко. И чтобы представить кульминацию жизненного призвания, он счел необходимым осветить ряд процессов фотосинтеза, которые начинаются с поглощения солнечного света и заканчиваются выработкой АТФ. "И дело в том, что то, что я хотел сделать с помощью науки, я мог сделать только через фильм", резюмирует Шультен. Но это не голливудская постановка. Каждый отдельный атом правильно учтен, и все процессы были тщательно демистифицированы на протяжении многих лет многими, многими учеными, включая различных исследователей из группы Шультена. Никаких спецэффектов, только чистая наука. Этот ролик, предоставленный ниже, также затрагивает другую мечту Шультена, его желание описать, как несколько белков работают вместе в клетке, образуя сообщества биологической организации, что является сутью создания живой клетки. И этот фильм основан на мембранной системе, хроматофоре фиолетовых бактерий.

Хроматофор это автономная единица в фиолетовой бактерии, которая действует как биологическая машина, производя АТФ под действием солнечного света. На самом деле ее называют псевдо-органеллой, поскольку она встречается у прокариот. В принципе, он выполняет автономную функцию сам по себе, и хотя он действует только в контексте клетки, он имеет такие размеры, что теперь можно моделировать эту "органеллу" во всей ее полноте, и тем самым это приближает Шультена к цели изучения целой клетки. Хотя существует много различных форм хроматофоров, один из них, показанный в видео, имеет сферическую форму, около 60 нанометров в диаметре и содержит более 100 белков, встроенных в сферическую мембрану. Внутри хроматофора происходит ряд процессов между взаимодействующими белками. "Они работают, как швейцарские часы, где маленькие колесики и шестеренки приводят друг друга в движение", поясняет Шультен. "И именно этот часовой механизм процессов действительно заставляет систему делать то, что она делает." В то время как ученые в течение десятилетия рассматривали отдельные процессы, выполняемые отдельными белками, целью фильма Шультена было показать последовательность процессов, которые приводят к созданию АТФ из солнечного света, и проиллюстрировать взаимосвязь всех процессов.

Сферический хроматофор с пятью различными типами белков различных цветов. Он функционирует в серии взаимосвязанных процессовСферический хроматофор с пятью различными типами белков различных цветов. Он функционирует в серии взаимосвязанных процессов

Но как Шультен прошел путь от увлечения реакционным центром (одним из пяти типов белков, встроенных в хроматофор) до понимания всех типов белков, составляющих хроматофор? Как только структура реакционного центра была получена в 1985 году Гартмутом Мишелем, Шультен немедленно приступил к вычислениям этого мембранного белка, лежащего в основе фотосинтеза. И тогда он взялся за рискованный проект. Однажды вечером в Урбане в 1995 году на вечеринке Шультен и Мишель начали обсуждать смелый план по определению структуры светосборочного белка. В то время как реакционный центр имеет решающее значение для фотосинтеза, существует ряд белков, собирающих свет (показаны красным и зеленым на изображении), которые фактически направляют энергию в реакционный центр, где она затем преобразуется в перенос электронов. Белки собирающие свет, в основном действуют как вспомогательные антенны, чтобы поглощать больше доступного света для использования хроматофором. Пакт Шультена с Гартмутом Мишелем был на самом деле сумасшедшим, потому что Шультен не был экспертом в структурной биологии, а кристаллографические данные Гартмута упускали ключевую часть информации (фазовые углы). Но Шультен вместе с бесстрашным постдоком Сиче Ху фактически использовал вычисления, чтобы в конечном итоге выяснить структуру белка, называемого светосборочным комплексом. Таким образом, Шультен начал расширять свои знания о белковых компонентах хроматофора.

Моделирование LHC II (light harvesting complex) привело к тому, что Шультен называет своим самым большим успехом в области исследований мембранных белков, над которыми он работал с начала 1990-х годов. В тот момент Шультен снял фуражку структурного биолога и надел шляпу квантового физика. С выдающимся дуэтом аспирантов, Торстеном Ритцем и Анной Дамьянович, а также Сиче Ху, команда разгадала, как каротиноиды и хлорофиллы, составляющие светосборный комплекс II, функционируют как единое целое и используют квантовую физику для достижения эффективного поглощения фотонов и передачи энергии в реакционный центр. С одной стороны, Шультен был биофизиком, который занимался моделированием белков. "С другой стороны, я был физиком-теоретиком, который хорошо знал квантовую физику, и поэтому в тот момент, внезапно эта моя вторая половина мозга проснулась. И это было, я думаю, самое замечательное, что случилось со мной."

Таким образом, первоначально Шультен был очарован реакционным центром, а затем в середине 1990-х годов он начал работать над двумя типами вспомогательных белков, которые направляют энергию в реакционный центр. Кроме того, примерно в 2005 году Шультен начал амбициозный проект с постдоком Мелихом Сенером, чтобы собрать воедино все экспериментальные данные за последние десятилетия и фактически смоделировать полный хроматофор, вплоть до каждого последнего атома. Эта работа стала возможной в значительной степени благодаря сотруднику Шультена в Шеффилде, Нилу Хантеру. Было бы невозможно проиллюстрировать все взаимосвязанные процессы в хроматофоре до тех пор, пока не будет реализована его полная структура.

В хроматофоре есть пять ключевых белков-игроков. Первые два (светосборочные комплексы I и II) действуют как антенны, а третий белок, реакционный центр, преобразует собранную энергию в перенос электронов. Таким образом, остаются два типа белков, необходимых для окончательного превращения солнечного света в АТФ. Эти два комплекса называются bc1-комплексом и АТФ-синтазой. После того, как свет попадает на антенны хроматофора, он поступает в реакционный центр, который использует эту энергию, чтобы протолкнуть электрон вниз по цепи. Затем специальная молекула (хинон) активируется двумя электронами и двумя протонами (становится хинолом) и проплывает через маслянистую мембрану к bc1-комплексу. Затем bc1 перекачивает протоны хинола с внешней стороны сферического хроматофора внутрь. И тогда хорошо известная АТФ-синтаза использует протонный градиент, чтобы стимулировать производство АТФ. (Для полноты картины, здесь задействован шестой белок цитохром, который переносит электроны от bc1 обратно к реакционному центру.)

Группа Шультена должна была использовать инструменты квантовой химии для описания сложных реакций переноса электронов и протонов, которые происходят в bc1-комплексе, усилия, возглавляемые совсем недавно аспиранткой Анджелой Барраган. Она провела очень тщательные крупномасштабные квантово-химические расчеты, чтобы точно определить, что на самом деле происходит в процессе создания протонного градиента.

Как и следовало ожидать, работа группы Шультена над АТФ-синтазой дорога его сердцу. Ему потребовалось много лет, чтобы достичь подходящего понимания этого мембранного белка. Поначалу все шло медленно, поскольку первоначальные структуры не были достаточно полными, чтобы Шультен мог полностью погрузиться в объяснение его внутренней работы. "Поэтому тогда я был очень осторожен и опубликовал только то немногое, что понял", рассказывает Шультен о своей многолетней работе над АТФ-синтазой. "И сегодня я, наконец, думаю, что у меня все получилось." Причина, по которой Шультен считает, что он, наконец, может объяснить АТФ-синтазу и ее функцию, затрагивает тему его фильма о хроматофоре в целом: совместная работа всех взаимосвязанных частей. АТФ-синтаза содержит шесть белков. Только сегодня, благодаря работе, недавно выполненной фантастическим постдоком Абхи Сингхарой, Шультен может описать сложность системы, а именно, как шесть белков работают вместе, чтобы преобразовать протонный градиент в крутящий момент, а затем в настоящую АТФ. Хотя он все еще проверяет некоторые шаги, используемые АТФ-синтазой, он находится в пределах досягаемости своих детских мечт об АТФ.

YouTube аналог

Фильм "Хроматофор", таким образом, заключает в себе множество тем, которые извивались в мозгу Шультена в течение последних пятидесяти лет. Он с детства хотел исследовать молекулы жизни, особенно важнейшую АТФ. Поэтому он принял решение изучать молекулярную физику в аспирантуре Гарварда дисциплину, которую все его друзья считали скучной и недостойной внимания. Во время своей первой работы он был знаком с областью фотосинтеза, но мог проводить только ограниченные исследования на эту тему, поскольку не было намеков, что важнейшие мембранные белки, лежащие в основе фотосинтеза, будут когда-либо оцифрованны. В Мюнхене в 1980-х годах Шультен имел место в первом ряду для получения структуры первого мембранного белка, реакционного центра. Но реакционный центр имел и другой глубокий эффект, поскольку он подтолкнул Шультена к использованию компьютера в качестве инструмента, который, если его отточить, может стать бесценным для биологии. И, наконец, он всегда настаивал на моделировании все больших и больших структур с явной целью описания биологической организации, что переводится в рассмотрение того, как взаимодействуют кластеры из сотен или даже тысяч белков. И у него были программные средства, которые он разработал для вычислительной биологии, VMD и NAMD, и с помощью этих самых инструментов он был способен сделать фильм про хроматофор, который требовал моделирования и анализа огромного числа атомов (около 100 миллионов). Имея все это в виду, Шультен утверждает, что: "Идея о фильме напрашивалась сама собой."

Фильм "Хроматофор" является подходящим завершением этой истории о мембранных белках. С богатым набором мембранных белков, которые Шультен и его группа уже демистифицировали, удивительно, что Шультену пришлось ждать почти тридцать лет, пока он смог смоделировать белок и мембрану вместе. Правда, его путь не всегда был легким, но Шультен смотрел вперед и не зацикливался на невзгодах. Его успехи в этой области идут рука об руку с достижениями в области вычислительных инструментов, которые разрабатывает его группа. На самом деле, с помощью компьютера Шультен неплохо зарабатывал себе на жизнь, хотя получение структур мембранных белков с помощью кристаллографии все еще происходит довольно медленно. Хотя роль вычислительного биолога иногда недооценивается, Шультен любит свое жизненное призвание. "Итак, теперь я разбираюсь в живых системах с помощью своего математического ума, и я очень, очень доволен этим".


Статья была написана в 2014 г. Через год хроматофор (100 миллионов атомов) промоделировали на суперкомпьютере "Титан". В октябре 2016-го Клаусс Шультен умер в возрасте 69 лет, но его дело продолжается его учениками из Theoretical and Computational Biophysics Group.

Материалы для дальнейшего погружения: подборки видео (раз, два, три, четыре) и более академичный обзор моделирования клеточных мембран (с сопутствующими семью сотнями ссылок), а также обзоры подходов к цельноклеточному моделированию (раз, два, три +статья 70-го года (для сравнения) с вставками на фортране).

Подробнее..

Спектральный анализ пламени костра. Что делает огонь желтым наночастицы углерода или соли натрия?

05.03.2021 16:08:13 | Автор: admin
Вечерний костер на берегу Кучерлинского озера на АлтаеВечерний костер на берегу Кучерлинского озера на Алтае

В публикациях в интернете по-разному объясняется, как возникает цвет пламени у костра

Существует две принципиально разные версии. В одной говорится, что излучают раскаленные частицы углерода размером около 100 нм, во второй - что желтый цвет возникает при излучении солей натрия, находящихся в древесине.

В многочисленных публикациях одно или другое из этих объяснений. На форумах обсуждается эта тема, но никто не ссылается на результаты экспериментов.

Вот пример типичных публикаций:

То есть, до настоящего времени нет общепринятого варианта объяснения механизма видимого излучения, возникающего в процессе горения костра!

И все же - почему костер желтый?

Я решил провести эксперименты и найти правильный ответ. Мне нужно было измерить спектр видимого излучения пламени костра и объяснить результаты. Если спектр будет сплошным верна первая версия, если мы будем наблюдать двойную линию натрия вторая.

Замечу, в русскоязычном и англоязычном интернете мне не удалось найти подобных спектров.

Для проведения работы я изготовил и настроил спектрометр.

Самодельный спектрометр

В интернете много публикаций и роликов о том, как сделать спектрометр из DVD диска, однако характеристики этих приборы не позволяют провести нужные измерения. Мне же удалось сделать качественный спектрометр.

Основные характеристики

Спектрометр работает в диапазоне 400-700нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Измерение спектра пламени костра

Были проведены классические эксперименты - измерены спектры Солнца, лазеров, пламени газовой горелки и всевозможных ламп. Спектрометр прошел проверку и теперь можно было приступать к исследованию пламени костра.

Исследуемое пламя костра в каминеИсследуемое пламя костра в каминеЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламениЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламени

Измерим спектр линии огня - так я назвал увиденную линию.

На фоне очень слабого непрерывного черно-тельного спектра были зарегистрированы две яркие желтые лини с длинами волн 589,0 нм и 589,6 нм. Согласно базе данных NIST - это линии натрия.

Спектры калибровочной лампы, костра в камине, поваренной соли и золы из каминаСпектры калибровочной лампы, костра в камине, поваренной соли и золы из камина

Ниже на фотографии показана часть спектра пламени костра с большим увеличением, чтобы можно было рассмотреть двойную линию натрия 589,0 нм и 589,6 нм на фоне непрерывного спектра раскаленных частиц углерода:

Крупным планом спектральные линии натрия в костре и линии натрия в золе, горящей в спирте.Крупным планом спектральные линии натрия в костре и линии натрия в золе, горящей в спирте.

В дальнейших исследованиях была зафиксирована динамика появления линий натрия в спектре. Пока костер разгорается - в спектре линии отсутствуют. По мере появления углей и увеличения мощности излучения, данные линии появляются и их яркость растет.

Обсуждение результатов экспериментов

Почему мы видим желтый цвет, физиология

Чтобы правильно объяснить результаты экспериментов надо понимать, как наши глаза воспринимают излучения разной длины волны и как мозг обрабатывает эту информацию.

Коротко и очень, очень упрощенно напомню хорошо известные факты. Мы воспринимаем цвет желтым по разным причинам: в одном случае, когда в сетчатку глаза попадает излучение узкого спектра с длинной волны в диапазоне 570нм 590нм, и во многих других, когда в глаза попадает излучение разного спектрального состава. Например, красный и зеленый в правильных пропорциях будут восприниматься как желтый. На экране мониторов мы создаем как раз такой желтый цвет.

То есть наши глаза и затем мозг создают иллюзию цвета и поэтому для понимания физических и химических процессов нам и требуется измерение спектра.

Заблуждение, которое встречается во многих публикациях, в которых объясняют желтый цвет костра - Цвет костра вызван излучением натрия

Данный эксперимент показывает - появление двойной линии натрия не оказывает какого-либо заметного изменения цвета.

Небольшие пояснения

Сравним спектры излучения Солнца и пламени костра.

В солнечном спектре максимум приходится на зеленый цвет, а мощность красного и синего меньше. Излучение именно с такой спектральной характеристикой воспринимается как белый цвет.

В пламени костра из атомов углерода образуются частицы сажи размером до 100нм. Эти частицы и дают непрерывный спектр с максимумом излучения в инфракрасной области, а мощность видимого излучения падает от красного к зеленому и еще больше к синему. Излучение с таким спектром воспринимается человеком как оттенки желтого и оранжевого, в зависимости от температуры области пламени. Желтый цвет костра это случайное совпадение.

Влияние солей натрия

В процессе горения появляется зола в которой содержатся соли, в том числе и соли натрия. Золы совсем немного. Она начинает подниматься в пламени вверх, и яркая двойная желтая линия натрия постепенно появляется в спектре. Однако ее появление не сказывается заметно на цвете костра, так как желтый цвет от непрерывного спектра глаза уже воспринимают.

Мощность излучения натрия значительно меньше, чем суммарная мощность непрерывного спектра.

Выводы

То, что мы видим костер желтым, не означает, что идет излучение в узком спектральном диапазоне натрия. Наши глаза и мозг воспринимают непрерывный спектр как желтый цвет.

Появление дополнительно яркой линии натрия мало влияет на восприятие цвета костра, который остается таким же желтым. Для нас не заметно изменение цвета, так как такой цвет уже был. Кстати, если бы за цвет костра отвечал только натрий, оттенков бы не было, так как мы бы видели чистый спектральный цвет.

Почему же популярной остается версия о том, что желтый цвет костру придает линия натрия? Скорее всего, случайное совпадение цвета линии натрия и черно-тельного спектра углерода и привело к путанице.

Цвет пламени костра дают ярко светящиеся частицы углерода. Влияние на цвет излучения натрия минимально.

О том, как сделать качественный спектрометр и как правильно проводить эксперименты читайте в моей статье "Самодельный спектрометр с высоким разрешением"

Полезные ссылки:

  1. И. А. Леенсон Химия и жизнь 2, 2011 Химия пламени. В статье рассказывается, в том числе, как в пламени возникают светящиеся наночастицы углерода.

  2. Информационная система Электронная структура атомов. Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов. Ссылка для натрия.

  3. Максим Бондаренко, Как мы воспринимаем цвет. Доступно и интересно написано о сложном.

Подробнее..

Как мы новую технологию AR очков придумывали (hardware)

05.02.2021 20:16:55 | Автор: admin

В настоящее время на рынке AR очков сложно найти технологию (а возможно ее и вообще не существует), которая позволила бы сделать AR очки не только уделом гиков, но и внедрить технологию в повседневную жизнь людей. В этом посте мы хотим рассказать о том, как попробовали придумать и собрать AR очки на основе новой технологии. Ну а попутно расскажем, по каким граблям ходили и в какую сторону лучше двигаться не стоит.


Введение


Все мы, наверное, в той или иной степени сталкивались с девайсами в виде AR очков. Но не все знают, почему так сложно сделать хорошие носимые устройства, которые смогли бы обеспечить пользователя изображением, не уступающим по качеству изображениям современных мониторов и экранов, имели бы небольшой размер, сравнимый с габаритами обычных очков для коррекции зрения, и могли бы работать без подзарядки на протяжении всего дня. Более подробно про современное положение дел и проблемы в области AR можно почитать тут: ссылка



Рис. 1: верхний рисунок глаз человека может фокусироваться на объекты, удаленные на расстояние больше 15 см, нижний рисунок для создания изображения в системе дополненной реальности необходимо использование прозрачного оптического элемента, который искусственно отдалит изображение на комфортное для человека расстояние.


Кратко, если нет времени читать предыдущий рекомендованный пост


Глаз человека очень сложный биологический сенсор. Считается, что порядка 80% всей информации об окружающем мире человек получает через глаза. Эволюционно сложилось так, что человеческий глаз может фокусироваться на предметы, которые находятся на удалении от 15 см до (бесконечности) (рис.1 (верхний)).


Такая особенность хороша для повседневной жизни в реальном мире, но является трудно преодолимой проблемой при разработке систем AR. В системе AR очков недостаточно просто отобразить изображение на дисплее или экране по средствам включения или выключения пикселя/мини-светодиода. Если в AR очки установить обычный дисплей, то он будет располагаться на расстоянии 2 3 см от глаз, куда человеческое зрение не в состоянии сфокусироваться. Чтобы решить эту проблему, необходимо пропустить изображение через оптическую систему и сделать так, чтобы глазу казалось, что изображение удалено на комфортное для зрения расстояние (рис. 1(нижний)). Вся сложность заключается в том, как изготовить такую оптическую систему, да так, чтобы эта система была прозрачной (для наблюдения реального окружающего мира), малой по размеру (как обычные очки), выдавала изображение высокого разрешения (конкурентоспособное в современном мире дисплеев), отображала изображение при различной ориентации глаза (глаз постоянно двигается и постоянно перемещается его оптическая ось) и т.д.


В настоящее время есть большое количество подходов и технологий, как обмануть глаз и заставить его думать, что изображение удалено на нужное расстояние, при том, что оно генерируется в паре сантиметров от глаз. Однако по тем или иным причинам уже существующие технологии не подходят для создания массового продукта в виде AR очков.


На основе знаний в области оптики, фотоники и современных технологий дополненной реальности мы попробовали разработать свою технология, которая по некоторым параметрам явно превосходит существующие аналоги.


Мини-предыстория


Все началось с университетской научной деятельности. Мы занимались изготовлением больших наноструктурированных поверхностей методом лазерной интерференционной литографии. Итоговые поверхности представляли собой протравленные по маске фоторезиста нанорешётки на поверхности кремния или стекла с характерным периодом 400 нм 5 мкм.
На одном из лит. обзоров попалась статья про использование мини дифракционных решеток для создания 3D дисплея (хотя это слишком громкое название для такого рода устройств). В работе предлагалось под каждым пикселем LCD дисплея устанавливать разно-ориентированные мини дифракционные решётки (рис. 2). Такая конструкция позволяет пикселю светить только в фиксированном направлении. А если правильно подобрать направления свечения всех пикселей, то можно добиться того, что каждый глаз будет видеть свое изображение, что в свою очередь приводит к появлению стереоэффекта, ну или как авторы называют это в своей работе 3D дисплею.



Рис. 2: a сканирующая электронная микроскопия одной дифракционной решётки, b один воксель (пиксель в 3D изображении) состоит из нескольких разноориентрованных решёток, с полноволновое моделирование диаграммы направленности от 64-лучевой подсветки, d поперечный срез диаграммы по пунктирной линии.


Не будем вдаваться в детали чужой технологии. Все подробности можно прочитать по ссылке: David Fattal. Скажу только, что на основе данной технологии был разработан смартфон RED Hydrogen One c 3D дисплеем (см. анимацию).



Анимация: Работа дисплея смартфон RED Hydrogen One со стерео/3D дисплеем.


Первоначально была идея использовать подобные решетки для создания AR очков. Предполагалось, что если спроектировать систему так, чтобы все решетки перенаправляли свет пикселей в одну точку, совпадающую с центром зрачка глаза наблюдателя, то можно добиться построения необходимого изображения на сетчатке. Такой принцип работы схож с технологией Virtual Retinal Display (VRD), использующейся в очках дополненной реальности North Focals. Однако использовать отдельные решетки для фокусировки не самый оптимальный и очень затратный подход. Гораздо лучше использовать голографические линзы, которые значительно проще в изготовлении и обладают теми же оптическими свойствами, что и решётки. Так появилась технология дополненной реальности на основе голографического оптического волновода.


Голографический оптический волновод



Рис.3: верхний рисунок объемный вид работы голографического оптического волновода, нижний рисунок сечение голографического оптического волновода с трассировкой лучей подсветки параллельным пучком.


Основным элементом технологии является голографический оптический волновод структура, состоящая из нескольких слоев различного назначения. Основной слой это планарный оптический волновод (1. Planar waveguide), изготовленный из стекла. При изготовлении одна из граней этого волновода полируется под таким углом, чтобы можно было завести параллельный пучок в волновод и добиться распространения излучения по волноводу по принципу полного внутреннего отражения. Тут стоит отметить, что стекло лучше брать оптически чистое, чтобы достичь распространения излучения по волноводу с наименьшими потерями. Излучение, заводимое в волновод, представляет собой расширенный параллельный лазерный пучок с фиксированной поляризацией (4. backlight). На поверхность планарного волновода укладывается голографическая пленка с записанным в объеме оптическим элементом (линзой) (2. HOE (lens)). Лазерный пучок, распространяющийся по такой структуре, частично высвечивается из-за интерференционных особенностей голографической пленки. Высветившееся излучение представляет собой фокусирующийся пучок фиксированной поляризации (на рис. 3(нижний) показано красными стрелками между слоями 2 и 3), который далее может быть модулирован системой из ЖК-матрицы и поляризационного фильтра (3. LCD matrix). При этом систему матрица + поляризационный фильтр можно настроить так, что активные пиксели (на которые подан управляющий сигнал) либо перекрывают пучок, либо наоборот позволяют оставить его светящимся (такое поведение достигается за счет правильной ориентации поляризационного фильтра по отношению к поляризации высвечивающегося пучка). Высветившийся и промодулированный изображением свет фокусируется в центре зрачка глаза наблюдателя и далее проецируется на задней стороне сетчатки (6. retina). Использование метода фокусирования лазерного излучения в центре зрачка позволяет избежать влияния оптической системы глаза (хрусталика, стекловидного тела и т.д.) на формирование изображения. Поскольку вся схема состоит из оптически прозрачных или частично прозрачных слоев, то через всю систему можно наблюдать окружающий мир (5. external objects) без помех.


К отличительным техническим преимуществам такой схемы по сравнению с другими AR технологиями (MagicLeap, Hololens, North Focals, ) можно отнести:


  • Максимальный FOV сравнимый с полем зрения глаза человека (120)
  • Высокая компактность, обусловленная расположением активного дисплея (ЖК матрицы) и просмотровой области в одном месте. Потенциально предлагаемая технология может позволить изготавливать очки в форм-факторе обычных очков для коррекции зрения.
  • Высокое разрешение генерируемого изображения. Поскольку изображение генерируется не на отдельном мини-дисплее (как это делается у Magic Leap или Hololens) вне просмотровой области, а прямо на очковой линзе.
    Прочие технические параметры не отличаются какими-то выдающимися характеристиками и являются стандартными для технологий AR.

Изготовление голографического оптического элемента (HOE)


Перед непосредственной сборкой всего устройства, была проведена работа по записи необходимых оптических элементов (линз) в объеме голографической пленки.


Более подробно о том, что такое HOE и где они используются, можно прочитать по ссылке. Существует много материалов, которые используются в голографии и которые рассматривались нами: фоторезисты, материалы на основе галогенидов серебра, фотополимерные пленки. Мы решили особо не заморачиваться с процессом отработки нанесения фоторезиста и всеми техническими тонкостями химии фоточувствительных веществ и взяли уже готовую голографическую пленку Covestro Bayfol HX200, которая обладает дополнительным клеящимся слоем, что значительно упрощает запись и перенесение пленки на планарный оптический волновод. Спектральная чувствительность этой пленки является наиболее подходящей для наших задач.



Рис. 4: голографическая пленка Bayfol HX200, вставка спектральная чувствительность пленки ссылка


В качестве записываемого элемента использовалась плосковыпуклая короткофокусная линза N-BK7 Plano-Convex Lens, 1", f = 25 mm. Такой короткий фокус позволяет расположить голографический оптический волновод на фокусном расстоянии линзы так, чтобы фокус пучка совпадал с центром зрачка глаза наблюдателя. То есть в нашем случае AR дисплей будет установлен на расстоянии 25 мм от глаза.


Запись производилась по стандартной методике голографии в темной комнате. В качестве источника излучения использовался лазерный диод на 650 нм из набора LitiHolo. Пучок от лазерного диода расширялся до диаметра используемой оптики 1, после чего при помощи светоделительной пластины 50/50 делился на опорный и предметный пучки. Предметный пучок проходил через записываемый оптический элемент (N-BK7 Plano-Convex Lens, 1", f = 25 mm), а опорный проходил через систему зеркал и под углом проецировался в тоже место голографической пленки, что и предметный пучок. При этом оптическая ось предметного пучка была перпендикулярна поверхности голографической пленки, а оптическая ось опорного пучка составляла порядка 60к нормали. Такой угол записи обусловлен углом полного внутреннего отражения в планарном оптическом волноводе при последующем заведении излучения.


Для контролирования дифракционной эффективности использовались нейтральные фильтры, устанавливаемые в предметном пучке. Дифракционная эффективность рассчитывалась, как отношения между падающим и дифрагированным пучком в процессе оптического восстановления изображения, записанного в объеме голограммы.



Рис. 5: слева схема установки для записи образа оптического элемента, который можно помещать в область, обозначенную пунктиром, справа установка, реализованная на оптическом столе.


Время засветки (экспозиции) и мощность пучков подбирались экспериментально. В нашем случае время засветки составляло 2 мин, мощность опорного пучка 1.96 мВт, мощность предметного пучка 1.68 мВт (наибольшая идентичность мощностей в пучках соответствует случаю наибольшей дифракционной эффективности).


После записи образа короткофокусной линзы, голографическая пленка подвергалась УФ облучению в течение нескольких часов. В качестве источника УФ-света использовалась кварцевая лампа КРИСТАЛЛ. В результате УФ засветки не засвеченная область пленки становилась прозрачной, как показано на рис. 6. (справа). Полученные голографические оптические элементы можно переносить (переклеивать) на подготовленный планарный волновод, который в последующем будет использоваться в AR очках.



Рис. 6: слева пример голографически записанной оптической линзы (область с радужной окраской голографическая линза), справа изменение цвета и прозрачности голографической пленки Covestro Bayfol HX200 в зависимости от длительности пост-засветки УФ кварцевой лампой (от 0 сек (0) до 2 часов (7) с шагом в 15 мин)


Список компонентов для прототипа AR очков:


  • Оптический планарный волновод с одной из граней, отполированной под углом 45. Размеры 40мм x 40мм и толщина 4 мм
  • Голографическая пленка Covestro Bayfol HX200
  • Обычная китайская красная лазерная указка на 650 нм
  • Плосковыпуклая короткофокусная линза N-BK7 Plano-Convex Lens, 1", f = 25 mm
  • Поляризационная клеящаяся пленка для LCD дисплеев
  • ЖК-модуль Nokia 5110 84x48
  • Контроллер Arduino Nano
  • расходники: провода, кнопки, батарейки и т.д.

Сборка прототипа


Первоначально мы попробовали изготовить стеклянный планарный оптический волновод самостоятельно, используя шлифовальные черепашки (казалось, что для проверки работоспособности прототипа этого будет достаточно). Но такой способ не позволил получить ровного края бокового окна. При обработке образуются сколы в нижней части, где толщина стекла наименьшая, также качество полировки оставляет желать лучшего. Помучившись с полировкой, мы решили заказать планарный волновод фабричного производства с углом при основании 45.



Рис. 7: слева самодельные оптические волноводы (у основания видны сколы), справа планарный оптический волновод фабричного производства.


LCD матрица была взята из ЖК-модуля Nokia 5110 84x48. Для этого аккуратно разобрали дисплей, удалили рассеиватель, подсветку и один из поляризационных фильтров (Рис. 8). В итоге осталась только сама ЖК-матрица и один наклеенный на нее поляризатор. Для удобства миниатюризации припаяли одножильные лакированные провода к контактам ЖК-матрицы (если эти провода не повреждать и особо не гнуть, то их лаковой защиты хватит в качестве изоляции).



Рис. 8: частично разобранный ЖК модуль Nokia 5110 84x48. На фото ЖК-модуль с двумя поляризаторами (когда один из них отклеили, матрица стала значительно более прозрачной)


Записали ряд образцов голографической линзы с разными дозами экспозиции и разным отношением мощностей в опорном и предметном плечах. Выбрали пленку с наибольшей дифракционной эффективностью (дифракционную эффективность оценивали с помощью измерителя мощности оптического излучения) и наибольшей однородностью высвечивания. У выбранного нами образца дифракционная эффективность составила 17%, что достаточно мало. В теории можно изготовить голографические оптические элементы с дифракционной эффективностью до 98%. Далее приклеили голографическую пленку на планарный волновод так, чтобы края голограммы и грани, скошенной под углом 45 планарного оптического волновода, максимально совпадали.


Планарный оптический волновод с приклеенной голографической линзой вставлялся в специальный держатель, распечатанный на 3D принтере. Также в этот держатель устанавливалась LCD матрица с наклеенным на нее поляризатором (рис. 9). Отпечатки пальцев и прочий мусор на поверхности может нарушать условие полного внутреннего отражения, что приводит к высвечиванию пучка в совершенно ненужных местах. Для защиты и предотвращения попадания грязи были использованы защитные окна, изготовленные из предметного стекла.



Рис. 9: конструкция дисплея дополненной реальности.


В качестве источника подсветки использовался лазерный светодиод на 650 нм, с правильно выбранной ориентацией поляризации света. Излучение от лазерного диода проходило через плоско-выпуклую линзу и коллимировалось до параллельного пучка, который в последующем заводился через торец планарного стеклянного волновода. Все параметры конструкции были экспериментально, итерационно подобраны с использованием 3D печати (рис. 10).



Рис. 10: пунктиром выделена область формирования параллельного пучка от лазерного диода (внутри находится линза для преобразования расходящегося пучка в параллельный с последующей проекцией на боковое окно планарного волновода)


Для крепления к голове изготовленного AR дисплея с подсветкой был изготовлен функциональный каркас (рис. 11), изготовленный по образу дужки обычных очков для коррекции зрения. Так как форма головы человека индивидуальна и может отличаться по геометрии и по размеру от изначально подобранных параметров, в конструкцию были добавлены дополнительные регулировочные винты, которые позволяют настроить очки под особенности каждого, а именно добиться совпадения пятна фокусировки от AR дисплея и центра зрачка наблюдателя. В боковые дужки были установлены элементы питания, элементы (кнопки) и блок управления (Arduino Nano). Кнопки необходимы для переключения между картинками и запуска воспроизведения изображений.



Рис. 11: слева конструкция в виде дужки очков, для крепления AR дисплея, справа в одной из дужек спрятан блок управления (Arduino Nano)


В конце-концов все это было настроено и собрано в один автономный девайс (рис. 12).



Рис. 12: первый прототип AR очков на основе голографического оптического волновода.


Конечно, мы не сразу приступили к сборке компактного варианта. Первоначально подбор базовых параметров технологии осуществлялся для прототипа, собранного на оптическом столе. Изображения, полученные в лабораторном устройстве, показаны на рис. 13. После того, как была продемонстрирована работоспособность лабораторной схемы, мы приступил к сборке устройства в компактном форм-факторе (AR очки).



Рис. 13: Изображения наложения цифровой сгенерированной информации на образ окружающего мира (на оптическом столе).


Как можно видеть из рис. 14 компактный протип AR очков работает:)))
К сожалению, изображения, полученные на компактном прототипе (рис. 14), сильно хуже, чем изображения полученные на оптическом столе (рис. 13). Скорее всего, это связано с неправильно подобранным углом заведения излучения и неправильно выставленной ориентацией поляризации лазерного источника. Также можно видеть, что изображение имеет вертикальные дефектные линии, обусловленные неточностью позиционирования голографической пленки с краем планарного волновода. Ну и не стоит забывать, что дифракционная эффективность голографического элемента порядка 17%, что достаточно мало.



Рис. 14: слева прототип очков дополненной реальности, справа изображения наложения цифровой сгенерированной информации на образ окружающего мира (компактный прототип). На изображении: шахматная доска, очки, крест, мишень (видно очень плохо, так как использовалась диф.решётка с низкой диф.эффективностью)


Из минусов технологии:


Разработанная технология отличается высочайшей компактностью. Даже не знаю аналогов, в которых изображение генерировалось прямо в просмотровой области. Как правило, в существующих AR технологиях изображение выводится на микро-дисплее, а затем по оптическому волокну передается в просмотровую область / очковую линзу. Также технология обладает наибольшим FOV, сравнимым с FOV глаза человека.


Но все же есть один недостаток:
Глаз человека находится в постоянном движении (смотрит вправо, вверх, влево, вниз, прямо). Это приводит к тому, что роговица может перекрывать пучок света, проходящий через центр зрачка. Пока не понятно, как оптимально решить проблему с постоянной подстройкой оптической системы (положения фокусного пятна) под положение зрачка пользователя.


А что дальше???


1) На момент написания поста уже одобрена патентная заявка по данной технологии.
2) С учетом допущенных ошибок начинается сборка нового прототипа с улучшенными параметрами (контрастностью изображения, разрешения картинки и т.д.).
3) Будет опробована реализация данной технологии для генерации не только монохромных, но и цветных изображений.
4) Разрабатывается система подстройки фокусного пятна под ориентацию глаза, под положение зрачка наблюдателя. Рассматриваются способы, подобные решениям в области VRD технологий.


В целом, хотя технология находится еще в стадии развития, мы считаем, что разработанный принцип наложения цифрового изображения на образ окружающего мира может послужить базой для разработки новых AR технологий, обладающих высочайшей компактностью и большим просмотровым полем (FOV).


P.S. Если вы шарите в электротехнике или любите Science (оптику, фотонику и т.д.) и у вас есть желание покопаться/поразрабатывать всякие AR хардвар штуки пишите в лс.


P.P.S. Выражаются благодарности всей тиме AR_Global (Анне П, Вере П, Мише Е), которая принимала непосредственное участие в разработке технологии и её реализации в виде прототипа. За поддержку выражается благодарность всему коллективу NanoLab.

Подробнее..

Самодельный спектрометр с высоким разрешением

09.03.2021 12:08:26 | Автор: admin
Радуга над плато УКОК на АлтаеРадуга над плато УКОК на Алтае

Хорошее разрешение достижимо

В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.

Основные характеристики

Спектрометр работает в диапазоне 400-700нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD-R диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Конструкция и изготовление прибора

Дифракционная решетка

Просто красивый спектр свечи на DVD-R дискеПросто красивый спектр свечи на DVD-R диске

Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.

Дифракционная решетка из DVD-R дискаДифракционная решетка из DVD-R диска

Изготовление сменных оптических щелей

В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.

Корпус спектрометра

Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.

Оптика и регистрация спектра - фотоаппарат NIKON D5100

Зеркальная фотокамера NIKON D5100Зеркальная фотокамера NIKON D5100

Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.

Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.

Настройка и калибровка спектрометра

Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.

Лампа для калибровкиЛампа для калибровки

Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.

Спектр лампы с линиями ртутиСпектр лампы с линиями ртутиДве линии ртути крупным планомДве линии ртути крупным планомЕще крупнееЕще крупнее

Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3пикселям матрицы. Делаем вывод разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.

Для построения спектральных кривых можно использовать программу сайта Spectral Workbench

Спектр лампы, которую я применял для калибровкиСпектр лампы, которую я применял для калибровки

Измерение различных спектров

Были проведены несколько классических экспериментов.

Снят спектр Солнца. Высота 13 градусов над горизонтом. ПолденьСнят спектр Солнца. Высота 13 градусов над горизонтом. ПолденьСпектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нмСпектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нмОпыты по определению концентраций растворов KMnO4Опыты по определению концентраций растворов KMnO4Спектр пламени газовой горелкиСпектр пламени газовой горелки

Самый интересный эксперимент, ради которого и был изготовлен спектрометр - измерение спектра пламени костра

Исследуемое пламя костра в каминеИсследуемое пламя костра в каминеЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламениЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламени

На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.

Обработка результата

Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.

Слева спектр калибровочной лампы. По центру спектр пламениСлева спектр калибровочной лампы. По центру спектр пламени

Что это за линия и как она возникает - читайте в моей статье "Спектральный анализ пламени костра. Что делает огонь желтым наночастицы углерода или соли натрия?"

http://personeltest.ru/aways/habr.com/ru/post/545710/

Полезные ссылки:

1. Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.

https://spectralworkbench.org

2. Информационная система Электронная структура атомов. Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов.

http://grotrian.nsu.ru/ru/periodictable/

Подробнее..

Скорлупа сверхцивилизации. Об энергетических, инженерных и экологических аспектах сферы Дайсона

30.01.2021 18:12:04 | Автор: admin

В истории идей, появившихся в XX веке, особое место занимает триада из парадокса Ферми, шкалы Кардашёва и сферы Дайсона. Не вдаваясь в их подробности, изложенные по приведенным ссылкам, отмечу, что объединяю их по общему допущению о существовании во Вселенной высокоразвитых разумных цивилизаций. Несмотря на то, что ни малейших признаков внеземного разума на данный момент не найдено, эти идеи выдают, какого поведения мы ожидаем от представителей сверхцивилизаций, в число которых надеемся когда-нибудь войти. Это:

1. Готовность и даже стремление общаться с другими разумными существами (поэтому Ферми счел парадоксальным факт молчания Вселенной, учитывая, что за время ее существования на обитаемых планетах должно было сформироваться множество цивилизаций не примитивнее нашей),

2. Стремление к экстенсивному технологическому развитию, где развитие цивилизации требует постоянного наращивания энергопотребления и перехода от примитивных источников энергии ко все более обильным и высокотехнологичным,

3. В качестве первого шага на пути вверх по шкале Кардашёва необходимо принципиально оптимизировать сбор энергии нашего Солнца сегодня она чуть менее чем полностью рассеивается в космосе. Поэтому было бы целесообразно окружить Солнце рукотворной сферой, которая могла бы использоваться либо как грандиозная солнечная батарея, либо как пространство для заселения людьми.

В этой статье я хотел бы подробнее остановиться на современных представлениях о сфере Дайсона (начиная с того, что сферой она быть, вероятно, не может), также напомнив историю этой концепции. Сфера Дайсона и производные от нее гипотетические астроинженерные сооружения могли бы не только решить энергетические и демографические проблемы растущей цивилизации, но и упростить освоение других звездных систем, в том числе, совершенно необитаемых и лишенных жизнепригодных планет. Чтобы не слишком отвлекаться от темы, я обойду здесь вниманием концепцию мозга-матрешки, поскольку она информационная, а не энергетическая и вполне заслуживает отдельной публикации, а также не буду вдаваться в широкий обзор астроинженерных сооружений, а рекомендую почитать хабрастатью из блога компании Asus.

Но давайте обо всем по порядку.


Фримен Дайсон (1923 2020) блестящий инженер и физик британского происхождения, в 1950-е перебрался в США, последние годы жил в Принстоне. Вот ссылка на подробную публикацию с сайта Элементы о лекции Дайсона, прочитанной во время визита в Россию 23 марта 2009 года. Мистер Дайсон не скрывал своего ершистого научного диссидентства и скептического отношения ко многим острым темам современности, в частности, к политизированности проблем, связанных с глобальным потеплением. Я много лет испытываю пиетет к Дайсону (характером он неуловимо напоминает мне галливспайна), поэтому в свое время, работая в издательстве Питер, инициировал и курировал перевод книги его эссе Dreams of Earth and Sky, а также заручился поддержкой уважаемого Даниила Кузнецова и получил в подарок обзор этой книги на сайте Life.ru. Думаю, вышеупомянутой статьи с Элементов вполне достаточно, чтобы составить впечатление о научной и жизненной позиции Дайсона, поэтому перейдем к обсуждению его opus magnum Сферы Дайсона.

Концепция

В 1960 году Фримен Дайсон опубликовал статью, в которой предположил, что технологически развитая цивилизация, уже приступившая к полномасштабному освоению своей звездной системы, могла бы соорудить на расстоянии около 2 астрономических единиц от звезды (revolving around the sun at twice the Earth's distance from it) цельную сферу, предназначенную для сбора излучения этой звезды и производства энергии. По расчетам Дайсона, сфера полностью скрывала бы звезду от внешнего наблюдателя, а температура внешней поверхности сферы могла бы составить до 300 K. То есть, астрономам с другой планеты (например, с Земли) казалось бы, что звезда излучает энергию в глубоком инфракрасном (микроволновом) спектре, чем сильно выделяется на фоне других звезд.

Эту гипотезу Дайсон сформулировал в контексте поиска внеземного разума, а не в качестве энергетического проекта. Он считал, что поиск таких инфракрасных звезд может быть более перспективным путем к цивилизационному контакту, чем попытки обмена радиосигналами. Также отметим, что термин сфера Дайсона впервые появился примерно в 1964 году, и предложил его именно Николай Семёнович Кардашёв в работе Передача информации внеземными цивилизациями (1964)

Более поздние исследования показали, что монолитной такая конструкция быть не может, так как ее разорвут гравитационные силы. Также обратим внимание на формулировку Дайсона revolving around the sun. Действительно, для стабилизации сферы Дайсона ее необходимо раскрутить до орбитальной скорости, которая позволила бы удерживать сферу на нужном расстоянии от звезды. В таком случае идеально жесткая и идеально шарообразная сфера немного сплющилась бы у полюсов, но оставалась устойчивой. Но такая конструкция также не слишком надежна, поскольку идеально жестких материалов не существует. Наконец, для компенсации гравитационных (дифференцирующих) сил сферу можно было бы укрепить магнитными полями, но стабильность всей конструкции в таком случае стало бы поддерживать еще сложнее, не говоря об обслуживании подобных магнитов.

Также не будем забывать, что внешняя поверхность сферы продолжает излучать в микроволновом спектре, и поток покидающих ее фотонов дестабилизирует всю конструкцию. Такое воздействие фотонов настолько существенно, что позволило сформулировать еще одну футуристическую концепцию двигатель Шкадова. О материалах для изготовления сферы Дайсона, а также о некоторых ее потенциальных физических характеристиках, мы еще поговорим ниже, а пока остановимся на более реалистичных конфигурациях такого астроинженерного сооружения.

Сфера Дайсона вполне может представлять собой систему колец, также собирающих значительную часть энергии звезды.

Здесь мы подходим к важному аспекту, подчеркивающему научную ценность таких идей, кажущихся на первый взгляд чистой научной фантастикой. Мир-Кольцо, описанный в романе Ларри Нивена это классическая научная фантастика. Вышеприведенная система колец это развитие глубоко футуристической идеи Дайсона, воспринимаемой, однако, не как сюжет для фантастического романа, а как инженерный проект, скорректированный с учетом нестыковок, выявленных уже на этапе моделирования. А далее рассмотрим научное обоснование статьи, исследующей возможности практического применения кольцевых структур в ближнем космосе задолго до попыток построить полноценную сферу Дайсона или Мир-Кольцо:

Абсолютно твердое тело, например, кольцо, с двумя равными главными осями инерции называется симметричный волчок.

Теперь рассмотрим два симметричных волчка, прикрепленных друг к другу не имеющими массы, не создающими трения, абсолютно прочными подшипниками, так, что их главные оси вращения расположены на одной линии, но оба могут вращаться независимо друг от друга каждый по своей оси симметрии. Назовем такую конструкцию соосным симметричным волчком (ССВ). Простой идеализированный пример токонесущее кольцо из сверхпроводящего кабеля, вложенного в кольцевую сверхпроводящую трубку (получится сверхпроводящий тор). Благодаря эффекту Мейснера, кабель будет центрирован внутри тора под действием магнитного поля, что позволит сохранить трение на минимальном уровне.

В реальности никакие подшипники не бывают ни абсолютно прочными, ни лишенными трения. Даже с учетом преимуществ сверхпроводимости, для обеспечения которой потребуется тепловой экран с функцией охлаждения, а также в условиях высокого вакуума ожидается, что в конструкции ССВ будут доминировать диссипативные потери кинетической энергии.

Можно спроектировать такое кольцо, диссипативные потери в котором будут достаточно медленными, чтобы обеспечить всей конструкции долгий срок службы до разрушения как в большинстве искусственных спутников, для работы которых требуются двигатели, удерживающие аппарат на орбите, обладающие ограниченным запасом топлива. Правда, более вероятно, что в конструкции такого кольца будут предусмотрены активные механизмы компенсации диссипативных потерь. Пример со сверхпроводящим кабелем внутри тора не слишком практичен с точки зрения подзарядки магнитного поля кабеля или раскручивания его. Более практична могла бы быть модель, устроенная по принципу поезда-маглева с возможностью задействовать крутящий момент и слегка корректировать положения осей между составляющими A и B соосного симметричного волчка. Такая система потребовала бы энергетической подпитки, но это не проблема, учитывая размеры кольца. Так, можно представить кольцо с окружностью 100 км, расположенное на расстоянии 1 а.е. от Солнца. Если его эффективное сечение составит 1 м и будет покрыто солнечными батареями с КПД 10%, то такое кольцо сможет генерировать около 10 МВ энергии. Для сравнения: окружность Земли составляет примерно 40000 км, поэтому орбитальное кольцо с окружностью 100 км будет относительно невелико.

Кроме чисто энергетических возможностей применения такого кольца предлагается использовать его, например, для генерации искусственного магнитного поля.

В качестве альтернативы подобного проекта в другом источнике предлагается стационарный солнечный парус или спутник для сбора солнечного ветра. Впрочем, авторы отмечают, что энергетическая полезность подобного спутника, равно как и энергетическая ценность солнечного ветра сравнительно низки.

Столь обширный пример приведен здесь в качестве иллюстрации развития астроинженерных идей, которые, однако, легко прослеживаются от сферы Дайсона. Принципиальное назначение таких структур аккумуляция солнечной энергии и попытки ее масштабного практического применения.

Рой Дайсона

Отметим важную идею из предыдущего раздела: функционал сферы Дайсона может быть реализован при помощи совокупности орбитальных аппаратов, которые могут решать энергетические задачи не хуже системы колец. Такая концепция получила название Рой Дайсона. Фактически, в большинстве теоретических построений рой Дайсона представляют, как массив микроспутников, оборудованных солнечными панелями и собирающими солнечную энергию. Предполагается, что для этой цели такой рой должен располагаться как можно ближе к Солнцу, лучше всего на орбите Меркурия. Причем, Меркурий кажется достаточно необычной планетой, так как представляет собой очень плотное и компактное тело, богатое железом. Поэтому элементы роя Дайсона можно было бы автоматически собирать прямо из пород Меркурия и строить рой на орбите Меркурия. Согласно некоторым расчетам, сам Меркурий при этом не сошел бы с орбиты и остался цельным, даже если употребить на изготовление роя Дайсона до половины меркурианской массы. Однако подобный проект сопряжен с множеством практических проблем, и вот лишь некоторые из них:

1. Для прицельного запуска первого комплекта роботов-сборщиков в район Меркурия требуется значительно больше энергии, чем для запуска корабля в направлении к границам Солнечной системы, поскольку во втором случае необходим лишь небольшой толчок, а далее корабль может держать скорость, пользуясь гравитацией других планет для разгона. При запуске корабля к Солнцу необходимо не дать занять ему не ту околосолнечную орбиту, то есть, преодолевать гравитационное воздействие Солнца, что значительно сложнее.

2. Рой Дайсона может заслонить Солнце, что привело бы к значительным изменениям климата на Земле, вплоть до катастрофического похолодания.

3. Столкновение двух спутников в рое может привести к дальнейшим обвальным столкновениям, что быстро выведет значительную часть спутников из строя. Причем, спровоцировать такое столкновение может даже небольшое возмущение на Солнце.

4. Полученную энергию необходимо передавать на Землю, и стоимость такой передачи может оказаться непозволительно дорогой.

При обоснованности всех подобных возражений нельзя не упомянуть еще более фантастическую идею, изложенную в статье 2020 года. Действительно, элементы роя Дайсона должны быть более умными машинами, чем современные микроспутники, оборудованные солнечными панелями. В таком качестве подошли бы зонды фон Неймана, которые могли бы образовывать нейронную сеть. В таком случае они бы не только корректировали собственные траектории, избегая столкновений, но и оставались бы на нужных орбитах. Кроме того, с учетом саморепликации как важнейшей черты зондов фон Неймана, эти машины могут самостоятельно собраться в практически сплошную сферу, подобную сфере Дайсона и самостоятельно ее стабилизировать, поскольку такая сфера не будет монолитной. Автор статьи обоснованно отмечает и экологическую опасность, вернее, заразность подобного роя поэтому допускает, что засеивать зондами фон Неймана собственную звездную систему может быть опасно, а подобный энергетический проект на территории близлежащей необитаемой звездной системы (которая в данном случае становится источником энергии для цивилизации III типа по шкале Кардашёва) сценарий абсолютно гипотетический.

Здесь отметим, что дешевые аналоги сферы Дайсона и анализ связанных с ними проблем вновь подводят нас к идее, что именно полноценная сфера, либо решетчатая система пересекающихся колец наиболее практичные и безопасные проекты такого рода. Рассмотрим, из чего же может быть сделана такая сфера, а также каковы ее ожидаемые физические характеристики.

Физические характеристики сферы Дайсона

Одной из наиболее удивительных геометрических идей, описывающих микроструктуру сферы Дайсона, мне кажется использование девятиугольных антипризм, нарочито раскритикованное автором в этой статье. Он говорит, что инопланетяне просто засмеяли бы нас, если бы обнаружили вокруг Солнца мегаструктуру со столь примитивной симметрией. Тем не менее, визуализация, которую я размещу ниже, позволяет оценить модульность получающейся структуры и, следовательно, ее устойчивость и удобство ремонта. Анимацию смотрите здесь и здесь.

В качестве другой устойчивой конфигурации для сферы Дайсона может быть выбран филлотаксис.

В этой модели синим цветом обозначены пятиугольники, красным шестиугольники и зеленым семиугольники. Структура филлотаксиса реализована в природе при расположении семечек подсолнуха в венчике и получается наложением решетки Фибоначчи на сферу. Она описывает оптимальное расположение ближайших соседей что принципиально важно в нашем случае, учитывая, что мы собираем сферу Дайсона из плотно прилегающих друг к другу сменных модулей. Подробнее об этой дивной геометрической структуре также рекомендую почитать на Хабре.

Приведу некоторые расчеты, найденные в этом источнике, связанные с прочностью и изготовлением сферы Дайсона.

Если сфера состоит из стали и имеет радиус в 1 а.е (принято выбирать именно эту величину, что, однако, необязательно ведь чем обширнее сфера, тем менее прочен может быть материал, из которого она состоит), получим давление в 3,5 ТПа, что в девять раз больше давления в центре Земли и в семь раз больше давления, которое удавалось поддерживать в лабораторных условиях. Эти показатели во много раз превосходят прочность стали, которая, в зависимости от сорта, может выдерживать давление порядка сотен мегапаскалей. Это в десятки тысяч раз меньше, чем необходимо для стабилизации сферы Дайсона.

Есть два варианта снизить прочностные требования к монолитной сфере Дайсона. Так, если изготовить ее из легчайшего твердого материала, известного человечеству углеродной нанопены, то приемлемый уровень давления снижается до 0,28 ТПа, что по-прежнему намного превосходит наши технические возможности. С другой стороны, если удвоить размеры сферы, то и этот критический показатель снизится еще вдвое. В таком случае возникает вопрос, где взять столько материала на изготовление сферы.

Заключение

Завершая эту статью, предположу, что конструкция сферы Дайсона и целесообразность ее возведения во многом зависят от трех факторов:

1. Физические характеристики звезды и планетной системы, где возводится сфера. Кстати, существуют исследования, авторы которых предполагают искать сферы Дайсона вокруг белых карликов.

2. Назначение сферы Дайсона энергетическое (колоссальная солнечная электростанция) или жизненное пространство (заселение внутренней поверхности сферы). Чисто энергетическое назначение представляется более реалистичным.

3.Степень сложности и интеллектуальности отдельных модулей сферы Дайсона. Возможно, рой зондов фон Неймана вполне мог бы сам собирать сферу Дайсона из частиц этого же роя при условии, что сами роботы состояли бы из подходящего материала, например, углеродной нанопены, а также имели выверенный жизненный цикл отработав положенный срок, разбирались бы другими роботами на материал, который идет на строительство или ремонт сферы.


Подробнее..

TSMC яркий пример успеха в мире ИТ, проект Госдепа, продукт неотвратимой глобализации?

22.04.2021 22:14:44 | Автор: admin

TSMC - эта не слишком милозвучная аббревиатура от Taiwan Semiconductor Manufacturing Company, в современном мире стала синонимом феноменального успеха. На данный момент тайваньская компания обрела статус одного из наибольших мировых производителей полупроводниковой продукции, а в некоторых сегментах этой индустрии она и вообще вошла в положение монополиста. Занимая второе место по годовой выручке среди конкурентов является весьма удивительным фактом, что TSMC вполне сознательно сконцентрировалась исключительно на производстве полупроводниковых пластин - в мире просто не существует процессоров, модулей памяти под маркой TSMC. С чем это связано? Может быть и с самим неопределенным статусом острова, который является убежищем для непризнанной Китайской Республики - Тайвань. Каким вообще образом в 1987 году удалось основателю компании Морису Чангу - гражданину США, создать будущего лидера в самой передовой сфере ИТ производства на отсталом технологически, удаленном от центров цивилизации острове? О прошлом, настоящем и о том, что ожидает в будущем такую далеко не тривиальную компанию как TSMC и пойдет далее речь в статье.

Основатель

Очень часто невозможно понять современного положения вещей не уделив внимание исторической ретроспективе вопроса. То в каком состоянии пребывает нынешнее мировое производство полупроводниковой продукции неразрывно связано с такой неординарной личностью как Морис Чанг. Основатель и многолетний руководитель TSMC имеет весьма не заурядную биографию. Судьба этнического китайца Мориса, рожденного в Китае образца 1931 года, была крепко переплетена с судьбой всего Китая. Данное ребенку при рождении европейское имя Морис стало следствием того, что город Нинбо, в администрации которого его отец состоял на службе, являлся одним из 5 китайских "свободных" портов, где активно жили и работали европейские торговцы. Получив достаточно качественное начальное образование на английском языке в дальнейшем молодой китайский иммигрант сможет получить высшее образование в лучшем техническом учебном заведении США - МТИ (Массачусетский Технологический Институт). К иммиграции с родины молодого и перспективного китайца подтолкнули те бурные события которые неистово лихорадили всю юго-восточную Азию. Ряд китайских революций, японская оккупация, в 1949 году окончательное поражение коммунистам Мао националистического правительства Гоминьдана - в рядах которого молодой человек принимал участие, с одной стороны не оставляли Морису ничего другого как бежать из континентального Китая, с другой стороны сделает возможным его возвращение на Тайвань в 1985 году, где ему всего через два года будет суждено основать одного известного ИТ-гиганта.

Для понимание того, кто через 36 лет пребывания в США вернулся на Тайвань можно лишь глянуть на послужной список гражданина США Мориса Чанга.

Поучив в 1953 году диплом магистра Морис попробовал пойти далее по научной стезе, однако защитить докторскую диссертацию ему тогда было не суждено. В 1955 году году он устраивается в небольшую производственную компанию, в подразделение занимающееся полупроводниками. Было ли это предвидение молодого специалиста или просто случай неизвестно, но данное направление в технике теперь будет сопровождать Мориса всю его сознательную жизнь.

В 1954 году в США произошло довольно знаковое, однако малозаметное событие. Компанией Texas Instrumentsвпервые был налажен серийный выпуск транзисторов. Уникальность этого события для широких масс была несколько размыта поскольку сам принцип заложенный в радиодеталь давно уже не был новинкой. Существующие вакуумные лампы были куда надежнее предлагаемых до этого момента исследовательскими институтами "трехлапых монстров", откровенно говоря не обладающих достаточной стабильность в работе. Однако, настоящие специалисты понимали, что именно реализация подхода заложенного в работу транзистора пророчила ему самое светлое будущее. Миниатюризация печатных плат, колоссальное уменьшение электропотребления электроцепями, низкая цена в производстве все это должно было завоевать мир.

В 1958 году один из сотрудников Тexas Instruments создает и патентует первую в мире интегральную микросхему, в этом же году в компанию устраивается и Морис Чанг. Это было крайне удачное решение, ведь набирающей интенсивно обороты компании в самом скором будущем суждено будет стать самым крупным производителем полупроводниковой продукции в мире. В условиях отсутствия заслуженных авторитетов на ниве передовых технологий, хорошо образованный молодой китайский эмигрант с реальным производственным опытом в полупроводниковой тематике уже в 1961 году занимает весьма высокий пост начальника инженерного отдела. Отдав 25 лет жизни своему работодателю - Texas Instruments, Морис прошел практически все ступени карьерного роста. Вице-президент по внешнеэкономической деятельности - пост с которого в 1983 году Морис покинул Texas Instruments.

Возвращение в 1985 году на Тайвань весьма молодого - 54 летнего, человека с таким столь уникальным опытом не было случайным. Еще в конце 70х, США несколько изменила свою концепцию по продвижению своих интересов в юго-восточной Азии. Всесторонне разобрав ситуацию с поражением во Вьетнамской войне, правительство США решило сделать ставку, в первую очередь, на усиление экономических связей со своими союзниками в регионе. В рамках этой программы предполагался массовый перенос трудозатратных производств из самого США в страны с куда более дешевой рабочей силой. Это должно было дать обоюдовыгодный эффект. Япония, Филиппины, Южная Корея, Тайвань, Сингапур это те основные бенефициары проводимой политики США, что сейчас носят гордое название азиатских тигров. Под чутким руководством Мориса Чанга тайваньским китайцам - дисциплинированным и трудолюбивым, только-что оторваны от сохи, в этом новом мире суждено было занять свою новую высокотехнологическую нишу.

Корпорация TSMC

К слову, под управлением несменного лидера Мориса Чанга TSMC пробыла 31 год, основатель корпорации отошел от дел только в 2018 году, отдав ей 31 год своей жизни. Под его руководством компания стала знаковой не только для Тайвани, а и для всего мира. Что бы понять, что из себя сейчас представляет TSMC нужно взглянуть всего на несколько графиков. Главным из которых является конечно же уровень прибыли.

На рынке контрактных производителей полупроводниковой продукции TSMC с общей долей в 60% является безусловным лидером. Что же касается особо передового направления в производстве полупроводниковых пластин диапазона 5-32 нм, тут компания удовлетворила мировой спрос своей продукцией на 80% . Прибыль компании исчисляется миллиардами.

Если рассмотреть более детально структуру заработка самой TSMС по конкретному техпроцессу, то можно увидеть, что основная прибыль идет с наиболее продвинутых производств реализованных на уровне 5-7 нм техпроцесса.

Рассматривая исключительно техпроцесс не всегда понятно что за ним скрывается в мире реальных гаджетов. Но и тут отчет от TSMС поможет пролить свет на положение вещей. Более половины выпущенной компанией продукции устанавливается в смартфоны, треть станет основой для высоко производительных систем.

На сколько такая ситуация стала уникальной для TSMС? Да в общем не особо. За последние шесть лет структура прибыли у компании существенно не меняется. Наиболее прогрессивные технологии приносят около 50% заработка. Столь занятное распределение прибылей дает понимание того, что именно делает TSMС лидером среди контрактных производителей полупроводниковой продукции - интенсивное внедрение передовых технологий.

Но картина мира TSMС была бы не достаточно ясна, если бы не еще одна диаграмма. Поскольку компания весьма открытая ее регулярные статистические отчеты касаются самого разного спектра деятельности, в том числе и распределение получаемой прибыли в зависимости от реализации продукции в конкретном регионов мира. Это может и весьма удивительный факт, однако в 2020 году 75% выручки компании принес рынок Северной Америки. Торговля с КНР всего-навсего на уровне 6%. Торговля полупроводниковой продукцией с КНР резко упала в 2020 году как результат введенных против Поднебесной санкций со стороны США, но даже в досанкционный 2019 год эта цифра колебалась в районе 10%. Фактически, если пристально рассмотреть всю географию поставок продукции становится понятным - TSMС целиком и полностью зависит от потребителей в США как и ее международных партнеров.

Полупроводниковый полуфабрикат

Мы с вами много сказали про достижения TSMС и увидели множество красочных цифр, однако есть один существенный нюанс. Форма бизнеса которую ведет компания не предполагает выпуск собственного завершенного продукта будь то процессоры, модули памяти, SoC и тд. Как мы уже вспоминали TSMС стала самым крупным контрактным производителем полупроводников размещая на своих производственных мощностях заказы таких компаний как Apple, Qualcomm,Nvidia, AMD,MarvellBroadcom, MediaTek, Huawei и даже могущественной Intel. Однако в мире готовых решений ее доля не столь значительна.

Как видно на диаграмме розовая TSMС занимается исключительно "литьем" полупроводниковых пластин. В тоже время зеленые Intel и Samsung обладают полным циклом разработки, производства и реализации процессоров. Голубым цветом обозначены компании не обладающие своим производством полупроводников. Желтые же это исключительно поставщики производственного оборудования Как видно на диаграмме розовая TSMС занимается исключительно "литьем" полупроводниковых пластин. В тоже время зеленые Intel и Samsung обладают полным циклом разработки, производства и реализации процессоров. Голубым цветом обозначены компании не обладающие своим производством полупроводников. Желтые же это исключительно поставщики производственного оборудования

Для мира процессоров тайваньская TSMС хотя и является существенным фактором, но далеко не главным. И тут разговор идет уже не об объемах получаемой прибыли, а о завершенных технологических цепочках. Компания TSMС не обладает полным циклом производства полупроводниковой продукции, даже учитывая ее глубокое партнерство с AMD и Apple. Возникает вполне законный вопрос а кто ж тогда обладает? Обладают им Intel и Samsung, Texas Instruments и Broadcom, но и тут вопрос не такой простой как могло бы показаться. Кроме разработки архитектуры процессоров, коей занимается достаточное количество организаций, в производстве "чипов" ключевую роль играет создание тех самых полупроводниковых пластин, а в особенности оборудования на котором они будут создаваться.

Обозначенные желтым цветом компании это и есть производители оборудования. При казалось бы достаточном количестве предприятий - Applied Materials, ASML, Tokyo Elektron, Lam Reasearch, KLA, говорить о широком выборе оборудования все равно не приходится. Проблема с производителями этого оборудования состоит в том, что наиболее востребованная полупроводниковая продукция та которая обладает максимальным количеством транзисторов на квадратный дюйм, а в этом сегменте конкуренция у компаний уже весьма условна.

Та самая единственная в мире установка фотолитографии в EUV от ASML для производства полупроводниковых пластин по технологическому процессу 5 нмТа самая единственная в мире установка фотолитографии в EUV от ASML для производства полупроводниковых пластин по технологическому процессу 5 нм

Фактически в мире есть лишь одна компания готовая поставлять оборудование для производства полупроводников по 5 нм технологии и это Нидерландская ASML. Именно это оборудование и использует TSMС в производстве своей 5-7 нм продукции, также как собственно и корпорация Samsung. В тоже время Intel утверждает, что ее собственные разработки на основе оборудования от Applied Materials достаточно прогрессивны и дают возможность создавать на полупроводниковых пластинках, произведенных с использованием 7-10 нм техпроцесса, плотность транзисторов аналогичную плотности на пластинах произведенным TSMС с 5-7 нм.

Размытое будущее в едином фарватере

Столкнувшись с необходимостью покупки какого-то новомодного девайса рядовой потребитель зачастую впадает в ступор. Одолеваемый терзаниями выбора он рыщет по просторам интернета в поисках детальных характеристик, подробных обзоров, сравнительных анализов. В поисках ответов нарываясь в сети на бескомпромиссные дискуссии сторонников Samsung и приверженцев Apple, поклонников красных и любителей синих часто вообще теряется логическая нить происходящего. Однако, сняв всю эту цветовую мишуру и оторвав лейбл, не редко можно заметить, что все эти суровые в мире маркетинга конкуренты произведены на одних заводах, одним оборудованием, по весьма схожим технологиям.

Естественно глупо утверждать, что iPhone 12 и Samsung Galaxy S21 одинаковые аппараты, но также не разумно искать в них большие отличия. В современном мире все переплелось. Sony завалила весь мир встраиваемыми в смартфон камерами, Samsung стал абсолютным монополистом в производстве высококачественных экранов на базе OLED матриц, Qualcomm безусловный лидер в создании модулей связи 5G.

"Я беру камень и отсекаю всё лишнее" - Микеланджело Буонарроти в ответ на вопрос: Как вы делаете свои скульптуры?"Я беру камень и отсекаю всё лишнее" - Микеланджело Буонарроти в ответ на вопрос: Как вы делаете свои скульптуры?

Конечно, конкуренция на рынке полупроводников все еще присутствует, о чем хотя бы свидетельствуют потуги корпорации Apple захватить мир с помощью своих АРМ процессоров серии А и М. Intel также не стоит в стороне и хотя уже крепко сотрудничает и сейчас с TSMС, также как и всерьез рассматривает возможность перенести часть производства своих процессоров на фабрики TSMС, но все еще не отказывается от продвижения собственных технологий и очевидно будет их развивать.

В свете таких радужных перспектив для TSMС стоит ли от нее, как независимой компании, ожидать выхода на качественно новый уровень своего развития, что она вложится в свою раскрутку и обзаведется собственной линейкой процессоров, модулей памяти или вообще смартфонов? Очевидно нет. Угрожает ли бизнесу TSMС новый политический тренд в США по возврата производственных мощностей из за границы назад в страну? Скорее всего так же нет, ведь фактически азиатские партнеры настолько сильно завязаны с США технологически, экономически, политически, по линии военной помощи, что называть их в полной мере заграницей американцы могут весьма формально. Что касается непосредственно Тайваня то и подавно, без всеобъемлющей протекции со стороны США остров уже давным бы давно утратил свою независимость.

Все, что мы сейчас вообще наблюдаем в мире полупроводниковой продукции укладывается в единый фарватер планомерного, поступательного движения вперед. Сложность технологического прогресса породила необходимость объединения воедино разбросанных по всему миру разработчиков, производителей, рынков сбыта, маркетологов. Главную скрипку в этом глобализационном процессе сейчас естественно играет США, как собственно это всегда и было в сфере микроэлектроники.

На этом фоне было бы интересно сказать что-то про действительно независимых новаторов производителей полупроводниковой продукции, но действительность такова, что их просто нет. Оценивая те грандиозные финансовые вливания, что осуществляют в развитие и производство полупроводников компаниями Intel, Apple, Samsung, ASML, TSMС и тд. говорить о появлении даже в среднесрочной перспективе некого нового игрока также не приходится. Даже "всесильный" Китай, фактически, не обладает собственным полным циклом производства современных полупроводниковых пластин. Наиболее совершенным производством подобной продукции в континентальном Китае является компания SMIC ( Semiconductor Manufacturing International Corporation ), но и она готовится приступить к выпуску пластин по 7 нм техпроцессу исключительно на оборудовании от ASML и в этом свете любой сбой в технологической цепочке, благодаря тем же грозящим санкциям, может откинуть КНР в технологиях производства назад на целые десятилетия. Ежегодно инвестировать сотни миллиардов на протяжении десятилетий без гарантий ожидаемого результата - ноша довольно тяжелая и наверно не так уж и нужная. Хорошо ли сложившееся положение вещей или не очень? Этот вопрос не имеет смысла, ведь это действительность в которой мы будем жить еще весьма долго.

Если кто-то в серьез задался поставленным в самом начале статьи вопросом и по какой либо причине все еще не нашел на него ответа, можно лишь коротко подытожить - всего по чуть-чуть.

Немного рекламы

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 - 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB - от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Подробнее..

Объединение отрицательно заряженных частиц за счет фотонов

26.08.2020 10:09:33 | Автор: admin


Противоположности притягиваются. Этот житейский принцип, касающийся отношений между людьми, далеко не всегда соответствует действительности. Но в физике все так, как говорится: противоположные электрические заряды, к примеру, всегда притягиваются, а сходные отталкиваются. Этот принцип стар, как сам мир, но и его можно подвергнуть некой модификации, если применить другие физические законы и явления. Группа ученых из Саутгемптонского университета (Великобритания) провели исследование, в котором им удалось создать новый тип материала, названный фотонно-связанный экситон. Самый смак заключается в том, что фотоны стали связующим звеном между отрицательно заряженными электронами, которые по логике должны были отталкиваться. Как именно были использованы фотоны, какие особенности изобретенного атома, и в каких областях может использоваться данная разработка? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


Как мы уже вспомнили, одноименные заряды (т.е. одинаковые: ++ или -) должны отталкиваться друг от друга, а разноименные (т.е. противоположные: +- / -+) притягиваться. Однако картина такого взаимодействия меняется, если добавить щепотку фотонов, т.е. частиц света. В таком случае добавляется влияние фотоэффекта взаимодействия света и материи, когда энергия фотонов передается материи.

В данном труде ученые создали наноустройство, которое захватывает электроны в наноразмерные квантовые ямы*. Если же фотоны вносят в устройство достаточно много энергии, то это приводит к выходу из ямы электронов. Разместив данное устройство между двумя золотыми зеркалами, можно поймать фотоны в ловушку. За счет этого энергия фотонов будет сфокусирована на электроны, усиливая взаимодействие между светом и материей. Добавление зеркал привело к тому, что отрицательно заряженные электроны оставались в яме (без зеркал фотоны вытесняли их из ямы) и начинали связываться друг с другом.
Квантовая яма* потенциальная яма, ограничивающая подвижность частиц с трех до двух измерений (т.е. частицы начинают двигаться в плоском слое).
Важнейшую роль в работоспособности всей системы, естественно, играют вышеописанные квантовые ямы (QW от quantum well). По словам ученых, на то есть ряд причин.

Во-первых, QW позволяют достичь большей силы связи между светом и материей, которую можно регулировать за счет изменения электронной плотности* в QW.
Электронная плотность* в квантовой механике мера вероятности того, что электрон займет бесконечно малый элемент пространства, окружающего любую условную точку.
Во-вторых, квантовые ямы можно сделать достаточно узкими, что позволит получить одну локализованную электронную подзону, которая не будет иметь никаких межподзонных переходов.

В-третьих, в подобной системе кулоновское взаимодействие не создает связанных состояний.

Из последних двух пунктов следует, что чистые квантовые ямы без окружающего фотонного резонатора вообще не представляют какого-либо дискретного резонанса, а только полосу непрерывного поглощения на частотах, превышающих порог ионизации.

Отсутствие кулоновского взаимодействия обосновано квазипараллельной дисперсией двух электронных подзон, что приводит к отталкивающему электронно-дырочному взаимодействию*.
Электронно-дырочное взаимодействие* (p-n взаимодействие) область соприкосновения двух частиц с разными типами проводимости дырочной (p от positive положительная) и электронной (n от negative отрицательная).
Это сильно отличается от случаев межзонных переходов на более коротких длинах волн, где электронно-дырочное взаимодействие является притягивающим и приводит к созданию узких резонансов вне электронно-дырочного континуума в отсутствие поляритонных эффектов.

Таким образом, формирование поляритонов* может изменять существующие резонансы, но не приводит к созданию новых локализованных электронных резонансов.
Поляритон* частица, являющаяся результатом взаимодействия фотона и возбуждений среды (оптические фононы, экситоны, плазмоны, магноны и т.д.).



Изображение 1: Кулоновский эффект в легированных и нелегированных квантовых ямах. межзонное поглощение нелегированной полупроводниковой квантовой ямы, в котором преобладает экситонный резонанс (EX) ниже энергии запрещенной зоны (EG) и электронно-дырочный континуум над ним; 1b стандартное электронно-дырочное картирование, позволяющее описать одиночную электронную вакансию в валентной зоне как дырку с положительным зарядом и массой; межподзонное поглощение легированной квантовой ямы, содержащей только одно локализованное состояние, и континуум состояний выше первой энергии ионизации квантовой ямы (EI); 1d первоначально заполненная подзона электронов имеет положительную эффективную массу, а электрон-дырочное картирование приводит к положительно заряженной дырке с отрицательной эффективной массой.

Изображения выше являются схемой вышеописанного явления. В случае межзонных переходов в нелегированных квантовых ямах участвующие в переходе электроны изначально занимают валентную зону с отрицательной эффективной массой. Однако в случае межподзонных переходов в легированных квантовых ямах ту же роль играет первая частично заполненная подзона проводимости, имеющая положительную эффективную массу*. При обычном электронно-дырочном картировании это приводит к положительно заряженной дырке с отрицательной эффективной массой.
Эффективная масса* величина, имеющая размерность массы и применяемая для описания движения частицы в периодическом потенциале кристалла.
Эффективная масса электронов в возбужденной подзоне m2 в квантовых ямах GaAs больше массы в первой подзоне m1. Это приводит к отрицательно сниженной массе межподзонной электронно-дырочной пары mr-1 = m2-1 m1-1.

При наличии любого притягивающего потенциала двух тел отрицательная масса приводит к отталкивающему электронно-дырочному взаимодействию, которое, в свою очередь, не может создавать связанные состояния.

Для практического подтверждения наличия связанных состояний, опосредованных фотонами, была создана система, состоящая из 13 квантовых ям GaAs / AlGaAs, встроенных в узкие решетчатые золотые микрополостные резонаторы.


Изображение 2: схема экспериментальной установки. распределение компоненты электрического поля, ортогональной металлическим слоям, для одного периода (D) структуры и для моды TM02 ленточного резонатора; 2b микроскопия набора образцов; экспериментальная установка, используемая для измерений отражательной способности (микроскоп среднего инфракрасного диапазона, подключенный к Фурье-ИК-спектроскопу.

Резонаторы представляют собой одномерные ленты, а электромагнитное поле (схема на ) почти полностью удерживается под металлическими штифтами.

Размеры квантовых ям были достаточно тонкими, чтобы была лишь одна захваченная подзона проводимости, поскольку наличие второй подзоны привело бы к созданию межподзонных поляритонов.

Если бы было две подзоны, то наличие перехода типа связь-связь привело бы к насыщению имеющейся силы осциллятора, что привело бы к подавлению связь-континуумного перехода, который и должен изучаться в данном тесте.

Для проверки этого важного параметра было изготовлено два образца HM4229 и HM4230, различающиеся шириной квантовой ямы и легированием. Образец HM4229 содержал квантовые ямы GaAs толщиной 4 нм (с шириной LQW = 4 нм), каждая из которых легирована с плотностью 5 х 1012 см-2. А образец HM4230 содержал квантовые ямы (LQW = 3.5 нм), легированные при 4.77 х 1012 см-2.


Изображение 3: связь-континуумный характер оптического перехода в чистых QW без окружающего фотонного резонатора. измерение пропускания при 300 K для образцов с QW разной ширины LQW; 3b-3e схемы связь-связь (3b и 3c) и связь-континуумных переходов (3d и 3e) в легированных квантовых ямах.
Переход связь-связь* изменение энергии электрона внутри атома или, реже, внутри молекулы, при котором электрон остается прикрепленным (связанным) к атому или молекуле как до, так и после изменения.

Связь-континуумный переход* (переход связь-континуум) возбуждают носителей в токопроводящие состояния континуума и позволяют использовать перпендикулярный транспорт (носители, движущиеся через переход).
(Infrared absorption of multiple quantum wells: bound to continuum transitions)
На схемах 3b- видно, что переходы разных типов (связь-связь и связь-континуум) в разных одночастичных состояниях QW потенциала претерпевают противоположные частотные сдвиги при уменьшении LQW: у первых возникает синее смещение*, у вторых красное смещение*.
Синее смещение* явление, когда уменьшается длина волны излучения, а частота увеличивается.

Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
Это позволило оценить природу оптического перехода за счет анализа спектра пропускания двух образцов до применения золота ().

Здесь наблюдается очень широкое поглощение, которое (будучи поперечной магнитной поляризацией) связано с легированными квантовыми ямами. Также наблюдается и более узкая область около 140 мэВ, которая является краем континуума. Ученые отмечают, что данная функция не приводит к синему смещению при уменьшении LQW, а показывает перенос спектрального веса в красную часть спектра. Связь-связь переход в таком случае привело бы к синему смещению порядка десятков миллиэлектронвольт, доказывая привязанный к континууму характер переходов в чистых QW.

Как уже упоминалось ранее, все образцы были изготовлены в рамках решетки металл-полупроводник-металл и металлических штифтов с шириной р ( и 2b). Поскольку электромагнитное поле чрезвычайно локализовано под металлическими пальцами, система по существу ведет себя как резонатор ФабриПеро*.
Резонатор ФабриПеро* оптический резонатор, в котором параллельно расположенные зеркала направлены друг на друга. Между этими зеркалами может формироваться резонансная стоячая оптическая волна.
Было изготовлено несколько устройств на основе решеток площадью 200 х 200 мкм с шагом в диапазоне от 800 нм до 5 мкм, что позволяет охватить широкий диапазон частот (2b). Данные по отражательной способности были получены для каждого устройства при температуре 78 К посредством Фурье-ИК-спектроскопа, оснащенного очень компактным криостатом (2c).


Изображение 4: экспериментальные данные по отражательной способности. данные по отражательной способности легированного образца HM4229 в зависимости от частоты резонатора; 4b данные отражательной способности для HM4229 (красный) и чистого резонатора (зеленый) для частот с = 157.8 мэВ (сплошные линии), с = 147 мэВ (пунктирные линии) и с = 141.5 мэВ (штрихпунктирные линии); ширина линий для различных колебаний как функция энергии колебаний.

Результаты данного анализа представлены на графиках выше. На представлена карта отражательной способности образца HM4229 при 78 К как функция частоты чистого резонатора. Если выше порога ионизации (показан черной горизонтальной пунктирной линией) наблюдается континуум поглощения, то ниже появляется узкий поляритонный резонанс. Он сдвинут в красную сторону более чем на 20 мэВ по отношению к чистому резонатору.

На цветовую карту были нанесены пиковые частоты, полученные с помощью множественной аппроксимации данных методом Лоренца. Красные треугольники и синие квадраты отображают соответственно частоты ниже и выше идентифицированного порога ионизации. Для сравнения зелеными кругами отмечена частота чистого резонатора, измеренная на нелегированном образце.

Ниже порога ионизации время жизни дискретной поляритонной моды в основном ограничивается временем жизни резонатора. Выше заметен спектр связь-континуум, в котором можно идентифицировать только очень расширенные и неопределенные особенности.

Сравнение спектров легированных и нелегированных образцов показало, что в легированном образце возникает дискретный резонанс ниже края континуума, тогда как в идентичном, но электромагнитно несвязанном образце его нет.

Подобное гибридное дискретное состояние можно описать как поляритон, плотность электронов которого относительно основного состояния равна:
N(z) = P [|e(z)|2 |g(z)|2]
где Р (в диапазоне 01) вес поляритонного компонента материи; g(z) нормированная волновая функция электрона в его основном состоянии; e(z) волновая функция локализованного электронного состояния, порожденного взаимодействием света и материи.


Изображение 5: расчеты P. собственные моды, полученные с помощью теоретической модели с параметрами, выбранными для соответствия экспериментальным данным отражательной способности на цветовой карте; 5b параметры, извлеченные из 5a, которые используются для расчета P для дискретной поляритонной моды.

На визуально отображен результат использования теоретической модели для моделирования наблюдаемого спектра отражательной способности и сравнения его с экспериментальными данными. Эти параметры позволили рассчитать Р (5b).

Из этого модели следует, что дискретный резонанс ниже порога ионизации четко определяется для ненулевых значений P, демонстрируя существенное заполнение генерируемой светом электронной волновой функции e(z).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Данный эксперимент позволил продемонстрировать возможность связывания ионизирующего перехода с фотонным резонатором, что приводит к непертурбативной модификации электронной структуры системы.

В результате получается гибридное поляритонное возбуждение, материальная составляющая которого представляет собой связанное состояние, порожденное взаимодействием света и материи, состоящего из электрона и дырки, удерживаемых вместе благодаря их взаимодействию с поперечным электромагнитным полем.

Как заявляют ученые, возможность настраивать свойства материала за счет связи с фотонным полем микрорезонатора является крайне перспективным направлением.

В данном труде они смогли создать устройство, ограниченное с двух сторон золотыми зеркалами, которые улавливали фотоны и фокусировали световую энергию на электроны, что резко усиливало связь между светом и материей. В ходе экспериментов было замечено, что отрицательно заряженный электрон, выброшенный фотоном, остается в ловушке в квантовой яме, связанный с другими отрицательно заряженными электронами. При этом такая конфигурация остается стабильной за счет воздействия фотонов.

Другими словами, данное исследование показывает возможность создания искусственных атомов нового типа, электронные конфигурации которых можно будет настраивать по собственному желанию.

Фотоника является достаточно молодой отраслью науки, но при этом ее влияние с каждым годом растет, что обусловлено подобного рода исследованиями. Свет, как и многие другие явления, можно сравнить с котом Шредингера: с одной стороны все понятно и очевидно, но если копнуть поглубже, то становится очевидна простая истина сколько бы ответов не получал человек, вопросов всегда будет больше. Тем не менее в поисках ответов на вопросы, по крайней мере в науке, важен не столько сам ответ, сколько путь, ведущий к нему.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Математика палитры почему не бывает красного структурного цвета

16.09.2020 10:17:24 | Автор: admin


Многие считают, что основными инструментами художника являются кисточка, мольберт и палитра. Однако это лишь средства, позволяющие использовать истинный инструмент цвет. Наш мир полон красок всех мастей, от огненно-красного до морозно-синего. Цвет предметов и окрас живых организмов является результатом ряда физических и/или химических процессов. Учитывая разнообразие цветов, порой сложно понять разницу в механизмах из происхождения. Ученые из Кембриджского университета решили выяснить, почему структурные цвета, зависящие от наноразмерной архитектуры поверхностей, а не от химических пигментов, не бывают красных оттенков, а лишь синих или реже зеленых. В чем секрет такого цветового ограничения и как именно удалось установить истину? Пролить свет на эти вопросы нам поможет доклад ученых. Поехали.

Основа исследования



Примеры структурных цветов в природе: А гибискус тройчатый (Hibiscus trionum); В жук тамамуси (Chrysochroa fulgidissima); С бабочка вида Morpho rhetenor; D комар обыкновенный (Culex pipiens); Е морская мышь (Aphrodita aculeata); F жук вида Pachyrhynchus argus; G бабочка вида Parides sesostris

Структурный цвет является результатом интерференции света, который рассеивается наноразмерными непоглощающими элементами поверхности. Это более физический процесс, нежели химический, как в случае с пигментацией, где цвет зависит от избирательного поглощения по длине волны.

У структурных цветов имеется множество преимуществ по сравнению с пигментными:

  • не обесцвечиваются, так как цветообразование определяется архитектурой, а не составом;
  • могут быть изготовлены из экологически чистых материалов;
  • достигают нетрадиционных цветовых эффектов, от яркого металлического до изотропного оптического отклика.


Изображение 1

Учитывая положительные свойства структурных цветов, было разработано множество методик по их воссозданию, а точнее методик создания иерархических структур или структур ближнего упорядочения с независимыми от угла цветами. Результатом таких разработок стало фотонное стекло (PG от photonic glass), которое имеет биологический эквивалент в виде оперения многих птиц (изображение выше).

Нюанс в том, что в природе структурные цвета бывают лишь синих оттенков. Красные и зеленые цвета, как правило, достигаются с помощью структур с дальним упорядочением или с использованием пигментации. Конечно, существуют техники, позволяющие создать искусственный структурный красный оттенок. Однако, как заявляют авторы сего труда, оптические свойства у материала такого цвета крайне плохи.

Возникает вопрос можно ли в принципе создать полноценный структурный красный цвет? Дабы ответить на этот вопрос, ученые решили использовать численный подход, который обеспечивает прямой доступ к спектру отражения произвольной структуры и позволяет исследовать промежуточные режимы рассеяния, то есть между однократным рассеянием и диффузионным поведением.

Результаты исследования


Для начала посредством численного алгоритма были созданы варианты фотонного стекла (прямое и инверсивное) с различными свойствами рассеивания и структурной корреляцией (структурным фактором*).
Структурный фактор* математическое описание того, как материал рассеивает падающее излучение.
Следом были проведены расчеты оптических свойств сгенерированных структур с использованием метода конечных разностей во временной области. Созданная модель была намеренно ограничена двумерным пространством, так как подобные структуры чаще всего встречаются в природе (изображение выше). Концентрация внимания на двумерной структуре также позволяет расширить спектр изучаемых параметров, при этом ограничивая вычислительные затраты. Тем не менее ученые уверены, что полученные результаты можно применить и для описания трехмерных структур.

Если поглощение отсутствует, то рассеяние в фотонном стекле возникает в результате взаимодействия между характеристиками индивидуальных частиц (размер, форма и показатель преломления) или за счет взаимодействия между свойствами группы частиц (доля заполнения и структурные корреляции).


Изображение 2

В случае прямых PG в отражении преобладают резонансы Ми*, определяемые свойствами рассеивателя (). Таким образом, отраженный цвет можно изменить на видимый, изменив размеры рассеивателя.
Резонанс Ми* увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы (назван в честь Густава Ми, 1868-1957).
Однако по мере увеличения размера частиц пик резонанса Ми смещается в красную сторону, и второй пик появляется в синей части спектра, что соответствует резонансной моде более высокого порядка. А вот в рассеянии света в инверсивных PG преобладают структурные корреляции (2B). Пик отражения, положение которого хорошо соответствует предсказаниям закона Брэгга*, более выражен, чем в прямых структурах.
Дифракция Брэгга* явление сильного рассеяния волн на периодической решетке рассеивателей при определенных углах падения и длинах волн.

Формула закона Брэгга: n = 2d sin , где d период решетки; угол падения волны; длина волны излучения; n число волн.
Появление отдельного пика в видимом спектре демонстрирует, что использование инверсных PG является эффективной стратегией для минимизации форм-фактора в общем оптическом отклике системы в пользу структурных вкладов.


Зависимость изотропного структурного цвета от показателя преломления для прямого (сверху) и инверсивного (снизу) PG соответственно.

Изменение показателя преломления влияет на взаимосвязь между вкладами формы и структуры. В системах с высоким показателем преломления преобладают резонансы форм-фактора, которые не позволяют им достичь хорошей чистоты цвета в красной области спектра как для прямых, так и для инверсных PG. Для прямых систем, даже когда контраст показателя преломления низкий, резонансы форм-фактора приводят к усиленному отражению на коротковолновой стороне структурного пика. Напротив, в случае инверсивных PG видно, что структурный фактор формирует хорошо разделенный пик в видимом спектре, даже в красной области длин волн.

Из этого следует вывод, что инверсивные PG с низким показателем преломления могут превосходить прямые PG с точки зрения чистоты цвета и насыщенности.


Изображение 3

Уменьшение контраста показателя преломления между матрицей рассеяния (nm) и центрами рассеяния (np) может еще больше способствовать структурному вкладу. На видно, что увеличение np приводит к широкополосному снижению коэффициента отражения и красному смещению структурного пика. Структурный пик уменьшается по ширине и имеет более высокую интенсивность по сравнению с его фоном, что приводит к лучшей чистоте цвета.

Уменьшение контраста показателя преломления снижает роль многократного рассеяния, которое так или иначе присутствует в неупорядоченных системах. Это ограничивает изотропные структурные цвета режимом распространения света между диффузным рассеянием* и баллистическим переносом*.
Диффузное рассеяние* рассеяние, возникающее в результате любого отклонения структуры материала от структуры идеально правильной решетки.
Баллистический перенос* беспрепятственный поток носителей заряда (обычно электронов) или несущих энергию частиц на относительно большие расстояния в материале.
Многократное рассеяние становится преобладающим при увеличении толщины образца, что приводит к широкополосному ненасыщенному отклику.

Соответствующие наблюдения также можно применить и к рассеивателям со сложной геометрией. Как уточняют ученые, в их предыдущих работах была представлена идея использования частиц ядро-оболочка* для разделения вкладов форм-фактора и структурного фактора и достижения отдельного пика в длинноволновой области спектра.
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.
На изображении показано, что уменьшение размера центра рассеяния (ядра) при сохранении длины структурной корреляции приводит к увеличению интенсивности и ширины длинноволнового (структурного) пика. В то же время коротковолновый вклад резонансов Ми смещается в сторону ультрафиолета.

На показано, что пониженный контраст показателя преломления может подавить многократное рассеяние, в то время как разделение вкладов форм-фактора и структурного фактора возможно через частицы ядро-оболочка ().

Объединение обоих методов показано на . Это позволяет получить более высокие значения чистоты и насыщенности цвета за счет хорошо разделенных пиков в длинноволновой части видимого спектра.

На следующем этапе исследования ученые уделили внимание оценке насыщенности и чистоты цвета. Для количественной оценки этих параметров спектры отражения прямых, инверсивных PG и ядер-оболочек были преобразованы в цветовые оттенки. Чистоту цвета можно определить как нормализованное расстояние от белой точки на диаграмме цветности по отношению к красной точке (в случае красных цветов). Насыщенность количественно определяет, насколько интенсивность отраженного света распределяется по спектру с разными длинами волн.


Изображение 4

На 4A различные системы для оттенков красного нанесены на диаграмму цветового пространства CIE XYZ. На 4В вычислены соответствующие значения чистоты и насыщения.

Стоит отметить, что все инверсивные PG демонстрируют более высокие значения чистоты и насыщенности цвета, чем красные оттенки прямых PG. Однако включение в систему частиц ядро-оболочка не приводит к значительному улучшению по сравнению со стандартным инверсивным PG. Если же объединить оба подхода, то можно получить более высокие показатели чистоты и насыщенности. Тем не менее они будут гораздо ниже, чем у реального красного цвета (т.е. из модели КЗС красный, зеленый, синий).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученым удалось продемонстрировать, что фотонные стекла имеют внутренние ограничения в достижении насыщенных красных оттенков. Это обусловлено взаимодействием между резонансом, связанным со структурным фактором, рассеянием, связанным с форм-фактором, и фоном многократного рассеяния. Подобный фундамент позволяет легко достичь структурного цвета в УФ-синем диапазоне, но не в случае больших длин волн.

Также было доказано, что высокая чистота и насыщенность цвета для красных оттенков не могут быть достигнуты в изотропных структурах ближнего упорядочения, даже в случае сложных морфологий рассеивателя.

По словам ученых, подобные наблюдения могут свидетельствовать о том, что природа была вынуждена (образно выражаясь) создать альтернативные пути формирования красных оттенков (например, многослойные или алмазные структуры).

Объединение нескольких подходов по созданию структурного цвета красных оттенков может улучшить показатели чистоты и насыщенности, но их все же недостаточно для достижения реального красного цвета.

Также было установлено, что из-за сложного взаимодействия между однократным и многократным рассеянием, желтый и оранжевый, помимо красного, также сложно получить в аспекте структурных цветов.

Подобные исследования позволяют лучше понять структурные цвета, а также выработать новые методики по созданию материалов, способных быть основой для тех оттенков, что не встречаются в естественных структурных цветах. Помочь в этом, по мнению авторов исследования, могут новые типы наноструктур (например, сетевые или многослойные иерархические структуры).

Как бы то ни было, работа над структурными цветами будет продолжаться и дальше. Современные методики изучения наноразмерных структур и средства их воссоздания позволяют детальнее описать процессы, протекающее в материале, что, естественно, способствует достижению контроля над этими процессами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Квантовый нанотермометр измерение температуры нематоды длиной 1 мм

18.09.2020 10:20:14 | Автор: admin


Одним из основных показателей состояния биологической системы является температура. Если у человека развивается какая-то инфекция, то температура его тела повышается (как правило, но не всегда), что является признаком ответной реакции иммунной системы на угрозу. Другими словами, по температуре можно определить примерное состояние организма. Проблема в том, что человек большой (буквально), а вот, например, нематоды в длину всего лишь около 1 мм. Измерить температуру столь малого организма было крайне сложно, однако ученые из университета Осаки (Япония) разработали методику, позволяющую решить эту проблему. Какие средства были использованы для реализации нанотермометра, что показали практические опыты, и где можно использовать данную разработку? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Температура тела живого организма варьируется в зависимости от степени воздействия внутренних и внешних факторов. Мы привыкли, что температура окружающей среды напрямую влияет на температуру холоднокровных, посему ее значения меняются с завидной регулярностью. Однако даже у теплокровных при нормальных физиологических условиях наблюдаются температурные колебания, которые можно связать с гомеостатической терморегуляцией и энергетическим обменом.

Другими словами, тут отлично подходит шутка: я не бездельничаю, я очень занятой человек на клеточном уровне. Если точно измерить температуру и ее динамику в субмикронном масштабе, то можно получить много информации касательно клеточной и молекулярной активности. Проблема в том, что с уменьшением объекта измерения увеличивается сложность его проведения (сложно засунуть в нематоду обычный термометр из аптеки).

Авторы исследования отмечают, что обычные электрические термометры не имеют субмикронного разрешения, а термография в ближнем инфракрасном диапазоне обычно помогает определять температуру поверхности биологических образцов, но не внутреннюю температуру.

Конечно, сейчас уже есть светоизлучающие нанотермометры (например, термочувствительные молекулярные зонды), которые способны преодолеть это ограничение. Но у такой методики также есть недостатки. Основной это долговременная устойчивость, а точнее ее отсутствие. Подобные устройства не могут точно измерять изменения температуры, которые протекают длительное время (скажем пару часов). Не говоря уже о токсичном воздействии на образец со стороны такого термометра.

В данном труде ученые описывают концепцию наноалмазного (ND от nanodiamond) квантового термометра, который обладает высокой точностью, устойчивостью и низкой токсичностью. Принцип его работы таков: датчик считывает температуру как сдвиг частоты оптически детектируемого магнитного резонанса (ODMR от optically detected magnetic resonance) дефектных центров азотных вакансий (NV от nitrogen-vacancy), который в основном возникает из-за теплового расширения решетки. Сенсорное ядро NV глубоко встроено в решетку алмаза и невосприимчиво к различным биологическим факторам окружающей среды. Внедрение этого квантового датчика в более сложные организмы позволяет считывать их тепловую активность на конкретном участке в режиме реального времени. Но процесс реализации такой техники сопряжен с рядом сложностей.


Нематода (круглый червь) вида Caenorhabditis elegans.

Многоклеточные модельные организмы, такие как черви Caenorhabditis elegans, нуждаются в специальной камере, способной вместить тело миллиметрового размера, а сами образцы необходимо быстро анализировать, чтобы сохранить их физиологическое состояние. Квантовые ND термометры движутся намного быстрее, чем в культивируемых клетках, даже если тело обезвожено, что требует использования алгоритма быстрого отслеживания частиц. Кроме того, позиционное перемещение ND и сложная структура тела вызывают существенные колебания обнаруженной интенсивности флуоресценции, что, вероятно, вызовет артефакты измерения температуры. Решение этих проблем на данном этапе исследования сопряжено с подгонкой устройство под индивидуальные особенности анализируемого образца. Вопрос универсальности и легкости в настройке будущего нанотермометра планируется рассматривать в дальнейших работах, а пока внимание было уделено самой концепции и основным принципам работы.


Небольшой ролик, рассказывающий о нематодах.

Результаты исследования


Основой нанотермометра является конфокальный флуоресцентный микроскоп, оборудованный установкой для микроволнового облучения (1А).


Изображение 1

ODMR азотных вакансий можно измерить как уменьшение интенсивности лазерно-индуцированной флуоресценции при применении спин-резонансного микроволнового возбуждения, поскольку спиновое возбуждение активирует нефлуоресцентный путь релаксации из возбужденного состояния в основное состояние ().

Камера, куда помещаются образцы, представляет собой одноразовую чашу со стеклянным дном, интегрированную в антенну, которая обеспечивает оптический доступ большой площади (диаметр 12 мм) и простоту использования (1C), подходящую для деликатных образцов, таких как стволовые клетки. Время от захвата червя Caenorhabditis elegans до начала фактического измерения составляет всего 15 минут. Это помогает сохранить жизнеспособность червя и способствует получению большего объема данных о его состоянии.

Кроме того, данная система эффективно объединяет быстрое отслеживание частиц и высокоточную оценку температуры в реальном времени по ODMR смещению NV центров.

При отслеживании частиц система измеряет интенсивность флуоресценции ND вдоль осей xyz микроскопа и фокусируется на соответствующем максимуме флуоресценции каждые 4 секунды (возможен более короткий интервал отслеживания), в течение которых температура оценивается со временем выборки от 0.5 до 1.0 секунды. ().


Изображение 2

Методов квантовой термометрии существует несколько, однако в данном труде был использован метод четырехточечных измерений ODMR. Этот метод предполагает, что количество фотонов, зарегистрированных на всех четырех выбранных частотах, линейно масштабируется в соответствии с изменениями обнаруженной интенсивности флуоресценции.

Однако, было обнаружено, что каждый последующий фотон показывает разницу в светочувствительности около 0.5%, что фактически создает существенные артефакты в оценке частотного сдвига (т.е. 300 кГц, что соответствует нескольким градусам Цельсия), особенно при низко-фотонном режиме.

Эти артефакты, скорее всего, возникают из-за зависимой от оптической мощности асимметрии спектра ODMR. Для точного измерения температуры сложных оптических динамических систем (т.е. биологических систем) от подобных артефактов необходимо избавляться. Поэтому в метод четырехточечных измерений был добавлен фильтр коррекции ошибок.

Для оценки работы системы, сопряженной с коррекцией ошибок, в реальном времени были проведены измерения температуры ND во время ступенчатых тепловых событий. Резкие изменения температуры использовать нельзя было, так как внезапные изменения температуры вызывают большую расфокусировку фокальных пятен и связанные с ними флуктуации интенсивности флуоресценции.

На 2B показаны временные профили общего количества фотонов (Itot) и температурная оценка ND (TNV), когда температура образца (TS) изменяется от 44.3 30.4 44.3 с шагом в 2.8. Система точно выдает TNV, соответствующий TS, при этом положение фокуса существенно перемещалось, особенно вдоль оси z на расстояние более 30 мкм (2C).

При шаге в 3 проявляется позиционный сдвиг по оси z на 6 мкм в течение 3-4 минут, но скорость слежения достаточно высока, чтобы следовать динамике 105 нм/с в течение 96 минут ().

Кроме того, TNV четко демонстрирует антикорреляцию с Itot. Статистическое исследование этого типа температурной зависимости определяет средние значения для SD: Itot-1dItot/dT = -3.9 0.7 %/С и dD/dT = 65.4 5.5 кГц/С (2D). При этом точность измерения температуры составляет 0.29 и < 0.6 C, соответственно, что дает чувствительность 1.8 C/Гц.

После достижения надежной и точной термометрии в реальном времени в рамках этапа разработки, был проведен тестовый локальный мониторинг температуры на живых червях.


Изображение 3

На снимке показаны ND внутри анестезированных червей, помещенных рядом с микроволновыми антеннами. Эти ND хорошо диспергируются в воде за счет поверхностной функционализации полиглицерина (PG от polyglycerol) и вводятся путем микроинъекции в гонады (половые железы подопытного червя).

На графике показан ODMR спектр одиночного ND (отмечен стрелкой на ). демонстрирует временные профили Itot и TNV за период в 1 час при изменении температуры TS.

Сначала проводилось измерение Tobj при 33.2 С, через 6 минут было выполнено уменьшение до 25.3 С. В результате Tobj достиг уровня 28.6 С на 35.2 минуте. TNV показал точное изменение температуры между двумя стационарными состояниями: 33.2 и 28.6 С.

Отображение реальной динамики температуры внутри червей между этими двумя стационарными состояниями отображается за счет того, что TNV всегда отстает от TS и демонстрирует немного заниженный отклик из-за конечной теплоемкости объектива микроскопа и окружающей среды. Itot также показывает постепенные изменения интенсивности флуоресценции, вызванные температурой.

Отслеживание частиц также выполнялось на удовлетворительном уровне (). В течение 0-15 минут в подсчитанных фотонах появляются частые всплески, возникающие из-за позиционных флуктуаций ND приблизительно на 400 нм в течение нескольких секунд.

Результаты теста отчетливо свидетельствуют о высокой точности измерения температуры внутри наноразмерной биологической системы в реальном времени. Далее было решено провести дополнительные тесты, перед которыми подопытные черви прошли фармакологическую обработку с помощью C10H5F3N4O (FCCP от карбонил цианид-4- (трифторметокси) фенилгидразон), вызывающую неподвижный термогенез (грубо говоря, повышение температуры ввиду увеличения метаболизма и без дополнительной мышечной активности).


Изображение 4

На снимке показаны ND у червей, стимулированных FCCP. А на графике показан временной профиль TNV ND, отмеченного стрелкой на снимках.

На седьмой минуте после начала измерения был использован раствор FCCP. На 32-ой минуте TNV начинает постепенно увеличиваться, а на 48-ой наблюдается еще большее дополнительное увеличение, когда уровень изменения температуры повышается от 4 до 7 С. Состояние повышенной температуры длилось около 80 минут.

Во время стимуляции ND медленно перемещаются на несколько микрометров в течение часа, что подтверждает результаты отдельных экспериментов, в которых ND непрерывно наблюдались под микроскопом.

Контрольная группа червей ( и 4D), которым не вводили FCCP, показала равномерный отклик TNV во время всего теста без каких-либо явных изменений температуры.

Для дополнительного подтверждения того, что FCCP реально вызывает повышение температуры тела червей, была проведена количественная оценка червей с помеченными ND как в контрольной, так и в подопытной группе (). График явно говорит о повышении температуры у червей из подопытной группы по сравнению с контрольной.

Другой контрольный эксперимент, в котором буферный раствор не добавлялся, а TNV отслеживался статически, показывает, что добавление допанта вызывает колебания TNV на определенном уровне либо из-за изменения температуры, либо из-за артефактов сдвига ODMR. Однако наблюдение подобного сдвига невозможно при добавлении FCCP, что дополнительно подтверждает повышение температуры за счет FCCP у подопытной группы червей (4F).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном исследовании ученым удалось разработать методику, позволяющую точно измерить температуру внутри наноразмерной биологической системы в реальном времени. Утрировано говоря, им удалось измерить температуру тела червя Caenorhabditis elegans, длина которого составляет примерно 1 мм.

Важно понимать, что измерить что-либо в большом образце гораздо проще, чем в малом. Тем не менее использование наноалмазов, вводимых в тело червей, позволило узнать температуру тела червя в обычных условиях. Эти наноалмазы, попадая внутрь тела, начинают быстро перемещаться. Специально разработанный алгоритм и конфокальный флуоресцентный микроскоп позволили отследить и проанализировать их движение. Полученные данные позволили точно определить температуру тела червя и ее динамику, даже после введения специального вещества, вызвавшего повышение температуры.

Данный труд не только показывает, что квантовые технологии могут и должны применяться в биологии, но и расширяет спектр возможностей в аспекте диагностики различных процессов на макроуровне. Очень часто состояние биологической системы напрямую или косвенно зависит от процессов, протекающих внутри клеток, измерить которые в реальном времени ранее было крайне сложно. Получив больше информации касательно составных элементов системы, можно лучше понять саму систему, что, естественно, позволит эффективнее влиять на ее работу.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Усыпить T-киллера

01.10.2020 16:13:06 | Автор: admin

Предложен метод подавления вторичного воспаления при COVID-19

Что ж, снова тревожно на фронтах. Бабье лето медленно вползает в осенний тоннель, а в нем нас поджидают давние "друзья". Меж тем ученые НИТУ МИСиС, РАН и Сеченовского университета предложили новый метод выявления и предотвращения случаев повторного воспаления у пациентов, больных коронавирусной инфекцией. Метод основан на взаимодействии с Т-клетками особым типом инвариантных лимфоцитов, защищающих слизистые. Статья об исследовании опубликована в Frontiers in Immunology Journal.

Вот так Т-киллер атакует Вот так Т-киллер атакует

Слизистые оболочки, причем как снаружи, так и внутри тела, особенно уязвимы для вирусов и бактерий. В качестве одной из основных охранных сил выступают MAIT-клетки особый тип Т-лимфоцитов, выявляющих патогены и разрушающих их оболочки. Именно MAIT-клетки вызывают на пораженных участках ткани то, что мы называем воспалением повышение температуры, набухание, покраснение, избыточная секреция.

Т-киллер умеет "работать" как с вирусами и бактериями, так и с раковыми клеткамиТ-киллер умеет "работать" как с вирусами и бактериями, так и с раковыми клетками

Они считаются своеобразной скорой помощью организма, первой реагирующей на появление инфекций. Как правило, они концентрируются в кровеносных сосудах, в коже и в других точках, куда бактерии попадают чаще всего, и они управляют работой других иммунных клеток, вырабатывая большой набор химических сигналов при встрече с патогенами.

Ученые из НИТУ МИСиС, Центра Кристаллография и фотоника РАН и Первого МГМУ им. И.М. Сеченова выяснили, что микробиотический состав человеческого организма (присутствующие в нашем теле микроорганизмы) может довольно сильно влиять на течение респираторных инфекций, в том числе и коронавирусной.

Как отмечают эксперты, у каждого седьмого пациента с COVID-19, находящегося на искусственной вентиляции легких, течение болезни усугублялось дополнительными приобретенными патологиями. В тот момент, когда организм больного слаб настолько, что не может справляться без ИВЛ, ткани особенно уязвимы к вторичным бактериальным и грибковым инфекциям. В таком случае чрезмерно активная работа MAIT-клеток может только усугубить ситуацию и препятствовать выздоровлению пациента.

Иногда Т-киллеры чрезмерно активныИногда Т-киллеры чрезмерно активны

В целом, эти клетки полезны, ведь они служат защитой от бактериальных или грибковых инфекций. Но при уже развившейся вирусной инфекции и высоком уровне воспаления активность MAIT-клеток может усугубить заболевание. Согласно последним данным, есть основания полагать, что у пациентов с COVID-19 эта активность усиливается это видно по цитокиновому профилю, а также по вторичным инфекциям, развивающимся у пациентов с COVID-19. Конечно, это еще требует дальнейшего изучения, комментирует Роман Акасов, научный сотрудник лаборатории биомедицинских наноматериалов НИТУ МИСиС.

Проведение опытов в лаборатории "Биомедицинские наноматериалы" НИТУ "МИСиС"Проведение опытов в лаборатории "Биомедицинские наноматериалы" НИТУ "МИСиС"

Таким образом, в определенных случаях MAIT-клетки порой не помогают бороться с инфекцией, а наоборот, являются ее пособниками. По мнению ряда исследователей, они являются главным источником интерферона-гамма, сигнальной молекулы, связанной с воспалениями.

Наблюдая за их реакцией на колонии обычных стафилококков и стрептококков, ученые-иммунологи заметили, что эти клетки начинали вести себя крайне необычно они как будто сходили с ума и начинали выделять гигантское количество белковых сигнальных молекул, которые заставляли другие иммунные клетки атаковать все подряд, а не только микробов.

Как добавляет Роман Акасов, MAIT-клетки активируются при наличии таких вирусных заболеваний, как герпес, гепатит и грипп. Ряд новых исследований показывает, что это актуально и для COVID-19. Лимфоциты собираются в легких, и есть все основания полагать, что их тем больше, чем выше тяжесть заболевания.

На основании этих открытий ученые НИТУ МИСиС предложили применять ингибиторы MAIT-клеток, иными словами, подавлять чрезмерный иммунный отклик, чтобы избежать осложнений.

ИнгибиторИнгибитор

В общем и целом, лучше Парацельса пока никто не сказал.Всё-яд,всё-лекарство; то и другое определяет доза.

Будьте здоровы, друзья.

Подробнее..

Встречайте новое состояние материи

02.03.2021 12:21:43 | Автор: admin

Косяк рыб, рой насекомых и стаи птиц. Новое исследование показывает, что на самом базовом уровне такое групповое поведение формирует новый вид активной материи, называемый вихревым состоянием.

Второй закон движения Ньютона, который гласит, что по мере увеличения силы, приложенной к объекту, его ускорение увеличивается, а по мере увеличения массы объекта его ускорение уменьшается применяется к пассивной, неживой материи, от атомов до планет.
Но большая часть материи в мире является активной материей и движется под действием собственной, самонаправляемой силы, говорит Николай Бриллиантов, математик из Сколковского института науки и технологий в России и Лестерского университета в Англии. Такие разнообразные живые существа, как бактерии, птицы и люди, могут взаимодействовать с действующими на них силами.
Есть и примеры неживой активной материи. Наночастицы, известные как частицы Януса, состоят из двух сторон с разными химическими свойствами. Взаимодействие между двумя сторонами создает самоходное движение.
Чтобы исследовать активную материю, Бриллиантов и его коллеги использовали компьютер для моделирования частиц, которые могут двигаться самостоятельно. Эти частицы сознательно не взаимодействовали с окружающей средой, рассказал Бриллиантов Live Science. Скорее, они были больше похожи на простые бактерии или наночастицы с внутренними источниками энергии, но без способностей к обработке информации.
Первым сюрпризом было то, что эта активная материя ведет себя совсем не так, как пассивная. По словам Бриллиантова, разные состояния пассивной материи могут сосуществовать. Например, стакан с жидкой водой может постепенно испаряться в газообразное состояние, но при этом остается жидкая вода. Активная материя, напротив, не сосуществовала в разных фазах; все было твердым, или жидким или газообразным.
Частицы также сгруппировались в большие конгломераты или квазичастицы, которые образовали круговой узор вокруг пустого центра, что-то вроде водоворота стайных сардин. Исследователи назвали эти конгломераты частиц вихревыми, а новое состояние вещества, которое они образовали, вихревым состоянием.
В этом вихревом состоянии частицы проявляли странное поведение. Например, они нарушили второй закон Ньютона: когда к ним прикладывалась сила, они не ускорялись.
[Они] просто движутся с постоянной скоростью, что совершенно удивительно, отметил Бриллиантов.
По его словам, моделирование было базовым, и экспериментальная работа с реальным активным веществом следующий важный шаг. Бриллиантов и его коллеги также планируют провести более сложное моделирование с использованием частиц активного вещества, способных обрабатывать информацию. Они будут больше напоминать насекомых и животных и помогут раскрыть физические законы, регулирующие движение рыбных косяков или роение насекомых. По словам Бриллиантова, в конечном итоге цель состоит в том, чтобы создать самособирающиеся материалы из активного вещества, что делает важным понимание фаз этого вида материи.
Очень важно, что мы видим природу активного вещества, которое намного богаче, чем природа пассивного вещества, подытожил он.
Подробности исследования были опубликованы в журнале Scientific Reports.
Подробнее..

Eppur si muove, или что в данный момент известно о кристаллах времени

19.03.2021 08:14:45 | Автор: admin

Редко выпадает такая удача, что физическая идея возникает на кончике пера, а затем подтверждается экспериментально, спустя считанные годы. Наиболее известным примером такого рода является позитрон, первая античастица. Поль Дирак предсказал существование позитрона в 1930 году, и уже в 1931 Карл Андерсон получил и описал такую античастицу за что в 1932 году Поль Дирак был удостоен Нобелевской премии по физике.

Совсем недавно схожая история произошла с Фрэнком Вильчеком, который в 2012 году задумался о существовании кристаллов времени.

Фрэнк Вильчек (род. 1951) один из крупнейших физиков нашего времени, тот, кто остается не только ныне живущим, но и активно работающим много после обретения заслуженной Нобелевки за открытие асимптотической свободы в теории сильных взаимодействий (в 2004, совместно с Дэвидом Гроссом и Дэвидом Политцером). Вильчек продолжает преподавать теоретическую физику, ныне в Массачусетском технологическом институте, пишет отличный научпоп причем, я был непосредственным вдохновителем и куратором издания Тонкой физики на русском языке в 2018 году. Гибкость ума и незашоренность Вильчека поражают, поэтому я не удивлен, что именно ему в голову пришла идея о кристаллах времени, высказанная им в 2012 году. Уже в 2016 году было подтверждено существование такой материи, вернее такого состояния вещества.

Я набрел на идею кристаллов времени около полутора лет назад, размышляя о том, похожа ли на трехмерный кристалл тень невидимого четырехмерного кристалла, которую он мог бы отбрасывать в привычном нам мире. Оказалось, что открытие Вильчека связано не столько с тенями гиперкристаллов, сколько с псевдо-вечным двигателем, квантовыми вычислениями и парадоксальным нарушением временной симметрии поэтому я решил раскрыть здесь тему кристаллов времени немного подробнее.

Что такое кристалл и что такое симметрия

Еще Плиний Старший в середине I века нашей эры обращал внимание на то, что образцы тех или иных минералов обладают определенной узнаваемой формой. Альберт Великий (1193-1280), один из величайших интеллектуалов и алхимиков средневековья, указал, что снежинки являются кристаллами, то есть, что вода переходит в кристаллическую форму при замерзании. Наконец, в 1669 году был сформулирован закон постоянства кристаллов (закон Стенона и Ромэ-де-лИля): В кристаллах одного и того же вещества величина и форма граней, их взаимные расстояния и даже их число могут меняться. Однако углы между соответствующими гранями и ребрами остаются при этом постоянными.

Таким образом, на первый взгляд кристалл кажется примером спонтанно возникающей симметрии, которая отличает его от неструктурированной разнородной природы. На самом же деле все ровно наоборот: кристалл возникает в результате нарушения пространственной симметрии, когда атомы располагаются в виде решетки под действием окружающей среды. Вода более однородна, чем лед, а углерод более однороден, чем алмаз.

В привычном смысле симметрия обычно ассоциируется с балансом и гармонией. В физике и математике этот термин имеет более точное определение. Объект называется симметричным или имеющим симметрию, если существуют такие варианты его преобразования, которые могли бы изменить этот объект, но не меняют его. На первый взгляд такое определение может показаться странным или абстрактным, поэтому лучше пояснить его на примере. Рассмотрим круг. Если поворачивать круг вокруг его центра, в любом направлении, на любой угол, то визуально круг не изменится, хотя, возможно, все его точки успеют сдвинуться при таком преобразовании. Таким образом, круг обладает идеальной вращательной симметрией. Квадрат также обладает некоторой симметрией, но меньшей, чем у круга квадрат требуется повернуть на 90 градусов, чтобы он принял такое же положение, как и до поворота. Эти примеры демонстрируют, как в математической концепции симметрии заключено ее обыденное понимание, но при этом такое определение становится гораздо точнее.

Второе достоинство симметрии заключается в том, что она располагает к обобщению. Идея симметрии применима не только к геометрическим фигурам, но и к законам физики. Закон обладает симметрией, если можно изменить контекст его применения, а сам закон при этом не изменится. Например, суть специальной теории относительности заключается в том, что миром управляют одни и те же физические законы, даже если наблюдать мир с различных точек, движущихся относительно друг друга с постоянной скоростью.

В контексте кристаллов (в том числе, кристаллов времени) важны преобразования иного рода, такие, которые называются трансляциями. В то время как, согласно теории относительности, одни и те же физические законы действуют для разных наблюдателей, находящихся на движущихся платформах, пространственная трансляционная симметрия постулирует, что одни и те же законы физики действуют для наблюдателей, работающих в разных местах. Если переместить или транслировать вашу лабораторию на новое место, то убедитесь, что и там действуют привычные законы физики. То же касается и темпоральной (временной) трансляционной симметрии она в данном контексте означает, что законы физики действовали в прошлом, действуют сейчас и продолжат действовать в будущем.

Таким образом, в 2012 году Вильчек выдал занимательную идею. Он задумался: если известные нам кристаллы нарушают пространственную симметрию, то возможно ли создать кристалл, который таким же образом нарушал бы симметрию во времени.

Такому объекту была бы присуща регулярность во времени, эквивалентная пространственной регулярности обычных кристаллов. Для кристалла времени такая регулярность заключалась бы в непрерывном перещелкивании одного из его физических свойств, наподобие бесконечного сердцебиения, что сразу напоминает нам о вечном двигателе.

Всем известно, что вечного двигателя не бывает

Как известно, вечный двигатель это машина, которая может работать неограниченно долго без притока энергии извне, что запрещено законами физики. Тем не менее, на уровне квантовой физики все несколько иначе, чем на уровне классической. Например, в сверхпроводнике заряженные частицы могут двигаться неограниченно долго, но при этом они будут находиться в самом низком энергетическом состоянии, и поток их будет оставаться совершенно ровным. Соответственно, можно было бы создать и квантовую версию кристалла времени, который был бы похож на кольцо из бесконечно вращающихся атомов, проходящих целый цикл и возвращающихся в исходную конфигурацию. Свойства атомов оставались бы синхронизированы неограниченно долго, подобно тому, как соотносятся позиции атомов в пространственном кристалле. Система находилась бы в самом низком энергетическом состоянии, но для поддержания ее движения не требовалось бы никаких внешних сил. В сущности, это был бы настоящий вечный двигатель, из которого, однако, совершенно не извлекается полезная энергия.

Вильчек осознавал, что в этой картине есть изъян и действительно, в 2015 году Масаки Осикава и Харуки Ватанабэ из Токийского университета сформулировали теорему, согласно которой ни в одной системе, достигшей самого низкого энергетического состояния, формирование кристалла времени невозможно. Кроме того, было доказано, что кристалл времени не создать ни в одной системе, находящейся в равновесии.

Но у же в 2016 году группа под руководством Шиваджи Сондхи из Принстонского университета, выяснила, как исправить недоработки вильчековской концепции кристалла времени. Команда под руководством Четана Наяка, опираясь на их исследования, пришла к выводу, что кристаллы времени могут спонтанно нарушать фундаментальную симметрию времени (трансляционную темпоральную симметрию) и проявлять периодичность во времени.

Наяк с коллегами показали, что кристаллы времени могут формироваться в неравновесной системе, точнее в такой, где нарушено термическое равновесие. Такие квантовые сущности, именуемые системами Флоке, никогда не нагреваются и, соответственно, температурная характеристика к ним неприменима.

Систему Флоке можно сравнить с наполненным сосудом, к которому сверху прикреплен кубик льда, а снизу на сосуд воздействует горелка. Соответственно, на одной стороне сосуда жарко, а на другой холодно, и такая система находится не в равновесии. Стабильная температура в ней установится, как только кубик льда растает, а горелка выключится.

Физики из исследовательского центра Station Q в Калифорнийском университете в Санта-Барбаре обнаружили, что в таких неравновесных системах Флоке могут возникать разнообразные состояния вещества, невозможные в равновесных системах и спонтанно нарушающие трансляционную темпоральную симметрию, то есть, образующие кристалл времени.

При этом уходя от парадокса с вечным двигателем отметим, что кристалл времени нуждается в притоке энергии извне, а также в материальной основе. То есть, нам требуется совокупность атомов, с которой мы будем работать. Мы сообщаем системе атомов энергию в виде квантовых порций, например, лазерных импульсов и наблюдаем, образуются ли в ней паттерны, периодически повторяющиеся с течением времени. При такой постановке эксперимента важно, что периодичность изменений в кристалле времени не будет совпадать с периодичностью внешних воздействий; то есть, кристалл времени должен проявлять периодические свойства безотносительно (не)периодичности воздействий лазера.

Совершенно новое состояние вещества

Норман Яо из Калифорнийского университета в Беркли, описавший потенциально возможный кристалл времени, заявил, что в данном случае речь идет о принципиально новом состоянии вещества такое вещество постоянно находится в неравновесном состоянии. Этим она отличается от таких веществ как проводники и изоляторы, состояние которых в любой момент времени равновесно. Соответственно, и свойства подобного вещества должны быть удивительны.

Опираясь на выкладки Яо, группа ученых из университета Мэриленда под руководством Кристофера Монро в 2016 году создала цепочку из 10 ионов иттербия, спины электронов в которой были запутаны и здесь мы обнаруживаем сходство кристаллов времени с кубитами, ключевой составляющей квантовых компьютеров, о чем еще поговорим ниже. Для поддержания цепочки в неравновесном состоянии, Монро с коллегами воздействовали на нее двумя источниками лазера, один из которых генерировал в системе магнитное поле, а другой переворачивал спины электронов. Поскольку все электроны были запутаны, в цепочке возникала повторяющаяся структура колебаний. При этом трансляционная темпоральная симметрия нарушалась именно так, как это должно происходить в кристалле времени изменение спина ионов происходило вдвое чаще, чем воздействие лазерных импульсов.

Меняя показатели электрического поля и периодичность лазерных импульсов, можно менять фазы кристалла времени, что эквивалентно изменению агрегатного состояния в пространственном кристалле например, переходу из твердого состояния в жидкое.

Аналогичный опыт поставила группа под руководством Михаила Дмитриевича Лукина из Гарвардского университета, но использовала не иттербий, а особые зазоры в кристаллической решетке алмаза, так называемые азотозамещенные вакансии.

Синим цветом обозначены спины электронов в азотозамещенной вакансии. Затем на систему воздействует электромагнитный импульс, и электроны вступают во взаимодействие, из-за чего узор спинов меняется. Но после следующего микроволнового импульса спины электронов в вакансии возвращаются в исходное состояние.

При кажущемся сходстве разница между экспериментами Монро и Лукина принципиальна алмаз Лукина существует при комнатной температуре, тогда как для возбуждения квантовых осцилляций в металле образец, как правило, приходится охлаждать до нанокельвинов. Кроме того, такой алмаз сравнительно легок для производства.

В 2019 году Ник Трегер из института Макса Планка (Германия) и Павел Грушецки из института Адама Мицкевича (Польша) получили кристалл времени, достигавший нескольких микрометров в размере он получился настолько крупным, что его даже удалось сфотографировать и заснять в динамике.

Этот кристалл времени был создан из магнонов, квазичастиц, ассоциированных с волной электронных спинов в магнитном материале. Магноны подобны фотонам они являются квантами магнитного поля, точно, как фотоны являются квантами света.

Трегер выбрал для эксперимента магноны, поскольку они гораздо крупнее фотонов и поддаются прямому измерению при помощи микроскопа. Кроме того, магноны можно получать при комнатной температуре

Магноновый кристалл времени Трегера и Грушецки был получен в магнитной ленте, к которой была прикреплена микроскопическая антенна, генерировавшая осциллирующее магнитное поле на основе поступавших на нее радиочастотных импульсов. В результате удалось заснять колебания, обладающие как пространственной, так и временной периодичностью.

Потенциальное практическое применение кристаллов времени

Итак, если выкладки Вильчека и Яо были чисто теоретической физикой, то кристаллы Монро, Лукина и Трегера являются типичными proof-of-concept. Путь, проделанный от умозрительной идеи в 2012 году до первого поколения реальных кристаллов в времени в 2016 году и магноновых макроскопических кристаллов в 2019 году впечатляет как бы наверняка отметил по этому поводу Галилей, Eppur si muove (И все-таки оно вертится). Разумеется, из кристаллов времени не получится вечного двигателя, но возможности их практического применения уже отлично просматриваются и касаются, прежде всего, квантовых вычислений при помощи кристаллов Лукина. Притом, какие большие ожидания связаны с квантовыми вычислениями, необходимую для них квантовую запутанность очень легко нарушить в процессе записи и считывания информации. Но в кристалле времени квантовые состояния как раз стабилизируются, поэтому можно было бы подобрать такие фазы, которые позволяли бы возвращать кристалл в исходное состояние после операции ввода или вывода и таким образом стабилизировать кубиты. Возможность такой стабилизации была доказана в 2018 году сингапурскими учеными.

Также из изысканий Лукина следует, что кристаллы времени могут стать основой для исключительно точных атомных часов и датчиков впрочем, для решения таких задач сначала требуется справиться с потенциально разрушительной декогеренцией.

Наконец, существует целое направление исследований, связанных с топологической сверхпроводимостью. Возможно, кристаллы времени позволят удерживать кристаллическую решетку в таком состоянии, в котором она будет сохранять сверхпроводящие свойства при комнатной температуре (о проблемах высокотемпературной сверхпроводимости я уже рассказывал в более ранней статье на Хабре). Подобные исследования, связанные со стабилизацией куперовских пар электронов, ведутся в Калифорнийском технологическом институте и институте Вейцмана в Израиле.

Впрочем, все эти находки могут оказаться лишь верхушкой айсберга. Во-первых, в 2020 году удалось осуществить контролируемое взаимодействие кристаллов времени, и выводы из этого открытия еще предстоит сделать. Во-вторых, Наяк и Яо продолжают разработку дискретных кристаллов времени, которые подчиняются законам классической, а не квантовой физики. Если эта работа увенчается успехом и позволит синтезировать кристаллы времени, не зависящие ни от квантовых флуктуаций, ни от декогеренции.

Мне бы очень хотелось, чтобы все это произошло при жизни Фрэнка Вильчека, и он был бы удостоен за свою идею второй Нобелевки. А затем написал бы об этом книгу. Уверен, это будет великолепная и бесконечно интересная книга.

Подробнее..

Наногенераторы путь к автономности электронных устройств

26.03.2021 02:13:21 | Автор: admin

Что это такое?

При запросе наногенератор купить гугл выдаёт интернет-магазин принадлежностей для аквариумов. наногенератор, который они продают это обычный генератор волн. Видимо, для привлечения клиентов, маркетологи выбрали приставку нано, которая сегодня стала синонимом технического прогресса. В наногенераторах, речь о которых пойдет в этой статье, приставка нано отражает размеры рабочего тела, за счет которого вырабатывается электричество.

Наногенератор это устройство, которое преобразуют механическую или тепловую энергию, производимую в результате маломасштабных физических изменений в среде(например, колебаний), в электрическую. В зависимости от того, каким образом преобразуется энергия, принято выделять три класса наногенераторов: пьезоэлектрический и трибоэлектрический преобразуют механическую энергию в электричество, а пироэлектрический тепловую.

Пьезоэлектрический наногенератор

Пьезоэлектрические наногенераторы основаны на (невероятно, но факт) пьезоэлектрическом эффекте. Пьезоэлектрический эффект это явление, при котором деформация тела приводит к появления электрического заряда на его поверхности. В них используются так называемые нанопроволоки - проволоки с диаметром порядка нанометра. В результате деформации этих проволок на их поверхности образуется электрический заряд: в той части, которая сжата отрицательный заряд, а на растянутой - положительный.

 Схема работы пьезоэлектрического наногенератора на примере одной нанопроволоки Схема работы пьезоэлектрического наногенератора на примере одной нанопроволоки

Материал

Размеры

Выходное напряжение

Выходная мощность

Изготовление

ZnO (оксид цинка)

D: ~100 нм,L: 200~500 нм

VP=~9 мВ

~0.5 пВт

CVD

GaN

D: 25~70 нм, L: 10~20 мкм

Vavg=~20 мВ

~ 0,8 пВт

CVD

PVDF

D: 0.5~6.5 мкм, L: 0.1~0.6 мм

V=5~30 мВ

2.5 пВт~90 пВт

Электроспиннинг

Про CVD и Электроспиннинг:

CVD или химическое охлаждение из газовой фазы это процесс получения высокочистых материалов. Зачастую данный метод используется для создания полупроводников малых размеров(от нанометров до микрон).

Электроспиннинг способ получения полимерных волокон в результате действия электростатических сил на электрически заряженную струю полимерного раствора или расплава. Метод электроформования позволяет получать полимерные волокна диаметром порядка нескольких сотен нанометров.

Из недавних разработок можно выделить IENG. IENG может выдавать максимальный пиковый ток короткого замыкания 320 мкА и соответствующую плотность тока 290 мкА/см^2, что превосходит предыдущие разработки пьезоэлектрических наногенераторов почти в два раза. Подробнее об это можно почитать здесь.

Пироэлектрический наногенератор

В таких наногенераторах используется два физических явления это возникновение в кристаллических диэлектриках поляризации при изменении температуры(свойство пироэлектриков) и эффект Зеебека. Эффект Зеебека - это появления ЭДС в на концах последовательно соединенных разнородных проводников, контакты которых имеют разную температуру. Обратный эффект называется эффект Пельтье

Про пьезоэлектрический эффект при нагреве

Как мы знаем, при изменении температуры тела деформируются. В том числе и рабочее тело пироэлектрического наногенератора. Поэтому все пироэлектрики являются пьезоэлектриками, но не наоборот.

Янтарь классический пример пироэлектрика Янтарь классический пример пироэлектрика

Обычно для получения электричества в пироэлектрических наногенераторах используется эффект Зеебека, но в среде, где температура однородна, например, на открытом воздухе, необходимо использовать свойства пироэлектриков. Отсюда и вытекает одна из особенностей пироэлектрических наногенераторов узконаправленность: где хорошо работает один тип, там работает плохо другой, и наоборот.

Схема работы пироэлектрика: Ag серебро, ITO - Оксид индия-олова. Углы на схеме обозначают градусы, в рамках которых будет колебаться диполь под действием температуры. Схема работы пироэлектрика: Ag серебро, ITO - Оксид индия-олова. Углы на схеме обозначают градусы, в рамках которых будет колебаться диполь под действием температуры.

В целом, пироэлектрические наногенераторы характеризуются высоким напряжением, но невысокой силой тока. Первый пироэлектрический наногенератор был представлен профессором Чжун Линь Вангом из Технологического института Джорджии в 2012 году. Такие генераторы можно широко использовать не только как источники электричества, но и как датчики изменения температур.

Трибоэлектрические наногенераторы и китайский WT-TENG

Наверняка все в детстве натирали расчетку или воздушный шарик о волосы и представляли себя волшебником, поднимая кусочки бумаги в воздух. Данное волшебство объясняется трибоэлектрическим эффектом. Трибоэлектрический эффект это явление возникновения электрического заряда в результате трения. Основной недостаток таких генераторов - это необходимость держать поверхности в контакте, что является сложной задачей. К тому же само трение ведет к разрушению поверхностей. Совсем недавно, 11 марта исследователи из Китайского университета Гонконга (CUHK) сообщили о своей разработке наногенератора, основанного на трение твердой поверхности и воды WT-TENG.

пример работы 150 светодиодов от WT-TENG пример работы 150 светодиодов от WT-TENG

Размер полученного генератора сравним со средним пальцем. Со слов исследователей, характеристики у WT-TENG следующие: 9 микрокулонов на м^3 с частотой 0.25 Гц. Ознакомиться с исследованием можно по этой ссылке.

Вот видео, демонстрирующее работу наногенератора:

Необычный способ использования трибоэлектрических наногенераторов применили Ученые из Корейского национального университета Чеджу. Они встроили их в игрушки, которые при определенных действиях(нажатие или тряска) загораются:

Выглядит крипово...Выглядит крипово...

Эпилог

Конечно, использование таких технологий для игрушек нельзя назвать невероятным успехом. Но потенциал наногенераторов огромен: различные автономные датчики, например, GPS-трекеры для отслеживания миграции диких животных(ну или чипирование людей от Билла Гейтса) , уменьшение зависимости гаджетов от стационарных источников электричества. Возможно, увеличение КПД различных приборов за счет сбора отработанной энергии(тепло, вибрации и т.п.). В общем, есть где разгуляться.

Подробнее..

Красочные наночастицы

07.04.2021 18:21:37 | Автор: admin

Химия полна красочных реакций и превращений - этим она произвела неизгладимое впечатление на многих людей. Кто-то увлекается и посвящает ей дальнейшую жизнь, кто-то думает о возможной пользе. Разноцветные растворы это скорее из области химии комплексных соединений, а что насчёт наночастиц? Чем могут они удивить, какое у них внешнее великолепие? Знакомьтесь - структурный цвет!

В клеточных стенках Pollia condensata волокна целлюлозы заключены в слоистые структуры обеспечивающие отражение В клеточных стенках Pollia condensata волокна целлюлозы заключены в слоистые структуры обеспечивающие отражение

Структурный цвет создаётся не за счёт индивидуальных свойств вещества, как то происходит у пигментов. Пигменты состоят из молекул, поглощающих определенную часть спектра, соответственно отраженные лучи имеют цвет. Другое дело окраска создаваемая структурой. Размеры структур должны быть меньше световой длины волны, что для видимой области составляет диапазон 200-600 нанометров. В этом случае, как говорит физика, свет при взаимодействии с материалом проявляет волновые свойства. Наноструктуры формуют отраженную световую волну, вырезая и приглушая какие то одни волны (цвета) и оставляя другие. К слову, Нобелевская премия 1908 года была присуждена физику Габриэлю Липпману За создание метода фотографического воспроизведения цветов на основе явления интерференции. Липпман упоминал, что в его методе цвет действительно возникает вследствие интерференции в фотопластинке без участия каких-либо красителей: он смочил эмульсию, желатин разбух и расстояния между пятнами на интерференционной картине изменились, цвета исчезли. Но стоило желатину подсохнуть, как интерференционные картины восстановились, а изображение вновь обрело цвет.

В своем изобретении Липпман использовал светочувствительный гель, образующий при облучении наночастицы серебра из его солей. Интерференция падающей и отраженной световых волн создает пучности (области с максимальной интенсивностью светового поля), в свою очередь в них больше образуется наночастиц серебра, не пропускающих свет. Так формируется световой оттиск, фотография. После того, как процесс закончится, при освещении изображение вернёт те самые краски, что были зафиксированы.

Да, вот это настоящий True Color, а не эти ваши 24 бита цвета точно такие, как и были в жизни. Подумайте вот о чем: чистый фиолетовый цвет имеет длину волны 405 нм. Пиксели в мониторе - красный, зеленый и голубой светят волнами длиннее, чем 460 нм (голубой цвет). Как же мы видим фиолетовый в экране? Кто знает, скажет - это иллюзия восприятия (метамерия), её изучили и давно используют, так что все в порядке. Фиолетовый на экране - фиолетовый. Или не совсем? Попробуйте решить сами, источники фиолетового света вполне доступны.

Фотография методом ЛиппманаФотография методом Липпмана

Еще одна особенность наночастиц, помимо структур с размерами сопоставимыми с длиной волны видимого света - плазмонный резонанс. Если частица - проводник, то она и антенна, камертон резонирующий на определенной длине волны. Если частицы рассеивают одни волны хорошо, а другие - не очень, то опять же, возникает цвет. Об этом явлении уже был пост - Мета-материалы: оптические иллюзии структурного цвета и далее я расскажу о том, как можно это явление наблюдать в сравнительно простых условиях. Однако сначала поговорим о рассеянии света.

Белая краска

Чистый белый цвет у краски, оказывается, довольно сложная технология. В составе пигмента - наночастицы диоксида титана. Это вещество высоким индексом преломления, защищенное от воздействий среды оболочкой из оксида алюминия. При создании белой краски требуется учитывать два противоречивых требования. Первое - высокий индекс преломления. Чем выше индекс, тем больше лучи случайно преломляясь на поверхности частицы рассеются. Хорошее рассеяние даёт белый цвет, при этом возрастает укрывистость краски, то есть, её способность закрыть цвет лежащей ниже поверхности. Высокий индекс преломления связан с плотностью - у плотной материи он выше. Однако, чем плотнее частицы, тем больше их вес и тем сложнее их удержать в составе краски - она норовит расслоиться из-за осаждения частиц.

Технологический компромисс - увеличение размеров частиц улучшает укрывистость белой краски, но снижает её седиментационную устойчивость.Технологический компромисс - увеличение размеров частиц улучшает укрывистость белой краски, но снижает её седиментационную устойчивость.

Укрывистость пропорциональна эффективности рассеяния света. Для сферических частиц её можно вычислить решая уравнения Максвелла в приближении Ми. Конкретно для этого графика я использовал Mie Theory Calculator. Работает онлайн. Седиментационная устойчивость (характерное время опускания частицы под действием силы тяжести) пропорциональна:

t \sim \frac{\eta}{g\cdot(\rho_P - \rho_B)}\cdot l \cdot \frac{1}{d^2}

в числителе - вязкость краски, длина пути l, в знаменателе - ускорение свободного падения g, разница плотностей пигмента и основы, d - диаметр частицы. Обычно оптимум находится в области d~100 нм.

Частицы не одинаково рассеивают все волны спектра, в чем можно убедиться с помощью упомянутого онлайн-калькулятора. Возьмем мелкую каплю белых чернил и разведем её до прозрачности.

В зависимости от угла мы видим разный цвет! Это связано с тем, что короткие волны рассеиваются сильнее, чем длинные. Тем самым, на просвет получается, что остаётся длинноволновая часть спектра (белый цвет минус синий = желтый). Это мы видим эффект опалесценции, в нашем случае - рэлеевское рассеяние.

Желтоватый оттенок исправляют с помощью оптической синьки. Да, для отбеливания вещей в стиральный порошок и моющие средства добавляют толику синего красителя. В случае с белой офисной бумагой поступают еще интереснее - туда добавляют вещество флюоресцирующее синим светом.

Цвета опалесценции

Случилось так, что у меня оказались в руках частицы полистирольного латекса в воде. Довольно большие, 1.5 мкм в диаметре, но тем не менее, интересная штука. Коллоид на просвет имел сине-серый цвет и я подумал, почему бы не записать его спектр и промоделировать её по теории Ми? Заодно вышло попробовать новый язык численного моделирования, Julia.

Нужный модуль штатно подсоединяется к набору пакетов Julia:

pkg> add https://github.com/dronir/MieScatter.jl
using MieScatterconst nm = 0.001const n = 1000 particle_area = *(1.0nm)^2x = size_parameter(1.0nm, 400nm) S, Qsca, Qext, Qback = compute_mie(x, 2.0, [0.0])_sc_mie = Qsca*particle_area Qsca_rayleigh(, , m) = 2/3*^2*^6*((m^2 - 1)/(m^2 + 2))^2_sc_ray = Qsca_rayleigh(400nm, x, 2.0)

ОК, так я проверил корректность работы - рассеяние Ми переходит в предельном случае в рассеяние Рэлея.

using MieScatter# индексы преломления воды и полистирола # взяты с https://refractiveindex.info/ref_indx_core() = sqrt(1 + 1.4435^2/(^2 - 0.020216))ref_indx_medium() = sqrt(1.46659 + 0.293555*^2/(^2-0.0155008)) # 1.3378 const nm = 0.001const n = 1000 const r_NP = 1500nm/2 s0 = LinRange(250nm, 1000nm, n) s  = s0 ./ ref_indx_medium.(s0)xs  = size_parameter.(r_NP, s) Qexts = zeros(n) for i=1:n      n_rel = ref_indx_core(s0[i])/ref_indx_medium(s0[i])      S, Qscas, Qexts[i], Qback = compute_mie(xs[i], n_rel, [0.0])end using Printffor i=1:n       Printf.@printf("%f %f\n",s0[i]/nm, Qexts[i])end

Результат просто вывел в файл и сопоставил со спектром. Фиолетовая кривая наш расчёт, бирюзовая экспериментальный спектр.

Плазмонный резонанс + опалесценция

Металлические наночастицы это наиболее богатый случай, там может быть всё. Рассеяние и упомянутый выше плазмонный резонанс. Золотые наночастицы могут быть всех цветов, но проще всего получить наночастицы 1-3 нм малинового цвета. С их помощью в древности изготавливали удивительные по красоте вещи, такие как кубок Ликурга, или золотой рубин (Cranberry glass or 'Gold Ruby'). Сейчас, когда этот процесс хорошо изучен, сделать аналог совсем не сложно. Нужно смешать коллоидное золото с керамической фритой и обжечь.

Цвет и спектр коллоидного золота.Цвет и спектр коллоидного золота.

А что если сделать наночастицы металлической меди? Синтез не сложный. Медный купорос, щелочь, глюкоза, соляная кислота и аскорбиновая.

Вот что получилось, когда наночастицы были перенесены в бутилгликольацетат.

Наночастицы меди в БГА.Наночастицы меди в БГА.

На просвет - синий раствор, а если посветить на кювету - оказывается, розовый! Вот такие чудеса.

Цвет пластинки с наночастицами зависит от фона. Взято с https://nanocomposix.com/pages/color-engineering#targetЦвет пластинки с наночастицами зависит от фона. Взято с https://nanocomposix.com/pages/color-engineering#target

Заключение

Время покажет, останется ли эта игра цветов наночастиц просто игрой, или же появятся новые рефлективные дисплеи, устойчивые к выгоранию на солнце краски и особые защитные метки. Классно, когда химия такая красивая и увлекательная! Напоследок, прикреплю арт-объект со страницы художницы Kate Nichols. Спойлер: это серебряные наночастицы )

Through the Looking Glass 1. Silver nanoparticles on glass. 24 x 45 inches, 2011. Взято с https://www.katenicholsstudio.com/#/looking-glass/Through the Looking Glass 1. Silver nanoparticles on glass. 24 x 45 inches, 2011. Взято с https://www.katenicholsstudio.com/#/looking-glass/
Подробнее..

Исландская компания придумала, как уберечь литий-ионные аккумуляторы от взрыва и увеличить их емкость в 9 раз

24.04.2021 12:23:53 | Автор: admin

Исландская компания Nanom разработала технологию, которая может сделать аккумуляторы более безопасными и эффективными за счет наночастиц.

Стартап планирует повысить плотность энергии литий-ионных и железо-никелевых батарей, сохранив их стандартные размеры. Таким образом, электрокары с аккумуляторами Nanom теоритически смогут доехать из Москвы до Омска на одном заряде.

Процесс превращения начинается с частиц микронного размера. Они проходят через ускоритель частиц и разбиваются на наночастицы. Затем наночастицы попадают в то, что компания называет кузницей, где газы обрабатывают поверхность частиц. Этот процесс может производить наночастицы размером от 1000 до 100 нанометров, говорит Дэйв Таннер, старший технолог Nanom.

Компания не планирует самостоятельно производить такие аккумуляторы, так как технология легко может быть интегрирована в работу современных производственных линий без необходимости в модернизации оборудования полученные наночастицы просто смешиваются с суспензией для покрытия электродов.

По словам генерального директора Nanom Арманна Койича, использование наночастиц вместо типичных частиц микронного размера сделает аккумуляторы безопаснее риск их воспламенения снижается в несколько раз.

Арманн КойичАрманн Койич

Одна из главных проблем литий-ионных аккумуляторов заключается в том, что электроды неоднородны, потому что нет хорошего распределения частиц в материалах, но зато есть области высокого и низкого сопротивления. Простыми словами, есть неравномерно горячие участки, из-за которых аккумулятор повреждается. Повреждение может вызвать короткое замыкание или воспламенение лития, а также привести к тому, что аккумулятор станет настолько горячим, что растворитель испарится и разрушит аккумулятор с выделением легковоспламеняющихся газов.

По словам Таннера, многие люди работают над решением этой проблемы, но для производства наночастиц они используют химические методы, включая травление. Ученый полагает, что такой подход нерентабелен. Механический метод Nanom дешевле и эффективнее.

Помимо повышения безопасности, использование наночастиц значительно увеличит плотность энергии и срок службы аккумуляторов. Меньшие частицы означают большую площадь поверхности, лучшую пористость и лучшую проводимость для того же количества материала. По словам Койича, повышенная плотность энергии позволит производителям выбирать химический состав аккумуляторов, который будет более безопасным и, возможно, более экологически чистым, чем те, что используются сегодня.

Подробнее..

Перевод 10 высокотехнологичных продуктов, которые мы будем есть в будущем

03.11.2020 20:15:07 | Автор: admin
Ученые и футуристы настаивают на том, что из-за проблем перенаселения и ограниченных ресурсов нам необходимо переосмыслить ежедневный рацион. Исследования в пищевой промышленности и быстрое развитие технологий открывают для нас новые гастрономические перспективы. Мы собрали для вас подборку из 10 таких идей.

1. Насекомые


image

Согласно подробному отчету Продовольственной и сельскохозяйственной организации ООН, как минимум 2 миллиарда человек в мире уже потребляют насекомых. Конечно, у некоторых людей может возникнуть отвращение, если они увидят сверчка в качестве горячей закуски, но все же насекомые довольно питательны и содержат большое количество жира, белка, витаминов, клетчатки и минералов.

Кроме того, употребление в пищу насекомых более экологично, чем потребление домашнего скота, и некоторые из них на вкус удивительно похожи на продукты, к которым мы привыкли: яблоко, бекон, арахисовое масло или рыбу.

2. Водоросли: выращивание собственной пищи при дыхании


image

Большинство водорослей насыщены жирными кислотами омега-3, незаменимыми питательными веществами для поддержания крепкого здоровья человека. Изобретатели и дизайнеры Майкл Бертон и Мичико Нитта зашли так далеко, что предположили людям выращивать собственные водоросли прямо во время дыхания, надев специальную маску. Во время выступления в Музее Виктории и Альберта в Лондоне они продемонстрировали, как оперный певец может способствовать стремительному росту водорослей в маске.

3. Мясо, выращенное в лаборатории


image

Производство мяса в лаборатории это способ борьбы с экологическими проблемами: выбросами парниковых газов и жестоким обращением с животными. Компания Memphis Meats уже производит выращенные в лаборатории фрикадельки с использованием стволовых клеток животных (полученных с помощью безболезненной биопсии). Стоимость 450 г. мяса достигла 2400 долларов.

4. Напечатанная на 3D-принтере живая еда


image

Трехмерные принтеры могут создавать предметы из пластика и металла, а также печатать, готовить и подавать еду. Голландский дизайнер Хлоя Рутцерфельд предлагает смешать еду, садоводство и 3D-печать. Сначала печатается внешняя оболочка из теста, содержащая съедобную почву и различные семена. Через несколько дней семена начинают прорастать и вылезают из ямок в футляре. Однако в настоящее время этот дизайн находится в стадии разработки.

5. Саморазлагающиеся пищевые пакеты


image

Для естественного разложения пакетов требуется тысяча лет. У шведской компании Tomorrow Machine есть решение для ускорения этого процесса. Они предлагают упаковки для масла из карамелизированного сахара и воска, упаковки для смузи из морских водорослей и воды и упаковки для риса из биоразлагаемого пчелиного воска. Срок службы этих пакетов такой же, как и у продуктов, которые они содержат.

6. Бутылки для питьевой воды


image

Лондонский стартап по производству морских водорослей планирует заменить привычные нам пластиковые бутылки для питьевой воды на аналог, сделанный из морских водорослей. После поступления на рынок эта упаковка может использоваться для других жидкостей (например, для спиртных напитков и косметики). Более того, морские водоросли как упаковочный материал на самом деле дешевле пластика.

7. Еда с улучшенным звуком


image

Исследование, проведенное Оксфордским университетом, доказало, что еда может быть более или менее горькой в зависимости от фонового саундтрека. Предлагаются более распространенные способы использования, например, использование музыки для удаления нездоровых ингредиентов незаметно для людей.

8. Поддельная рыба и морепродукты


image

В лаборатории можно выращивать не только мясо, но и рыбу. В 2002 году группе ученых из колледжа Туро удалось создать филе мелких рыбок, погрузив мышцы золотой рыбки в эмбриональную бычью сыворотку. Компания New Wave Foods уже создала поддельные креветки из заменителя водорослей и работает над созданием лобстеров и крабов.

9. Здоровое питание


image

Мы часто не знаем, что именно мы едим. Сканер продуктов питания TellSpec решает эту проблему, показывая клиентам содержимое продуктов на их тарелке. Вы просто наводите устройство на продукт, и устройство предупреждает вас о химических веществах и аллергенах и помогает отслеживать потребление витаминов. Сканер можно предварительно заказать, и, если он окажется успешным, мы надеемся, что он станет доступным для большего числа людей в будущем.

10. Диета на основе ДНК


image

Если секвенирование ДНК станет дешевле и его можно будет проводить дома, мы могли бы использовать приложение, чтобы знать, какую пищу есть, чтобы быть более продуктивным, лучше спать, чувствовать себя здоровее и знать, какой пищи следует избегать любой ценой. Все люди генетически разные, поэтому не существует единой диеты, подходящей для всех. Однако уже есть компании, специализирующиеся на создании такой диеты.

Бонус: жевательный кофе


image

Инновационный продукт, который уже доступен на рынке, жевательный заменитель кофе. Создатели утверждают, что это помогает улучшить концентрацию внимания и поддерживать оптимальную когнитивную деятельность. Кто бы не хотел пить кофе, который можно положить в карман?!

Какие продукты из этого списка вы можете себе представить в будущем? Делитесь своим мнением в комментариях!
Подробнее..

Новый закон Мура и причем здесь фотоника?

27.07.2020 22:10:16 | Автор: admin
Ранее мы разобрали использование технологий нанофотоники в глубоком обучении и как благодаря им увеличивается производительность вычислительных систем на программно-аппаратном уровне.

Выносимая к обсуждению тема обновления закона Мура с помощью нахождения более сложных зависимостей эволюции вычислительных систем, сегодня хорошо разбирается именно исследователями в области технологий плазмоники и нанофотоники.

Важно: большинство ссылок, приводимых в статье ведут к материалам на английском языке. Отечественных исследователей фотоники в России не так много, а те, что есть предпочитают публиковаться на английском.

Для дополнительного изучения темы на досуге за чашечкой чая предлагается прослушать доклад Дмитрия Федянина одного из ведущих отечественных исследователей по применению технологий нанофотоники в вычислительных системах.


Дмитрий Федянин старший научный сотрудник МФТИ.

А далее мы разберем интересную статью, в которой группой авторов предлагается крайне оригинальная концепция метрики роста производительности, альтернативная классическому закону Мура. Идея созрела благодаря анализу природных физических ограничений в существующих технологиях работы ядер процессоров, а также подтверждаемых сегодня экспериментально перспектив новых систем на базе нанофотоники.

Непрерывно выдвигаемые современной индустриальной системой требования к повышению эффективности вычислений и пропускной способности связи привели к тому, что полупроводниковые технологии в их текущем состоянии достигли своего предела. Это привело к появлению новых технологий, способных превзойти традиционные решения. Речь идет о фотонных препроцессорах или ускорителях, электронно-фотонных гибридных схем и нейронных сетях. Однако усилия, предпринятые для описания и прогнозирования эволюции производительности вычислительных систем, не позволяют точно предсказать и тем самым объяснить фактически наблюдаемый темп развития; то есть все предлагаемые показатели в конечном итоге отклоняются от траектории их развития через несколько лет после того, как они были первоначально предложены. Это несоответствие требует уравновешенной метрики, которая включал бы в себя целостный набор движущих сил эволюции вычислительных систем.

Оригинальная концепция новой метрики под названием Capability to Latency-Amount-Resistance (CLEAR) была предложена международным коллективом исследователей (Shuai Sun, Vikram K. Narayana, Mario Miscuglio, Lionel C. Kimerling, Tarek El-Ghazawi, Volker J. Sorger). По мнению авторов статьи (см. здесь) эта метрика охватывает динамику изменений скоростей синхронизации, энергоэффективности, масштабирования физического размера вычислительных машин и экономических затрат. По мысли авторов, CLEAR единственная на сегодняшний день метрика, которая корректно описывает историческое развитие вычислительных систем. Даже при разных вариантах и взаимных технологических сочетаниях, CLEAR соответствует наблюдаемой постоянной скорости роста, включая предлагаемые для реализации в будущем доминирующие технологии вычислительных систем (прогноз). CLEAR предстает перед читателями как руководство для количественного прогнозирования роста производительной эффективности вычислительных систем в данный момент времени и будущем.

Несмотря на то, что в целом эволюция вычислительной производительности постоянно увеличивается, наблюдаемая скорость производительности устройств на основе существующей полупроводниковой индустрии, заметно замедляется, особенно это заметно на 14-нм технологии см. здесь и здесь). Это обусловлено как природными физическими ограничениями, так и растущими экономическими издержками непрерывного процесса промышленного производства чипов.

По этим причинам, закон Мура как роудмап полупроводниковой промышленности неоднократно пересматривался с целью устранения этих препятствий (см. здесь). Аналогично, динамика развития (зависимость от времени) других соотношений физических величин, таких как показатель эффективности использования вычислительной мощности (закон Куми) или показатель вычислительной мощности, выводимый из соотношения потребляемой энергии, размера и стоимости (закон Макимото), в итоге все-равно отклоняется по сравнению с наблюдаемым темпом развития технологии (рис. 1) выбранная в показателе функция от времени (например, многоядерность, стоимость изготовления) на практике не может обеспечить экспоненциального роста.

Например, производительность процессора, состоящего из N ядер по-прежнему ограничена соотношением 1/((1-p)+p/N), где p представляет собой уровень параллелизации (см. здесь). Поэтому отслеживать эволюцию производительности вычислительных систем становится все сложнее, если использовать только закон Мура (или другие существующие метрики прогнозирования), в котором для описания производительности вычислительной системы используется только один или несколько движущих факторов (см. здесь). Кроме того, преимущества различных реализаций аппаратного обеспечения (например, электрические, оптические) изменяются со временем по-разному, что еще больше затрудняет эволюционное прогнозирование.

Например, интегрированная фотоника и, возможно, плазмоника могут расширить определенные каналы связи на плате или даже на кристалле. В результате будут значительно смягчены проблемы рассеивания тепловой мощности, а также расшириться полоса пропускания данных с возможностью преодоления барьера электронной цифровой эффективности с помощью таких концептуальных подходов, как спектральное уплотнение каналов (WDM), оптического углового момента или более высоких форматов модуляции, таких как поляризационная амплитудная модуляция (например, QAM), где одновременно используется фазовая и амплитудная поляризация (см. здесь и здесь).

Касаемо компромиссов с другими технологиями, то один электронный транзистор с технологическим узлом 14 нм занимает площадь на 3 порядка меньше, чем кольцевой модулятор фотонного микродиска, однако фотоника обеспечивает взаимосвязь на уровне канала без емкостных проводов зарядки/разрядки, хотя и является синергетической по отношению к вышеупомянутым уникальным характеристикам, которые поддерживают скорость передачи данных до уровня Тбит/с (см. здесь).

image
Рисунок 1.Характер развития вычислительных систем, начиная с 1946 года и до наших дней, можно представить в виде четырех различных показателей: (а) закон Мура опирается на рост количества компонентов на кристалле, измеряемых в единицах численного количества транзисторов; (б) закон Куми отражает энергоэффективность на единицу вычислений, бит/(с*Джоуль); (в) показатель Макимото, включающий в себя интеллект, мощность, размер и стоимость системы измеряется в единицах MIPS/(Вт*мм3*$); и (г) показатель CLEAR, определенный в уравнении (4) и учитывающий задержку системы в дополнение к показателю Макимото, а также экономические издержки, связанные с внедрением новой технологии: MIPS/(с*Вт*мм3*$). Данные Photonic CLEAR построены на основе прогноза Intel по кремниевой фотонике. Пунктирные линии представляют линейное соответствие (в логарифмическом масштабе), основанное на начальной скорости роста, с ежегодным удвоением производительности.

По представлению авторов, 5-факторный показатель CLEAR (название которого представляет аббревиатуру Capability-to-Latency-Energy-Amount-Resistance) на сегодняшний день является наиболее достоверным для описания эволюции производительности вычислений на всем известно историческом периоде, начиная с самого начала появления вычислительных технологий в 1940-х гг. и вплоть до настоящего времени. Этот показатель охватывает как физические, так и экономические факторы, связанные с темпами развития различных вариантов вычислительной техники. Таким образом, CLEAR может использоваться в качестве независимого от той или иной технологии количественного показателя, поскольку он включает как фундаментальные физические, так и экономические зависимости.

На основании наблюдений и анализа авторы делают два ключевых вывода:
динамика эволюции вычислительных систем характеризуется постоянным ростом, в то время как ставшие уже традиционными выше рассмотренные показатели отклоняются от своей первоначальной скорости отслеживания;
интегрированная фотоника (или любая другая появляющаяся технология в целом) может заменить текущую доминирующую технологию только в том случае, если ее общие характеристики (т.е. значение CLEAR) находятся на уровне (или выше) линии тренда постоянного эволюционного роста.

Эволюция вычислительных систем


Основные движущие силы


Развитие фундаментальной физики, управление технологиями полупроводников и экономические издержки требуют постоянных изменений и адаптации в целях поступательного развития технологий вычислительных систем. С момента основания индустрии полупроводников, закон Мура несколько раз менял факторы, лежащие в его основе: от подсчета транзисторов индустрия разворачивается (Первый переход) к занимаемой площади и масштабированию транзисторов из-за ограничений размера кристалла и роста общей системной сложности (см. здесь)

Второй переход произошел, когда тактовая частота нащупала границы из-за ограничений рассеивания плотности мощности, описанных законом масштабирования Деннарда (см. здесь). Поскольку масштабирование транзисторов приближается к фундаментальным физическим пределам, количество транзисторов на данный момент продолжает увеличиваться за счет параллелизма, реализуемого в многоядерных и массивно параллельных гетерогенных архитектурах. Это, усиливает узкое место в связи, в результате возникает необходимость отключения определенных областей чипа (темный кремний). Таким образом, скорость роста изменилась с первоначального удвоения каждые 12 месяцев до примерно 24 месяцев в настоящее время.

Недавно появилась новая движущая сила из совершенно другой области, которая влияет на эволюцию вычислительных систем и представляет собой интегрированную фотонику и гибридизированную нанофотонику, где маршрутизация светового сигнала выполняется пассивными интегрированными фотонными компонентами, тогда как электрооптические активные компоненты усиливаются новыми решениями:
реконфигурируемые материалы;
сильные взаимодействия света с веществом, такие как плазмоника или фотоника ENZ (epsilion-near-zero), вместе обеспечивающие канал передачи данных и пропускную способность, превосходящие обычную электронику на двух уровнях: микросхема и ядра (см. здесь).

Для таких новых технологий просто подсчет количества компонентов на кристалле или масштабирования занимаемой площади и стоимости в качестве отдельного показателя невозможен, поскольку он более точно не отражает фактического изменения производительности. Также большую роль оказывает тенденция появления других технологий, например применяемых в оптической связи, в которых множество сигналов с разными длинами волн упаковываются в один и тот же физический канал и, таким образом, улучшается использование аппаратного обеспечения. Это является существенным фактором при оценке производительности системы. Следовательно, требуется целостный показатель, который учитывает множество движущих сил, чтобы обеспечить точное сравнение вклада различных технологических решений для развития вычислительных систем.

Единый показатель эволюции вычислительных систем


Чтобы получить независимый от технологий показатель, авторы собирали данные о производительности десктопов, ноутбуков, мобильных устройств, серверов, рабочих станций и суперкомпьютеров с 1940-х и сопоставляли их с традиционными показателями (Рис. 1).

В частности, закон Мура принимает количество транзисторов как единственно достаточный фактор (уравнение 1), в то время как закон Куми опирается уже на два фактора: энергия и количество вычислений, тем самым подведя основания под показатель, измеряемый в бит/(с*Дж) (уравнение 2). Миллионы команд в секунду (MIPS) на единицу измерения размера-стоимости-мощности известны как показатель Макимото, определяемый уже как 4-факторный показатель (уравнение 3).

Закон Мура = Количество Транзисторов [кол-во шт.] (1)

Закон Куми = Вычисления/Энергия [бит/(с*Дж)] (2)

Показатель Макимото = Интеллект/(Размер*Стоимость*Мощность) [MIPS/(мм3*$*Вт)] (3)

Значения этих трех показателей показывают сходную модель роста: растущий тренд хорошо отслеживает их исходные данные, но только в течение ограниченного периода времени, и в конечном итоге отклоняется от них. Это говорит о том, что факторы, взятые в них за основу, не смогли полностью уловить фактическую движущую силу, которая доминирует в эволюции вычислительных систем.

Анализ линий тренда на рис. 1 показывает, что количество транзисторов первоначально (19501960-е годы) хорошо отражает закон Мура о двукратном ежегодным росте (пунктирная светло-зеленая линия, рис. 1). Однако масштабирование энергоэффективности (т.е. закон Куми) стало доминирующим фактором в течение следующего периода (19601970-е годы), поскольку простое добавление большего количества транзисторов ограничено размером и сложностью микросхемы. По этой причине закон Мура начал отклоняться от тенденции 2X/год, в то время как закон Макимото все еще сохранял свои первоначальные темпы роста. Начиная с конца 1970-х годов факторы, как размеры, так и масштабирование мощности постепенно достигают предела из-за проблем с заметно усложнившимися процессами производства, утечкой энергии и рассеиванием тепла. Вместе с появлением параллелизма (то есть многоядерных процессоров) и экономическим масштабированием на рынке, показатель Макимото, в итоге, также отклоняется (начиная с 1978 года). Пунктирные линии, показанные на рис. 1, представляют начальные прогнозы роста производительности по каждому закону. Эти линии тренда показывают, как каждый дополнительный фактор, введенный соответствующими законами, влияет на собственную исходную метрику прогнозирования, показанную как отклонение от исходного прогноза. Рассматривая эту тенденцию как теоретический верхний предел скорости развития технологии, теперь можно понять, действительно ли заявленный тренд является фактическим или нет. То есть, является ли действующий закон причиной замедления развития технологий, или же начинают доминировать новые факторы производительности.

Таким образом, на сегодняшний день не существует четкого известного показателя, который может:
  • объяснить последние изменения в производительности;
  • предоставить руководство по прогнозированию производительности в будущем.

Внедренный авторами показатель CLEAR включает в себя факторы производительности из множества технологических вариантов, которые включают как физические, так и экономические ограничения. Главное утверждение авторов заключается в том, что факторы, составляющие CLEAR, выбираются не случайно, а являются фундаментальными для технологических и экономических трендов:

CLEAR = Способность/(Задержка*Энергия*Количество*Сопротивление) [[MIPS/(с*Вт*мм3*$)]] (4)

или в оригинале:

CLEAR = (Capability )/(Latency*Energy*Amount*Resistence) [[MIPS/(с*Вт*мм3*$)]]

Авторы, сформулировав формулу для показателя CLEAR, определяют постоянную скорость роста в течение всей эволюции вычислительных систем, охватывающей рост производительности на 4 порядка за семь десятилетий. Более того, фактическая наблюдаемая скорость развития постоянно держится на уровне двукратного роста каждые 12 месяцев. Этот 5-факторный показатель определяется на основе концепции производительности и стоимости. CLEAR может применяться на уровне устройства, схемы и системы.

Например, на системном уровне CLEAR структурирована следующим образом:
Способность C это производительность системы, определяемая произведением миллионов инструкций в секунду (MIPS) и длины команды;
минимальная Задержка L относится к тактовой частоте и ограничена временным окном между двумя соседними тактовыми циклами;
Энергия E представляет собой уровень энергопотребления для работы такой системы в целях получения определенной мощности, выраженной в единицах ватт;
Количество A представляет пространственный объем (то есть физический размер) системы и является функцией размерности процесса;
Сопротивление R количественно определяет экономическое сопротивление принятия рынком новых технологий. Базово авторы берут экономическую модель, основанной на кривой опыта Boston Consulting Group (BCG), которая объясняет взаимосвязь между совокупным производством и удельной стоимостью (см. здесь).

Авторы выводят линейную зависимость между логарифмической шкалой единицы цены и времени, далее подтверждают эту зависимость, сопоставляя исторические данные (см. здесь и здесь) с CLEAR.

Авторы отмечают, что метрика MIPS в качестве показателя производительности заменяется метриками, такими как операции с плавающей точкой (FLOPS), из-за ее восприимчивости к базовому набору команд. CLEAR применяется к различным архитектурам процессоров на протяжении истории, для которых другие метрики производительности недоступны в известных наборах тестов производительности (например, SPEC или LINPAC). Однако, чтобы сделать MIPS репрезентативной метрикой производительности, авторы взвешивали (то есть умножали) каждую инструкцию по ее длине, тем самым давая относительную общую метрику в единицах бит/с.

Тренды развития вычислительных систем


После сравнения всех четырех показателей, показанных на рис. 1, мы обнаруживаем, что, когда показатель включает в себя более релевантные факторы, его начальная точка отклонения от исходного тренда наступает позже. В отличие от CLEAR, который показывает точное соответствие данных во всем. Таким образом, эмпирически обнаруживаем, что производительность вычислений постоянно растет с фиксированной скоростью примерно с ежегодным двукратным увеличением и не зависит от технологий. Тестируя новые вычислительные машины, например на основе интегрированной фотоники, как предсказывает IBM (см. здесь), мы обнаруживаем, что такие технологии действительно могли бы продолжать эволюционный тренд развития с ежегодным двукратным ростом (красные звезды на рис. 1).

Кроме того, можно обнаружить, что относительное отклонение от линии тренда 2Х/год можно использовать для классификации показателя вычислительной системы. Например, дополнительные накладные расходы (т.е. физический размер, параллелизм, охлаждение, низкая экономия на масштабе и производственные затраты) на суперкомпьютеры показывают их худшие значения CLEAR по сравнению со всеми другими типами компьютеров, такими как ноутбуки и мобильные устройства, несмотря на их более высокую производительность (пунктирные кружки, рис. 1 в, г). Высокий параллелизм многоядерных технологий, используемых в суперкомпьютерах, подвергается сомнению из-за отдачи от вычислений к энергии, описанной в законе Амдала (см. здесь). Несмотря на то, что суперкомпьютеры обеспечивают производительность в режиме petaflop, вся инфраструктура напоминает компьютерную инфраструктуру пятилетнейтридцатилетней давности, что ставит под сомнение будущее для ее масштабирования.

Анализ CLEAR


Чтобы получить более детальное представление об относительном воздействии каждого из 5 факторов CLEAR, авторы разложили показатель на отдельные факторы, противопоставив один другим, чтобы выявить фактические движущие силы во времени.

Комбинации факторов, использованных на рис. 2, представляют собой C против LEAR, CLE против AR и CLEA против R (рис. 2, C = способность, L = задержка, E = энергия, A = количество, R = сопротивление). Кроме того, показана исключающая скорость C' по сравнению со всеми другими факторами, поскольку единственным фактором масштабирования в первые годы полупроводниковой промышленности является количество компонентов на кристалле. Важно отметить, что относительные положения каждой точки данных более важны, чем точные значения как по осям X, так и по осям Y, и, таким образом, обе оси нормализованы к единице, что позволяет сравнивать каждый случай.

Поскольку синие и красные заштрихованные области представляют линейный рост и насыщающие области соответственно, легко обнаруживаются последовательные сдвиги поворотной точки вправо с увеличением числа рассматриваемых факторов для оси X (то есть относительного времени). Чтобы понять это, факторы на оси X можно рассматривать как движущую силу показателя, в то время как значения на оси Y обозначают фактические условия отслеживания рассматриваемых движущих сил. Следовательно, линейная область означает, что факторы на оси X все еще доминируют в развитии технологии, в то время как движущая сила технологии начинает переходить на другие факторы при входе в область насыщения. Этот результат совпадает со сделанным наблюдением, что эволюция вычислительной системы всегда растет с этой постоянной скоростью, и расхождение с показателем происходит только тогда, когда появляются другие движущие силы.

1
Рисунок 2. Анализ движущей силы CLEAR.
Показатель CLEAR разбит на четыре группы, каждая из которых состоит из двух частей: коэффициент, демонстрирующий факторы на пути развития технологий (ось X), и раскрывающий фактор, который показывает способность отслеживания выбранного фактора или комбинации факторов (ось Y). Результаты показывают, что более позднее отклонение от нормированного развития наблюдается, когда учитывается больше факторов для описания производительности вычислительных систем. (а) Исключающая Скорость C против Задержки-Энергии-Количества-Стоимости (LEAR); (б) Способность C против Задержки-Энергии-Количества-Стоимости (LEAR); (в) Способность на Задержку-Энергию (CLE) против Количества-Стоимости (AR); (г) Способность на Задержку-Энергию-Количество (CLEA) против Стоимости R. Оси X и Y нормализованы до единицы для лучшего сравнения. Линейный рост и области насыщения покрыты синими и красными тенями соответственно.

Применение CLEAR


Важно, что способность беспрепятственно отслеживать эволюцию различных технологий позволяет CLEAR прогнозировать будущее технологическое замещение и определять стандарт для будущей технологии, включая их гибридизацию, например, между электроникой и фотоникой (см. здесь,тут, вот тут и здесь).

Смена технологий


Фотонный интерконнект внутри кристалла недавно показал высокую емкость передачи данных, (превосходящую обычные электрические интерконнекты) при гибридизации с активными плазмонными устройствами (см. здесь). Хотя оптическая маршрутизация данных воспринимается как возможное решение для устранения узких мест связи между вычислительными ядрами и обычно используется в центрах обработки данных и суперкомпьютерах, интегрированная фотоника еще не внедрена в массовый потребительский сектор. Поначалу это кажется удивительным, поскольку предыдущие исследования предполагали превосходные характеристики фотонно-плазмонной гибридизации. Таким образом, возникает вопрос, почему интегрированная фотоника не используется в продуктах массового рынка?

Чтобы ответить на этот вопрос, сравним CLEAR для электронных связей с гибридными фотон-плазмонными связями в зависимости от времени эволюции и расстояния распространения сигнала (рис. 3). Здесь манипулирование светом осуществляется с помощью плазмонных активных строительных блоков (источник, модулятор, детектор, переключатель) (см. здесь и здесь), тогда как распространение света обрабатывается фотоникой низких потерь на базе кремниевых или нитрид-кремниевых платформ. Сравнивается электроника с таким вариантом плазмон-фотонного гибрида, потому что разделение активной и пассивной функциональности в гибридной плазмон-фотонике приводит к более высокой производительности (то есть, более низкая задержка, более высокая пропускная способность, более низкая функция энергии на бит). Полученные кривые поверхности показывают, что CLEAR электроники и плазмон-фотоники имеют линию безубыточности (пересечение поверхностей, рис. 3), которая масштабируется как по времени, так и по расстоянию распространения сигнала. Интересно, что даже сегодня, электроника по-прежнему опережает фотонику при размерах чипа = 1 см на длине передачи информации. Поэтому электроника до сих пор коммерчески используется на кристаллах, в отличие от фотоники. Инвестиции и разработки в электронике за последние полвека, таким образом, создали технологическую устойчивость (барьер входа) для других технологий. Такое масштабирование привело к тому, что транзистор стоит всего одну миллиардную стоимости фотонного устройства или еще меньше (см. здесь).

2
Рисунок 3.Сравнение показателей CLEAR электрического (синий) и гибридного фотон-плазмонного (красный) интерконнекта на кристалле в зависимости от длины связи и времени развития технологии. Размер чипа = 1 см, длина связи и год написания статьи (2019) обозначены красным. Были развернуты следующие модели; а) модель пропускной способности, основанная на количестве транзисторов и оптических устройств на кристалле, которую можно рассматривать как первоначальную модель закона Мура; б) модель энергоэффективности на основе закона Куми, который ограничен пределом Ландауэра kB*T*ln(2) 2.75 зДж/бит, (kB постоянная Больцмана; T температура); в) модель экономической устойчивости, основанная на моделях технологического развития до 2019 года, согласно которой стоимость электронного канала составляет менее одной миллиардной или одной миллионной стоимости гибридного канала; г) модель параллелизма (после 2006 года), описывающая многоядерную архитектуру и ограничения темного кремния в электрическом интерконнекте. Желтая точка расположена на пересечении двух технологий в период 2019 года, когда технология Hybrid Plasmon-Photonics только достигла размеров чипа и начинает демонстрировать лучшую производительность показателя CLEAR на кристалле.

По мере совершенствования технологии и производственных процессов расстояние безубыточности производительность за одну цену (т.е. CLEAR) для передачи небольшого количества информации сокращается в силу более плоской кривой стоимости электроники по сравнению с фотоникой, причем последняя следует степенному закону во времени. Более того, стоимость начинает расти с масштабированием плотности электрического интерконнекта, связанным с дополнительными издержками в силу фундаментальных физических проблем на транзисторных узлах менее 10 нм (см. здесь). В отличие от этого, гибридный фотон-плазмонный интерконнект в настоящее время дорогостоящ пока в силу только начавшегося масштабирования, которое является целью консорциума Американского института по производству интегрированной фотоники (AIM Photonics). Масштабирование теперь возможно в результате недавних достижений в нанофотонике; концепция усиления взаимодействия света с веществом позволяет создавать компактные по длине волны в оптоэлектронных устройствах с преимуществами высокой энергоэффективности и высокой скорости работы из-за низкой электрической емкости (см. здесь). В результате, дистанция безубыточности между электроникой и гибридными фотон-плазмонными технологиями, как ожидается, будет дополнительно сдвигаться на более короткие расстояния по мере движения по временной шкале. Например, кремниевый фотонный чип на основе CMOS, продемонстрированный IBM еще в 2015 году, близок к области безубыточности (см. здесь). Интегрированная фотоника сможет заменить электронику только если скорость ее CLEAR-производительности сможет догнать общий эволюционный тренд вычислительных систем.

Выводы


Как мы увидели из приведенных выше рассуждений, CLEAR можно рассматривать как универсальный технико-экономический показатель не только из-за его широкой иерархической применимости (устройства, интерконнект, системные уровни), но также из-за его способности адаптироваться к конкретному технологическому применению. Например, для гибридизации сети внутри кристалла. CLEAR можно не только использовать в качестве показателя эффективности для прогнозирования эволюции технологической платформы, но также можно сравнивать общую способность технологической платформы (платформ) при различных условиях применения путем добавления весовых показателей к каждому коэффициенту в уравнении (4).

В этой первоначально предложенной метрике CLEAR все пять факторов линейно влияют на значение CLEAR, однако для конкретного приложения, которое критически зависит от конкретного фактора (или комбинации факторов), каждый фактор в CLEAR может быть взвешен по-разному. Чтобы обеспечить сопоставимость, даже среди таких настроенных метрик, может потребоваться обеспечить такие условия, чтобы сумма всех коэффициентов равнялась 5, аналогично нормализации к единице, такой как интеграл волновой функции в квантовой механике. Например, система портативных устройств может иметь строгие ограничения по энергии (E) и пространственному объему (A), что приводит к метрике CLEAR C0.8L0.8E1.2A1.2R для такой технологии. Действительно, было бы интересно сравнить тренды из различных настроенных метрик с возможностью прогнозирования технологий в будущем.

Кроме того, мы можем воспринимать будущие каналы связи или сети динамически реконфигурируемыми, позволяя микросхеме изменять свою идеальную рабочую точку в зависимости от текущего приложения, нагрузки, режима питания и т.д. Такие приложения, управляемые динамическими данными систем (DDDAS) востребованы из-за их комбинированной способности обработки когнитивной информации. Ожидается, что адаптация компьютерных систем к множеству ограничений будет иметь синергию с появляющимися системами теории информации, такими например как, нейроморфные и резервуарные вычисления, где адаптация и настройка весов обеспечивают работу машинного обучения, арифметику систем исчисления остатков или даже встроенной кремниевой фотоники оптических вычислений (см. здесь, тут, здесь и здесь).

Стоит также отметить, что, как это и случилось со всеми предыдущими показателями эффективности прогнозирования производительности технологических платформ, CLEAR может в конечном итоге начать отклоняться от своего первоначального тренда, когда в новой технологии будут использоваться более уникальные физические особенности. В настоящее время в CLEAR адекватно охватываются все доминирующие факторы производительности в современных технологиях, что позволяет на точном уровне прогнозировать эволюцию вычислительных систем на момент написания статьи.

Таким образом, CLEAR может быть не только инструментом для картографирования и прогнозирования перспектив, но и может проложить путь к аппаратным умным и когнитивным компьютерным платформам управления, где компромиссы между производительностью и стоимостью пересматриваются и оптимизируются в режиме реального времени.

В итоге, CLEAR можно рассматривать как новый закон Мура, который целостно отражает тенденции развития технологий различных уровней иерархического применения.
Подробнее..

Что такое microLED и почему это круто? Разбор

16.12.2020 14:07:22 | Автор: admin
Уже не первый год утечки кричат, что Apple инвестирует много миллионов долларов в компании по разработке дисплеев на основе microLED.

Многие аналитики, в том числе анонимный китайский инсайдер @L0vetodream, заявляли в Твиттере, что в Apple Watch Series 6 будет совершенно новый дисплей, но этого не произошло.

Возможно виноват COVID-19, который затормозил процессы в технологической сфере и уже по новым данным нам известно, что новый тип дисплеев, microLED, мир увидит в гаджетах от яблочной компании не раньше 2023 года и, возможно, в совершенно новом гаджете!


Прошу не путать с miniLED, хоть названия и похожи разница колоссальная. Сегодня мы заглянем в настоящее будущее дисплеев и разберемся во всём, как вы любите.

Почему не развивать дальше OLED?




Прежде чем отправиться в будущее давайте разберемся с проблемами настоящего. Сейчас идет эпоха OLED, но мы по-прежнему миримся с некоторыми болячками данных экранов: выгорание, время отклика, яркость, да и энергопотребление неплохо было бы понизить! И часть из этих проблем ушла бы в прошлое с уменьшением числа светодиодов!

Вы спросите, а почему нельзя было дальше развивать OLED просто уменьшая светодиоды?Дело в том, что если уменьшить размер элемента снизится количество производимого света. А если повысить мощность, чтобы компенсировать уменьшение света увеличится энергопотребление и нагрев, что в разы снизит срок службы органических соединений, который на фоне неорганических и так слишком мал.

Получается, что OLED в тупике но почему же microLED видится как единственная правильная альтернатива и какие же продукты с этими экранами стоит ждать в первую очередь?



Что такое microLED?


Хоть о технологии мы услышали недавно microLED начали создавать ещё в далёком 2000-ом году, два профессора в Канзасском государственном университете Хунсин Цзян и Цзинюй Линь. Всеэти 20 лет технология совершенствовалась. Если всё начиналось с простых несенсорных панелей с буквально несколькими субпикселями, крошечными огоньками красного, зелёного и синих цветов, то теперь это уже настоящее поле из миллионов таких огоньков.



К слову, только в 2011 году группа учёных наконец преодолела планку разрешения 640 на 480 пикселей в формате Video Graphics Array или VGA, где были хромовые синие и зеленые микродисплеи, способные передавать видео.Основная сложность в процессе создания таких дисплеев заключается в том, что. microLED использует очень маленькие светодиоды субпикселей, тех самых: RGB.Их размеры составляют порядка 5 микрон, у OLED размеры выше в разы красный 64 на 46 мкм, зелёный 95 на 15 мкм, синий 95 на 49 мкм. (порядка 5 микрон в сравнении с миллиметровыми пикселями LED).

Кроме того время их отклика вместе с тем в разы меньше. И это один из первых бонусов, о котором мы еще поговорим подробнее.

Копнем глубже, и разберемся из чего же делаются и те, и другие светодиоды ведь именно материалы стали ключом к уменьшению размера.

MicroLED в отличие от OLED в качестве пикселей использует не органические светодиоды, а диоды на основе нитрида галлия, который широко используется для создания светодиодов полупроводниковых лазеров и сверхвысокочастотных транзисторов, в общем, для всего того, где нужна высокая точность и резкость.Такие диоды очень малы около одной десятой толщины человеческого волоса!

В чём главный плюс в microLED от того, что используется неорганический светодиод?




Да в том, что он просто не выцветает в процессе использования, как его органический конкурент OLED.

Чтобы было проще понять, представьте: на солнце лежат две футболки одна из 100% хлопка, а вторая синтетическая. Так вот та, что выполнена из натурального хлопка, выцветет или выгорит, а синтетическая продолжит лежать как ни в чём не бывало.Примерно то же происходит и с дисплеями у OLED при длительном использовании будет постепенно проявляться те самые выцветшие пиксели, вы их заметите по жёлтому оттенку на дисплее.

microLED придёт на смену OLED?


А теперь посмотрим что же мы получим при переходе от OLED к MicroLED. Внимание на табличку.



В итоге мы получаем: более высокую яркость, эффективность, скорость, высокую термостабильность и контрастность.

Так, например, компания LuxVue, купленная Apple, в какой-то момент сообщила, что разработанная ею технология в девять раз ярче, чем OLED и LCD!

Да-да, вы не ослышались, Apple уже купила компанию по производству microLED! То есть уже с 2023 года в гаджетах изКупертино могут стоять собственные microLED-матрицы.

Продукты на microLED




Но если не заглядывать в будущее, что мы имеем сегодня на microLED?

Первым, кто попытался (именно попытался) представить технологию microLED свету, была компания Sony и их телевизор Crystal LED Display в 2012 году. В нём компания использовала всего 6,22 миллиона микросветодиодов, но исходя из тех показателей, что были заложены в модели, контрастность изображения по сравнению с ЖК-дисплеями стала в 3,5 раза выше, цветовой диапазон в 1,4 раза выше, углы обзора составляли более 180 градусов, а также вышло более низкое энергопотребление (менее 70 Вт) по сравнению с моделями на LCD.

Лёд тронулся благодаря Sony, но у телевизора безусловно присутствовали детские болезни, а главное, дисплей был целиком воспроизведён из одного куска microLED-панели, а не был модульным, какэто предусматривается изначально.



Но прошло 5 лет, и Samsung ответила Sony, выпустив 146-дюймовый дисплей под названием Стена. И здесь корейская компания уже продемонстрировала возможность собирать экран под свои нужды и по необходимым размерам.



Хочешь небольшой телевизор с microLED на кухню? Да запросто! А, хочешь из тех же частей дособрать огромный телевизор в гостиную? Легко! Похоже, что использование модульного подхода становится промышленным стандартом для производства больших экранов.

Но увы, даже такой подход слишком дорого обходится потенциальному массовому покупателю чего уж говорить, Стена выставлялась на продажу исключительно под заказ и ценник на них составлял от 490 000 долларов, а заканчивался на отметке в 1,68 млн долларов! И это без учёта налогов.

Почему же так дорого и где другие гаджеты с microLED-ом?

Трудности microLED


Технология хоть и новая, но трудности с выходом на массовый рынок всё те же, что и когда-то были и с OLED-ом. Всё дело в том, что производить в огромных количествах на первых порах и под каждого конкретного производителя (той же Apple) и его гаджеты, очень трудно!

Заводов ещё слишком мало, производство не такое масштабное, отсюда и цена! Сейчас, когда OLED-дисплеи стали массовыми цена постепенно опускается всё ниже и ниже, а сами дисплеи проверены временем, производителям проще сделать выбор в пользу имеющихся технологий.

Но уже сейчас сами создатели технологии microLED заявляют: В связи с быстрым прогрессом, достигнутым в последнее время в этой области, вопрос уже не в том, сможет ли microLED, а в том, когда данные дисплеи проникнут на массовые рынки для различных применений. Получается, это уже вопрос времени!

Будущее с microLEDКакие же устройства будут первыми массовыми юзерамиmicroLED-а?




Еще раз упоминая доклад по этой технологии, процитирую: Внастоящее время microLED находится под пристальным вниманием почти всех крупных компаний в области технологий для умных часов, смартфонов,умных очков, приборных панелей и пико-проекторов и 3D/AR/VR дисплеев.

Почему именно эти области?Говоря о часах или Apple Watch, которые часто всплывали в слухах там важнейшими параметрами являются энергопотребление и яркость microLED даст прирост по обоим пунктам.

iPhone само собой перейдет на microLED, но тут нужно будет обеспечить огромные объемы производства.Что действительно интересно загадочные Apple Glass могут также стать носителем microLED, на это даже намекает схематичное изображение в том самом докладе, оно перед вами.



Другое подтверждение далее по тексту: microLED был исследован в качестве источника света для применения в оптогенетике и для связи с видимым светом.

Если оптогенетика это перспективное направление в медицине, то вот последняя фраза про связь с видимым светом намекает нам, что эти дисплеи, из-за своих конструктивных особенностей, будут использоваться не только в наших смартфонах, но и в умных очках, будь-то VR или AR.

Говоря другими словами, глаз находится в непосредственной близости от экрана и он способен разглядеть рисунок, в то время как расположение диодов OLED бы мешало погружению. У ЖК-дисплеев такой проблемы нет, но там по-прежнему нет и идеального черного.У microLED маленькие диоды, рисунок будет замечен меньше и черный также идеальный еще и время отклика выше одни бонусы.

Выводы




Подведём итог. microLED исправляет проблемы OLED, такие как выгорание, у него более высокая яркость и контрастность, а также возможность уменьшать или увеличивать дисплей под свои задачи модульность.Осталось удешевить производство, чем сейчас и занимаются Apple и Samsung, инвестировав в данную технологию уже несколько заводов переквалифицировались в производство microLED-дисплеев.

Но это не единственный тип дисплея неизученный нами: еще же есть какой-то miniLED.
Подробнее..

Перевод Исследователи наконец создали металлические провода из углерода

28.09.2020 20:13:28 | Автор: admin
image

Изображение широкополосной металлической графеновой наноленты (Graphene Nanoribbon, GNR) шириной в 1,6 нанометра, сделанное с помощью сканирующего туннельного микроскопа.

Транзисторы, основанные на углероде, а не на кремние, потенциально могут повысить скорость компьютеров и снизить их энергопотребление более чем в тысячу раз подумайте, например, о мобильном телефоне, который держит заряд в течение нескольких месяцев. Но набор необходимых материалов, необходимых для создания работающих углеродных цепей, оставался неполным до настоящего момента.

Группа химиков и физиков из Калифорнийского университета в Беркли, наконец, создала последний недостающий элемент металлическую проволоку, полностью сделанную из углерода. Это в свою очередь, подготовило почву для начала исследований по созданию транзисторов на основе углерода, и в конечном итоге компьютеров.

Феликс Фишер, профессор химии Калифорнийского университета в Беркли, отметил, что возможность изготавливать все элементы интегральной схемы из одного материала сделает производство легче:
Это был один из ключевых моментов, которого не хватало в общей картине архитектуры интегральных схем, полностью основанных на углероде.

Металлические провода используются для соединения транзисторов в компьютерной микросхеме переносят электричество от устройства к устройству и соединяют полупроводниковые элементы внутри блока микросхем.

Группа Калифорнийского университета в Беркли в течение нескольких лет работала над тем, как сделать полупроводники и изоляторы из графеновых нанолент, которые представляют собой узкие одномерные полоски графена толщиной в атом. Структура этих нанолент, полностью состоит из атомов углерода, расположенных в гексагональной сингонии, напоминающем проволочную сетку.

В то время как другие материалы на основе углерода, такие как листы двумерного графена и углеродные нанотрубки могут быть металлическими, у них есть свои недостатки. Например, преобразование листа двумерного графена в полосы нанометрового размера может превратить их в полупроводники или даже изоляторы. Углеродные нанотрубки, которые являются отличными проводниками, не могут быть получены с такой же точностью в больших количествах, как наноленты.

Наноленты позволяют нам получать доступ к широкому спектру структур, используя восходящее проектирование, что еще невозможно с нанотрубками, сказал Майкл Кромми, профессор физики Университета Беркли. Это позволило нам соединить электроны вместе, чтобы создать металлическую наноленту, чего раньше не делали. Это одна из серьезных задач в области технологии графеновых нанолент, и поэтому мы так взволнованы этим.

Наноленты из металлического графена имеют широкую, частично заполненную электронную полосу, характерную для металлов, и могут быть сравнимы по проводимости с двумерным графеном.

Это первый случай, когда мы можем создать ультратонкий металлический проводник из материалов на основе углерода и это настоящий прорыв, добавил Фишер.

Кромми, Фишер и их коллеги из Калифорнийского университета в Беркли и Национальной лаборатории Лоуренса Беркли (Berkeley Lab) опубликовали свои выводы в выпуске журнала Science за 25 сентября.

Интегральные схемы на основе кремния использовались в компьютерах в течение десятилетий, регулярно увеличивающейся скоростью работы и производительностью в соответствии с законом Мура, но они уже достигают своего предела скорости насколько быстро они могут переключаться между нулями и единицами. Также становится все труднее снизить энергопотребление; компьютеры уже потребляют значительную часть мирового производства энергии. По словам Фишера, компьютеры на основе углерода потенциально могут переключаться во много раз быстрее, чем кремниевые компьютеры, и потреблять лишь долю от их энергии.

Графен, представляющий собой чистый углерод, являлся ведущим претендентом на создание компьютеров следующего поколения на основе углерода. Однако узкие полоски графена в первую очередь являются полупроводниками, и проблема заключалась в том, чтобы заставить их также работать как изоляторы и металлы, чтобы построить транзисторы на основе углерода.

Несколько лет назад Фишер и Кромми объединились с ученым-теоретиком материаловедом Стивеном Луи, профессором физики Калифорнийского университета в Беркли, чтобы открыть новые способы соединения небольших отрезков наноленты с сохранением всех проводящих свойств.

Два года назад команда продемонстрировала, что, правильно соединив короткие сегменты наноленты, электроны в каждом сегменте могут быть расположены так, чтобы создать новое топологическое состояние особую квантовую волновую функцию что приводит к настраиваемым свойствам полупроводника.

В новой работе они используют аналогичную технику для сшивания коротких сегментов нанолент, чтобы создать проводящий металлический провод длиной в десятки нанометров и шириной всего лишь в один нанометр.

Все они спроектированы так, что могут сочетаться друг с другом лишь одним способом. Это как если бы вы взяли пакет с Lego, встряхнули его, и получили полностью собранный автомобиль , сказал он. В этом волшебство управления самосборкой с помощью химии.

Благодаря химии, мы сделали крошечные изменения одной химической связи на каждые 100 атомов, и увеличили проводимость наноленты в 20 раз. И это важно с практической точки зрения, чтобы получить таким путем хороший металл, сказал Кромми.

Я верю, что эта технология в будущем произведет революцию в том, как мы строим интегральные схемы, сказал Фишер. Это будет большим шагом вперед в разработке и производстве электроники по сравнению с теми результатами, которые можно ожидать от кремния прямо сейчас. Теперь у нас есть возможность получить более высокую скорость работы при гораздо меньшем энергопотреблении. Это будет движущей силой в будущем индустрии электронных полупроводников.
Подробнее..

Компания IBM изготовила полупроводники с техпроцессом 2 нм. В чем же подвох?

10.05.2021 20:18:52 | Автор: admin
image

Компания IBM освоила производство полупроводников с технологическим процессом 2 нм. Если не обнаружится никаких нюансов, то в скором времени можно ожидать просто огромного роста производительности и энергоэффективности чипов.


Хронология уменьшения размера технологического процесса


Наиболее известное правило в мире высоких технологий наблюдение, или закон Мура, гласит: каждые два года количество транзисторов на чипе увеличивается вдвое. Владельцы компьютеров могут вспомнить свои первые ПК, сравнить их с существующими современными моделями. Новое устройство всегда компактнее и мощнее предыдущего: согласно закону Мура, каждые 24 месяца количество чипов на интегральной схеме также увеличивается в два раза.
Этой формуле более 50 лет, она стала основной концепцией для создания современной техники, но, согласно подсчетам, закон Мура не вечен. Человечество уже подходит к максимальным возможным значениям в производстве полупроводников.


В 2007 году Мур признал, что вскоре закон утратит свою силу так как есть предел темпа развития технологий.

3 мкм такого технологического процесса компания Zilog достигла в 1975 году, Intel в 1979-м.
1,5 мкм Intel уменьшила технологический процесс до этого уровня в 1982 году;
0,8 мкм уровень Intel в конце 1980-х.
0,60,5 мкм компании Intel и IBM находились на этом уровне в 19941995 годах;
350 нм Intel, IBM, TSMC к 1997-му;
250 нм Intel, 1998 год;
180 нм Intel и AMD, 1999 год.
130 нм этого уровня компании Intel, AMD достигли в 20012002 годах;
90 нм Intel в 20022003 годах;
65 нм Intel в 20042006 годах;
4540 нм Intel в 20062007 годах;
3228 нм Intel в 20092010 годах;
2220 нм Intel в 20092012 годах;
1416 нм Intel наладила производство таких процессоров к 2015 году;
10 нм TSMC делала такие процессоры уже в 2016-м, а Samsung в 2017 году;
7 нм TSMC, 2018 год;
6 нм TSMC только анонсировала такой технологический процесс в 2019 году;
5 нм TSMC начала тестирование такого техпроцесса в 2019 году;
3 нм Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
2нм IBM освоило производство в 2021 году.


Основная часть


image


По словам представителей компании, инженеры IBM смогли разместить 50 миллиардов транзисторов на пластине, площадь которой сопоставима с площадью ногтя. Площадь кристалла составила 150 мм квадратных, а это означает, что на квадратный миллиметр поместилось 333.3 миллиона транзисторов. Плотность воистину потрясающая: для сравнения у топовых продуктов TSMC она составляет 91.2 миллиона, а у Intel 100.8. Подобный прорыв может стать настоящей революцией в мире цифровых технологий.
Ниже приведен список популярных компаний и размер их процессора и количество транзисторов.


Manufacturer Example Process Size Peak Transistor Density (millions/sq mm)
Intel Cypress Cove (desktop) CPUs 14 nm 45
Intel Willow Cove (laptop) CPUs 10 nm 100
AMD (TSMC) Zen 3 CPUs 7 nm 91
Apple (TSMC) M1 CPUs 5 nm 171
Apple (TSMC) next-gen Apple CPUs, circa 2022 3 nm ~292 (estimated)
IBM May 6 prototype IC 2 nm 333

Переход на 2-нм техпроцесс может повысить производительность на 45%, а если в приоритете поставить энергоэффективность, то при нынешних показателях производительности она вырастет на 75%, если сравнивать с топовыми на данный момент 7-нм чипами, что в первую очередь существенно отразится на автономности мобильных устройств.


image

Действительно ли IBM сделали 2нм процесс или это только маркетинговый ход? Разберем на примере 14 и 7нм у двух ведущих компаний по производству процессоров.


Пристальное изучение полученных изображений полупроводниковой структуры показало несколько любопытных фактов. Так, различия ширины затвора транзистора у 14 и 7 нм техпроцессов оказались минимальны: 24 нм у Intel против 22 нм у AMD, высота затворов так и вовсе оказалась равна на уровне погрешности. Как видим, никакого кратного отличия, на которое намекают маркетинговые наименования техпроцессов, нет.


image

Это ещё раз подтверждает тезис о том, что числа в названии современных литографических технологических процессов уже давно не имеют ничего общего с реальностью. Так, компания Samsung созналась, что её 8 нм технология это просто 10 нм с новой библиотекой элементов и обновлённым трассировщиком.


image

Всё это наводит на некоторые мысли. Так, рост производительности процессоров AMD RYZEN вероятнее всего может быть обусловлен в первую очередь именно инженерной работой и совершенствованием архитектуры, а не успехами TSMC в переименовании своих техпроцессов. Следовательно, ощутимый прирост от поколения к поколению будет зависеть от задела к модернизации, избранной AMD технологии чиплетов. Поскольку это первый опыт применения данной компоновки кристаллов, делать какие-то долгосрочные прогнозы сложно, но очевидно, что однажды возможности дальнейшего совершенствования будут исчерпаны, и AMD придётся у перейти к схеме +5% каждый год, либо менять парадигму и искать новые пути развития.


В то же время переход процессоров Intel на 10 и 7 нм может принести гораздо больший, чем можно предполагать, прирост, поскольку компания не увлекалась маркетингом нанометров, просто добавляя знаки + к своим 14 нанометрам, следовательно, новый техпроцесс может оказаться действительно значительно более продвинутым. Кроме того, Intel уже смотрит в будущее и проводит исследования в области альтернативных методов пространственной компоновки транзисторов и структур кристалла процессора.


Как бы то ни было, становится очевидно, что пресловутые числа в названиях техпроцессов не отражают физической реальности и размеров полупроводниковых элементов. Грядущие 5 и 3 нм от TSMC и Samsung, вероятнее всего, так же будут представлять из себя по сути 7++ и 7+++ технологии. Размеры элементов транзистора уменьшаются незначительно, увеличение плотности размещения транзисторов на единице площади достигается в первую очередь совершенствованием библиотек элементов, развитием программ-автотрассировщиков, оптимизацией самой структуры и компоновки блоков кристалла.


Какие же недостатки будут в производстве процессоров меньше 5нм?


image

Переход на новые уровень становится все сложнее. Используемые 5 7 нм обеспечивают должную производительность и компактность практически для всех существующих задач. Помимо этого проблема роста производительности успешно решается путем наращивания количества ядер. Причем этот показатель растет впечатляющими темпами.


Стоимость только создания производственной линии нового поколения исчисляется в сотнях миллиардов долларов. О том, во сколько обойдется создание завода для более мелких техпроцессов, остается только догадываться.


Повышение плотности расположения транзисторов имеет ряд существенных проблем. Первая тепловыделение. Самые горячие процессоры от Intel имеют TPD (уровень теплоотдачи) больше 250 Вт. Становится уже недостаточно даже воздушного охлаждения. Дальнейшее повышение плотности приведет к тому, что схемы будут просто выгорать.


Другая более существенная проблема квантовые процессы. При переходе на единицы нанометров существенно возрастает ток утечки, и эта проблема распространяется на другие транзисторы. В итоге, критически страдает энергопотребление. Не стоит забывать и про эффект туннелирования, который делает невозможным проектирование стабильно работающей архитектуры.


Каковы перспективы будущего? Пока есть запас в виде технологий 5, 3 и даже 2 нанометра. Не стоит забывать и про квантовые компьютеры. Пока они служат только для узкоспециализированных задач, но это временно. А значит, опасаться, что уже в текущем десятилетии мы упрёмся в физические ограничения создания транзистора на атомном уровне, не стоит. Тормозом станет, скорее, непомерная стоимость разработки и изготовления более совершенных степперов и проблема с созданием новых сверхмощных источников УФ-излучения. Впрочем, решение, возможно, уже не за горами и кроется в применении новых материалов, в частности соединений германия, гафния, либо графена. Но это уже совсем другая история.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru